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Abstract

Deterministic Markov Decision Processes
(DMDPs) are a mathematical framework for
decision-making where the outcomes and future
possible actions are deterministically determined
by the current action taken. DMDPs can be viewed
as a finite directed weighted graph, where in each
step, the controller chooses an outgoing edge. An
objective is a measurable function on runs (or
infinite trajectories) of the DMDP, and the value
for an objective is the maximal cumulative reward
(or weight) that the controller can guarantee.
We consider the classical mean-payoff (aka
limit-average) objective, which is a basic and
fundamental objective.
Howard’s policy iteration algorithm is a popular
method for solving DMDPs with mean-payoff ob-
jectives. Although Howard’s algorithm performs
well in practice, as experimental studies suggested,
the best known upper bound is exponential and the
current known lower bound is as follows: For the
input size I , the algorithm requires Ω̃(

√
I) itera-

tions, where Ω̃ hides the poly-logarithmic factors,
i.e., the current lower bound on iterations is sub-
linear with respect to the input size. Our main result
is an improved lower bound for this fundamental
algorithm where we show that for the input size I ,
the algorithm requires Ω̃(I) iterations.

1 INTRODUCTION

Deterministic Markov Decision Processes. Determinis-
tic Markov Decision Processes (DMDPs) [Puterman, 1994]
are a mathematical framework for sequential decision-
making where an agent interacts with a fully determinis-
tic environment. They are modeled as a graph, where in
every step the controller chooses a successor vertex from

the neighbors of the current vertex. This repeated process
generates an infinite sequence of vertices (called a run). Poli-
cies for the controller provide the successor vertex choice at
every vertex. A payoff function assigns a real value to every
run. We consider a classical and well-studied function: the
mean-payoff (or limit-average) payoff function [Puterman,
1994, Filar and Vrieze, 2012]. Every edge of the graph is
assigned an integer weight, and the payoff of a run is the
long-run average of the weights of the run.

Applications. This formalism is particularly relevant in
settings where system behaviors are fully known, such as
controlled robotic environments or algorithmic planning
tasks [Blondel and Tsitsiklis, 2000]. DMDPs also appear
in formal verification and synthesis, where deterministic
transitions allow for tractable analysis of safety, liveness,
and temporal logic specifications [Baier and Katoen, 2008].
For example, in autonomous systems, DMDPs are a basic
model for synthesizing controllers that guarantee correct
behaviors [Alur, 2015]. Besides the practical applications,
DMDPs can demonstrate fundamental computational lim-
its, e.g., NP-hardness of optimal planning [Littman, 1997].
Furthermore, this model corresponds to classical directed
weighted graphs, which have many applications such as
network routing, travel planning, etc [Cormen et al., 2022].

Motivation. One of the main algorithm in the area of plan-
ning and sequential decision-making is Howard’s policy
iteration [Howard, 1960]. Dasdan [2004] compared various
algorithms and showed that Howard’s algorithm works well
in practice as compared to other algorithms. Furthermore,
lower and upper bounds for policy iteration algorithms have
deep theoretical impact, e.g., lower bounds for policy itera-
tion lead to lower bounds for pivoting approaches in linear
programming [Friedmann et al., 2011]. Hence better theoret-
ical understanding of Howard’s algorithm is an interesting
problem. Our work aims at the theoretical understanding of
this fundamental algorithm for DMDPs with mean-payoff
objectives. We first recall the previous results from the liter-
ature.
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Previous Work on Howard’s Policy Iteration. Howard’s
policy iteration has been extensively studied for general
MDPs (not necessarily DMDPs) with discounted-sum and
mean-payoff objectives. For MDPs with mean-payoff objec-
tives, the best-known upper bound is exponential [Puterman,
1994]. Fearnley [2010], inspired by the work of Friedmann
[2009], showed that Howard’s algorithm requires exponen-
tial time for a specific family of MDPs. For discounted-sum
objectives, better upper bounds are known in special cases
of the discount factor: Post and Ye [2015] established a
strongly polynomial running time when the discount factor
is constant or represented in unary, and Hansen et al. [2013]
improved Post’s bounds and extended these results to 2-
player settings. However, the exponential lower bound from
Fearnley [2010] still holds for arbitrary discount factors.
Related problems, such as MDPs with total-reward objec-
tives (analogous to the stochastic shortest path), also exhibit
exponential lower bounds for strategy iteration [Fearnley,
2010]. While exponential lower bounds are established for
stochastic models [Fearnley, 2010], game-theoretic mod-
els [Friedmann, 2009], and linear programming pivoting
rules [Friedmann et al., 2011], identifying lower bounds
specifically for Howard’s policy iteration in simpler deter-
ministic graph models has remained a compelling open ques-
tion. Our contribution addresses this by presenting improved
lower bounds for this simplest model, complementing the
more general cases already explored in the literature.

Recent Results on Howard’s Policy Iteration. There
are several recent advancements on Howard’s Policy Iter-
ation in the literature, which highlight ongoing research
in this direction. Loff and Skomra [2024] demonstrated
polynomial-time smoothed complexity for deterministic
models (DMDPs and turn-based games with mean-payoff
and discounted-sum objectives). However, Christ and Yan-
nakakis [2023] presented a sub-exponential lower bound
for the smoothed complexity of Howard’s algorithm for
stochastic MDPs with mean-payoff objectives. Moreover,
Asadi et al. [2024] recently improved complexity results for
two-player turn-based discounted games with unary weights
through a new analysis for Howard’s policy iteration.

Previous Work on DMDPs. DMDPs have been stud-
ied extensively in the literature [Arora et al., 2012, Boone
and Gaujal, 2023, Castro, 2020, Madani, 2002, Madani
et al., 2009]. Karp [1978] presented an algorithm for solving
DMDPs with mean-payoff objectives in O(mn) time (where
m is the number of edges and n is the number of vertices),
while Young et al. [1991] proposed an O(mn+ n2 log n)-
time algorithm that often performs better in practice despite
its slightly worse time complexity. Although Howard’s pol-
icy iteration works well in practice [Dasdan, 2004], the
known theoretical upper and lower bounds for DMDPs with
mean-payoff objectives are as follows: The best-known up-
per bound is exponential [Puterman, 1994]. Moreover, a

better parametric bound of O(n3W ) on the number of itera-
tions can be obtained, since by Howard [1960], the number
of policy iteration steps is at most the number of value itera-
tion steps, which by Zwick and Paterson [1996] is bounded
by O(n3W ), where W is the maximum absolute weight.
Hansen and Zwick [2010] presented a lower bound, giv-
ing DMDPs with 2n vertices, m edges, and edge weights of
O(nn2

), on which the algorithm requires m−n+1 iterations
to find an optimal policy. For example, (a) with m = O(n),
this result shows that on input size of Õ(n3), the algorithm
requires Ω(n) iterations, or (b) with m = O(n2), this shows
that on input size of Õ(n4), the algorithm requires Ω(n2)
iterations. In particular, given the input description of an
DMDP with I bits, the results shows that the lower bound
on iterations is Ω̃(

√
I). In computer science establishing

and improving lower bounds are challenging, and whether
this lower bound can be improved is a fundamental problem
which we address in this work.

Our Contributions. The above motivates the study of
Howard’s policy iteration for DMDPs with mean-payoff
objective. In this work, we construct a family of DMDPs
with 2n vertices, O(n2) edges, and edge weights of O(n2),
on which Howard’s algorithm requires Ω(n2) iterations to
find an optimal policy. Hence, the improved lower bound is
as follows. Given the input description of an DMDP with
I bits, the required number of iterations is Ω̃(I). Table 1
summarizes the results.

Significance. As compared to the work of Hansen and
Zwick [2010], the significance of our result is twofold. First,
with respect to the input size of I , we improve the lower
bound from Ω̃(

√
I) to Ω̃(I). Second, there is an important

implication with respect to the O(n3W ) parametric bound
by Zwick and Paterson [1996]. For the family of examples
considered in Hansen and Zwick [2010], the best known
upper bound is exponential as the weights are exponential.
Thus, the examples of Hansen and Zwick [2010] belong to a
class where the upper bound is exponential and a sub-linear
lower bound is presented. In contrast, since the weights are
polynomial for our class of examples, the upper bound on
the number of iterations is polynomial (namely, quadratic
with respect to the input size) and we present an almost-
linear lower bound.

Technical Novelty. In the examples of Hansen and Zwick
[2010], Howard’s policy iteration goes through Θ(n2)
"good" cycles and due to the structure of the graph only
ever finds a slightly better cycle. Each cycle weight is deter-
mined by a "key" edge with largest weight. To achieve the
lower bound for policy iteration, the algorithm requires the
next key edge weight to differ from the previous one by a
multiplicative factor of n (or the cycle length, which can be
up to n), leading to exponential edge weights. In contrast,
our examples avoid this, inspired by the results of Fried-



Table 1: Comparison of lower bounds for Howard’s policy iteration. |V |, |E|, and W correspond to the number of vertices,
number of edges, and maximum absolute weight, respectively.

|V | |E| W Size # Iterations

Hansen and Zwick [2010] 2n m O(nn2

) O(mn2 log n) m− n+ 1
Ours 2n O(n2) O(n2) O(n2 log n) Ω(n2)

mann [2009], Fearnley [2010], using a similar concept to
their "deceleration lane". Our DMDPs only have n "good"
cycles that do not overlap edgewise. Thus, each cycle only
needs to have a weight of 1 more than the previous one. The
"deceleration lane" technique forces the algorithm to per-
form Ω(i) iterations to find the ith cycle after having found
the i− 1th cycle. This structure ensures that (a) Howard’s
algorithm finds the cycles in the right order and (b) performs
Ω(n2) iterations to find an optimal policy.

2 PRELIMINARIES

We present standard notations and definitions related to
deterministic markov decision processes.

Deterministic Markov Decision Processes. A determin-
istic markov decision process (DMDP) is a finite directed
weighted graph P = (V,E,w) consisting of

• the set of vertices V , of size n;
• the set of edges E ⊆ V × V , of size m, such that

for all v ∈ V , the set E(v) := {u | (v, u) ∈ E} is
non-empty; and

• the weight function w : E → Z that assigns a weight
w(v, u) for all edges (v, u) ∈ E.

We denote the largest absolute weight by W :=
max{|w(v, u)| | (v, u) ∈ E}. The size of P is defined
as |P | := n+m+

∑
(v,u)∈E⌈log2 |w(v, u)|⌉. The vertices

are indexed and have an ordering.

Steps and Runs. Given an initial vertex v0 ∈ V , the
process proceeds as follows. In each step, the controller
chooses the next vertex from the set E(v). A run is an
infinite sequence of vertices ω = ⟨v0, v1, . . .⟩ where for
every step t ≥ 0, the vertex vt+1 ∈ E(vt). We denote by
Ω the set of all runs, and by Σv the set of all runs ω =
⟨v0, v1, . . .⟩ where v0 = v.

Mean-payoff Objectives. An objective is a measurable
function that assigns a real number to all runs. For a run
ω = ⟨v0, v1, . . .⟩, the average for t steps is Avgt(ω) :=
1
t

∑t−1
i=0 w(vi, vi+1). The lim inf average is LimAvg(ω) :=

lim inft→∞ Avgt(ω). The objective of controller is to maxi-
mize the lim inf average of the run.

Positional Policies. Policies are recipes that specify how
to choose the next vertex. A positional policy σ : V → V

for the controller is a policy which chooses a vertex σ(v) ∈
E(v) whenever the run visits vertex v. We denote by ΣP the
set of all positional policies. In general, policies can depend
on past history and not only the current vertex. However, for
mean-payoff objectives, positional policies are as powerful
as general policies [Puterman, 1994]. Hence, in the sequel,
every policy is positional.

Runs Given Policies in DMDPs. We define Pσ as the
restricted DMDP where the controller follows the policy σ.
Note that once the controller has fixed their policy, we obtain
a graph where each vertex has exactly one outgoing edge.
Given an initial vertex v, we obtain a run Pσ

v = ⟨v0, v1, . . .⟩
such that v0 = v, and for any step t ≥ 0, vt+1 = σ(vt).
The obtained run Pσ

v is a lasso-shaped run that consists
in a finite cycle-free path P := ⟨v0, . . . , vp⟩ followed by a
simple cycle C := ⟨vp, . . . , vp+c−1⟩ repeated forever, where
vp is the head of the cycle (the vertex with the least index
in the cycle). The mean-payoff of the policy σ is defined as

valσ(v) := LimAvg(Pσ
v ) =

1

c

c−1∑
i=0

w(vp+i, vp+i+1) .

We define the potential function as

potσ(v) :=
p−1∑
i=0

(w(vi, vi+1)− valσ(v)) .

In words, the payoff valσ(v) is the mean-payoff the con-
troller obtains, in case they follow the policy σ, and the
potential potσ(v) is the relative distance from v to vp, where
the weight of each edge is subtracted by the mean-payoff.

Value and Optimal Policies. The mean-payoff value for
a vertex v is defined as val(v) := maxσ∈ΣP valσ(v). A pol-
icy σ for the controller is optimal for mean-payoff objectives
if, for all vertices v ∈ V , we have valσ(v) = val(v).

Bellman Operator. Given a policy σ, we define the ap-
praisal of an edge (v, u) as a tuple

Aσ(v, u) := (valσ(u), w(v, u)− valσ(u) + potσ(u)) .

The Bellman operator, which is an operator from ΣP to ΣP ,
is defined as

B(σ)(v) := arg max
u∈E(v)

Aσ(v, u) .



The appraisals are compared lexicographically, and ties are
resolved by first favoring u = σ(v), then vertices with the
least index. For increased legibility, we will refer to the
second term of the appraisal as

Aσ
2 (v, u) := w(v, u)− valσ(u) + potσ(u) .

Howard’s Policy Iteration. Howard’s policy iteration is
a classical algorithm for computing the optimal policies in
DMDPs with mean-payoff objectives. The algorithm starts
with an arbitrary policy σ0. In each iteration, the algorithm
locally improves the current policy: Starting with σk at iter-
ation k, the algorithm computes the payoff and the potential
of the policy σk. Using these, it updates the policy using the
Bellman operator defined above by setting σk+1 = B(σk).
The algorithm terminates if σk+1 = σk, meaning no up-
date to the policy was made. The correctness of Howard’s
algorithm is shown in Derman [1970], Puterman [1994].

3 OVERVIEW OF RESULTS

A natural question on Howard’s policy iteration is that how
many iteration it takes to find an optimal policy. In the
following, we state a long-standing conjecture on the upper
bound for Howard’s policy iteration.

Conjecture 3.1 ([Hansen, 2012, Conjecture 6.1.1]). The
number of iterations performed by Howard’s algorithm,
when applied to a DMDP, is at most the number of edges.

Hansen and Zwick [2010] constructed a family of DMDPs
with n vertices and m edges on which Howard’s algorithm
performs m−n+1 iterations. However, the size of DMDPs
is O(mn2 log n) due to exponential weights. In this work,
we present a family of DMDPs with 2n vertices and O(n2)
edges on which Howard’s algorithm performs Ω(n2) iter-
ations to find an optimal policy. The weights are bounded
by O(n2). Hence, the size of our DMDPs is O(n2 log n),
which improves the dependency on the number of edges
from linear to constant. Our main result is stated as follows.

Theorem 3.2 (Main Result). Let n be a positive integer.
There exists a DMDP with 2n vertices, 3n2+n

2 edges, and
size of O(n2 log n) on which Howard’s algorithm performs
n2+7n−6

2 iterations to find an optimal policy.

4 IMPROVED LOWER BOUND

In this section, we construct a family of DMDPs with 2n
vertices of size O(n2 log n) on which Howard’s algorithm
performs Ω(n2) iterations.

4.1 DMDP CONSTRUCTION

Given a positive integer n, we construct a DMDP
Pn = (Vn, En, wn). We denote the set of vertices by

t1 t2 t3

b1 b2 b3

13 14 15

16 1616
16

16 16

16 16

16

Figure 1: Our running example with n = 3. Unlabeled
(gray) edges have weight 0.

Vn = {b1, . . . , bn, t1, . . . , tn}. The ordering of vertices is
(t1, b1, . . . , bn, t2, . . . , tn). We denote the set of edges by

En := {(bi, bj) | 1 ≤ j < i ≤ n}
∪ {(bi, tj) | 1 ≤ i, j ≤ n}
∪ {(ti, bj) | 1 ≤ j ≤ i ≤ n}
∪ {(ti, tj) | 0 ≤ j ≤ i ≤ n} .

We now define the weight function as

wn(v, u) :=



(n+ 1)2 v = bi ∧ u = bj

for all 1 ≤ j < i ≤ n

(n+ 1)2 v = ti ∧ u = bj

for all 1 ≤ j ≤ i ≤ n

0 v = bi ∧ u = tj

for all 1 ≤ i, j ≤ n

0 v = ti ∧ u = tj

for all 1 ≤ j < i ≤ n

n(n+ 1) + i v = ti ∧ u = ti

for all 1 ≤ i ≤ n

Figure 1 illustrates an example of the DMDP with n = 3.

4.2 POLICIES

We describe three families of policies that appear in
Howard’s algorithm. We first define the family of policies
πi for 1 ≤ i ≤ n as

πi(v) :=


bk v = tk for all 1 ≤ k ≤ i− 2

tk v = tk for all k ∈ {i− 1, i}
ti otherwise



We now define another family of policies σi,j for 1 ≤ i ≤ n
and 1 ≤ j ≤ i+ 1 as

σi,j(v) :=



ti v = ti

bk v = tk for all (1 ≤ k ≤ j ∧ k ̸= i)

or (k ≤ i− 2 ∧ j = 1)

ti v = b1

bk−1 v = bk for all 2 ≤ k ≤ j

bj otherwise

Finally, we define the last family of policies τi for 1 ≤ i ≤ n
as

τi(v) :=



tk v = tk for all k ∈ {i, i+ 1}
bk v = tk for all 1 ≤ k < i

ti v = b1

bk−1 v = bk for all 2 ≤ k ≤ i+ 2

bi+2 otherwise

For more intuition, the policies π2, σ2,1, σ2,3, and τ2 over
our running example are illustrated in Figure 2. An illustra-
tion of all policies for the running example can be found in
Appendix A. Moreover, the outline of policies that appear
in the general DMDP Pn is illustrated in Appendix B.

4.3 HOWARD’S ALGORITHM ON Pn

Given the DMDP Pn, we show that the sequence of policies
that appear in Howard’s algorithm is as follows.

π1 → σ1,1 → σ1,2 → τ1

→ π2 → σ2,1 → σ2,2 → σ2,3 → τ2

... (1)
→ πn−1 → σn−1,1 → . . . → σn−1,n → τn−1

→ πn → σn,1 → . . . → σn,n−1

Intuition. The n highest mean-payoff cycles in the graph
are the self-loops of t1 through tn. At a high level, the algo-
rithm "finds" those cycles one after another, taking roughly
i iterations to find the cycle at ti after finding the cycle at
ti−1. This happens because whenever the next-best cycle is
found, all "progress" the algorithm made so far in the rest
of the graph is lost. In policies πi, the lasso-shaped runs
of all vertices (except ti−1) end up in the cycle at ti. Now,
in the (σi,j)j chain of policies, the vertices keep adding an
edge of weight (n+ 1)2 to the path of their run by includ-
ing more of the b-vertices (the "deceleration lane"). Since
the weight of the deceleration lane edges is greater than
the weight of the self-loops, the t-vertices only "realize"
they can do better than their current run by using their self-
loop when they can no longer improve their path using the
deceleration lane. However, by the tie-breaking rule, the

vertices only ever add one additional vertex of the deceler-
ation lane to their path, so it takes all i+ 1 iterations from
the (σi,j)j chain until the best improvement by appraisal
for vertex ti+1 is to use its self-loop, which happens in the
iteration to τi (vertices ti+2, ..., tn can still do more decel-
eration lane improvements so don’t use their self-loop yet).
In the next iteration, all vertices in the deceleration lane as
well as ti+2, ..., tn "realize" that in their current run they
do not end up in the highest mean-payoff cycle, since a
new, better cycle formed at ti+1. Thus, instead of doing the
next improvement in the deceleration lane, they all choose
their edge directly to the now-best cycle at ti+1. Thus, all
"progress" in the deceleration lane is lost. This continues
until the cycle at tn is formed, when the algorithm does a
final run through the deceleration lane before halting in the
optimal policy.

Formal Argument. In the following, we formally show
that given a policy in the sequence, the Bellman operator
returns the next policy in the sequence. The initial policy is
π1, because t1 is the vertex with lowest index in the ordering
and all vertices have outgoing edges to t1.

Lemma 4.1. The following assertions hold:

1. for 1 ≤ i ≤ n, it holds that B(πi) = σi,1;

2. for 1 ≤ i ≤ n and 1 ≤ j ≤

{
i 1 ≤ i ≤ n− 1

n− 2 i = n
,

it holds that B(σi,j) = σi,j+1;
3. for 1 ≤ i ≤ n− 1, it holds that B(σi,i+1) = τi;
4. for 1 ≤ i ≤ n− 1, it holds that B(τi) = πi+1; and
5. B(σn,n−1) = σn,n−1.

Proof. We formally prove the first two items of the result.
We abbreviate the proofs of the rest, where details can be
filled in similarly. For notational simplicity, we denote by

wi = wn(ti, ti) = n(n+ 1) + i

the weight of the self-looping edge of vertex ti and by

w̄ = (n+ 1)2

the weight of all other non-zero edges. The following in-
equalities will be essential throughout the proof:

• it holds that

w̄ > wn > · · · > wi > · · · > w1 > 0 ; (2)

• for all 0 ≤ k ≤ n and 1 ≤ i ≤ n, it holds that

kw̄ < (k + 1)wi ; (3)

• for all k ≤ n+ 1 and 1 ≤ i ≤ n, it holds that

(k − 1)w̄ − kwi < kw̄ − (k + 1)wi . (4)
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(a) Policy π2

t1 t2 t3

b1 b2 b3

13 14 15

16 1616
16

16 16

0

16 16

16

(b) Policy σ2,1
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(c) Policy σ2,3
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(d) Policy τ2

Figure 2: Examples of policies. Thick lines correspond to policy choices. Unlabeled (gray) edges have weight 0.

Proof of Item 1. We first give a quick intuitive rationale:
In policy πi, all vertices that have an edge to directly move
to ti, the highest-value cycle of value wi, use it. ti−1 loops to
itself and the vertices tk, k ≤ i−2, that have no edge directly
to ti, use the edge to bk (which uses the edge to ti). Since
ti is the highest-value cycle, all vertices will pick their next
edge so that they end up there, and between their options
choose to maximize the weight of the path to ti, minus wi

times the path length. All the vertices that currently use the
edge directly to ti, and ti−1, can improve this quantity of the
path to ti by using one of their edges to any of the b-vertices,
thus adding an edge of weight w̄ > wi to their path. By the
tie breaking rule they pick the edge to b1. The remaining
vertices, tk, for k ≤ i− 2, in this iteration cannot increase
the average weight of their path to ti, so do not change their
used edge.

We now formalize this intuition. First, we compute the mean-
payoff for the policy πi. For all vertices v ∈ V \ {ti−1},
the cycle of the lasso-shaped play Pπi

v is of form ⟨ti⟩. Since
πi(ti−1) = ti−1, therefore the cycle of Pπi

ti−1
is of form

⟨ti−1⟩. Therefore, the mean-payoff for the policy πi is

valπi(v) =

{
wi−1 v = ti−1

wi otherwise .
(5)

We now compute the potential function potπi . Fo vertices
ti−1 and ti, the potential is 0, because the path of their lasso-
shaped play is of length 0. For 1 ≤ k ≤ i− 2, the path of

the play Pπi
tk

is of form ⟨tk, bk, ti⟩. Therefore, we have

potπi(tk) = (w̄ − wi) + (0− wi)

= w̄ − 2wi .

For 1 ≤ k ≤ n, the path of the play Pπi

bk
is of form ⟨bk, ti⟩.

Since the weight of the edge (bk, ti) is 0, the potential of the
vertex bk is potπi(bk) = −wi. For i < k, the path of the play
Pπi
tk

is of form ⟨tk, ti⟩. Since the weight of the edge (tk, ti)
is 0, the potential of the vertex tk is potπi(tk) = −wi. To
consolidate the previous computations, the potential func-
tion for the policy πi is

potπi(v) =


0 v = tk ∀k ∈ {i− 1, i}
w̄ − 2wi v = tk ∀k ≤ i− 2

−wi v = bk ∀k ≤ n

−wi v = tk ∀k > i

(6)

We are now ready to show that B(πi)(v) = σi,1(v) for all
v ∈ Vn. Recall that the appraisal for edge (v, u) under πi is:

Aπi(v, u) = (valπi(u), wn(v, u)− valπi(u) + potπi(u)) ,

compared lexicographically with tie-breaking as described
in Section 2. By Equation (5) we know that the first element
of the appraisal is maximized by all u ∈ E(v)\{ti−1}.
Thus, the second element of the appraisal, Aπi

2 (v, u), is
deciding. We now precede by, unfortunately quite tediously
but inevitability, calculating Aπi

2 (v, u) for all v ∈ V and
u ∈ E(v)\{ti−1}.



For all j ≤ i− 2, v = tj , we get that

Aπi
2 (v, u) =


w̄ − 3wi u = tk, k ≤ j − 1

w̄ + wj − 3wi u = tj

w̄ − 2wi u = bk, k ≤ j

.

This is maximized by u = bk for any k ≤ j. By the tie-
breaking rule tj favors πi(tj) = bj if possible, so that
B(πi)(tj) = bj = σi,1(tj).

For v = ti−1, we get that

Aπi
2 (v, u) =

{
w̄ − 3wi u = tk, k ≤ i− 2

w̄ − 2wi u = bk, k ≤ i− 1
.

This is maximized by u = bk for any k ≤ i − 1. Since
πi(ti−1) = ti−1, the tie-breaking rule will favor based on
the vertex ordering, so that B(πi)(ti−1) = b1 = σi,1(ti−1).

For v = ti, we get that

Aπi
2 (v, u) =


w̄ − 3wi u = tk, k ≤ i− 2

0 u = ti

w̄ − 2wi u = bk, k ≤ i

.

This is maximized by u = ti. Thus, it holds that
B(πi)(ti) = ti = σi,1(ti).

For all j > i, v = tj , we get that

Aπi
2 (v, u) =



w̄ − 3wi u = tk, k ≤ i− 2

−wi u = ti

−2wi u = tk, i < k < j

wj − 2wi u = tj

w̄ − 2wi u = bk, k ≤ j

.

This is maximized by u = bk for any k ≤ j . Since
πi(tj) = ti, the tie-breaking rule will favor based on the
vertex ordering, so that B(πi)(tj) = b1 = σi,1(tj).

For all 1 ≤ j ≤ n, v = bj , we get that

Aπi
2 (v, u) =


w̄ − 3wi u = tk, k ≤ i− 2

−wi u = ti

−2wi u = tk, k > i

w̄ − 2wi u = bk, k < j

.

For j ≥ 2, this is maximized by u = bk for any k < j.
Since πi(tj) = ti, the tie-breaking rule will favor based on
the vertex ordering, so that B(πi)(bj) = b1 = σi,1(bj). For
j = 1, it is maximized for u = ti, so B(πi)(b1) = ti =
σi,1(b1). Thus, we conclude that B(πi) = σi,1.

Proof of Item 2. We first give a quick intuitive rationale:
In σi,j , all paths end up in the same cycle, the self-loop
at ti with value wi. Thus, in the iteration to σi,j+1, the

other vertices choose their next edge solely to maximize the
weight of their path to ti, minus wi times the path length.
The optimal path for that is using as much of the deceleration
lane ⟨bn, ..., b1⟩ as possible, since its edges have weight
w̄ > wi. b1, ..., bj+1 already move to their predecessor, so
for all vertices that can (except ti), it is optimal to pick the
edge to to bj+1 (which they do, by the tie-breaking rule) to
maximize the edges in the deceleration lane in their path.
Thus, in σi,j+1 the vertices that can, all pick the edge to bj+1

(except ti), while the other vertices cannot further improve
their path and hence pick the same edge as in σi,j .

Formally, we consider policy σi,j for any 1 ≤ i ≤ n and

1 ≤ j ≤

{
i 1 ≤ i ≤ n− 1

n− 2 i = n
. For all vertices v ∈ V ,

the cycle of the lasso-shaped play Pσi,j is ⟨ti⟩. Therefore,
for all vertices v ∈ V , it holds that valσi,j (v) = wi. Hence,
B(σi,j)(v) solely depends on Aσi,j

2 (v, u). We precede by
calculating Aσi,j

2 (v, u). for all v ∈ V and u ∈ E(v). We
will first assume j > 1, since σi,j is slightly different at
j = 1. We will treat this special case at the end.

For v = ti, we get that

Aσi,j

2 (v, u)

=



kw̄ − (k + 2)wi u = tk, k ≤ j

jw̄ − (j + 2)wi u = tk, j < k < i

0 u = ti

kw̄ − (k + 1)wi u = bk, k ≤ j

(j + 1)w̄ − (j + 2)wi u = bk, j < k ≤ i

.

By Equations (2) to (4), we know that this is maximized by
u = ti so that B(σi,j)(ti) = ti = σi,j+1(ti).

For j < h < i, v = th, we get that

Aσi,j

2 (v, u)

=



kw̄ − (k + 2)wi u = tk, k ≤ j

jw̄ − (j + 2)wi u = tk, j < k < h

jw̄ + wh − (j + 2)wi u = th

kw̄ − (k + 1)wi u = bk, k ≤ j

(j + 1)w̄ − (j + 2)wi u = bk, j < k ≤ h

.

By Equations (2) to (4), this is maximized by u = bk for
all j < k ≤ h. Since σi,j(v) = bj , tie-breaking is done by
vertex order so that B(σi,j)(th) = bj+1 = σi,j+1(th).

For h ≤ j, h < i, v = th, we get that

Aσi,j

2 (v, u)

=


kw̄ − (k + 2)wi u = tk, k < h

hw̄ + wh − (h+ 2)wi u = th

kw̄ − (k + 1)wi u = bk, k ≤ h

.



By Equations (2) to (4), this is maximized by u = bh so that
B(σi,j)(th) = bh = σth .

For i < h, v = th, we get that

Aσi,j

2 (v, u)

=



kw̄ − (k + 2)wi u = tk, k ≤ j

jw̄ − (j + 2)wi u = tk, j < k < h, k ̸= i

−wi u = ti

jw̄ + wh − (j + 2)wi u = th

kw̄ − (k + 1)wi u = bk, k ≤ j

(j + 1)w̄ − (j + 2)wi u = bk, j < k ≤ h

.

By Equations (2) to (4), this is maximized by u = bk for
all j < k ≤ h. Since σi,j(v) = bj , tie-breaking is done by
vertex order so that B(σi,j)(th) = bj+1 = σi,j+1(th).

For 1 ≤ h ≤ n, v = bh, we get that

Aσi,j

2 (v, u)

=



kw̄ − (k + 2)wi u = tk, k ≤ j

jw̄ − (j + 2)wi u = tk, j < k, k ̸= i

−wi u = ti

kw̄ − (k + 1)wi u = bk, k ≤ j, k < h

(j + 1)w̄ − (j + 2)wi u = bk, j < k < h

.

By Equations (2) to (4), for j+1 ≥ h, this is maximized by
u = bh−1, so that B(σi,j)(bh) = bh−1 = σi,j+1(bh). For
j+1 < h, this is maximized by bk for all j < k < h. Since
σi,j(bh) = bj , tie-breaking is done by vertex order so that
B(σi,j)(bh) = bj+1 = σi,j+1(bh).

Consider j = 1. Aσi,j

2 (v, u) generally is unchanged from
the case j > 1, except for u = tk for 1 < k ≤ i − 2.
In these cases, due to the one extra edge in the path of run
P

σi,j
v , Aσi,j

2 (v, u) is greater by w̄−wi. This does not change
which u’s maximize Aσi,j

2 (v, u), so the results for B(σi,j)
outlined above for j > 1 hold for j = 1 as well.

We conclude that B(σi,j) = σi,j+1.

Proof of Item 3. This case is highly similar to Item 2.
In the iteration on σi,i+1, all vertices except ti+1 follow
the same pattern as for the iteration from σi,j to σi,j+1

for j ≤ i. Vertex ti+1, though, can no longer use an edge
to a higher bk to add another edge of weight w̄ > wi to
its path to ti. However, (differently to the vertices tk for
k < i), the edge to itself has a value higher than the value
of its current run’s cycle ⟨ti⟩, i.e. wi+1 > wi, so it will use
this edge to add it to its path. Thus, in the iteration from
σi,i+1 to τi, all vertices will behave as in Item 2, except for
ti+1, which picks its self-loop. Formally, for all v, u ∈ V ,
Aσi,j (v, u) for j = i + 1 follows the same pattern as for
j ≤ i. We can check that for all vertices v ̸= ti+1, also
the pattern of which u’s maximize it stays unchanged, so

that B(σi,i+1)(v) = σi,i+2(v) = τi(v)
1 for v ̸= ti+1. For

v = ti+1, by Equations (2) to (4) Aσi,i+1

2 (ti+1, u) (and
thus Aσi,i+1(ti+1, u)) is maximized by u = ti+1 so that
B(σi,i+1)(ti+1) = ti+1 = τi(ti+1).

Proof of Item 4. Intuitively, in τi, the best cycle is ⟨ti+1⟩
but currently no vertex other than ti+1 ends up there. Thus,
ti+1 has the uniquely highest value, so all vertices with
edges to ti+1 will pick them. For vertices that do not have
an edge to ti+1, those are tk for k ≤ i + 1, this iteration
step still is identical to the iteration from σi,i to σi,i+1 in
which they did not change the edge they use. Formally, for
all vertices v ∈ V \ {ti+1}, the cycle of the lasso-shaped
play P τi

v is of form ⟨ti⟩. The cycle of P τi
ti+1

is of form ⟨ti+1⟩.
Hence, the mean-payoff for the policy τi is

valτi(v) =

{
wi+1 v = ti+1

wi otherwise .

Since valτi(v) is uniquely maximized by v = ti+1,
B(τi)(v) = ti+1 for all v where ti+1 ∈ E(v), i.e., for
v = bk, 1 ≤ k ≤ n and v = tk, i + 1 ≤ k ≤ n. For
the remaining vertices, v = tk, 1 ≤ k ≤ i, their appraisal
function Aτi(v, u) is still the same as Aσi,i(v, u). Thus,
B(τi)(tk) = B(σi,i)(tk) = σi,i+1(tk) = πi+1(tk).

Proof of Item 5. Again, this case is very similar to Item 2.
In the general case for the iteration from σi,j to σi,j+1, only
vertices tk with k ≥ j + 1, k ̸= i and bk with k ≥ j + 2
change the edge they use. Since we reached the end of the
deceleration lane and the highest-value self-loop is being
used, there are no more vertices that match these criteria,
so no vertex changes the edge it uses. Formally, Aσi,j (v, u)
for i = j + 1 = n follows the same pattern as for all values
of i, j considered in Item 2. For all vertices v ∈ V , the
pattern of which u’s maximize it also stays unchanged, so
that B(σn,n−1) = σn,n = σn,n−1.

Proof of Theorem 3.2. The constructed DMDP has 2n ver-
tices and 3n2+n

2 edges. The absolute value of weights is
O(n3). Therefore, the size of the DMDP is O(n2 log n).

Lemma 4.1 shows that if Howard’s algorithm starts with the
policy π1, it iterates over all policies in the sequence shown
in Equation (1). Therefore, the length of the sequence is

2n+

n∑
i=1

(i+ 1)− 3 =
n2 + 7n− 6

2
,

where the equality follows from the sum of arithmetic se-
ries and algebraic rearrangement of terms, which yields the
result.

1Note that policy σi,i+2 does not appear in the algorithm, but
we use it here to illustrate this point.



4.4 EXPERIMENTAL EVALUATION

To validate our lower bound example, we implemented both
Howard’s policy iteration and the example in Python. The
experimental evaluation confirms the sequence of policies
shown by the theoretical analysis. The full implementation
is publicly available at https://doi.org/10.5281/
zenodo.14823415.

5 EXTENSIONS

We discuss several extensions of Theorem 3.2.

Policy Initialization. The number of iterations that
Howard’s Policy Iteration algorithm performs depends on
the choice of the initial policy σ0. Two natural choices are
for each vertex to use (a) the edge to it’s lowest-index neigh-
bor or (b) the highest-weight outgoing edge (breaking ties
by vertex indices). Option (b) is the most common in lit-
erature and was used in Howard [1960]. While our lower
bound proof above uses option (a) to get the starting policy,
it is noteworthy that our lower bound also holds for (b). In
particular, we let

σ0(v) := arg max
u∈E(v)

w(v, u) =

{
t1 v = b1

b1 otherwise
.

One iteration of Howard’s algorithm on σ0 leads to σ1,2,
from which on the algorithm proceeds as described above,
iterating over the policies in the sequence shown in Equa-
tion (1) starting at σ1,2. Compared to using π1 as an initial
policy, Howard’s algorithm with initial policy σ0 only per-
forms one iteration less. Thus, the number of iterations for
this policy initialization is still Ω(n2).

Discounted-sum Objectives. In discounted-sum objec-
tives, every edge is assigned an integer weight and the payoff
is the discounted sum of these weights. Although Theo-
rem 3.2 is stated for mean-payoff objectives, it extends to
discounted-sum objectives with a discount factor sufficiently
close to 1 as a function of n, because as the discount factor
approaches 1, discounting diminishes and the sum converges
to the mean-payoff value. Furthermore, by Blackwell op-
timality [Blackwell, 1962], an optimal policy optimal for
the mean-payoff objectives remains optimal for all discount
factors sufficiently near 1.

It is an open question whether our techniques can be ex-
tended to obtain a similar lower bound for a discounted-sum
objective with a constant discount factor. In this setting, a
lower bound of Ω(n2) on the number of iterations would
be tight up to a factor of log n to the upper bound due to
Hansen et al. [2013], which applies not only to DMDPs, but
also stochastic MDPs and in the 2-player setting.

6 CONCLUSION AND FUTURE WORK

In this work, we studied Howard’s policy iteration algo-
rithm for DMDPs with mean-payoff objectives and con-
structed a family of examples with 2n vertices and O(n2)
edges where the algorithm requires Ω(n2) iterations and
improved the lower bound on the number of iterations to
Ω̃(I) with respect to the input size I . There are several in-
teresting directions for future work. In particular, Hansen’s
conjecture [Hansen, 2012] on the number of iterations re-
mains a major open problem. Furthermore, the practical
performance of Howard’s policy iteration, despite its high
theoretical worst-case complexity, raises relevant and inter-
esting questions. While our focus is to establish an improved
theoretical lower bound for this classical algorithm, these
practical concerns highlight important directions for future
research.
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A SEQUENCE OF POLICIES

In this section, we illustrate the sequence of policies appearing in Howard’s policy iteration on the DMDP P3 and for the
general Pn.

A.1 THE POLICIES FOR OUR RUNNING EXAMPLE

t1 t2 t3

b1 b2 b3

13 14 15

0

0

16 1616
16

16 16

0 0
0

16 16

16

(a) Policy π1

t1 t2 t3

b1 b2 b3

13 14 15

16 1616
16

16 16

0

16 16

16

(b) Policy σ1,1

t1 t2 t3

b1 b2 b3

13 14 15

16 1616
16

16 16

0

16 16

16

(c) Policy σ1,2

t1 t2 t3

b1 b2 b3

13 14 15

16 1616
16

16 16

0

16 16

16

(d) Policy τ1

Figure 3: Part I: the sequence of policies appearing in Howard’s policy iteration over our running example. Thick lines
correspond to policy choices. Unlabeled (gray) edges have weight 0.
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t1 t2 t3
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(e) Policy π2

t1 t2 t3

b1 b2 b3

13 14 15

16 1616
16

16 16

0

16 16

16

(f) Policy σ2,1
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(g) Policy σ2,2
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(h) Policy σ2,3
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(i) Policy τ2
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(j) Policy π3
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(k) Policy σ3,1

t1 t2 t3

b1 b2 b3
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16

16 16

0

16 16
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(l) Policy σ3,2

Figure 3: Part II: the sequence of policies appearing in Howard’s policy iteration over our running example. Thick lines
correspond to policy choices. Unlabeled (gray) edges have weight 0.



B THE POLICIES IN THE GENERAL CASE

We illustrate the sequence of policies that appear from policy πi to policy πi+1. To keep the display clear, we omit edge
weights and edges not in the policy from the figures and show only the edges in the current policy.

t1 t2 . . . ti−2 ti−1 ti ti+1 ti+2 . . . tn

b1 b2 . . . bi−2 bi−1 bi bi+1 bi+2 . . . bn

(a) Policy πi

t1 t2 . . . ti−2 ti−1 ti ti+1 ti+2 . . . tn

b1 b2 . . . bi−2 bi−1 bi bi+1 bi+2 . . . bn

(b) Policy σi,1.

Figure 4: Part I: policies appearing in Howard’s policy iteration on Pn. Only edges in the policy are shown; edge weights are
omitted.
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Figure 4: Part II: Comparison of policies σi,j and σi,j+1, with j > 1, appearing in Howard’s policy iteration on Pn. Only
edges in the policy are shown; edge weights are omitted. The edges in σi,j+1 that differ from σi,j are bold.



t1 t2 . . . ti−1 ti ti+1 ti+2 ti+3 . . . tn

b1 b2 . . . bi−1 bi bi+1 bi+2 bi+3 . . . bn. . .

(e) Policy σi,i+1

t1 t2 . . . ti−1 ti ti+1 ti+2 ti+3 . . . tn

b1 b2 . . . bi−1 bi bi+1 bi+2 bi+3 . . . bn. . .

(f) Policy τi

t1 t2 . . . ti−1 ti ti+1 ti+2 ti+3 . . . tn

b1 b2 . . . bi−1 bi bi+1 bi+2 bi+3 . . . bn

(g) Policy πi+1

Figure 4: Part III: policies appearing in Howard’s policy iteration on Pn. Only edges in the policy are shown; edge weights
are omitted.
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