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Abstract

Maximum Likelihood Estimation (MLE) is
commonly used in machine translation, where
models with higher likelihood are assumed to
perform better in translation. However, this as-
sumption does not hold in the non-autoregres-
sive Transformers (NATs), a new family of
translation models. In this paper, we present
both theoretical and empirical analysis on why
simply maximizing the likelihood does not
produce a good NAT model. Based on the
theoretical analysis, we propose Maximum
Proxy-Likelihood Estimation (MPLE), a novel
method to address the training issue in MLE.
Additionally, MPLE provides a novel perspec-
tive to understand existing success in training
NATSs, namely much previous work can be re-
garded as implicitly optimizing our objective.

1 Introduction

Maximum Likelihood Estimation (MLE) is a
widely-used method in machine translation models.
The objective of MLE is to maximize the likelihood
P(Y|X), where X and Y are input and output sen-
tences respectively. Recently, Non-Autoregressive
Transformer (NAT, Gu et al., 2018) has received
growing attention due to its efficiency of parallel
decoding. MLE are also adopted to train the NAT
model, but the MLE-based NATs suffer from poor
translation quality compared with the classical au-
toregressive translation (AT) models.

To remedy the performance gap between AT's
and NATSs, many training methods have been pro-
posed. For example, knowledge distillation (KD)
(Gu et al., 2018) supervises NATs with sentences
distilled from an AT teacher model. GLAT (Qian
et al., 2021) helps the training by sampling some
target tokens as the decoder input. These methods
only change the training objectives without mod-
ifying the model structure, but also demonstrate
significant improvements in translation quality.

However, there is major departure from the na-
ture of MLE in these methods, where a NAT with
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Figure 1: The log-likelihood and the BLEU score on
a 2D section in NAT’s weight space. GLAT+KD ()
and MLE (A) indicate the models trained via different
objectives starting from an initial checkpoint (¢) for
10k steps. Each point of the contour map is linearly
interpolated from the three checkpoints. All values are
evaluated on the validation set of WMT14 En-De.

low likelihood can even perform better in transla-
tion. As shown in Fig.1, we finetune two NAT's
with different objectives from an initial checkpoint
and track the changes in the log-likelihood and the
BLEU score. The optimal training directions under
the two metrics are inconsistent, and the MLE train-
ing just misleads the NAT towards a sub-optimal
point with a low BLEU score despite the high log-
likelihood. The inconsistency between the likeli-
hood and the generation quality has been found in
AT models (Ranzato et al., 2016), but the problem
in NAT's can be much more severe (e.g., generating
unreadable and repetitive outputs, Gu et al., 2018)
and lacks theoretical investigation for the causes.

In this paper, we argue that the MLE objective
can severely mislead NATSs’ training due to the
information loss in dependencies according to our
theoretical analysis. Specifically, we show that
the MLE training prevents NATs from learning the
dependencies between target tokens, where the lost
information can be measured by a property of the
data distribution, namely, the fotal correlation.

To address the above issue, we propose a novel
method, Maximum Proxy-Likelihood Estimation
(MPLE), and show that training NATs with MPLE
leads to less information loss theoretically and em-
pirically. Intuitively, MPLE maximizes the likeli-
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Figure 2: The log-likelihood and BLEU of NATSs on the original validation set of WMT14 En-De, where higher
log-likelihood does not lead to better translation performance. (a) NATs with different objectives. (b) Curves of a
NAT trained with GLAT+KD (before 300k steps) and then finetuned with MLE (after 300k steps).

hood on a proxy distribution (), which is carefully
designed to reduce the total correlation, thereby
alleviate the information loss in capturing the de-
pendencies. Additionally, we show that many exist-
ing methods implicitly optimize MPLE’s objective
by using heuristic rules to obtain proxy variables,
which provides a general perspective and sheds a
light on deeper understanding of these methods,
including KD (Gu et al., 2018), AXE (Ghazvinine-
jad et al., 2020), OaXE (Du et al., 2021), CMLM
(Ghazvininejad et al., 2019), and GLAT (Qian et al.,
2021). Finally, we derive a new method named
Dynamic KD, which optimizes MPLE’s objective
explicitly instead of using heuristic rules. Experi-
ments show that our objective is highly correlated
with the translation performance, and the proposed
method achieves substantial improvements over the
baselines. Our contributions are as follows:

* We present empirical and theoretical analysis
showing that MLE misleads the NAT training
due to the information loss in dependencies,
which can be measured by the total correlation.

* We propose a novel method, Maximum Proxy-
Likelihood Estimation (MPLE), which effec-
tively reduces the total correlation theoretically
and provides a novel perspective to understand
the success of many existing methods.

* Based on MPLE, we propose a new method
named Dynamic KD, which achieves substantial
improvements over the baselines.

2 MLE Training Misleads NAT Models

MLE is in fact finding a model with the closest
distribution to the data distribution in terms of KL
divergence (Akaike, 1998). Given a source sen-
tence X = [z1, 29, -,z x| and a target sentence
Y = [y1,y2, - ,ynm], MLE training minimizes
Lye = DL [Paaa (Y[ X) || Po (Y[ X)] M
= —Hua(Y|X) — Ep,,,(v|x) [log Po(Y[X)],

where Hg,, 1S a constant representing the
dataset’s Shannon Entropy, and the second term

is the log-likelihood (LL). For AT models, LL is
defined as

M
log Py (Y[X) =Y log P (yily<i, X),  (2)

i=1
where y; is predicted based on the prefix y;.
The vanilla NAT makes a conditional indepen-
dent assumption where each token is independent

of each other when X is given. Formally, we have
M
log Py (Y X) = log P (:] X).
=1
In AT training, we usually assume that training
the model towards a higher LL can lead to better
translation quality. However, in this section, we
show that the assumption does not apply to NAT
models empirically and theoretically.

3

2.1 Practically Higher Likelihood does not
Lead to Better Translation Performance

By comparing NATS trained with different methods,
we find that a higher likelihood in NATs does not
lead to better translation performance. Specifically,
we adopt two SOoTA methods, KD (Gu et al., 2018)
and GLAT (Qian et al., 2021), and evaluate BLEU
and LL defined on the validation set of WMT14
En-De. More settings are presented in Sec.4.
Fig.2(a) shows that the NAT model with higher
LL even performs worse in BLEU. Fig.2(b) illus-
trates the training curves of GLAT+KD, where LL
quickly drops after 4k steps despite the improve-
ment on BLEU. At 300k steps, we finetune the
model with MLE and find that the translation qual-
ity drops quickly regardless of LL’s improvement.
All these results indicate a serious problem that
the MLE training does not help but even misleads
the NAT models. We will show that the problem is
from the MLE objective when applied to NATs.

2.2 Training NAT with MLE is Bounded by
Conditional Total Correlation

The KL divergence in Eq.1 can reach zero for ATs
when Py(yily<i; X) = Paaa(yily<i, X ). However,



C ABLEU BLEUaxr BLEUnar
WMT14 En-De |2.50 15.32 27.11 11.79
WMT16 EN-RO (220  9.98 33.70 23.72
Denoise(0.5,0.1) [ 1.51  5.66 20.97 15.31
Denoise(0.5,0.0) | 0.92  0.35 26.96 26.61

Table 1: Estimated total correlation C' and the gap of
BLEU between AT and NAT on various datasets. !
ABLEU = BLEUxr — BLEUNAT. We adopt WMT14
En-De, WMT16 EN-RO, and two synthetic datasets.
Denoise(0.5, 0.1) indicates the source sentence is a cor-
rupted version of the target sentence with 50% tokens
replaced by random words and 10% tokens dropped.

a NAT model can hardly fit the data distribution,
where we show that the minimum of the KL diver-
gence is bounded by an non-negative constant.

Theorem 1. For a NAT model Py(Y|X),
we have ming D[P (Y| X)||Pp(Y|X)] > C,
where C' = Zf\il Hara(Yi| X) — Haaro (Y X), and
H 40| X) is the Shannon Entropy.

Proof.  DxL[Puaa(Y | X)||Po (Y] X)]

M
= —Huu(Y|X) — Ep,,(vx) [Z log Pﬂ(yi|X)]

=1
(Conditional Independent Assumption of Eq.3)
M
= —Haua(Y1X) = 3 By vi1x) [10g Po(yi] X)]

=1

M
> —Haa(Y1X) + Y Hawa(y:|X)  (Gibbs® Inequality)
=1

Note that C' is a non-negative constant called
conditional total correlation (Watanabe, 1960) or
multi-information (Studeny and Vejnarova, 1998),
which measures the information of dependencies
between the target tokens when X is known. Theo-
rem 1 says that MLE-based NATs cannot capture
the dependencies between target tokens, leading
to low consistency in generated tokens. The total
correlation C'is a property of the data distribution,
where a large C' indicate the large amount of in-
formation dropped by the NAT model and thus
severely damage the translation performance.

To better understand the severity of the problem,
we estimate the total correlation C' and compare
the generation performance of AT and NAT models
on different datasets. We utilize two benchmarks
and further construct two synthetic datasets, whose
target sentences are English corpus in WMT14 En-
De, and the source sentences are modified from the

'We use V-entropy (Xu et al., 2020) instead of the Shan-
non entropy because the latter is intractable due to the un-
known data distribution. Specifically, the estimation of C' is
based on Pua(yi|X) and Puawa(y:|y<i, X), which are sepa-
rately approximated by a NAT and an AT model.

targets by word replacement and dropping.

The results are shown in Table 1. Larger C' indi-
cates stronger dependencies between target tokens,
leading to more serious performance gap between
NAT and AT models. When C becomes smaller,
the gap can be quickly narrowed, which manifests
that the large total correlation is the main obstacle
of MLE-based NATSs in machine translation.

3 Training NAT Models by Maximum
Proxy-Likelihood Estimation

Sec.2 describes that the conditional total correlation
prevents NAT from well training with MLE. To ad-
dress the problem, we introduce a novel objective,
Proxy-Likelihood (PL), and propose to maximize
PL instead of vanilla MLE. We call it Maximum
Proxy-Likelihood Estimation (MPLE). Specifically,
PL is the likelihood defined on a proxy distribution
Q, where () is carefully designed (and adjusted) to
reach a lower total correlation, and thus reduce the
dependencies loss in NATs. Intuitively, MPLE’s
objective can be expressed as follows:

,C = DKL(QHPQ) + R(Q. Pdata)~ (4)

The first term is similar to the MLE objective,
which trains the model towards the proxy distri-
bution () instead of Pyy,. The second term is a reg-
ularizer controlling the gap between @) and Pyag,.
Equation 4 is just an intuitive introduction to our
objective. In the following sections, we will de-
scribe it in details. Sec.3.1 will present our design
philosophy about the proxy distribution () and de-
scribe why it works for NAT training. Sec.3.2 will
formalize how to derive the full MPLE objective
from the original MLE one. Then in Sec.3.3, we
will theoretically verify that MPLE indeed leads
to a lower total correlation. Finally, we will show
that many current progresses in NAT training can
be understood in the MPLE framework (Sec.3.4),
and propose a new knowledge distillation approach
for NAT based on the MPLE framework (Sec.3.5).

3.1 Proxy Distribution Q(7'|Z, X)

In this section, we specify the proposed proxy dis-
tribution Q(T'|Z, X), which is used to train the
NAT decoder Py(T'|Z, X) in Fig.3 (Left). Com-
pared with Py, (Y] X), the proxy distribution
Q(T|Z, X)) reduces the conditional total correla-
tion by introducing two proxy variables, namely
the proxy input Z and the proxy target 7.

Proxy Target 1" The first way to reduce the condi-
tional total correlation is by replacing the original
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Figure 3: Left: The latent variable model used in the derivation of MPLE. The source sentence X and the real
target Y are observable, whereas the proxy input Z and the proxy target 7" are latent. Right: Existing methods as
instantiations of MPLE, which obtain either proxy target or proxy input. Methods in red are illustrated as examples.
Raw Data, KD (Gu et al., 2018), Vanilla Input (Gu et al., 2018), and CMLM (Ghazvininejad et al., 2019) use fixed
proxy variables.2AXE (Ghazvininejad et al., 2020), OaXE (Du et al., 2021), and GLAT (Qian et al., 2021) use
adaptive proxy variables that are updated through the training process.

target with a simpler sentence with fewer depen-
dencies. Specifically, we define the proxy target
as a sentence T' = [tq,t9, -+ ,tr], with the same
meaning as the target Y but different lexical forms.

Intuitively, human-written translations are di-
verse in word usages and phrases’ order (Ott et al.,
2018). A model is required to capture the depen-
dencies to form plausible sentences. In contrast, the
proxy targets are expected to be easily predictable,
e.g., aligned well with the source sentences.
Proxy Input Z Another way to reduce the condi-
tional total correlation is by introducing some hints
of the target into the input. Specifically, we define
the proxy input as a sequence Z = [z1, 22, - - , 2L].
We use Z as the decoder’s input and keep the en-
coder’s input unchanged as X.

Intuitively, some hints of the target can make the
prediction easier and no longer require the depen-
dencies between generated tokens. For example,
if we sample some target tokens as the proxy in-
put, the target sentence may be easily reconstructed
without knowing the tokens not sampled. However,
introducing too many hints may bring large gaps
between training and inference, where we actually
update Z (as well as T') in MPLE.

3.2 Derivation of MPLE

Given the proxy distribution Q(7'|Z, X ), now the
unresolved problem lies in that how can we achieve
the proxy-likelihood maximizing when we only
have annotated data (X,Y’). A straightforward
solution is to regard 7" and Z as latent variables, so
we build a latent variable model that connects T, Z
and X, Y, as shown in Fig.3 (Left). Formally,

*We only discuss the non-iterative version of CMLM,
following Qian et al. (2021); Du et al. (2021).

Po(Y1X) = 325" Po(Y[T) Po(T12, X) Po(Z]X),

where Py(T|Z, X) is the NAT decoder, and the
other two modules bridge the proxy variables with
X, Y. Then we derive the objective of MPLE from
the log-likelihood on Pya, (Y| X):

= Epyu(vix) log P (Y|X)

Py(Y, T, Z|X)
= —Ep,,(v|x)log {EQ@Z\X)W

Py(Y,T, Z|X
< —Epvix)EQr,zx) {log %} ®)
= ~EruoioEomzix [bg Bo(Y|T)+

Py(T)Z, X) Py(Z|X)
lo + log (©6)
£ Q(112.%) g@wwﬂ

In Eq.5, we apply variational principle (Fox and
Roberts, 2012) by introducing Q(7, Z| X'), which
specifies how we obtain proxy variables and can be
decomposed into the proxy distribution Q(7'| Z, X)
and another distribution Q(Z|X).

Eq.6 is our new objective Lyprg, Which can be
simplified and recovers our intuition in Eq.4:

Lyrre = Lnar -+ Luarget + Linput, @)
Dk1(QlIPg) R(Q, Pata)

Lyar = Eqz1x)Dx [Q(T| Z, X)||Po(T|Z, X)],  (8)

Liarger = Epy,, (v1x)Eq(rix) [~ log Po(Y(T)] , ©)

L"inpul :DKL [Q(Z‘X)HPG(ZLX—)] (10)

In Eq.7, Lnar supervises the decoder Py (1| Z, X)
to maximize the proxy-likelihood. Liarger and Linput
measure the costin bridging 7', Z with X, Y, which
act as regularizers to avoid large gaps between the
proxy and original variables.

Optimization MPLE training needs to: (1) find
optimal proxy variables Z and 7" and (2) optimize
the model parameter 6. We utilize Expectation



Algorithm 1 EM Training for MPLE

1: for X sampled from P, do
E-step: Update Z and T by heuristic rules (Sec.3.4),
which implicitly balances Lnar and regularizers.
M-step: Given Z and T obtained in the E-step,
Calculate Lnar according to Eq.8.
Calculate Linpu according to Eq.9.
Calculate Liarger according to Eq.10.
Update 0 by minimizing
LvpLe = Lnar + Liarger + Linput-
8: end for

»
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Maximization to update the proxy variables and
optimize 6 alternatively, as shown in Algo.1.

In E-step, we update Z and 7' to reduce LypLE,
which aims to find good proxy variables to bal-
ance Lnar and the regularizers.3 However, finding
optimal proxy variables is non-trivial, where we
utilize some heuristic rules to obtain Z and 7". Rule
examples are shown in Fig.3 (Right). Some rules
adaptively choose proxy variables according to the
NAT performance, so Z and 1" are updated through
the training. We will introduce the rules in Sec.3.4.

In M-step, all (Q’s entropies can be regarded as
constants and ignored, where the three losses can
be easily calculated based on the proxy variables
previously obtained in E-step.

3.3 MPLE breaks the Bounds of Conditional
Total Correlation

Theorem 1 cannot apply to an MPLE-based NAT
because our latent variable model does not directly
predict each token of Y based on X (i.e., not satis-
fying Eq.3). However, since the NAT decoder still
uses a conditional independent assumption simi-
lar to Eq.3, the proxy distribution provides a new
bound C” satisfying Lyar > C’, where

C' = Eqzix) [Lhy Ho(k1Z,X) - Ho(T|2,X))

In E-step, MPLE finds proxy variables that mini-
mize Lnar and the regularizers, which equivalently
reduces the upper bound of C’ for the proxy dis-
tribution. In M-step, the NAT decoder is trained
towards the proxy distribution with a reduced to-
tal correlation. Therefore, the EM training can
effectively reduce information loss in capturing the
dependencies (also verified empirically in Sec.4.1),
which improves the NAT’s performance.

3.4 Understanding Existing Methods in the
Framework of MPLE

Many existing training methods for NATs can be

regarded as instantiations of MPLE, where they use

3Formally, we adjust Q(T, Z|X) to minimize LupLs,
which updates T', Z for a given X.

heuristic rules to obtain proxy variables, as shown
in Fig.3 (Right). MPLE provides a unified perspec-
tive to explain the success of these methods: their
heuristic rules actually find good proxy variables
that implicitly balance Lnar and the regularizers,
and the methods with a smaller Lyprg have a better
translation performance (verified in Sec.4). In this
section, we briefly introduce these methods and
leave the details in Appendix D.

Obtaining Proxy Target Raw Data and KD use
fixed proxy targets that are not updated during the
training. Specifically, Raw Data uses the original
target sentence as the proxy target. KD first trains
an autoregressive model P4 g on the raw data and
then generates the proxy target by beam search.

AXE and OaXE adaptively obtain the proxy tar-
get according to the decoder’s performance. Specif-
ically, they first pick a reference R from the raw or
KD data, and then find 7" € S(R) that minimizes
Lnar, where S(R) indicates all subsequences or
permutations of 2. They also use tricks to avoid a
large gap between T" and Y (detailed in Appendix
D), which implicitly balance Lnat and Liarget-
Obtaining Proxy Input Vanilla Input obtains
proxy inputs with a deterministic function, such
as copying source embeddings (Gu et al., 2018).

CMLM and GLAT construct the proxy input
by glancing at target tokens, i.e., sampling sev-
eral target tokens to replace the elements in the
vanilla input. Specifically, the sampling process
has three steps: (a) Sample [ € [1, L] as the num-
ber of glanced tokens. (b) Determine which to-
kens are glanced by sampling a mask sequence
M where only [ elements are ones. (¢) Z =
M ®emb(T)+(1—M)©® Z*, where © is element-
wise multiplication, emb(T") is T"’s embedding, and
Z* is copied from X’s embeddings.

The differences between CMLM and GLAT
mainly lie in step (a). CMLM use a predefined
distribution for [. GLAT uses an adaptive sampling
strategy, which determines [ based on the NAT de-
coder’s prediction (detailed in Appendix D).
Implementation of Regularizer To measure the
gap between the proxy and original variables in
these methods, we define Liyrger and Linpye and spec-
ify the implementations of the input predictor and
output paraphraser.

For Lyarget» we define the output paraphraser as
a simple non-trainable distribution related to the
similarity between Y and 7"

Bp(Y|T) = exp(BS(Y,T))/¢, (1)



where (3 is a hyper-parameter, S(Y,T) is the sen-
tence BLEU, and ( = ) y exp(8S(Y,T')). How-
ever, the normalization term ( is intractable, so we
drop ¢ and use /jtarget in our experiments:

Luge = Epy(vix) Eqerix) [-BS(Y, T)]. (12)

Intuitively, Eq.12 measures the gap between proxy
and real targets by the average BLEU score.

For Linpu, Vanilla Input always has Liypy = 0
because copying source embeddings are fully pre-
dictable. However, a trainable input predictor
is required in GLAT and CMLM. Specifically,
we define the input predictor as: (1) Do a bi-
nary classification at each position to determine
whether z; is a glanced token or the vanilla in-
put. (2) Predict ¢; from the vocabulary if z; is a
glanced token. Formally, Py(z; = emb(t;)|X) =
Py(z; is glanced| X' ) Py (t;|X ), and Lippye can be
calculated according Eq.9.

3.5 A New Method: Dynamic KD

Existing methods heuristically obtain proxy vari-
ables and optimize Lyprg implicitly. We propose
a simple method named dynamic KD to obtain 7",
which explicitly balances Lnar and Liarger.

For a source sentence X, we define a target can-
didate set I', which contains the raw data and dis-
tilled data from AT teachers of different sizes, i.e.,
Transformer-tiny/small/base/big. Then we choose
a best target I € I that minimizes £xat + Larget-
Note that Eq.12 is intractable due to the sampling
from Pjyara, SO we use pairwise BLEU between can-
didates in I" instead. See Appendix F for details.

Previous work (Zhou et al., 2020) finds that
the KD data from a larger AT teacher is closer
to the real data but more difficult to predict, where
they suggest choosing the teacher size according to
NAT’s capacity. Our method dynamically selects
the best proxy target from multiple KD candidates,
which achieves substantial improvement over NAT'S
that utilizes any single KD data.

4 Experiments

Dataset We conduct experiments on machine
translation benchmarks, WMT14 En-De (4.5M)
and WMT17 Zh-En (20M). We follow Zhou et al.
(2020); Kasai et al. (2020) for preprocessing.

Knowlegde Distillation We use Transformer-base
with the same settings in Vaswani et al. (2017) and
generate the distilled data with beam size 5. All
models are based on KD unless otherwise specified.

Implementation Details We implement Raw
Data, KD, AXE, OaXE for obtaining proxy targets,
and Vanilla Input, CMLM, GLAT for obtaining
proxy inputs based on Fairseq (Ott et al., 2019).
We generally follow the hyper-parameters in Qian
et al. (2021). For fair comparisons, we only mod-
ifies the proxy variables across different methods,
which may be different from their original imple-
mentations. For example, we do not use iterative
refinement for CMLM, or combine OaXE with
CMLM. Unless otherwise specified, we do not uti-
lize reranking methods or other decoding tricks.
More details are in Appendix E.

Decoding Strategies We utilize two decoding
strategies. Greedy Decoding: The input predic-
tor, the NAT decoder, and the output paraphraser
take the most possible choices in each generation
step. We use Greedy Decoding for all models un-
less otherwise specified. Random Glance: For
the input predictor of CMLM/GLAT, we first ran-
domly determine whether z; is glanced according
to Py(z; is glanced|X), and then choose the most
likely tokens for the glanced tokens according to
Py(t;|X). The other steps remain the same as
Greedy Decoding.

Metrics The translation performance is evaluated
based on tokenized BLEU (Papineni et al., 2002).
Linput and Lyt are averaged per token on valida-
tion set. ﬁtarget in Eq.12 needs multiple real targets
Y from Plya,, so we utilize multi-reference sets (Ott
etal., 2018; Hassan et al., 2018), where each source
has 10(2) extra human-annotated references for En-
De(Zh-En). We use £ = 0.2 for En-De,AB =0.25
for Zh-En. LvipLg := LnaT + »Cinput + »Ctarget- We
measure the speedup by the average decoding la-
tency on WMT14 En-De with batch size 1.

4.1 Empirical Verification of MPLE’s
Conditional Total Correlation

We compare Lnar of models with MPLE against
the dataset’s total correlation in Fig.4. The mod-
els with appropriate proxy variables can achieve
lower Lnar than the total correlation, indicating
that MPLE breaks the bound of the conditional to-
tal correlation and reduces the information loss in
capturing the dependencies between target tokens.

However, lower Lnar does not promise higher
BLEU because we do not control the regularizer. In
next sections, we will analyze how different meth-
ods affect the translation performance and balance
the MLE objective and the regularizer.
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Figure 4: Lnar and BLEU of different models on
WMT14 En-De. The right five methods are instanti-
ations of MPLE, which achieve lower Lyar than the
dataset’s total correlation C'. C'is the KL lower-bound
of MLE-based NATSs given in Theorem 1.

Models Laar Learget Lypre BLEU
MLE (Raw Data) | 441 -642 -2.01 11.79
KD 242 -7.08 -4.66 20.87
+ AXE(T=1) 0.78 -5.13 -4.35 18.56
+ AXE(7=5) 1.09 -6.34 -5.25 2222
+ AXE(7=10) 1.25 -6.50 -5.26 2235
+ 0aXE(10k) 1.03 -441 -3.38 15.00
+ OaXE(50k) 0.79 -5.84 -5.06 21.37
+ 0aXE(300k) 0.83 -6.28 -5.44 22.76

Table 2: Comparison of methods that obtain proxy tar-
gets on WMT14 En-De. All methods use Vanilla In-
put and Lijpe=0. ﬁMpLE and BLEU are strongly corre-
lated (Pearson’s |r|=0.99). AXE’s 7 and OaXE’s num-
bers indicate the skip penalty and the pre-training steps,
which are hyper-parameters in choosing proxy targets.
Results on WMT17 Zh-En are in Appendix A.

4.2 Effects of Proxy Target

In this section, we compare different methods ob-
taining proxy targets while keeping Z as Vanilla
Input. The results are shown in Table 2.

Strong Correlation. ﬁMpLE is strongly corre-
lated with BLEU, where Lnar and ﬁtarget are both
important. For example, AXE(7=1) achieves low
Lnar with high ﬁmrget, indicating that 7" is easy to
predict but heavily distorted from the real target.
On the contrary, KD’s proxy target is less distorted
but hard to predict. OaXE(300k) balances the two
losses well and thus achieves the best BLEU.

5 in Eq.12 will affect the scale of ﬁtarget, where
we choose § = 0.2 by maximizing the correlation
on the validation set. However, the choose of 3 is
not sensitive that || > 0.8 for all 8 € [0.1,0.5].
Secret Advantage of KD. Previous work (Gu
et al., 2018) has shown that KD can simplify the
training data and thus reduce Lnat. However, our
results reveal a secret advantage that KD achieves
the lowest ﬁmget, which means that the KD data
are more similar with the multiple references rather

Raw Data.--~,

\
[ U
A —’,

-~- ~o - ~ . ~ -

‘étarget =—642 ﬁtarget =-7.08

® References O Raw Data ™ KD Data \t:’ Modes of References

Figure 5: The similarity between proxy targets and ref-
erences in two methods. KD data achieve higher simi-
larity with references on average than the raw data.

Models Linput Lnar Lvpe Random  Greedy
Vanilla Input 0 242 -4.66  20.87 20.87
CMLM 099 046 -563 2348 19.39
+ Fixed 048 0.55 -6.05 24.28 19.35
GLAT 045 0.66 -596 2398 25.12
+ Levenshtein | 0.41 0.73 -594  24.03 24.84
+ Prer 0.25 124 -559 2298 24.22
+1 — Pt 0.57 050 -6.01 24.35 25.19

Table 3: Comparison of methods that obtain proxy in-
puts on WMT14 En-De. All use KD and /jtarge[ =
—7.08. Random and Greedy indicate the BLEU score
with Random Glance and Greedy Decoding. ﬁMpLE is
strongly correlated with Random BLEU (|r|=0.99) but
less correlated with Greedy BLEU (|r|=0.37). Results
on WMT17 Zh-En are in Appendix A.

than the raw data. This result can be explained
by the diversity of human annotations as shown in
Fig.5. Although the KD data may not belong to any
modes of the data distribution, it still has higher
similarity on average.

Hyper-parameters and Trade-off. AXE and
OaXE utilize tricks to avoid large gap between
the proxy target and the real target. For example,
AXE tunes the skip penalty 7, and OaXE tunes the
pre-training step.* MPLE provides a quantifiable
objective to balance the KL divergence Lyar and
the regularizer ﬁmrget, which improves the inter-
pretability for hyper-parameter selection.

4.3 Effects of Proxy Input

We compare methods that obtain proxy inputs
including several variants of CMLM and GLAT,
which are also used in Qian et al. (2021). CMLM +
Fixed uses | = 0.2L instead of random sampling.
GLAT + Levenshtein uses Levenshtein Distance
to determine the number of glanced tokens. P
and 1 — Pr choose the glanced tokens accord-
ing to the difficulties in predicting them, where
P(z is glanced) is proportional to the prediction
probability Py(t;|Z*, X ) or 1 — Py(t;|Z*, X). The
results are shown in Table 3.

4See Appendix D.3, D.4 for details of the tricks.
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Figure 6: The BLEU score and decoding confidence
I = —logPy(Z|X) —log Py(T|Z,X) of GLAT and
CMLM with two decoding strategies. Smaller [ indi-
cates that the model is more confident in generation.

Strong Correlation with Random BLEU. Our
objective is strongly correlated with BLEU when
using Random Glance, where Loy and Lnar
should be balanced to achieve the best performance.
For example, Vanilla NAT does not introduce hints
in the proxy input, leading to large Lxar. CMLM
introduces too much hints in training, making it
hard to predict the proxy input in inference.

However, ﬁMpLE is less correlated with BLEU
of Greedy Decoding, where CMLM may not prefer
the decoding strategy as discussed below.

Potentials for Decoding Strategies. Previous
works (Qian et al., 2021) showed that CMLM per-
forms poorly without iterative refinement, but we
find that it can be improved by changing the de-
coding strategy. For example, CMLM + Fixed
outperforms GLAT when using Random Glance,
showing the potentials for the decoding strategies.
We find that CMLM and GLAT prefer differ-
ent decoding strategies, which can be partially
explained by the decoding confidence Py(Z|X)
and Py(T'|Z,X). As shown in Fig.6, GLAT is
more confident with Greedy Decoding than Ran-
dom Glance, whereas CMLM is the opposite.

4.4 Results of Dynamic KD

We combine Dynamic KD with Vanilla Input and
GLAT, and compare our methods against AT and
SoTA NATs. As shown in Table 4, Dynamic KD
achieves substantial improvement over the best re-
sult on any single KD data and further help GLAT
achieves competitive translation quality with AT
Transformer with remarkable speedup.

This experiment suggests that our objective ef-
fectively guides the design of new training methods.
Explicitly optimizing LypLg provides a promising
way to find better proxy distributions, which out-
performs existing heuristic methods.

Models En-De Zh-En Speed Up
AT | Transformer 27.11 23.89 1.0x
MLE 11.79  8.69 15.3x
NAT | GLAT (NPD=7) | 26.55 / 7.9x
OaXE (LPD=5)1 | 26.1  22.1 14.2x
Vanilla 21.33 1748 15.3x
+ Dynamic KD 22.82 18.29 15.3x
Ours| FLPD=3S _ | 2483 1007  14.6x__
GLAT i 2533 2251 15.3x
+ Dynamic KD 25.88  23.07 15.3x
+LPD=3 § 26.89 24.42 14.6x

Table 4: Comparing Dynamic KD against AT and
SoTA NATs. NPD (Gu et al., 2018) and LPD (Wei
et al., 2019a) indicate reranking methods with the num-
ber of candidates. T: Reported by Qian et al. (2021)
and Du et al. (2021). #: The best results on single KD
data. §: Some decoding tricks are applied following
baselines. See Appendix B for details and more results.

5 Related Work

NATs are proposed to accelerate the decoding
speed but suffers from poor translation quality.
Many works are devoted in solving the problem,
where some of them have been covered in our objec-
tive as shown in Fig 3. The other methods mainly
includes (1) utilizing objectives not based on MLE
(Libovicky and Helcl, 2018; Wei et al., 2019a; Sa-
haria et al., 2020); (2) iteratively refining the gen-
erated outputs for better quality (Lee et al., 2018;
Gu et al., 2019; Kasai et al., 2020). Although the
iterative approaches usually lead to better quality,
Kasai et al. (2021) point out that the iterative ap-
proaches are much slower than non-iterative ones
and may not have advantages against AT models.
The gap between likelihood and generation per-
formance has been spotted in ATs, where previous
works utilize reinforcement learning (Ranzato et al.,
2016; Bahdanau et al., 2017) or adversarial training
(Yu et al., 2017) to alleviate the problem. Lee et al.
(2020) conduct an empirical study to quantify this
gap in both ATs and NATsS, but they focus on com-
paring latent variable models with different priors.
To our knowledge, we are the first to point out that
NATs suffer from the misleading MLE objective
and propose a method to allieviate the problem.

6 Conclusion

In this paper, we analyze why MLE misleads NATs’
training and find that NATs cannot capture the de-
pendencies between target tokens. Based on the
analysis, we propose a new method, MPLE, to alle-
viate the problem. Our solution provides a general
perspective for many SoTA methods and can in-
spire new methods for better NATS.
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Models LNAT Ltarget »CMPLE BLEU
Raw Data 443 -6.25 -1.82 8.69
KD 285 -572 -2.87 15.53
+AXE(r=1) |1.02 -295 -193 9.68
+ AXE(7=5) | 193 -5.00 -3.07 18.39
+ AXE(7=10) | 2.31 -520 -290 18.25
+ OaXE(10k) | 1.46 -3.38 -1.92 1231
+ 0aXE(50k) | 1.19 -450 -3.31 18.79
+ 0aXE(300k) | 1.15 -4.66 -3.50 19.46

Table 5: Comparison of methods that obtain proxy tar-
gets on WMT17 Zh-En. All methods use Vanilla Input
and Lippu=0. lfMpLE and BLEU are strongly correlated
(Pearson’s ||=0.96). AXE’s 7 and OaXE’s numbers in-
dicate the skip penalty and the pre-training step, which
are hyper-parameters in choosing proxy targets.

Models Linput Lnxar Lvpre Random Greedy
Vanilla Input 0 285 -287 1553 15.53
CMLM .13 076 -383 1974 14.12
+ Fixed 029 1.13 -430 20.81 14.49
GLAT 033 126 -4.13 20.73 2251
+ Levenshtein | 1.08 0.44 -4.19  20.71 21.70
+ Pret 040 1.60 -3.73 1898  21.22
+1 — Ber 0.73 0.81 -4.17  20.79 21.51

Table 6: Comparison of methods and variants that ob-
tain proxy inputs on WMT17 Zh-En. All use KD
and ﬁtarget='5~72- Random and Greedy indicate the
BLEU score in Random Glance and Greedy Decod-
ing. fMpLE is strongly correlated with Random BLEU
(Pearson’s |r|=0.99) but less correlated with Greedy
BLEU (|r|=0.35).

A Results on WMT17 Zh-En

We repeat the experiments in Sec.4.2 and Sec.4.3
on WMT17 Zh-En. As shown in Table 5 and Ta-
ble 6, our objective is strongly correlated with the
translation quality, which supports our claim well.

B More Results of Dynamic KD

Decoding Tricks In Table 4, we apply some de-

coding tricks for the final results:

* We use length parallel decoding (LPD, Wei et al.,
2019b). We use a candidate set of 3. Since
all candidates can be generated simultaneously,
LPD is still fast in inference. It is worth noting
that LPD is faster than NPD (Gu et al., 2018)
since it does not need an external reranker.

* We use the de-duplication trick (Lee et al., 2018),
i.e., removing the repeated tokens in generated
sentences.

* We adjust the predicted length by a factor A
(Ghazvininejad et al., 2020). The factor is tuned
on the validation set. We use A = 1 (i.e., the pre-
dicted length is not changed) for WMT14 En-De,
and A = 1.05 for WMT17 Zh-En.
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Models # Iters En-De Zh-En Speed Up
AT Transformer L 27.11 23.89 1.0x
4 2594 21.90 3.0x
CMLMY 10 2703 2321  13x
[~ 77 7 77T 4 T 2583 2242 " 43x
Iterative | DisCot 10 27.06 23.68 3.2x
NATs ~5§ 2734 2383 /
[~~~ " "7 "1 " 258 "7 149x
Imputerf 2 27.5 / 7.5x
8 28.2 / 2.7x
Ours Vanilla 1 24.83  19.97 14.6x
GLAT % 1 26.89 24.42 14.6x

Table 7: Comparing Dynamic KD against Iterative
NATs. t: Reported by Ghazvininejad et al. (2019), Ka-
sai et al. (2020), and Saharia et al. (2020). Speed up
of Imputer are re-evaluated in our implementation. §:
Use adaptive iteration numbers. #: Use Dynamic KD
and decoding tricks.

WMT14 En-De
Vanilla GLAT | AT Teacher
Tiny 18.74  20.37 20.46
Small 21.33  23.72 24.29
Base 2098  25.33 27.11
Big 19.27  25.12 28.49
Raw 11.79 19.42 /
Dynamic KD 2282  26.89 /
w/o regularizer | 20.51  22.66 /
WMT17 Zh-En
Vanilla GLAT | AT Teacher
Tiny 15.98 19.87 19.38
Small 1748  22.38 22.47
Base 15.53 2251 23.89
Big 14.81 21.84 24.84
Raw 8.69 18.88 /
Dynamic KD 18.29  23.07 /
w/o regularizer | 18.10  22.14 /

Table 8: Comparisons between Dynamic KD and
single KD data. w/o regularizer indicates remov-
ing ﬁwgel in choosing the proxy target (i.e., T
arg ming Lyar). All NAT results do not use reranking
or other decoding tricks. AT teachers’ performances
are presented as references.

Comparisons with Iterative NATs In Table 7,
we compare Dynamic KD against iterative NATSs.
GLAT + Dynamic KD achieves good translation
quality with remarkable speed up.

Ablation Study In Table 8, we present the results
on each single KD data and performance of AT
teachers as reference. Moreover, we ablate the
regularizer (/:'target) in Dynamic KD, which justifies
the necessity of the regularizer.

C More Related Work

Our method is connected with Sun and Yang
(2020), who also utilize the EM algorithm to im-
prove NATs’ performance. They alternatively train
AT and NAT models to refine the training data,
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where each model is trained with the data distilled
from the previous one. Different from their method,
we utilize a proxy distribution to guide the training,
which is more general and simpler than training
multiple models iteratively.

Latent variable models are widely used in ma-
chine translation, which can capture complex de-
pendencies (Su et al., 2018), model the diversity
of outputs (Shen et al., 2019), enable the trans-
lation between unseen language pairs (Shah and
Barber, 2018), and so on. Some NATSs also uti-
lize latent variable models, which mainly aim to
alleviate the multi-modality problem (Gu et al.,
2018) by making a sentence-level plan before the
non-autoregressive generation (Gu et al., 2018; Lee
et al., 2018; Shu et al., 2020). Unlike previous
works, we introduce the latent variable model to
construct a proxy distribution with reduced total
correlation, which addresses the theoretical prob-
lem of MLE-based NATsS.

D Details of Understanding Existing
Methods in MPLE

In Sec.3.4, we briefly describe that how existing
methods obtain proxy variables. In this section, we
provide more details.

Heuristic Rule and Variational Distribution In
the derivation of MPLE (Eq.5), we introduce a vari-
ational distribution Q(7', Z|X), which specifies
how we sample proxy variables to train the NAT
model. However, since the optimization of E-step
is usually non-trivial, we instead use heuristic rules
to obtain the proxy variables, where the obtained
proxy variables in fact build the variational distribu-
tion Q(7T', Z| X ') used in our objective. Specifically,
for a given X, we select one rule to obtain 7" and
another one to obtain Z, where we regard the (7',
Z) pair as a sample from Q(T, Z|X). Formally,
we define the rules for proxy targets as Q (7| X),
and the rules for proxy inputs as Q(Z|T, X ). Then
QT,Z1X) = Q(TX)Q(Z|T, X), which con-
nects the heuristic rules with the variational distri-
bution.’ In later descriptions, we will formulate the
heuristic rules as distributions over 7" or Z.
Equivalence of Objectives The original objec-
tives in these methods are generally equivalent to
minimizing Lnar of Eq.8. For example, the origi-

Do not mix it with the proxy distribution Q(T'|Z, X),
which is from another decomposition of Q(T,Z|X) =
Q(TZ,X)Q(Z|X). Generally, we only have one distribu-
tion Q(T', Z| X), which is defined by the heuristic rules. All
the other Qs are just decompositions of Q (7', Z| X).



nal KD minimizes the negative log-likelihood on
KD data, which is equivalent to reducing the KL
divergence between Q(7T'|Z, X) and Py(T'|Z, X),
where 7' is the KD target and Z is copied from
source embeddings. In later descriptions, we will
prove the equivalence of their original objectives
and ours in complex methods, such as AXE.

D.1 Raw Data

Raw Data uses the original target sentence as the
proxy target. Formally, we define Q(7'|X) as a
one-point distribution that Q(7' = Y*|X) = 1,
where Y* is the original target in the dataset.

D.2 Knowledge Distillation (KD, Gu et al.,
2018)

KD first trains an autoregressive model P4 on
the raw data, and then uses beam search to obtain
T* = argmaxy Par(Y|X). Formally, Q(T|X)
is defined as a one-point distribution at 7.

D.3 Aligned Cross Entropy (AXE,
Ghazvininejad et al., 2020)

Q(T|X) is defined as a one-point distribution at
T, where T* = arg minpeg(g) Lnar. The refer-
ence R = [ry,---,rp] is picked from Raw Data
or KD. Any 7' € S(R) is a subsequence of R with
empty tokens ¢ inserted.® An example is shown in
Fig.7.

Original Objective AXE introduces a monotonic
alignment o = [aq, - - - , ], where the i-th token
of the reference R is aligned to the a;-th token
of the NAT prediction. Formally, the AXE loss is
defined as

(ri) = > log Pu(e) | ,

k¢a
st 1 <a; <---<ap <L.

L
Laxg = min | — Z log Pa,
i=1

The first term is the cross entropy between aligned
targets and predictions, and the second term is a
penalty for unaligned predictions.

In the AXE loss, a single prediction may be
aligned to multiple target tokens. In their original
paper, aligning the prediction to the first target to-
ken is called the “align” operation, and aligning
the prediction to later tokens is called the “skip tar-
get” operation. However, one-to-many alignments
will damage the performance, so they penalize the
“skip target” operations with a factor . This trick
is called the skip penalty.

®The NAT model may learn to predict empty tokens,
which will be removed after generation.
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Proof of Equivalence To connect their definition
with ours, we convert the alignment to an adja-
cency list, as shown in Figure 7, where f; is a list
containing all aligned tokens for the ¢-th predic-
tion. Specially, if the i-th prediction is not aligned,

we set 5; = [0] and o = e. Then, Laxg can be
reformulated as
L L Bl
mﬁin — z:llog Pi('r'g,m) — 5zlz2bg Pi(?"ﬁi‘j) ,
1= 1= J:

where 3; ; indicates the j-th element of 3;. The first
term is the cross entropy between the prediction
and a new target T* = [rg, ,--- ,7g, ], and the
second term is the penalty for “skipping target”
operations.

When 6 = 0, the above formulation is equivalent
to finding an optimal 7 to minimize Lnar. Since
« is monotonic alignments, 7™ is constrained and
should be a subsequence of R with some empty to-
kens inserted, which recover our definition. When
6 # 0, the second term can be regarded as a reg-
ularizer to control the gap between proxy targets
and real targets.

D.4 Order-agnostic Cross Entropy (OaXE,
Du et al., 2021)

OaXE is similar to AXE despite the constraint
S(R). Any T € S(R) is a permutation of R. An
example is shown in Fig.7.

Original Objective Different from AXE, OaXE’s
« is a non-monotonic alignment, and each pre-
dicted token can only be used once. The loss is
defined as

L
E a. = i — lO P,. i 5
oxe = _min [ ;:1 g Pa, (r )}

where Perm/(L) indicates the permutations of se-
quences containing 1 to L.

Proof of Equivalence Similar to the derivation for
AXE, we can reformulate Lo,xg as

L
in =S log P, .
mﬁm[ ;og (Tﬁ,,,l)]

The above formulation recovers our definition: It
finds an optimal 7™ to minimize Lnat, Where T™
can be an arbitrary permutation of R.

However, without the monotonic constraints, 7
in OaXE may be heavily distorted from the real
target Y. To alleviate the problem, OaXE first
pretrains the NAT using the vanilla MLE and then
finetunes it to minimize Lo,xg. This trick is based
on an intuition that the optimal 7™ in a well-trained
NAT will be close to the real target.



AXE OaXE
Predictions P 'today ? I}at/“pizza “today *1  ‘eat ‘pizza
Targets R ‘¢ | eat pizza today I %eat ‘pizza ‘“today
a=[2, 3 4 4] a=[2 3 4 1]
Convert to
adjacency list ( B = [0] B =[1] ( B = [4] B =[1]
Bz = [2] Ba =1[3,4] Bz =[2] Ba =[3]
Construct ( 5 <
proxy target T* = [yo,y1,¥2,¥3 ] T = [Y&,y1,Y2,¥31
= ¢ | eat pizza =today | eat pizza

Figure 7: Examples of the alignments «, the adjacency list 8, and the proxy target 7 in AXE and OaXE. Red

dotted line in AXE indicates the skip target operation.

D.5 Vanilla Input

Many NATS predict Z by Uniform Copy (Gu et al.,
2018) or attention (Qian et al., 2021). Formally,
it can be formulated as a one-point distribution
Q(Z = Z*|T, X) = 1, where Z* is obtained from
a deterministic function f(X).

D.6 VAE (Shu et al., 2020)

VAE uses two trainable networks, the prior
and posterior networks, to model Py(Z|X) and
Q(Z|T, X), respectively. The posterior network
Q(Z|T, X) can be trained together with 6.

D.7 CMLM (Ghazvininejad et al., 2019) /
GLAT (Qian et al., 2021)

As described in Sec.3.4, Q(Z|X) is defined by
three sampling steps.

In step (a), CMLM defines the number of

glanced tokens [ = AL, where A is uniformly sam-
pled from O to 1. GLAT uses an adaptive sam-
pling strategy, where [ = AD(T,T). X € [0,1] is
a hyper-parameter, D(T, T) is the Hamming dis-
tance between the proxy target and the model pre-
diction arg maxy Py(T'|Z*, X).
Original Objective In the original implementa-
tion, CMLM and GLAT use a masked language
model objective, where the glanced tokens are not
included in the loss Lnar. Formally,

Lnar = Eqzrix) | — Zlog Po(ti| 2, X) |,
i¢€Gg
where G is the set of the glanced token.
Proof of Equivalence The above objective does
not violate Eq.8 if we add a copy mechanism in
the NAT decoder. The decoder directly copies the
glanced token as the prediction if available. As a
result, for a glanced token t;, log Py (t;|Z, X) =0

14

because the predictions for the glanced tokens are
always correct. Therefore, the masked language
model objective recovers the MLE objective to-
wards Q(T'|Z, X):

Lyar = Eg(z,1x) |:— Zlog Po(t:|Z, X)| +0
i¢G
= EQ(Z,T\X) [ — Zlog Pg(t¢|Z, X)_
i¢G
> log Pg(ti\Z,X)]
i€g

= EQ(Z,T\X) [— lOg Pg(TlZ, X)]

Note that the copy mechanism does not need any
modifications to the network structures.
Implementation Details of Input Predictor In
our implementation, the input predictor for
CMLM and GLAT is composed of two modules:
Py(z is glanced| X) predicts whether z; is from a
glanced token ¢;, and Py(t;| X ) predicts the target
token ¢; from the vocabulary. Formally,

1 — Py(z is glanced|X), ifz; = z];
Py(z; is glanced| X ) Py (t:] X),

if zZi = emb(ti);
otherwise,

PQ(ZL|X) =
0,

where z;" indicates the vanilla input at the i-th posi-
tion.
Therefore, Linpy can be formulated as

L
Linp = Eqz1x) | — Zlog P (2|X) +10g Q(Z|X) | -
i=1
For the first module Py(z; is glanced| X)), we
reuse the Transformer encoder and the NAT de-
coder and further add a binary classification layer
on top of the NAT decoder. For the second module
Py(t;]X), we use a pre-trained vanilla NAT and
freeze its parameters during the training of CMLM



or GLAT. Moreover, its predictions can be com-
puted offline to speed up the training.

For GLAT or CMLM in Greedy Decoding, Z al-
ways equals to the vanilla input Z* because the
vanilla input appears more frequently than any
glanced tokens. Therefore, we do not need to train
the input predictor in this case, which recovers their
original implementations.

E Details of Experiment Settings

For WMT14 En-De, we follow Zhou et al. (2020)
to use a joint BPE (Sennrich et al., 2016) with 32K
merge operations, which leads to a vocabulary of
40k tokens. For WMT17 Zh-En, we follow Kasai
et al. (2020) to use a BPE with 32K merge opera-
tions, which leads to vocabularies of 48k tokens in
Chinese and 33k tokens in English.

Our NAT models generally follow the hyper-
parameter of transformer-base (Vaswani et al.,
2017). For regularization, we set dropout to 0.1,
weight decay to 0.01, and label smoothing to 0.1.
Except for OaXE, all models are trained for 300k
updates with a batch of approximately 64k tokens.
The learning rate warms up to 5 - 10~* within
10k steps and then decays with the inverse square-
root schedule. For OaXE, we choose a pre-trained
vanilla NAT and finetune the model for 100k steps
with a fixed learning rate of 10~°. We evaluate the
BLEU scores on the validation set every epoch and
average the best 5 checkpoints for the final model.
All models are trained with mixed precision float-
ing point arithmetic on 8 Nvidia V100-32G GPUs.
It costs approximately 20 hours for a vanilla NAT
and 30 hours for Dynamic KD + GLAT.

For fair comparisons in Table 2 and 3, we do not
use any decoding tricks and only modify the meth-
ods for obtaining proxy variables. Taking OaXE as
an example, our implementation differs from their
original paper (Du et al., 2021) in: (1) Our OaXE
is finetuned on a vanilla NAT, not a CMLM. (2)
They use Transformer-big for KD whereas we use
Transformer-base. (3) They use Length Parallel
Decoding (Wei et al., 2019a) of beam 5 and the
de-duplication trick (Lee et al., 2018) for decod-
ing. We do not use any reranking methods. (4)
We do not use the truncation trick because it is not
compatible with LNat-
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Model | tiny small base  big
Amodel 128 256 512 1024
dhidden | 512 1024 2048 4096
Niayers 3 3 6 6
Nheads 4 4 8 8
Dropout | 0.1 0.1 0.3 0.3
Table 9: Hyper-parameters different AT teachers,

which generate the target candidates in Dynamic KD.

F Implementation Details of Dynamic
KD

For a given X, the target candidate set I" contains
Raw Data and four distilled sentences. The distilled
sentences are generated with beam size 5 from four
AT teachers, whose hyper-parameters in Table 9.
For WMT14 En-De, we train the AT teachers for
100k updates with a batch of approximately 64k
tokens. For WMT17 Zh-En, we raise the step to
300k to match the size of training data.

The dynamic KD chooses the proxy target by
minimizing LnaT + ﬁtarget. However, ﬁtarget needs
samples from Py, (Y| X) as defined in Eq.12,
which is intractable on the training set. To tackle
the issue, we utilize the pairwise BLEU between
the candidates formulated as follows,

Luge = Eqerixy Y [-B:S([T,T)],  (13)

i=1
where S is the sentence BLEU, I'; is the target dis-
tilled from the i-th teacher model, and j; is hyper-
parameters to bias the candidates from different
models (¢ = 5 indicating Raw Data).

For the tuning of (;, we introduce a multi-
reference set (Ott et al., 2018; Hassan et al., 2018)
to align [',target defined in Eq.12 and its approxima-
tion in Eq.13. Specifically, we tune 3; to minimize
the absolute differences between ﬁtarget and its ap-
proximation on the candidates sentences. Note that
tuning [3; only involves the BLEU score, which
does not need to train a NAT model. We do a man-
ual search from 0.1 to 0.5, where we finally choose
B [0.14,0.12,0.26,0.30,0.46] for WMT14
En-De and 5 = [0.09,0.10,0.13,0.12,0.20] for
WMT17 Zh-En.

When combining GLAT with Dynamic KD,
Lnar may suffer from high variance because Z is
sampled from Q(Z|T) following the rule of GLAT.
In our implementation, we utilize an approximation
of [fNAT as

Lyar = Eqrix) [~ log Po(T| 2%, X)],

where Z* is the vanilla input. Then Dynamic
KD chooses the proxy target according to 1™
arg IninT ['NAT + ['target-



