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Abstract
We have reached a point where many bio founda-
tion models exist across 4 different scales, from
molecules to molecular chains, cells, and tis-
sues. However, while related in many ways,
these models do not yet bridge these scales.
We present a framework and architecture called
Xpressor that enables cross-scale learning by (1)
using a novel cross-attention mechanism to com-
press high-dimensional gene representations into
lower-dimensional cell-state vectors, and (2) im-
plementing a multi-scale fine-tuning approach
that allows cell models to leverage and adapt
protein-level representations. Using a cell Foun-
dation Model as an example, we demonstrate that
our architecture improves model performance
across multiple tasks, including cell-type predic-
tion (+12%) and embedding quality (+8%). To-
gether, these advances represent first steps toward
models that can understand and bridge different
scales of biological organization.

1. Introduction
Biology processes information across different scales, from
individual molecules to entire tissues. Recent advances in
artificial intelligence have led to the development of foun-
dation models that excel at representing biological data at
specific scales, such as protein structures (Rao et al., 2020)
or cell states (Kalfon et al., 2024; Cui et al., 2024). However,
these models typically operate in isolation, unable to lever-
age the rich interconnections between different biological
scales. Indeed, having models that can learn across biolog-
ical scales will be crucial to capture the complexity of the
biological phenomena.
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The main premise of our work is that by using data from the
previous scale, we might be in a position to improve the ini-
tial representations of the upper-scale (Bunne et al., 2024;
Song et al.). Reciprocally, using relationships learned at the
upper-scale, we might be able to improve the lower-scale
models too. Finally, we would want to use joint representa-
tions of molecules, DNA, proteins, cells, and tissues, which
are all the elements of the organisms we want to study.

While it is unclear and likely infeasible to learn across all
scales at once, we might be able to use foundation models
that have been trained on specific scales, which we call unis-
cale models, using only fine-tuning and some architectural
changes (see Figure 1). We review the existing uniscale
foundation models in depth for each of the four main bio-
logical modalities in our Supplementary Material 3.4 (Si
et al., 2024).

1.1. Architectural modifications: compressed
representations

For biological representations, previous methods have lever-
aged many different methods from matrix factorization,
nearest neighbors, and neural networks (Gunawan et al.,
2023; Bengio et al., 2014) amongst which popular ap-
proaches are Variational Autoencoder (VAE) such as scVI
and scArches (Lopez et al., 2018; Lotfollahi et al., 2022).
In the domain of protein embedding, the HourGlass em-
bedding method (Lu et al., 2024) introduced FSQ (Mentzer
et al., 2023) as a framework to encode both amino acid se-
quences and 3D structural information from a pLM into a
quantized latent space. Meanwhile, DNA sequence model
embeddings have been mostly restricted to metagenomics,
with the exception of DNA-BERT-S (Zhou et al., 2024).

Finally, it has been shown not only in biology but also in the
NLP community that for transformer models, embeddings
based on average,max,sum-pooling of last-layer tokens are
very restrictive and do not perform well (Schockaert, 2023;
Lee et al., 2025; Ilse et al., 2018). Indeed, current state-
of-the-art methods use more complex approaches such as
cross-attention mechanism and additional pre-training or
fine-tuning tasks.

In the following, we will show that we can use a similar
cross-attention mechanisms to compress the output embed-
dings of a foundation model into a set of lower-dimensional

1



Xpressor

Figure 1. Representation of the different biological scales and how
the representation of different foundation models could feed the
upper scales and their learning could inform the lower scales’ rep-
resentations.

vectors.

1.2. Training modifications: fine-tuning

An extensive literature exists on fine-tuning. The simplest
and most powerful approach remains to continue training
on a small set of epochs and with a lower learning rate
(Christophe et al., 2024). Common tools include low-rank
approximations of the Multi-layer perception (MLP) and
Query, Key, Values (QKV) matrices using LoRA, QLORA,
and COLA (Hu et al., 2021; Dettmers et al., 2023; Ray et al.,
2023; Tang et al., 2024), which allow cheap fine-tuning of
large foundation models. Other common approaches also
mostly revolve around reducing the memory footprint of
fine-tuning by only back-propagating the loss across a spe-
cific subset of parameters, from updating only specific lay-

ers of the model, only the MLPs, the QKVmatrices, or only
the biases of the MLPs (Peters et al., 2019; Chronopoulou
et al., 2019). Finally, adapter layers have also been used for
their versatility. They often consist of an additional MLP
on top of the large model’s output representations (Houlsby
et al., 2019).

In the following, we will show that the adapter layer is a
sensible approach to perform multi-scale fine-tuning.

1.3. Contributions

Following up on these recent advances, we propose:

• A cross-attention ”compressor” block whose goal is
to compress a foundation model’s output embeddings
into a small set of low-dimensional vectors, called the
Xpressor (Cross-Attention Compressor transformer).
This is learnt using an auto-encoding approach with
a reconstruction loss. The Xpressor is modality agnos-
tic and can be used by mFMs, nFMs, cFMs, tFMs, or
even other non-biological domains, and canwork in ad-
dition to other training tasks like masking or denoising
(see Figure 2A).

• A multi-scale fine-tuning approach using adapter lay-
ers. This allows the fine-tuning of models from one
level using the upper-scale model’s task (see Fig-
ure 2B).

2. Xpressor
2.1. Background

scPRINT (Kalfon et al., 2024) is a foundation model trained
on more than 50 million unique single-cell RNA-seq pro-
files, representing around 100B tokens. It learns with a
multi-task pre-training loss, allowing state-of-the-art zero-
shot abilities in denoising and label prediction. scPRINT
builds on previous foundation models, like scGPT (Cui
et al., 2024) and scFoundation (Hao et al., 2024). It im-
proves upon them on multiple benchmarks and is also eas-
ier to use and faster to train than many other similar models.
Additionally, it comes with a gymnasium of benchmarks
presented in Kalfon et al. (2024). For these reasons, we
chose to use it as our cFM and the starting point for our
work.

ESM2 (Rao et al., 2020) is a protein language model that
learns embeddings of amino acid sequences. It has been
shown to be able to learn the evolutionary constraints of
proteins and to be able to predict contact maps. Models
like ESMfold (Lin et al., 2022) have been created to predict
a protein’s 3D structure directly from its output embeddings.
It is also simple to use. For these reasons, we chose to use
it as our nFM.
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Figure 2. Overview of the Xpressor architecture and multi-scale
fine-tuning approach applied to a cell foundation model. A.
The Xpressor architecture, composed of M layers, shows how
gene-level representations are compressed into cell-state vectors
through cross-attention over the output embeddings of a trans-
former, composed of N layers. These compressed representations
are then decompressed back using the same initial transformer
model with cross-attention given the initial gene-level tokens. B.
Example of the multi-scale fine-tuning setup illustrating how the
adapter layer enables joint training of gene-level representations
that are then used by a cFM. C. Detailed structure of the trans-
former and Xpressor blocks showing the cross-attention and self-
attention sub-blocks. Blue blocks are our contributions. Shaded
blocks indicate inputs and outputs.

2.2. Approach

Our first contribution is the compression of output embed-
dings of foundation models using a transformer block and
a bottleneck-learning training modality (see Supplementary
Material 3.6): we call it the Xpressor (see Figure 2A). Com-
pression / decompression is a keymechanism to transfer rep-
resentations across scales (see SupplementaryMaterial 3.4),
we thus models that can compress and decompress their
input into a lower-dimensional space. To do so, we intro-
duce an additional set of transformer blocks called ”Xpres-
sor blocks”. In the context of scPRINT, these blocks repre-
sent cell features.

As inputs scPRINT continues to use a set of summed up
gene expression and gene ID tokens. The first ones are gen-
erated using an MLP on each expression values of genes
in a cell 𝑗 , the other ones are generated from ESM2’s out-
put embeddings of each gene sequenced aggregated with
mean-pooling. The newly proposed Xpressor block uses as

input a set of learned latent tokensT . It then performs cross-
attention between the last layer of the gene embeddings and
the latent tokens (see Figure 2A). The goal is for the Xpres-
sor blocks to be of smaller dimensions and context size than
the main blocks, such that we end up with C 𝑗 a set of 𝑛
tokens of dimension 𝑑𝑡 generated from the encoded gene
expression and ID matrices E 𝑗 and G. Where G and E 𝑗

are sets of 𝑚 tokens of size 𝑑𝑐 representing the IDs of the
genes and their corresponding expression in cell 𝑗 , respec-
tively, where 𝑑𝑐 < 𝑑𝑡 and 𝑛 << 𝑚:

O 𝑗 = Transformer(E 𝑗 ,G)

C 𝑗 = Xpressor(O 𝑗 ,T )

for a cell 𝑗 , with the Xpressor being initialized with a
learned set of input cell tokens, and C 𝑗 being the cell to-
kens associated with the input E 𝑗 .

The Transformer and Xpressor are both transformer with
N and M layers, respectively. Indeed, we have de-
signed both blocks to contain a cross-attention architec-
ture (see Figure 2C) such that we can also do: Ô 𝑗 =
Transformer(C 𝑗 ,G), with Ô 𝑗 being the output of the Trans-
former when using theXpressor representation as input. We
add an optional MLP after cross-attention to a transforma-
tion of the embeddings prior to the self-attention round. In
our example, the decompression is done with gene ID to-
kens as input only (G) (see Figure 2A). These tokens re-
main the same for all cells of a given species and thus do
not depend on 𝑗 . In the context of protein language models,
for example, this would be replaced by positional tokens.

As can be seen in Figure 2A, the Transformer blocks are
applied twice. The first application act as an encoder, only
using self attention, while the Xpressor and second appli-
cation of the Transformer blocks act as decoders. We fol-
low these definitions from the original ”Attention is All You
Need” paper (Vaswani et al., 2023). It has to be noted that
in our case cross-attention is performed first instead of last.
Related ideas have also been explored in Lee et al. (2025),
where the authors propose a cross-attention-based method
to update tokens using ”latent” embeddings followed by a
classical mean-pooling.

The goal of the Xpressor and the entire model can be seen as
to perform compression of the gene tokens into a set of cell
tokens similar to the classical information bottleneck from
Tishby et al. (see Supplementary Material 3.6). This is our
main training objective to train the Xpressor blocks, while
the Transformer is also trained with masking.

In our case, each embedding represents different cell com-
ponents. At training time, we present multiple losses to
both regularize it and ensure differences across them, simi-
lar to what can be done in VAEs (see Supplementary Mate-
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Table 1. Comparison of cell embedding approaches

Model Cell Label
Pred.

Embed.
Quality

Gene-Net
Infer.

Class-pooling 0.64 0.48 4.0,2.3
Xpressor 0.72 0.52 4.1,2.1

rial 3.7).

2.3. Results

We show that such an instantiation of the transformer leads
to better performance over the gymnasium of tasks available
in the scPRINT cFM.

Indeed, we now look at three specific tasks: cell-type predic-
tion, embedding quality, and gene-network inference. The
tasks are the same as presented in Kalfon et al. (2024).

”Embedding quality” refers to the average scIB (Luecken
et al., 2022) score for batch correction and biological con-
sistency of cell embeddings. In this context scIB looks at
the quality of the embeddings based on measures of similar-
ity, nearest neighbors, and clustering.

Cell-label predictions are generated using a classifier on top
of the cell embeddings generated by each model. We fol-
low the approach of Kalfon et al. (2024) here, which was re-
cently presented with a different mechanism in Wang et al.
(2024b). This classification task allows us to see how one
can steer the model’s embeddings to represent meaningful
biological features.

Finally, we display two different metrics for gene-network
inference. The gene network inference benchmark tries
to estimate the quality of the self-attention matrices based
on similarity to a gene-gene ground-truth matrix. Here
we use EPR, an odds-ratio measure where, e.g. a value
of N means that the predictions are N-times as likely to
be correct as a random guess. One is the EPR score on
the genome-wide perturb-seq gene-network from BenGRN
(Kalfon et al., 2024), while the second is the average EPR of
multiple predicted gene-networks across various cell types
compared to the BenGRN’s omnipath ground truth gene net-
work (Türei et al., 2016).

In our comparison, the regular transformer’s class-pooling
is done similarly to scGPT’s (Cui et al., 2024) approach,
where a class token is added to the model’s input and an
additional loss is placed on it: 𝑎𝑟𝑔𝑚𝑖𝑛𝐶 𝑗 (| |𝐸 𝑗 −C 𝑗G

𝑇
𝑗 | |2).

Both models use the same latent dimensions, architectures,
training paradigm, and number of input tokens for both
genes and cells.

We see that the Xpressor outperforms the simpler class-
pooling approach on embedding quality and cell-label pre-

diction, while the gene-network inference results remain
roughly similar.

We will now see how we can further train -or fine-tune-
these representations using information from the upper
scale. While Xpressor layers with their small set of low-
dimensional tokens are best suited for this task, we will fo-
cus on commonly available foundation models and architec-
tures, presenting a general approach.

3. Multi-scale Fine-tuning
3.1. Background

To merge foundation models, we need a way to connect the
lower-scale models to the upper one. It had been proposed
in Rosen et al. (2023); Kalfon et al. (2024) to use protein
language model-based representations, like those of ESM2,
as input tokens for the models. This decreases the number
of parameters the model has to learn; It allows the model
to work on genes unseen at training time; Moreover, it also
lets the model use information that it would not have gained
otherwise, such as protein structure, homology, and muta-
tions.

3.2. Approach

We propose going beyond simply reusing lower-scale mod-
els’ representations and fine-tuning them during the pre-
training of the upper-scale model using an adapter layer
(see Figure 2B). With such layer, each output embedding
e is transformed with a differentiable function 𝑓 (here, an
MLP):

i𝑘 = 𝑓 (e𝑘)

By using an MLP, the adapter layer not only applies a trans-
formation of its input but also adds information (see Sup-
plementary Material 3.5). In our case, we use ESM2 as the
lower-scale model and scPRINT as the upper-scale model.
The initial ESM2 embedding is known to contain a repre-
sentation of the protein’s sequence, evolutionary similarity,
and constraints.

Indeed, this is what allows this representation to replace the
multiple sequence alignment (MSA) step in ESMfold (Lin
et al., 2022). We posit that this initial embedding already
contains the information necessary to understand some of
the rules in gene interactions (homology and similar evolu-
tionary constraints). However, representations from ESM2
are very different from those from single-cell foundation
models. Our goal is to enrich these representations with
knowledge gained from co-expression information across
millions of cells.
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Table 2. Comparison of input-gene embedding approaches

Model Cell Label
Pred.

Embed.
Quality

Gene-Net
Infer.

Random init. 0.62 0.48 4.5,1.0
ESM2 frozen 0.60 0.484 5.2,1.4
ESM2 fine-tuned 0.70 0.49 4.8,2.4

3.3. Results

We show that a cFM trained using the pooled embeddings
of a pretrained nFM performs better in most tasks from the
Kalfon et al. (2024) gymnasium benchmark than one with
learned representations (see Table 2). This is possible be-
cause we allow the model to start from a very rich represen-
tation instead of a random set of vectors, while still giving
it the flexibility to incorporate additional knowledge. Each
foundation model tested uses the same latent dimensions,
architectures, training, and number of input tokens. We re-
port the performance at the best epoch, and the training is
stopped after 20 epochs.

We also show the difference in cell embeddings obtained
between the regular transformer and the Xpressor (see Fig-
ure 3). The dataset is a very challenging mix of modalities
with various batch effects and amounts of noise. Cell types
are also quite similar, making the task more difficult. We
can see that the Xpressor embeddings contain more struc-
ture and resolve different cell types better than a transformer
with class-pooling.

Figure 3. Comparison of cell embeddings between the regular
transformer with class-pooling (left), scIB: 0.43, and the Xpres-
sor (right), scIB: 0.48. The Xpressor embeddings contain more
structure and resolve different cell types better.

Using ESM2’s embeddings allows scPRINT to work on
genes and sequences unseen at training time, to learn from

an unlimited number of species, and to integrate DNA,
RNA, and protein-level information such as mutations and
structural variants.

Finally, contrary to other methods, this version does not re-
quire an update to the original model and can be added to
the new model. Moreover, with this approach, scPRINT
still maintains its ability to work on genes and sequences
unseen at training time.

Conclusion
We have proposed a framework towards building composi-
tional hierarchical foundation models for life, from atoms to
tissues. We highlighted progress and challenges remaining
for each specific scale of biological representations. While
data generation efforts focusing on breadth and quality re-
main paramount to progress, we believe that the compo-
sition of foundation models could drive progress forward.
Having a vocabulary for biological entities will allow us
to better reference them, helping us define the impact of
a molecule on a tissue or the interaction between RNA and
proteins. Such a model of life should not be seen as one be-
ing trained end-to-end but as a set of models distilling the
key information that they have learned and that the next one
requires.

We have presented one small piece in this approach, where
a cell foundation model (scPRINT) uses and fine-tunes a
protein sequence foundation model (ESM2). We have also
shown how XPressor can compress the output representa-
tions of transformers into a small set of lower-dimensional
vectors, bridging proteins to cells. Such an approach could
be used to bridge molecules to proteins and cells to tis-
sues by using compressed representations that are then fine-
tuned. This is a promising back-bone architecture for a gen-
eral model going from atoms to tissues.

Future work should focus on using Xpressor’s representa-
tions to power upper scale models or the ability to learn
a Xpressor on top of a pre-trained foundation model. The
Xpressor approach could also be extended to decoder-based
language models. Finally, fine-tuning using and adaptor
layer suffers from a main drawback, the non-additivity of
MLPs and therefore the limited use of such fine-tuned mod-
els in other contexts than for their compressed representa-
tions. Implementing intelligent GPU scheduling and us-
ing LoRA-type methods to fine-tune only XPressor blocks
will allow for more complex fine-tuning in GPU-rich set-
tings. We will need to show that this can be applied to
the other scales of biological representations and generate
benchmarks that better capture the diversity of real-world
biological tasks across these scales.
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Supplementary
3.4. Foundation models across scales

This section summarizes the existing uniscale foundation
models grouped by biological scales (Si et al., 2024).

Molecular foundation models (mFM) try to model with
atomistic precision the complex quantum physics-based
rules that govern molecules and their interactions (Abram-
son et al., 2024). They generate embeddings of molecules
by encoding their chemical representation, often using
SMILES notation. These embeddings should contain infor-
mation to predict molecular measurements such as binding
to a target, potency, solubility, and more (Méndez-Lucio
et al., 2024; Ross et al., 2022). The models are often built
with invariances concerning the symmetries of molecules
(relative positions and angles) (Batzner et al., 2022). These
models can also be paired with ones that learn to predict the
structure and dynamics of these molecules. Training data in
this context is mostly limited by compute since molecular
dynamics simulations can be generated at will (Kozinsky
et al., 2023). The first use cases of such models are in ma-
terial generation and drug discovery.

However, computing binding affinities and force-fields sim-
ilar to the most precise molecular dynamics methods re-
mains a frontier (Benali et al., 2025; Rhodes et al., 2025).

Nucleotide foundation models (nFM) are a category of
models designed to analyze sequences of nucleotides or
amino acids, which are encoded in triplets of nucleotides,
primarily using data derived from sequencing across vari-
ous life forms. Although new architectures have been intro-
duced to handle large context sizes (Nguyen et al., 2023),
most models generally rely on traditional transformer mod-
els with small context sizes and are trained with masking.
These models are based on the transformer architecture and
language model techniques (LM) (Vaswani et al., 2023) to
produce representations of the lengthy and repetitive molec-
ular structures found in DNA and RNA, sometimes termed
dnaLM and rnaLM (Dalla-Torre et al., 2024; Wang et al.,
2024a; Fradkin et al., 2024; Brixi et al., 2025).

While protein languagemodels like ESM2 (Rao et al., 2020)
have shown real-world usage in helping generate 3D mod-
els of proteins, dnaLM mainly focused on the task of un-
derstanding regulatory mechanisms, such as binding inter-
actions and chemical modifications on DNA. It has been
shown however, that representations learned by dnaLM can
also contain information about the secondary structures of
proteins and even protein-protein interactions (Brixi et al.,
2025; Cornman et al., 2024).

For these reasons, we fold protein language models into the
nFM category, proposing that their distinctions will blur in
the future.

Numerous challenges still exist in accurately predicting the
diverse conformations of RNA, DNA, and proteins, as well
as in modeling their intricate interactions (Abramson et al.,
2024). Indeed, it is still hard to measure complexes with
the same accuracy as individual proteins. A goal would
be to generate nFMs that learn across the very related lex-
icons, which are DNA, RNA, and proteins, by introducing
architectures and training modalities that go beyond what
exists today (Xia et al., 2025). Indeed, there we could
use the framework of ”learning across scales” by using the
representations of molecules, learned and compressed by
mFMs, as the very tokens of nFMs, allowing them to talk
about ribonucleotides, deoxyribonucleotides, amino acids,
and their potential modifications.

Currently, the main applications of nFMs have been in drug,
and target discovery, as well as many other fields of biology.

Cell foundation models (cFM) are a class of models
trained on a matrix of abundances of the different chemical
elements (proteins, RNAs) present in cells. (Bunne et al.,
2024; Kalfon et al., 2024; Theodoris et al., 2023; Cui et al.,
2024; Hao et al., 2024; Rosen et al., 2023). Their archi-
tecture is often based on bidirectional encoder-based trans-
formers trained on single-cell RNA-sequencing data. While
diverse training strategies have been presented, the model’s
architectures have, for now, remained fairly classical. The
goal of these cFMs is to generate an accurate model of the
cell that would allow predictions of cell evolution and re-
sponse to perturbations (Kedzierska et al., 2023).

However, immense challenges remain. Current promises
have not stood up to experimental validations (Bendidi et al.,
2024; Boiarsky et al., 2023). While many reasons can be
formulated, issues exist around data quality, diversity, and
coverage. Indeed, single-cell data is very noisy, only mea-
sures a tiny fraction of the molecular composition of cells,
and has beenmostly produced on human andmodel animals
(Program et al., 2023). While data will remain an important
challenge, an area of improvement would be to, again, distill
the rules of molecular interactions from sequence learned
at the sequence level onto cFMs. This allows them to better
learn the complex regulatory mechanisms of the cell.

Tissue foundation models (tFM) strive to understand
the interactions between cells that form tissues, mostly
in higher-order organisms. Often based on imaging tech-
niques, they consider the 2D structural relationship of cells
or group of cells in a tissue slice. The stained microscopy
slides allow the prediction of tissue type, organs, and even
some protein expression levels. These models are often
versions of the famous vision transformer architecture and
framework (Dino V2), applied to medical images (Oquab
et al., 2024; Wang et al., 2024c). They thus learn on image
patches where each pixel has some channels of information
(often from 2 to 30 different chemical elements are repre-
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sented within these channels) (Bray et al., 2016; Wenck-
stern et al., 2025). The number of channels can go up to
tens of thousands in spatial transcriptomics image modali-
ties, where each channel represent a transcripts location at a
subcellular level(e.g., xenium) or at a cell-group-level (e.g.,
visium).

Overall, even more challenges arise in tissue foundation
models. Most of the data exists behind institutional barri-
ers, the resolution of high channel count modalities is really
poor, while the channel amount of high-resolution modali-
ties is really small, making it hard to predict even the cell
state. Slices are often of tiny subparts of tissues. Most of
the available data is in 2D slides, and 3D modalities are
still burgeoning (Alon et al., 2021). We lack good mea-
surements of what cells are communicating, but we know
that they do, from sequences to molecules and even entire
organelles (Hertle et al., 2021). tFMs’ vocabulary can be
seen as made of cells. Their tokens are cell representations
and could be be the rich representations learned by cFMs.
The goal of a tFM is then to predict the presence of cells
given other cells in spatial context.

3.5. proof that fine-tuning ESM2 with an adapter layer
is at least sufficient to learn to add co-expression
information

We show below that an MLP (with at least one hidden layer
and a sufficiently large number of neurons) can learn to map
each of 𝐷 input protein embeddings to an arbitrary desired
output, even if that output corresponds to a unique lookup
for each protein.

1. Finite Data Interpolation: Let the set of 𝐷 protein em-
beddings be E = {e1, e2, . . . , e𝐷} ⊂ ℝ𝐷 , and suppose that
for each e𝑘 we want the MLP to output w𝑘 ∈ ℝ𝐷 . Because
the set E is finite, it is possible to design a function that
exactly maps e𝑘 ↦→ w𝑘 for all 𝑘 = 1, . . . , 𝐷.

2. Constructive Argument Using ReLU Networks: For
a ReLU-based MLP, one can construct ”bump” functions
that are activated only in a small neighborhood around each
e𝑘 . For instance, one may define functions of the form
r𝑘 (x) = 𝜎(−∥x − e𝑘 ∥ + 𝛿), where 𝛿 > 0 is chosen so that
r𝑘 (e𝑘) > 0 and r𝑘 (x) is nearly zero for x that are not close
to e𝑘 . By associating one or more hidden neurons to each
protein embedding e𝑘 , one can form a linear combination
MLP(x) = ∑𝐷

𝑘=1 𝑐𝑘 r𝑘 (x), where the coefficients 𝑐𝑘 ∈ ℝ𝐷

are chosen so that MLP(e𝑘) = w𝑘 for all 𝑘 . Because the
supports of the functions r𝑘 (x) can be made nearly disjoint,
theMLP can ”memorize” themapping by acting as a lookup
table.

3. Conclusion: Thus there exists a configuration of
weights (and biases) in an MLP that yields MLP(e𝑘) =
w𝑘 , for 𝑘 = 1, . . . , 𝐷. Hence, even though the MLP is

simply performing a transformation, its capacity is suffi-
cient to learn any arbitrary mapping for the 𝐷 proteins. In
other words, at worst, it can learn a mapping that is equiva-
lent to a lookup table, thereby ensuring that each of the 𝐷
proteins is assigned a specific, learned output value.

3.6. argument about the Tishby et al. bottleneck
learning approach

The Information Bottleneck (IB) method seeks a stochastic
mapping 𝑝(𝑡 |𝑥) that compresses the input variable 𝑋 into a
representation 𝑇 , while preserving as much information as
possible about the relevant variable 𝑌 . The trade-off is con-
trolled by the Lagrange multiplier 𝛽 ≥ 0. The IB objective
is to minimize the following Lagrangian:

LIB [𝑝(𝑡 |𝑥)] = 𝐼 (𝑋;𝑇) − 𝛽 𝐼 (𝑇 ;𝑌 ), (1)

where 𝐼 (·; ·) denotes mutual information.

Under the Markov constraint Y ↔ X ↔ T, the optimiza-
tion leads to the following self-consistent equations:

𝑝(𝑡 |𝑥) = 𝑝(𝑡)
𝑍 (𝑥, 𝛽) exp

(
−𝛽 𝐷KL

(
𝑝(𝑦 |𝑥) ∥ 𝑝(𝑦 |𝑡)

) )
, (2)

𝑝(𝑡) =
∑
𝑥

𝑝(𝑥) 𝑝(𝑡 |𝑥), (3)

𝑝(𝑦 |𝑡) = 1
𝑝(𝑡)

∑
𝑥

𝑝(𝑦 |𝑥) 𝑝(𝑥) 𝑝(𝑡 |𝑥), (4)

where:

• 𝐷KL
(
𝑝(𝑦 |𝑥) ∥ 𝑝(𝑦 |𝑡)

)
is the Kullback-Leibler diver-

gence between the conditional distributions 𝑝(𝑦 |𝑥)
and 𝑝(𝑦 |𝑡),

• 𝑍 (𝑥, 𝛽) is the normalization factor ensuring that∑
𝑡 𝑝(𝑡 |𝑥) = 1.

3.7. FSQ and other contrastive losses on the cell
embeddings

While 𝐷KL over a non-informative Gaussian prior is a com-
mon formulation for regularizing the embedding space in
VAEs, other formulations have been used such as with the
VQ-VAE and FSQ-VAE. In these contexts, the 𝐷KL is re-
placed with a discretization objective tailored to the respec-
tive quantization schemes.

VQ-VAE. Value Quantized (VQ)-VAE employ a code-
book of size 𝐶, where each codebook entry is a 𝑑-
dimensional vector. The encoder produces a continuous la-
tent vector, which is then mapped to its nearest entry in the
codebook (a hard quantization). A commitment loss term
encourages the encoder’s outputs to stay close to the cho-
sen codebook vector, making the entire latent representa-
tion discrete at the vector level.
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FSQ-VAE. By contrast, Finite Scalar Quantization
(FSQ)-VAE discretizes each latent dimension indepen-
dently. Specifically, the encoder outputs 𝑑 values, each
constrained to lie within a bounded range (e.g., [−1, 1]).
Each dimension is then quantized into one of 𝑀 discrete
levels within that range. This dimension-wise quantization
can be implemented as either a hard nearest-bin assignment
or a differentiable approximation thereof. Because FSQ
enforces scalar-level discretization, it provides a simpler
and more fine-grained alternative to VQ’s vector-level code-
book approach, while still offering strong regularization of
the latent space.

Contrastive regularization across embedding dimen-
sions. We further encourage each of the 𝑑 embedding di-
mensions to encode distinct information by adding a con-
trastive loss between them. Specifically, we compute pair-
wise similarities among embedding elements and penalize
redundancy, thus pushing each dimension to capture com-
plementary features. A general contrastive loss for this pur-
pose can be written as Lcontrastive =

∑𝑑
𝑖=1

∑
𝑗≠𝑖 ℓ

(
e𝑖 , e 𝑗

)
,

where e𝑖 denotes the 𝑖-th embedding dimension and ℓ is a
contrastive loss function (e.g., InfoNCE (Oord et al.)) that
encourages dissimilarity among different embedding com-
ponents.

Dimension-specific classifiers. To further steer each di-
mension’s content, one can add a separate classifier on top
of each dimension to learn about different classes. The
classifier for dimension 𝑖 is trained via a cross-entropy loss
L (𝑖)

cls = −∑
𝑐 𝑦𝑐 log 𝑝

(
𝑐 | e𝑖

)
, where 𝑦𝑐 is the ground-truth

label and 𝑝
(
𝑐 | e𝑖

)
is the predicted probability for class

𝑐. Summing these per-dimension losses yields an overall
classification objective Lcls =

∑𝑑
𝑖=1 L

(𝑖)
cls . Together, the

contrastive and classification losses ensure each embedding
dimension captures unique, discriminative information, re-
sulting in more expressive representations.

Software and Data
The software and data for training scPRINT as well
as gymnasium tasks and code to reproduce the results
of the manuscript are available at https://github.com/
cantinilab/XPressor.

WandB logs, are available in the following link: https://
api.wandb.ai/links/ml4ig/h370j6io

Model checkpoints are available in the following link:
https://huggingface.co/jkobject/scPRINT/tree/main

Checkpoints, wandb logs, and more will be made available
after the review and deanonymization process.
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