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Abstract
Maximum Likelihood Estimation (MLE) is001
commonly used in machine translation, where002
models with higher likelihood are assumed to003
perform better in translation. However, this as-004
sumption does not hold in the non-autoregres-005
sive Transformers (NATs), a new family of006
translation models. In this paper, we present007
both theoretical and empirical analysis on why008
simply maximizing the likelihood does not009
produce a good NAT model. Based on the010
theoretical analysis, we propose Maximum011
Proxy-Likelihood Estimation (MPLE), a novel012
method to address the training issue in MLE.013
Additionally, MPLE provides a novel perspec-014
tive to understand existing success in training015
NATs, namely much previous work can be re-016
garded as implicitly optimizing our objective.017

1 Introduction018

Maximum Likelihood Estimation (MLE) is a019

widely-used method in machine translation models.020

The objective of MLE is to maximize the likelihood021

P (Y |X), where X and Y are input and output sen-022

tences respectively. Recently, Non-Autoregressive023

Transformer (NAT, Gu et al., 2018) has received024

growing attention due to its efficiency of parallel025

decoding. MLE are also adopted to train the NAT026

model, but the MLE-based NATs suffer from poor027

translation quality compared with the classical au-028

toregressive translation (AT) models.029

To remedy the performance gap between ATs030

and NATs, many training methods have been pro-031

posed. For example, knowledge distillation (KD)032

(Gu et al., 2018) supervises NATs with sentences033

distilled from an AT teacher model. GLAT (Qian034

et al., 2021) helps the training by sampling some035

target tokens as the decoder input. These methods036

only change the training objectives without mod-037

ifying the model structure, but also demonstrate038

significant improvements in translation quality.039

However, there is major departure from the na-040

ture of MLE in these methods, where a NAT with041
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Figure 1: The log-likelihood and the BLEU score on
a 2D section in NAT’s weight space. GLAT+KD (F)
and MLE (N) indicate the models trained via different
objectives starting from an initial checkpoint (�) for
10k steps. Each point of the contour map is linearly
interpolated from the three checkpoints. All values are
evaluated on the validation set of WMT14 En-De.

low likelihood can even perform better in transla- 042

tion. As shown in Fig.1, we finetune two NATs 043

with different objectives from an initial checkpoint 044

and track the changes in the log-likelihood and the 045

BLEU score. The optimal training directions under 046

the two metrics are inconsistent, and the MLE train- 047

ing just misleads the NAT towards a sub-optimal 048

point with a low BLEU score despite the high log- 049

likelihood. The inconsistency between the likeli- 050

hood and the generation quality has been found in 051

AT models (Ranzato et al., 2016), but the problem 052

in NATs can be much more severe (e.g., generating 053

unreadable and repetitive outputs, Gu et al., 2018) 054

and lacks theoretical investigation for the causes. 055

In this paper, we argue that the MLE objective 056

can severely mislead NATs’ training due to the 057

information loss in dependencies according to our 058

theoretical analysis. Specifically, we show that 059

the MLE training prevents NATs from learning the 060

dependencies between target tokens, where the lost 061

information can be measured by a property of the 062

data distribution, namely, the total correlation. 063

To address the above issue, we propose a novel 064

method, Maximum Proxy-Likelihood Estimation 065

(MPLE), and show that training NATs with MPLE 066

leads to less information loss theoretically and em- 067

pirically. Intuitively, MPLE maximizes the likeli- 068
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Figure 2: The log-likelihood and BLEU of NATs on the original validation set of WMT14 En-De, where higher
log-likelihood does not lead to better translation performance. (a) NATs with different objectives. (b) Curves of a
NAT trained with GLAT+KD (before 300k steps) and then finetuned with MLE (after 300k steps).

hood on a proxy distribution Q, which is carefully069

designed to reduce the total correlation, thereby070

alleviate the information loss in capturing the de-071

pendencies. Additionally, we show that many exist-072

ing methods implicitly optimize MPLE’s objective073

by using heuristic rules to obtain proxy variables,074

which provides a general perspective and sheds a075

light on deeper understanding of these methods,076

including KD (Gu et al., 2018), AXE (Ghazvinine-077

jad et al., 2020), OaXE (Du et al., 2021), CMLM078

(Ghazvininejad et al., 2019), and GLAT (Qian et al.,079

2021). Finally, we derive a new method named080

Dynamic KD, which optimizes MPLE’s objective081

explicitly instead of using heuristic rules. Experi-082

ments show that our objective is highly correlated083

with the translation performance, and the proposed084

method achieves substantial improvements over the085

baselines. Our contributions are as follows:086

• We present empirical and theoretical analysis087

showing that MLE misleads the NAT training088

due to the information loss in dependencies,089

which can be measured by the total correlation.090

• We propose a novel method, Maximum Proxy-091

Likelihood Estimation (MPLE), which effec-092

tively reduces the total correlation theoretically093

and provides a novel perspective to understand094

the success of many existing methods.095

• Based on MPLE, we propose a new method096

named Dynamic KD, which achieves substantial097

improvements over the baselines.098

2 MLE Training Misleads NAT Models099

MLE is in fact finding a model with the closest100

distribution to the data distribution in terms of KL101

divergence (Akaike, 1998). Given a source sen-102

tence X = [x1, x2, · · · , xN ] and a target sentence103

Y = [y1, y2, · · · , yM ], MLE training minimizes104

LMLE = DKL [Pdata(Y |X)||Pθ(Y |X)] (1)105

= −Hdata(Y |X)− EPdata(Y |X) [logPθ(Y |X)] ,106
107

where Hdata is a constant representing the108

dataset’s Shannon Entropy, and the second term109

is the log-likelihood (LL). For AT models, LL is 110

defined as 111

logPAT
θ (Y |X) =

M∑
i=1

logPAT
θ (yi|y<i, X), (2) 112

113
where yi is predicted based on the prefix y<i. 114

The vanilla NAT makes a conditional indepen- 115

dent assumption where each token is independent 116

of each other when X is given. Formally, we have 117

logPNAT
θ (Y |X) =

M∑
i=1

logPNAT
θ (yi|X). (3) 118

119
In AT training, we usually assume that training 120

the model towards a higher LL can lead to better 121

translation quality. However, in this section, we 122

show that the assumption does not apply to NAT 123

models empirically and theoretically. 124

2.1 Practically Higher Likelihood does not 125

Lead to Better Translation Performance 126

By comparing NATs trained with different methods, 127

we find that a higher likelihood in NATs does not 128

lead to better translation performance. Specifically, 129

we adopt two SoTA methods, KD (Gu et al., 2018) 130

and GLAT (Qian et al., 2021), and evaluate BLEU 131

and LL defined on the validation set of WMT14 132

En-De. More settings are presented in Sec.4. 133

Fig.2(a) shows that the NAT model with higher 134

LL even performs worse in BLEU. Fig.2(b) illus- 135

trates the training curves of GLAT+KD, where LL 136

quickly drops after 4k steps despite the improve- 137

ment on BLEU. At 300k steps, we finetune the 138

model with MLE and find that the translation qual- 139

ity drops quickly regardless of LL’s improvement. 140

All these results indicate a serious problem that 141

the MLE training does not help but even misleads 142

the NAT models. We will show that the problem is 143

from the MLE objective when applied to NATs. 144

2.2 Training NAT with MLE is Bounded by 145

Conditional Total Correlation 146

The KL divergence in Eq.1 can reach zero for ATs 147

when Pθ(yi|y<i, X) = Pdata(yi|y<i, X). However, 148
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C ∆BLEU BLEUAT BLEUNAT
WMT14 En-De 2.50 15.32 27.11 11.79
WMT16 EN-RO 2.20 9.98 33.70 23.72
Denoise(0.5,0.1) 1.51 5.66 20.97 15.31
Denoise(0.5,0.0) 0.92 0.35 26.96 26.61

Table 1: Estimated total correlation C and the gap of
BLEU between AT and NAT on various datasets. 1

∆BLEU = BLEUAT − BLEUNAT. We adopt WMT14
En-De, WMT16 EN-RO, and two synthetic datasets.
Denoise(0.5, 0.1) indicates the source sentence is a cor-
rupted version of the target sentence with 50% tokens
replaced by random words and 10% tokens dropped.

a NAT model can hardly fit the data distribution,149

where we show that the minimum of the KL diver-150

gence is bounded by an non-negative constant.151

Theorem 1. For a NAT model Pθ(Y |X),152

we have minθ DKL[Pdata(Y |X)||Pθ(Y |X)] ≥ C,153

where C =
∑M

i=1Hdata(yi|X)−Hdata(Y |X), and154

Hdata(·|X) is the Shannon Entropy.155

Proof. DKL[Pdata(Y |X)||Pθ(Y |X)]156

= −Hdata(Y |X)− EPdata(Y |X)

[
M∑
i=1

logPθ(yi|X)

]
157

(Conditional Independent Assumption of Eq.3)158

= −Hdata(Y |X)−
M∑
i=1

EPdata(yi|X) [logPθ(yi|X)]159

≥ −Hdata(Y |X) +

M∑
i=1

Hdata(yi|X) (Gibbs’ Inequality)160

161

Note that C is a non-negative constant called162

conditional total correlation (Watanabe, 1960) or163

multi-information (Studený and Vejnarová, 1998),164

which measures the information of dependencies165

between the target tokens when X is known. Theo-166

rem 1 says that MLE-based NATs cannot capture167

the dependencies between target tokens, leading168

to low consistency in generated tokens. The total169

correlation C is a property of the data distribution,170

where a large C indicate the large amount of in-171

formation dropped by the NAT model and thus172

severely damage the translation performance.173

To better understand the severity of the problem,174

we estimate the total correlation C and compare175

the generation performance of AT and NAT models176

on different datasets. We utilize two benchmarks177

and further construct two synthetic datasets, whose178

target sentences are English corpus in WMT14 En-179

De, and the source sentences are modified from the180
1We use V-entropy (Xu et al., 2020) instead of the Shan-

non entropy because the latter is intractable due to the un-
known data distribution. Specifically, the estimation of C is
based on Pdata(yi|X) and Pdata(yi|y<i, X), which are sepa-
rately approximated by a NAT and an AT model.

targets by word replacement and dropping. 181

The results are shown in Table 1. Larger C indi- 182

cates stronger dependencies between target tokens, 183

leading to more serious performance gap between 184

NAT and AT models. When C becomes smaller, 185

the gap can be quickly narrowed, which manifests 186

that the large total correlation is the main obstacle 187

of MLE-based NATs in machine translation. 188

3 Training NAT Models by Maximum 189

Proxy-Likelihood Estimation 190

Sec.2 describes that the conditional total correlation 191

prevents NAT from well training with MLE. To ad- 192

dress the problem, we introduce a novel objective, 193

Proxy-Likelihood (PL), and propose to maximize 194

PL instead of vanilla MLE. We call it Maximum 195

Proxy-Likelihood Estimation (MPLE). Specifically, 196

PL is the likelihood defined on a proxy distribution 197

Q, where Q is carefully designed (and adjusted) to 198

reach a lower total correlation, and thus reduce the 199

dependencies loss in NATs. Intuitively, MPLE’s 200

objective can be expressed as follows: 201

L = DKL(Q||Pθ) +R(Q,Pdata). (4) 202

203The first term is similar to the MLE objective, 204

which trains the model towards the proxy distri- 205

bution Q instead of Pdata. The second term is a reg- 206

ularizer controlling the gap between Q and Pdata. 207

Equation 4 is just an intuitive introduction to our 208

objective. In the following sections, we will de- 209

scribe it in details. Sec.3.1 will present our design 210

philosophy about the proxy distribution Q and de- 211

scribe why it works for NAT training. Sec.3.2 will 212

formalize how to derive the full MPLE objective 213

from the original MLE one. Then in Sec.3.3, we 214

will theoretically verify that MPLE indeed leads 215

to a lower total correlation. Finally, we will show 216

that many current progresses in NAT training can 217

be understood in the MPLE framework (Sec.3.4), 218

and propose a new knowledge distillation approach 219

for NAT based on the MPLE framework (Sec.3.5). 220

3.1 Proxy Distribution Q(T |Z,X) 221

In this section, we specify the proposed proxy dis- 222

tribution Q(T |Z,X), which is used to train the 223

NAT decoder Pθ(T |Z,X) in Fig.3 (Left). Com- 224

pared with Pdata(Y |X), the proxy distribution 225

Q(T |Z,X) reduces the conditional total correla- 226

tion by introducing two proxy variables, namely 227

the proxy input Z and the proxy target T . 228

Proxy Target T The first way to reduce the condi- 229

tional total correlation is by replacing the original 230
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Figure 3: Left: The latent variable model used in the derivation of MPLE. The source sentence X and the real
target Y are observable, whereas the proxy input Z and the proxy target T are latent. Right: Existing methods as
instantiations of MPLE, which obtain either proxy target or proxy input. Methods in red are illustrated as examples.
Raw Data, KD (Gu et al., 2018), Vanilla Input (Gu et al., 2018), and CMLM (Ghazvininejad et al., 2019) use fixed
proxy variables.2AXE (Ghazvininejad et al., 2020), OaXE (Du et al., 2021), and GLAT (Qian et al., 2021) use
adaptive proxy variables that are updated through the training process.

target with a simpler sentence with fewer depen-231

dencies. Specifically, we define the proxy target232

as a sentence T = [t1, t2, · · · , tL], with the same233

meaning as the target Y but different lexical forms.234

Intuitively, human-written translations are di-235

verse in word usages and phrases’ order (Ott et al.,236

2018). A model is required to capture the depen-237

dencies to form plausible sentences. In contrast, the238

proxy targets are expected to be easily predictable,239

e.g., aligned well with the source sentences.240

Proxy Input Z Another way to reduce the condi-241

tional total correlation is by introducing some hints242

of the target into the input. Specifically, we define243

the proxy input as a sequence Z = [z1, z2, · · · , zL].244

We use Z as the decoder’s input and keep the en-245

coder’s input unchanged as X .246

Intuitively, some hints of the target can make the247

prediction easier and no longer require the depen-248

dencies between generated tokens. For example,249

if we sample some target tokens as the proxy in-250

put, the target sentence may be easily reconstructed251

without knowing the tokens not sampled. However,252

introducing too many hints may bring large gaps253

between training and inference, where we actually254

update Z (as well as T ) in MPLE.255

3.2 Derivation of MPLE256

Given the proxy distribution Q(T |Z,X), now the257

unresolved problem lies in that how can we achieve258

the proxy-likelihood maximizing when we only259

have annotated data 〈X,Y 〉. A straightforward260

solution is to regard T and Z as latent variables, so261

we build a latent variable model that connects T,Z262

and X,Y , as shown in Fig.3 (Left). Formally,263

2We only discuss the non-iterative version of CMLM,
following Qian et al. (2021); Du et al. (2021).

Pθ(Y |X) =
∑
Z

∑
T

Pθ(Y |T )Pθ(T |Z,X)Pθ(Z|X), 264

265
where Pθ(T |Z,X) is the NAT decoder, and the 266

other two modules bridge the proxy variables with 267

X,Y . Then we derive the objective of MPLE from 268

the log-likelihood on Pdata(Y |X): 269

− EPdata(Y |X) logPθ(Y |X) 270

= −EPdata(Y |X) log

[
EQ(T,Z|X)

Pθ(Y, T, Z|X)

Q(T,Z|X)

]
271

≤ −EPdata(Y |X)EQ(T,Z|X)

[
log

Pθ(Y, T, Z|X)

Q(T,Z|X)

]
(5) 272

= −EPdata(Y |X)EQ(T,Z|X)

[
logPθ(Y |T )+ 273

log
Pθ(T |Z,X)

Q(T |Z,X)
+ log

Pθ(Z|X)

Q(Z|X)

]
(6) 274

275
In Eq.5, we apply variational principle (Fox and 276

Roberts, 2012) by introducing Q(T,Z|X), which 277

specifies how we obtain proxy variables and can be 278

decomposed into the proxy distributionQ(T |Z,X) 279

and another distribution Q(Z|X). 280

Eq.6 is our new objective LMPLE, which can be 281

simplified and recovers our intuition in Eq.4: 282

LMPLE = LNAT︸︷︷︸
DKL(Q||Pθ)

+Ltarget + Linput︸ ︷︷ ︸
R(Q,Pdata)

, (7) 283

LNAT = EQ(Z|X)DKL [Q(T |Z,X)||Pθ(T |Z,X)] , (8) 284

Ltarget = EPdata(Y |X)EQ(T |X) [− logPθ(Y |T )] , (9) 285

Linput = DKL [Q(Z|X)||Pθ(Z|X)] . (10) 286

287
In Eq.7, LNAT supervises the decoder Pθ(T |Z,X) 288

to maximize the proxy-likelihood. Ltarget andLinput 289

measure the cost in bridging T,Z withX,Y , which 290

act as regularizers to avoid large gaps between the 291

proxy and original variables. 292

Optimization MPLE training needs to: (1) find 293

optimal proxy variables Z and T and (2) optimize 294

the model parameter θ. We utilize Expectation 295
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Algorithm 1 EM Training for MPLE
1: for X sampled from Pdata do
2: E-step: Update Z and T by heuristic rules (Sec.3.4),

which implicitly balances LNAT and regularizers.
3: M-step: Given Z and T obtained in the E-step,
4: Calculate LNAT according to Eq.8.
5: Calculate Linput according to Eq.9.
6: Calculate Ltarget according to Eq.10.
7: Update θ by minimizing

LMPLE = LNAT + Ltarget + Linput.
8: end for

Maximization to update the proxy variables and296

optimize θ alternatively, as shown in Algo.1.297

In E-step, we update Z and T to reduce LMPLE,298

which aims to find good proxy variables to bal-299

ance LNAT and the regularizers.3 However, finding300

optimal proxy variables is non-trivial, where we301

utilize some heuristic rules to obtain Z and T . Rule302

examples are shown in Fig.3 (Right). Some rules303

adaptively choose proxy variables according to the304

NAT performance, so Z and T are updated through305

the training. We will introduce the rules in Sec.3.4.306

In M-step, all Q’s entropies can be regarded as307

constants and ignored, where the three losses can308

be easily calculated based on the proxy variables309

previously obtained in E-step.310

3.3 MPLE breaks the Bounds of Conditional311

Total Correlation312

Theorem 1 cannot apply to an MPLE-based NAT313

because our latent variable model does not directly314

predict each token of Y based on X (i.e., not satis-315

fying Eq.3). However, since the NAT decoder still316

uses a conditional independent assumption simi-317

lar to Eq.3, the proxy distribution provides a new318

bound C ′ satisfying LNAT ≥ C ′, where319

C′ = EQ(Z|X)

[∑L
i=1HQ(ti|Z,X)−HQ(T |Z,X)

]
.

320 In E-step, MPLE finds proxy variables that mini-321

mize LNAT and the regularizers, which equivalently322

reduces the upper bound of C ′ for the proxy dis-323

tribution. In M-step, the NAT decoder is trained324

towards the proxy distribution with a reduced to-325

tal correlation. Therefore, the EM training can326

effectively reduce information loss in capturing the327

dependencies (also verified empirically in Sec.4.1),328

which improves the NAT’s performance.329

3.4 Understanding Existing Methods in the330

Framework of MPLE331

Many existing training methods for NATs can be332

regarded as instantiations of MPLE, where they use333
3Formally, we adjust Q(T,Z|X) to minimize LMPLE,

which updates T,Z for a given X .

heuristic rules to obtain proxy variables, as shown 334

in Fig.3 (Right). MPLE provides a unified perspec- 335

tive to explain the success of these methods: their 336

heuristic rules actually find good proxy variables 337

that implicitly balance LNAT and the regularizers, 338

and the methods with a smallerLMPLE have a better 339

translation performance (verified in Sec.4). In this 340

section, we briefly introduce these methods and 341

leave the details in Appendix D. 342

Obtaining Proxy Target Raw Data and KD use 343

fixed proxy targets that are not updated during the 344

training. Specifically, Raw Data uses the original 345

target sentence as the proxy target. KD first trains 346

an autoregressive model PAR on the raw data and 347

then generates the proxy target by beam search. 348

AXE and OaXE adaptively obtain the proxy tar- 349

get according to the decoder’s performance. Specif- 350

ically, they first pick a reference R from the raw or 351

KD data, and then find T ∈ S(R) that minimizes 352

LNAT, where S(R) indicates all subsequences or 353

permutations of R. They also use tricks to avoid a 354

large gap between T and Y (detailed in Appendix 355

D), which implicitly balance LNAT and Ltarget. 356

Obtaining Proxy Input Vanilla Input obtains 357

proxy inputs with a deterministic function, such 358

as copying source embeddings (Gu et al., 2018). 359

CMLM and GLAT construct the proxy input 360

by glancing at target tokens, i.e., sampling sev- 361

eral target tokens to replace the elements in the 362

vanilla input. Specifically, the sampling process 363

has three steps: (a) Sample l ∈ [1, L] as the num- 364

ber of glanced tokens. (b) Determine which to- 365

kens are glanced by sampling a mask sequence 366

M where only l elements are ones. (c) Z = 367

M�emb(T )+(1−M)�Z∗, where� is element- 368

wise multiplication, emb(T ) is T ’s embedding, and 369

Z∗ is copied from X’s embeddings. 370

The differences between CMLM and GLAT 371

mainly lie in step (a). CMLM use a predefined 372

distribution for l. GLAT uses an adaptive sampling 373

strategy, which determines l based on the NAT de- 374

coder’s prediction (detailed in Appendix D). 375

Implementation of Regularizer To measure the 376

gap between the proxy and original variables in 377

these methods, we defineLtarget andLinput and spec- 378

ify the implementations of the input predictor and 379

output paraphraser. 380

For Ltarget, we define the output paraphraser as 381

a simple non-trainable distribution related to the 382

similarity between Y and T : 383

Pθ(Y |T ) = exp(βS(Y, T ))/ζ, (11) 384
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where β is a hyper-parameter, S(Y, T ) is the sen-385

tence BLEU, and ζ =
∑

Y exp(βS(Y, T )). How-386

ever, the normalization term ζ is intractable, so we387

drop ζ and use L̂target in our experiments:388

L̂target = EPdata(Y |X)EQ(T |X) [−βS(Y, T )] . (12)389

390
Intuitively, Eq.12 measures the gap between proxy391

and real targets by the average BLEU score.392

For Linput, Vanilla Input always has Linput = 0393

because copying source embeddings are fully pre-394

dictable. However, a trainable input predictor395

is required in GLAT and CMLM. Specifically,396

we define the input predictor as: (1) Do a bi-397

nary classification at each position to determine398

whether zi is a glanced token or the vanilla in-399

put. (2) Predict ti from the vocabulary if zi is a400

glanced token. Formally, Pθ(zi = emb(ti)|X) =401

Pθ(zi is glanced|X)Pθ(ti|X), and Linput can be402

calculated according Eq.9.403

3.5 A New Method: Dynamic KD404

Existing methods heuristically obtain proxy vari-405

ables and optimize LMPLE implicitly. We propose406

a simple method named dynamic KD to obtain T ,407

which explicitly balances LNAT and Ltarget.408

For a source sentence X , we define a target can-409

didate set Γ, which contains the raw data and dis-410

tilled data from AT teachers of different sizes, i.e.,411

Transformer-tiny/small/base/big. Then we choose412

a best target T ∈ Γ that minimizes LNAT + Ltarget.413

Note that Eq.12 is intractable due to the sampling414

from Pdata, so we use pairwise BLEU between can-415

didates in Γ instead. See Appendix F for details.416

Previous work (Zhou et al., 2020) finds that417

the KD data from a larger AT teacher is closer418

to the real data but more difficult to predict, where419

they suggest choosing the teacher size according to420

NAT’s capacity. Our method dynamically selects421

the best proxy target from multiple KD candidates,422

which achieves substantial improvement over NATs423

that utilizes any single KD data.424

4 Experiments425

Dataset We conduct experiments on machine426

translation benchmarks, WMT14 En-De (4.5M)427

and WMT17 Zh-En (20M). We follow Zhou et al.428

(2020); Kasai et al. (2020) for preprocessing.429

Knowlegde Distillation We use Transformer-base430

with the same settings in Vaswani et al. (2017) and431

generate the distilled data with beam size 5. All432

models are based on KD unless otherwise specified.433

Implementation Details We implement Raw 434

Data, KD, AXE, OaXE for obtaining proxy targets, 435

and Vanilla Input, CMLM, GLAT for obtaining 436

proxy inputs based on Fairseq (Ott et al., 2019). 437

We generally follow the hyper-parameters in Qian 438

et al. (2021). For fair comparisons, we only mod- 439

ifies the proxy variables across different methods, 440

which may be different from their original imple- 441

mentations. For example, we do not use iterative 442

refinement for CMLM, or combine OaXE with 443

CMLM. Unless otherwise specified, we do not uti- 444

lize reranking methods or other decoding tricks. 445

More details are in Appendix E. 446

Decoding Strategies We utilize two decoding 447

strategies. Greedy Decoding: The input predic- 448

tor, the NAT decoder, and the output paraphraser 449

take the most possible choices in each generation 450

step. We use Greedy Decoding for all models un- 451

less otherwise specified. Random Glance: For 452

the input predictor of CMLM/GLAT, we first ran- 453

domly determine whether zi is glanced according 454

to Pθ(zi is glanced|X), and then choose the most 455

likely tokens for the glanced tokens according to 456

Pθ(ti|X). The other steps remain the same as 457

Greedy Decoding. 458

Metrics The translation performance is evaluated 459

based on tokenized BLEU (Papineni et al., 2002). 460

Linput and LNAT are averaged per token on valida- 461

tion set. L̂target in Eq.12 needs multiple real targets 462

Y from Pdata, so we utilize multi-reference sets (Ott 463

et al., 2018; Hassan et al., 2018), where each source 464

has 10(2) extra human-annotated references for En- 465

De(Zh-En). We use β = 0.2 for En-De, β = 0.25 466

for Zh-En. L̂MPLE := LNAT + Linput + L̂target. We 467

measure the speedup by the average decoding la- 468

tency on WMT14 En-De with batch size 1. 469

4.1 Empirical Verification of MPLE’s 470

Conditional Total Correlation 471

We compare LNAT of models with MPLE against 472

the dataset’s total correlation in Fig.4. The mod- 473

els with appropriate proxy variables can achieve 474

lower LNAT than the total correlation, indicating 475

that MPLE breaks the bound of the conditional to- 476

tal correlation and reduces the information loss in 477

capturing the dependencies between target tokens. 478

However, lower LNAT does not promise higher 479

BLEU because we do not control the regularizer. In 480

next sections, we will analyze how different meth- 481

ods affect the translation performance and balance 482

the MLE objective and the regularizer. 483
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Figure 4: LNAT and BLEU of different models on
WMT14 En-De. The right five methods are instanti-
ations of MPLE, which achieve lower LNAT than the
dataset’s total correlation C. C is the KL lower-bound
of MLE-based NATs given in Theorem 1.

Models LNAT L̂target L̂MPLE BLEU
MLE (Raw Data) 4.41 -6.42 -2.01 11.79
KD 2.42 -7.08 -4.66 20.87
+ AXE(τ=1) 0.78 -5.13 -4.35 18.56
+ AXE(τ=5) 1.09 -6.34 -5.25 22.22
+ AXE(τ=10) 1.25 -6.50 -5.26 22.35
+ OaXE(10k) 1.03 -4.41 -3.38 15.00
+ OaXE(50k) 0.79 -5.84 -5.06 21.37
+ OaXE(300k) 0.83 -6.28 -5.44 22.76

Table 2: Comparison of methods that obtain proxy tar-
gets on WMT14 En-De. All methods use Vanilla In-
put and Linput=0. L̂MPLE and BLEU are strongly corre-
lated (Pearson’s |r|=0.99). AXE’s τ and OaXE’s num-
bers indicate the skip penalty and the pre-training steps,
which are hyper-parameters in choosing proxy targets.
Results on WMT17 Zh-En are in Appendix A.

4.2 Effects of Proxy Target484

In this section, we compare different methods ob-485

taining proxy targets while keeping Z as Vanilla486

Input. The results are shown in Table 2.487

Strong Correlation. L̂MPLE is strongly corre-488

lated with BLEU, where LNAT and L̂target are both489

important. For example, AXE(τ=1) achieves low490

LNAT with high L̂target, indicating that T is easy to491

predict but heavily distorted from the real target.492

On the contrary, KD’s proxy target is less distorted493

but hard to predict. OaXE(300k) balances the two494

losses well and thus achieves the best BLEU.495

β in Eq.12 will affect the scale of L̂target, where496

we choose β = 0.2 by maximizing the correlation497

on the validation set. However, the choose of β is498

not sensitive that |r| ≥ 0.8 for all β ∈ [0.1, 0.5].499

Secret Advantage of KD. Previous work (Gu500

et al., 2018) has shown that KD can simplify the501

training data and thus reduce LNAT. However, our502

results reveal a secret advantage that KD achieves503

the lowest L̂target, which means that the KD data504

are more similar with the multiple references rather505

KD DataReferences

መℒtarget = −7.08መℒtarget = −6.42

Raw Data Modes of References

KL Raw Data

Figure 5: The similarity between proxy targets and ref-
erences in two methods. KD data achieve higher simi-
larity with references on average than the raw data.

Models Linput LNAT L̂MPLE Random Greedy
Vanilla Input 0 2.42 -4.66 20.87 20.87
CMLM 0.99 0.46 -5.63 23.48 19.39
+ Fixed 0.48 0.55 -6.05 24.28 19.35
GLAT 0.45 0.66 -5.96 23.98 25.12
+ Levenshtein 0.41 0.73 -5.94 24.03 24.84
+ Pref 0.25 1.24 -5.59 22.98 24.22
+ 1− Pref 0.57 0.50 -6.01 24.35 25.19

Table 3: Comparison of methods that obtain proxy in-
puts on WMT14 En-De. All use KD and L̂target =
−7.08. Random and Greedy indicate the BLEU score
with Random Glance and Greedy Decoding. L̂MPLE is
strongly correlated with Random BLEU (|r|=0.99) but
less correlated with Greedy BLEU (|r|=0.37). Results
on WMT17 Zh-En are in Appendix A.

than the raw data. This result can be explained 506

by the diversity of human annotations as shown in 507

Fig.5. Although the KD data may not belong to any 508

modes of the data distribution, it still has higher 509

similarity on average. 510

Hyper-parameters and Trade-off. AXE and 511

OaXE utilize tricks to avoid large gap between 512

the proxy target and the real target. For example, 513

AXE tunes the skip penalty τ , and OaXE tunes the 514

pre-training step.4 MPLE provides a quantifiable 515

objective to balance the KL divergence LNAT and 516

the regularizer L̂target, which improves the inter- 517

pretability for hyper-parameter selection. 518

4.3 Effects of Proxy Input 519

We compare methods that obtain proxy inputs 520

including several variants of CMLM and GLAT, 521

which are also used in Qian et al. (2021). CMLM + 522

Fixed uses l = 0.2L instead of random sampling. 523

GLAT + Levenshtein uses Levenshtein Distance 524

to determine the number of glanced tokens. Pref 525

and 1 − Pref choose the glanced tokens accord- 526

ing to the difficulties in predicting them, where 527

P (zi is glanced) is proportional to the prediction 528

probability Pθ(ti|Z∗, X) or 1−Pθ(ti|Z∗, X). The 529

results are shown in Table 3. 530

4See Appendix D.3, D.4 for details of the tricks.
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Figure 6: The BLEU score and decoding confidence
I = − logPθ(Z|X) − logPθ(T |Z,X) of GLAT and
CMLM with two decoding strategies. Smaller I indi-
cates that the model is more confident in generation.

Strong Correlation with Random BLEU. Our531

objective is strongly correlated with BLEU when532

using Random Glance, where Linput and LNAT533

should be balanced to achieve the best performance.534

For example, Vanilla NAT does not introduce hints535

in the proxy input, leading to large LNAT. CMLM536

introduces too much hints in training, making it537

hard to predict the proxy input in inference.538

However, L̂MPLE is less correlated with BLEU539

of Greedy Decoding, where CMLM may not prefer540

the decoding strategy as discussed below.541

Potentials for Decoding Strategies. Previous542

works (Qian et al., 2021) showed that CMLM per-543

forms poorly without iterative refinement, but we544

find that it can be improved by changing the de-545

coding strategy. For example, CMLM + Fixed546

outperforms GLAT when using Random Glance,547

showing the potentials for the decoding strategies.548

We find that CMLM and GLAT prefer differ-549

ent decoding strategies, which can be partially550

explained by the decoding confidence Pθ(Z|X)551

and Pθ(T |Z,X). As shown in Fig.6, GLAT is552

more confident with Greedy Decoding than Ran-553

dom Glance, whereas CMLM is the opposite.554

4.4 Results of Dynamic KD555

We combine Dynamic KD with Vanilla Input and556

GLAT, and compare our methods against AT and557

SoTA NATs. As shown in Table 4, Dynamic KD558

achieves substantial improvement over the best re-559

sult on any single KD data and further help GLAT560

achieves competitive translation quality with AT561

Transformer with remarkable speedup.562

This experiment suggests that our objective ef-563

fectively guides the design of new training methods.564

Explicitly optimizing LMPLE provides a promising565

way to find better proxy distributions, which out-566

performs existing heuristic methods.567

Models En-De Zh-En Speed Up
AT Transformer 27.11 23.89 1.0x

NAT
MLE 11.79 8.69 15.3x
GLAT (NPD=7)† 26.55 / 7.9x
OaXE (LPD=5)† 26.1 22.1 14.2x

Ours

Vanilla ‡ 21.33 17.48 15.3x
+ Dynamic KD 22.82 18.29 15.3x

+ LPD=3 § 24.83 19.97 14.6x
GLAT ‡ 25.33 22.51 15.3x
+ Dynamic KD 25.88 23.07 15.3x

+ LPD=3 § 26.89 24.42 14.6x

Table 4: Comparing Dynamic KD against AT and
SoTA NATs. NPD (Gu et al., 2018) and LPD (Wei
et al., 2019a) indicate reranking methods with the num-
ber of candidates. †: Reported by Qian et al. (2021)
and Du et al. (2021). ‡: The best results on single KD
data. §: Some decoding tricks are applied following
baselines. See Appendix B for details and more results.

5 Related Work 568

NATs are proposed to accelerate the decoding 569

speed but suffers from poor translation quality. 570

Many works are devoted in solving the problem, 571

where some of them have been covered in our objec- 572

tive as shown in Fig 3. The other methods mainly 573

includes (1) utilizing objectives not based on MLE 574

(Libovický and Helcl, 2018; Wei et al., 2019a; Sa- 575

haria et al., 2020); (2) iteratively refining the gen- 576

erated outputs for better quality (Lee et al., 2018; 577

Gu et al., 2019; Kasai et al., 2020). Although the 578

iterative approaches usually lead to better quality, 579

Kasai et al. (2021) point out that the iterative ap- 580

proaches are much slower than non-iterative ones 581

and may not have advantages against AT models. 582

The gap between likelihood and generation per- 583

formance has been spotted in ATs, where previous 584

works utilize reinforcement learning (Ranzato et al., 585

2016; Bahdanau et al., 2017) or adversarial training 586

(Yu et al., 2017) to alleviate the problem. Lee et al. 587

(2020) conduct an empirical study to quantify this 588

gap in both ATs and NATs, but they focus on com- 589

paring latent variable models with different priors. 590

To our knowledge, we are the first to point out that 591

NATs suffer from the misleading MLE objective 592

and propose a method to allieviate the problem. 593

6 Conclusion 594

In this paper, we analyze why MLE misleads NATs’ 595

training and find that NATs cannot capture the de- 596

pendencies between target tokens. Based on the 597

analysis, we propose a new method, MPLE, to alle- 598

viate the problem. Our solution provides a general 599

perspective for many SoTA methods and can in- 600

spire new methods for better NATs. 601
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Models LNAT L̂target L̂MPLE BLEU
Raw Data 4.43 -6.25 -1.82 8.69
KD 2.85 -5.72 -2.87 15.53
+ AXE(τ=1) 1.02 -2.95 -1.93 9.68
+ AXE(τ=5) 1.93 -5.00 -3.07 18.39
+ AXE(τ=10) 2.31 -5.20 -2.90 18.25
+ OaXE(10k) 1.46 -3.38 -1.92 12.31
+ OaXE(50k) 1.19 -4.50 -3.31 18.79
+ OaXE(300k) 1.15 -4.66 -3.50 19.46

Table 5: Comparison of methods that obtain proxy tar-
gets on WMT17 Zh-En. All methods use Vanilla Input
and Linput=0. L̂MPLE and BLEU are strongly correlated
(Pearson’s |r|=0.96). AXE’s τ and OaXE’s numbers in-
dicate the skip penalty and the pre-training step, which
are hyper-parameters in choosing proxy targets.

Models Linput LNAT L̂MPLE Random Greedy
Vanilla Input 0 2.85 -2.87 15.53 15.53
CMLM 1.13 0.76 -3.83 19.74 14.12
+ Fixed 0.29 1.13 -4.30 20.81 14.49
GLAT 0.33 1.26 -4.13 20.73 22.51
+ Levenshtein 1.08 0.44 -4.19 20.71 21.70
+ Pref 0.40 1.60 -3.73 18.98 21.22
+ 1− Pref 0.73 0.81 -4.17 20.79 21.51

Table 6: Comparison of methods and variants that ob-
tain proxy inputs on WMT17 Zh-En. All use KD
and L̂target=-5.72. Random and Greedy indicate the
BLEU score in Random Glance and Greedy Decod-
ing. L̂MPLE is strongly correlated with Random BLEU
(Pearson’s |r|=0.99) but less correlated with Greedy
BLEU (|r|=0.35).

A Results on WMT17 Zh-En 841

We repeat the experiments in Sec.4.2 and Sec.4.3 842

on WMT17 Zh-En. As shown in Table 5 and Ta- 843

ble 6, our objective is strongly correlated with the 844

translation quality, which supports our claim well. 845

B More Results of Dynamic KD 846

Decoding Tricks In Table 4, we apply some de- 847

coding tricks for the final results: 848

• We use length parallel decoding (LPD, Wei et al., 849

2019b). We use a candidate set of 3. Since 850

all candidates can be generated simultaneously, 851

LPD is still fast in inference. It is worth noting 852

that LPD is faster than NPD (Gu et al., 2018) 853

since it does not need an external reranker. 854

• We use the de-duplication trick (Lee et al., 2018), 855

i.e., removing the repeated tokens in generated 856

sentences. 857

• We adjust the predicted length by a factor λ 858

(Ghazvininejad et al., 2020). The factor is tuned 859

on the validation set. We use λ = 1 (i.e., the pre- 860

dicted length is not changed) for WMT14 En-De, 861

and λ = 1.05 for WMT17 Zh-En. 862
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Models # Iters En-De Zh-En Speed Up
AT Transformer L 27.11 23.89 1.0x

Iterative
NATs

CMLM† 4 25.94 21.90 3.0x
10 27.03 23.21 1.3x

DisCo†
4 25.83 22.42 4.3x
10 27.06 23.68 3.2x
∼ 5 § 27.34 23.83 /

Imputer†
1 25.8 / 14.9x
2 27.5 / 7.5x
8 28.2 / 2.7x

Ours Vanilla ‡ 1 24.83 19.97 14.6x
GLAT ‡ 1 26.89 24.42 14.6x

Table 7: Comparing Dynamic KD against Iterative
NATs. †: Reported by Ghazvininejad et al. (2019), Ka-
sai et al. (2020), and Saharia et al. (2020). Speed up
of Imputer are re-evaluated in our implementation. §:
Use adaptive iteration numbers. ‡: Use Dynamic KD
and decoding tricks.

WMT14 En-De
Vanilla GLAT AT Teacher

Tiny 18.74 20.37 20.46
Small 21.33 23.72 24.29
Base 20.98 25.33 27.11
Big 19.27 25.12 28.49
Raw 11.79 19.42 /
Dynamic KD 22.82 26.89 /
w/o regularizer 20.51 22.66 /

WMT17 Zh-En
Vanilla GLAT AT Teacher

Tiny 15.98 19.87 19.38
Small 17.48 22.38 22.47
Base 15.53 22.51 23.89
Big 14.81 21.84 24.84
Raw 8.69 18.88 /
Dynamic KD 18.29 23.07 /
w/o regularizer 18.10 22.14 /

Table 8: Comparisons between Dynamic KD and
single KD data. w/o regularizer indicates remov-
ing L̂target in choosing the proxy target (i.e., T ∗ =
arg minT LNAT). All NAT results do not use reranking
or other decoding tricks. AT teachers’ performances
are presented as references.

Comparisons with Iterative NATs In Table 7,863

we compare Dynamic KD against iterative NATs.864

GLAT + Dynamic KD achieves good translation865

quality with remarkable speed up.866

Ablation Study In Table 8, we present the results867

on each single KD data and performance of AT868

teachers as reference. Moreover, we ablate the869

regularizer (L̂target) in Dynamic KD, which justifies870

the necessity of the regularizer.871

C More Related Work872

Our method is connected with Sun and Yang873

(2020), who also utilize the EM algorithm to im-874

prove NATs’ performance. They alternatively train875

AT and NAT models to refine the training data,876

where each model is trained with the data distilled 877

from the previous one. Different from their method, 878

we utilize a proxy distribution to guide the training, 879

which is more general and simpler than training 880

multiple models iteratively. 881

Latent variable models are widely used in ma- 882

chine translation, which can capture complex de- 883

pendencies (Su et al., 2018), model the diversity 884

of outputs (Shen et al., 2019), enable the trans- 885

lation between unseen language pairs (Shah and 886

Barber, 2018), and so on. Some NATs also uti- 887

lize latent variable models, which mainly aim to 888

alleviate the multi-modality problem (Gu et al., 889

2018) by making a sentence-level plan before the 890

non-autoregressive generation (Gu et al., 2018; Lee 891

et al., 2018; Shu et al., 2020). Unlike previous 892

works, we introduce the latent variable model to 893

construct a proxy distribution with reduced total 894

correlation, which addresses the theoretical prob- 895

lem of MLE-based NATs. 896

D Details of Understanding Existing 897

Methods in MPLE 898

In Sec.3.4, we briefly describe that how existing 899

methods obtain proxy variables. In this section, we 900

provide more details. 901

Heuristic Rule and Variational Distribution In 902

the derivation of MPLE (Eq.5), we introduce a vari- 903

ational distribution Q(T,Z|X), which specifies 904

how we sample proxy variables to train the NAT 905

model. However, since the optimization of E-step 906

is usually non-trivial, we instead use heuristic rules 907

to obtain the proxy variables, where the obtained 908

proxy variables in fact build the variational distribu- 909

tion Q(T,Z|X) used in our objective. Specifically, 910

for a given X , we select one rule to obtain T and 911

another one to obtain Z, where we regard the (T , 912

Z) pair as a sample from Q(T,Z|X). Formally, 913

we define the rules for proxy targets as Q(T |X), 914

and the rules for proxy inputs as Q(Z|T,X). Then 915

Q(T,Z|X) := Q(T |X)Q(Z|T,X), which con- 916

nects the heuristic rules with the variational distri- 917

bution.5 In later descriptions, we will formulate the 918

heuristic rules as distributions over T or Z. 919

Equivalence of Objectives The original objec- 920

tives in these methods are generally equivalent to 921

minimizing LNAT of Eq.8. For example, the origi- 922

5Do not mix it with the proxy distribution Q(T |Z,X),
which is from another decomposition of Q(T,Z|X) =
Q(T |Z,X)Q(Z|X). Generally, we only have one distribu-
tion Q(T,Z|X), which is defined by the heuristic rules. All
the other Qs are just decompositions of Q(T,Z|X).
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nal KD minimizes the negative log-likelihood on923

KD data, which is equivalent to reducing the KL924

divergence between Q(T |Z,X) and Pθ(T |Z,X),925

where T is the KD target and Z is copied from926

source embeddings. In later descriptions, we will927

prove the equivalence of their original objectives928

and ours in complex methods, such as AXE.929

D.1 Raw Data930

Raw Data uses the original target sentence as the931

proxy target. Formally, we define Q(T |X) as a932

one-point distribution that Q(T = Y ∗|X) = 1,933

where Y ∗ is the original target in the dataset.934

D.2 Knowledge Distillation (KD, Gu et al.,935

2018)936

KD first trains an autoregressive model PAR on937

the raw data, and then uses beam search to obtain938

T ∗ = arg maxY PAR(Y |X). Formally, Q(T |X)939

is defined as a one-point distribution at T ∗.940

D.3 Aligned Cross Entropy (AXE,941

Ghazvininejad et al., 2020)942

Q(T |X) is defined as a one-point distribution at943

T ∗, where T ∗ = arg minT∈S(R) LNAT. The refer-944

ence R = [r1, · · · , rL] is picked from Raw Data945

or KD. Any T ∈ S(R) is a subsequence of R with946

empty tokens ε inserted.6 An example is shown in947

Fig.7.948

Original Objective AXE introduces a monotonic949

alignment α = [α1, · · · , αL], where the i-th token950

of the reference R is aligned to the αi-th token951

of the NAT prediction. Formally, the AXE loss is952

defined as953

LAXE = min
α

[
−

L∑
i=1

logPαi(ri)−
∑
k/∈α

logPk(ε)

]
,954

s.t. 1 ≤ α1 ≤ · · · ≤ αL ≤ L.955
956

The first term is the cross entropy between aligned957

targets and predictions, and the second term is a958

penalty for unaligned predictions.959

In the AXE loss, a single prediction may be960

aligned to multiple target tokens. In their original961

paper, aligning the prediction to the first target to-962

ken is called the “align” operation, and aligning963

the prediction to later tokens is called the “skip tar-964

get” operation. However, one-to-many alignments965

will damage the performance, so they penalize the966

“skip target” operations with a factor δ. This trick967

is called the skip penalty.968
6The NAT model may learn to predict empty tokens,

which will be removed after generation.

Proof of Equivalence To connect their definition 969

with ours, we convert the alignment to an adja- 970

cency list, as shown in Figure 7, where βi is a list 971

containing all aligned tokens for the i-th predic- 972

tion. Specially, if the i-th prediction is not aligned, 973

we set βi = [0] and r0 = ε. Then, LAXE can be 974

reformulated as 975

min
β

− L∑
i=1

logPi(rβi,1)− δ
L∑
i=1

|βi|∑
j=2

logPi(rβi,j )

 , 976
977

where βi,j indicates the j-th element of βi. The first 978

term is the cross entropy between the prediction 979

and a new target T ∗ = [rβ1,1 , · · · , rβL,1 ], and the 980

second term is the penalty for “skipping target” 981

operations. 982

When δ = 0, the above formulation is equivalent 983

to finding an optimal T ∗ to minimize LNAT. Since 984

α is monotonic alignments, T ∗ is constrained and 985

should be a subsequence of R with some empty to- 986

kens inserted, which recover our definition. When 987

δ 6= 0, the second term can be regarded as a reg- 988

ularizer to control the gap between proxy targets 989

and real targets. 990

D.4 Order-agnostic Cross Entropy (OaXE, 991

Du et al., 2021) 992

OaXE is similar to AXE despite the constraint 993

S(R). Any T ∈ S(R) is a permutation of R. An 994

example is shown in Fig.7. 995

Original Objective Different from AXE, OaXE’s 996

α is a non-monotonic alignment, and each pre- 997

dicted token can only be used once. The loss is 998

defined as 999

LOaXE = min
α∈Perm(L)

[
−

L∑
i=1

logPαi(ri)

]
, 1000

1001

where Perm(L) indicates the permutations of se- 1002

quences containing 1 to L. 1003

Proof of Equivalence Similar to the derivation for 1004

AXE, we can reformulate LOaXE as 1005

min
β

[
−

L∑
i=1

logPi(rβi,1)

]
. 1006

1007

The above formulation recovers our definition: It 1008

finds an optimal T ∗ to minimize LNAT, where T ∗ 1009

can be an arbitrary permutation of R. 1010

However, without the monotonic constraints, T ∗ 1011

in OaXE may be heavily distorted from the real 1012

target Y . To alleviate the problem, OaXE first 1013

pretrains the NAT using the vanilla MLE and then 1014

finetunes it to minimize LOaXE. This trick is based 1015

on an intuition that the optimal T ∗ in a well-trained 1016

NAT will be close to the real target. 1017
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𝛼 = [2, 3, 4, 4]

Targets  𝑅

Predictions 𝑃

I eat pizza today𝜖

today I eat pizza

𝛽1 = [0] 𝛽2 = [1]

𝛽3 = [2] 𝛽4 = [3, 4]

𝑇∗ = 𝑦0, 𝑦1, 𝑦2, 𝑦3

= 𝜖 I  eat  pizza

0 1 2 3 4

Convert to
adjacency list

Construct
proxy target

𝛼 = [2, 3, 4, 1]

I eat pizza today

today I eat pizza

𝛽1 = [4] 𝛽2 = [1]

𝛽3 = [2] 𝛽4 = [3]

𝑇∗ = 𝑦4, 𝑦1, 𝑦2, 𝑦3

= today I  eat  pizza

AXE OaXE
1 2 3 4 1 2 3 4

Figure 7: Examples of the alignments α, the adjacency list β, and the proxy target T ∗ in AXE and OaXE. Red
dotted line in AXE indicates the skip target operation.

D.5 Vanilla Input1018

Many NATs predict Z by Uniform Copy (Gu et al.,1019

2018) or attention (Qian et al., 2021). Formally,1020

it can be formulated as a one-point distribution1021

Q(Z = Z∗|T,X) = 1, where Z∗ is obtained from1022

a deterministic function f(X).1023

D.6 VAE (Shu et al., 2020)1024

VAE uses two trainable networks, the prior1025

and posterior networks, to model Pθ(Z|X) and1026

Q(Z|T,X), respectively. The posterior network1027

Q(Z|T,X) can be trained together with θ.1028

D.7 CMLM (Ghazvininejad et al., 2019) /1029

GLAT (Qian et al., 2021)1030

As described in Sec.3.4, Q(Z|X) is defined by1031

three sampling steps.1032

In step (a), CMLM defines the number of1033

glanced tokens l = λL, where λ is uniformly sam-1034

pled from 0 to 1. GLAT uses an adaptive sam-1035

pling strategy, where l = λD(T, T̂ ). λ ∈ [0, 1] is1036

a hyper-parameter, D(T, T̂ ) is the Hamming dis-1037

tance between the proxy target and the model pre-1038

diction arg maxT Pθ(T |Z∗, X).1039

Original Objective In the original implementa-1040

tion, CMLM and GLAT use a masked language1041

model objective, where the glanced tokens are not1042

included in the loss LNAT. Formally,1043

LNAT = EQ(Z,T |X)

[
−
∑
i/∈G

logPθ(ti|Z,X)

]
,1044

1045

where G is the set of the glanced token.1046

Proof of Equivalence The above objective does1047

not violate Eq.8 if we add a copy mechanism in1048

the NAT decoder. The decoder directly copies the1049

glanced token as the prediction if available. As a1050

result, for a glanced token ti, logPθ(ti|Z,X) = 01051

because the predictions for the glanced tokens are 1052

always correct. Therefore, the masked language 1053

model objective recovers the MLE objective to- 1054

wards Q(T |Z,X): 1055

LNAT = EQ(Z,T |X)

[
−
∑
i/∈G

logPθ(ti|Z,X)

]
+ 0 1056

= EQ(Z,T |X)

[
−
∑
i/∈G

logPθ(ti|Z,X)− 1057

∑
i∈G

logPθ(ti|Z,X)
]

1058

= EQ(Z,T |X) [− logPθ(T |Z,X)] 1059

1060

Note that the copy mechanism does not need any 1061

modifications to the network structures. 1062

Implementation Details of Input Predictor In 1063

our implementation, the input predictor for 1064

CMLM and GLAT is composed of two modules: 1065

Pθ(zi is glanced|X) predicts whether zi is from a 1066

glanced token ti, and Pθ(ti|X) predicts the target 1067

token ti from the vocabulary. Formally, 1068

Pθ(zi|X) =


1− Pθ(zi is glanced|X), if zi = z∗i ;
Pθ(zi is glanced|X)Pθ(ti|X),

if zi = emb(ti);
0, otherwise,

1069

1070

where z∗i indicates the vanilla input at the i-th posi- 1071

tion. 1072

Therefore, Linput can be formulated as 1073

Linput = EQ(Z|X)

[
−

L∑
i=1

logPθ(zi|X) + logQ(Z|X)

]
. 1074

1075

For the first module Pθ(zi is glanced|X), we 1076

reuse the Transformer encoder and the NAT de- 1077

coder and further add a binary classification layer 1078

on top of the NAT decoder. For the second module 1079

Pθ(ti|X), we use a pre-trained vanilla NAT and 1080

freeze its parameters during the training of CMLM 1081
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or GLAT. Moreover, its predictions can be com-1082

puted offline to speed up the training.1083

For GLAT or CMLM in Greedy Decoding, Z al-1084

ways equals to the vanilla input Z∗ because the1085

vanilla input appears more frequently than any1086

glanced tokens. Therefore, we do not need to train1087

the input predictor in this case, which recovers their1088

original implementations.1089

E Details of Experiment Settings1090

For WMT14 En-De, we follow Zhou et al. (2020)1091

to use a joint BPE (Sennrich et al., 2016) with 32K1092

merge operations, which leads to a vocabulary of1093

40k tokens. For WMT17 Zh-En, we follow Kasai1094

et al. (2020) to use a BPE with 32K merge opera-1095

tions, which leads to vocabularies of 48k tokens in1096

Chinese and 33k tokens in English.1097

Our NAT models generally follow the hyper-1098

parameter of transformer-base (Vaswani et al.,1099

2017). For regularization, we set dropout to 0.1,1100

weight decay to 0.01, and label smoothing to 0.1.1101

Except for OaXE, all models are trained for 300k1102

updates with a batch of approximately 64k tokens.1103

The learning rate warms up to 5 · 10−4 within1104

10k steps and then decays with the inverse square-1105

root schedule. For OaXE, we choose a pre-trained1106

vanilla NAT and finetune the model for 100k steps1107

with a fixed learning rate of 10−5. We evaluate the1108

BLEU scores on the validation set every epoch and1109

average the best 5 checkpoints for the final model.1110

All models are trained with mixed precision float-1111

ing point arithmetic on 8 Nvidia V100-32G GPUs.1112

It costs approximately 20 hours for a vanilla NAT1113

and 30 hours for Dynamic KD + GLAT.1114

For fair comparisons in Table 2 and 3, we do not1115

use any decoding tricks and only modify the meth-1116

ods for obtaining proxy variables. Taking OaXE as1117

an example, our implementation differs from their1118

original paper (Du et al., 2021) in: (1) Our OaXE1119

is finetuned on a vanilla NAT, not a CMLM. (2)1120

They use Transformer-big for KD whereas we use1121

Transformer-base. (3) They use Length Parallel1122

Decoding (Wei et al., 2019a) of beam 5 and the1123

de-duplication trick (Lee et al., 2018) for decod-1124

ing. We do not use any reranking methods. (4)1125

We do not use the truncation trick because it is not1126

compatible with LNAT.1127

Model tiny small base big
dmodel 128 256 512 1024
dhidden 512 1024 2048 4096
nlayers 3 3 6 6
nheads 4 4 8 8

Dropout 0.1 0.1 0.3 0.3

Table 9: Hyper-parameters different AT teachers,
which generate the target candidates in Dynamic KD.

F Implementation Details of Dynamic 1128

KD 1129

For a given X , the target candidate set Γ contains 1130

Raw Data and four distilled sentences. The distilled 1131

sentences are generated with beam size 5 from four 1132

AT teachers, whose hyper-parameters in Table 9. 1133

For WMT14 En-De, we train the AT teachers for 1134

100k updates with a batch of approximately 64k 1135

tokens. For WMT17 Zh-En, we raise the step to 1136

300k to match the size of training data. 1137

The dynamic KD chooses the proxy target by 1138

minimizing LNAT + L̂target. However, L̂target needs 1139

samples from Pdata(Y |X) as defined in Eq.12, 1140

which is intractable on the training set. To tackle 1141

the issue, we utilize the pairwise BLEU between 1142

the candidates formulated as follows, 1143

L̂target ≈ EQ(T |X)

5∑
i=1

[−βiS(Γi, T )] , (13) 1144
1145

where S is the sentence BLEU, Γi is the target dis- 1146

tilled from the i-th teacher model, and βi is hyper- 1147

parameters to bias the candidates from different 1148

models (i = 5 indicating Raw Data). 1149

For the tuning of βi, we introduce a multi- 1150

reference set (Ott et al., 2018; Hassan et al., 2018) 1151

to align L̂target defined in Eq.12 and its approxima- 1152

tion in Eq.13. Specifically, we tune βi to minimize 1153

the absolute differences between L̂target and its ap- 1154

proximation on the candidates sentences. Note that 1155

tuning βi only involves the BLEU score, which 1156

does not need to train a NAT model. We do a man- 1157

ual search from 0.1 to 0.5, where we finally choose 1158

β = [0.14, 0.12, 0.26, 0.30, 0.46] for WMT14 1159

En-De and β = [0.09, 0.10, 0.13, 0.12, 0.20] for 1160

WMT17 Zh-En. 1161

When combining GLAT with Dynamic KD, 1162

LNAT may suffer from high variance because Z is 1163

sampled from Q(Z|T ) following the rule of GLAT. 1164

In our implementation, we utilize an approximation 1165

of LNAT as 1166

L̂NAT = EQ(T |X) [− logPθ(T |Z∗, X)] , 1167
1168

where Z∗ is the vanilla input. Then Dynamic 1169

KD chooses the proxy target according to T ∗ = 1170

arg minT L̂NAT + L̂target. 1171
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