
Efficient Combinatorial Optimization via Heat
Diffusion

Hengyuan Ma
Institute of Science and Technology for Brain-inspired Intelligence

Fudan University
Shanghai, China 200433

hangyuanma21@m.fudan.edu.cn

Wenlian Lu
Institute of Science and Technology for Brain-inspired Intelligence

Fudan University
Shanghai, China 200433
wenlian@fudan.edu.cn

Jianfeng Feng
Institute of Science and Technology for Brain-inspired Intelligence

Fudan University
Shanghai, China 200433
jianfeng64@gmail.com

Abstract

Combinatorial optimization problems are widespread but inherently challenging
due to their discrete nature. The primary limitation of existing methods is that they
can only access a small fraction of the solution space at each iteration, resulting in
limited efficiency for searching the global optimal. To overcome this challenge,
diverging from conventional efforts of expanding the solver’s search scope, we
focus on enabling information to actively propagate to the solver through heat
diffusion. By transforming the target function while preserving its optima, heat
diffusion facilitates information flow from distant regions to the solver, providing
more efficient navigation. Utilizing heat diffusion, we propose a framework for
solving general combinatorial optimization problems. The proposed methodology
demonstrates superior performance across a range of the most challenging and
widely encountered combinatorial optimizations. Echoing recent advancements in
harnessing thermodynamics for generative artificial intelligence, our study further
reveals its significant potential in advancing combinatorial optimization. The
codebase of our study is available in https://github.com/AwakerMhy/HeO.

1 Introduction

Combinatorial optimization problems are prevalent in various applications, encompassing circuit
design [1], machine learning [2], computer vision [3], molecular dynamics simulation [4], traffic flow
optimization [5], and financial risk analysis [6]. This widespread application creates a significant
demand for accelerated solutions to these problems. Alongside classical algorithms, which encompass
both exact solvers and metaheuristics [7], recent years have seen remarkable advancements in
addressing combinatorial optimization. These include quantum adiabatic approaches [8, 9, 10],
simulated bifurcation [11, 12, 13], coherent Ising machine [14, 15], high-order Ising machine [16],

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/AwakerMhy/HeO

and deep learning techniques [17, 18]. However, due to the exponential growth of the solution
number, finding the optima within a limited computational budget remains a daunting challenge.

Our primary focus is on iterative approximation solvers, which constitute a significant class of
combinatorial optimization methods. An iterative approximation solvers typically begin with an
initial solution and iteratively improve it by finding better solutions within the neighborhood of
the current solution, known as the search scope or more vividly, receptive field. However, due to
combinatorial explosion, as the scope of the receptive field increases, the number of solutions to be
assessed grows exponentially, making a thorough evaluation of all these solutions expensive. As
a result, current approaches are limited to a narrow receptive field, rendering them blind to distant
regions in the solution space and heightening the risk of getting trapped in local minimas or areas with
bumpy landscapes. Although methods like large neighborhood search [19], variable neighborhood
search [20] and path auxiliary sampling [21] are designed to broaden the search scope, they can only
gather a modest increment of information from the expanded search scope. Consequently, the current
solvers’ receptive field remains significantly constrained, impeding their efficiency.

high

low

tem
perature

key

time

original problem problem under heat diffusion

 cooperative optimization

{
Where can I
find the key？

I feel a heat flow
 over here.

I know where
 to go next!

Figure 1: The heat diffusion optimization (HeO) framework. The efficiency of searching a key in
a dark room is significantly improved by employing navigation that utilizes heat emission from the
key. In our framework, heat diffusion transforms the target function of a combinatorial optimization
problem into different versions while preserving the location of the optima. Therefore, the gradient
information of these transformed functions cooperatively help to optimize the original target function.

In this study, we approach the prevalent limitation stated above from a unique perspective. Instead
of expanding the solver’s receptive field to acquire more information from the solution space, we
concentrate on propagating information from distant areas of the solution space to the solver via
heat diffusion [22]. To illustrate, imagine a solver searching for the optima in the solution space
akin to a person searching for a key in a dark room, as depicted in Fig. 1. Without light, the person
is compelled to rely solely on touching his surrounding space. The tactile provides only localized
information, leading to inefficient navigation. This mirrors the current situation in combinatorial
optimization, wherein the receptive field is predominantly confined to local information. However,
if the key were to emit heat, its radiating warmth would be perceptible from a distance, acting as a
directional beacon. This would significantly enhance navigational efficiency for finding the key.

Motivated by the above metaphor, we propose a simple but efficient framework utilizing heat diffusion
to solve various combinatorial optimization problems. Heat diffusion transforms the target function
into different versions, within which the information from distant regions actively flow toward the
solver. Crucially, the backward uniqueness of the heat equation [23] guarantees that the original
problem’s optima are unchanged under these transformations. Therefore, information of target
functions under heat diffusion transformations of different degrees can be cooperatively employed
for optimize the original problem (Fig. 1). Empirically, our framework demonstrates superior
performance compared to advanced algorithms across a diverse range of combinatorial optimization
instances, spanning quadratic to polynomial, binary to ternary, unconstrained to constrained, and
discrete to mixed-variable scenarios. Mirroring the recent breakthroughs in generative artificial
intelligence through diffusion processes [24], our research further reveals the potential of heat
diffusion, a related thermodynamic phenomenon, in enhancing combinatorial optimization.

2

2 Failure of gradient-based combinatorial optimization

We will first formulate the general combinatorial optimization problem and then reframe it in a
gradient descent-based manner. This reformulation allows us to utilize heat diffusion later. Various
combinatorial optimization problems can be naturally formalized as a pseudo-Boolean optimization
(PBO) problem [25], in which we aim to find the minima of a real-value target function f ∈ Rn 7→ R
subjecting to a binary constraints

min
s∈{−1,1}n

f(s), (1)

where s is binary configuration (bits), and f(·) is the target function. Through the transformation
(s+1)/2, our definition aligns with that in [26], where elements of s take 0 or 1. Given the advanced
development of gradient-based algorithms, we are interested in converting the discrete optimization
problem into a differentiable one, thereby enabling gradient descent. To achieve this purpose, we
encode the bits si, i = 1, . . . , n as independent Bernoulli variables p(si = ±1|θ) = 0.5± (θi − 0.5)
with θi ∈ [0, 1]. In this way, we convert the original combinatorial optimization problem into

min
θ∈I

h(θ), (2)

where I := [0, 1]n, and h(θ) = Ep(s|θ)[f(s)]. The minima θ∗ of Eq. (2) is θ∗ = 0.5(sgn(s∗) + 1),
given that s∗ is a minima of the original problem Eq. (1). Here, sgn(·) is the element-wise sign
function. Now Eq. (2) can be solved through gradient descent starting from a given initial θ0

θt+1 = θt − γ ▽θ h(θt), t = 1, . . . , T, (3)

where γ is the learning rate and T is the iteration number. Unfortunately, this yields a probability
distribution p(s|θ) over the configuration space {−1, 1}n, instead of a deterministic binary config-
uration s as desired. Although we can manually binarize θ through B(θ) := sgn(θ − 0.5) to get
the binary configuration which maximizes probability p(s|θ), the outcome f(B(θ)) may be much
higher than h(θ), resulting in significant performance degradation [27]. This suggests that a good
gradient-based optimizer should efficiently diminish the uncertainty in the output distribution p(s|θ),
which can be measured by its total variance

V (θ) =

n∑
i=1

θi(1− θi). (4)

2.1 Monte Carlo gradient estimation

Conventionally, we can solve the problem Eq. (2) by approximating the gradient of h(θ) via Monte
Carlo gradient estimation (MCGE) [28] (Alg. 2, Appendix), in which we estimate the gradient in
Eq. (3) as

▽θh(θ) = Ep(s|θ)[f(s)▽θ log p(s|θ)] ≈ 1

M

M∑
m=1

f(s(m))▽θ log p(s(m)|θ), (5)

where s(m) ∼i.i.d. p(s|θ), m = 1, . . . ,M . However, it turns out that MCGE performs poorly even
equipped with momentum, compared to existing solvers such as simulated annealing and Hopfield
neural network, as shown in Fig. 2. We interpret this result as follows. Although MCGE turns
the combinatorial optimization problem into a differentiable one, it does not reduce any inherent
complexity of the original problem, which may contains a convoluted landscape. As gradient only
provides local information, MCGE is susceptible to be trapped in local minimas.

3 Heat diffusion optimization

The inferior performance of the MCGE is attributed to the narrow receptive field of the gradient
descent. To overcome this drawback, we manage to provide more efficient navigation to the solver
by employing heat diffusion [29], which propagates information from distant region to the solver.
Intuitively, consider the parameter space as a thermodynamic system, where each parameter θ is
referred to as a location and is associated with an initial temperature value −h(θ), as shown in Fig. 1.

3

Then the optimization procedure can be described as the process that the solver is walking around
the parameter space to find the location θ∗ with the highest temperature (or equivalently, the global
minima of h(θ)). As time progresses, heat flows obeying the Newton’s law of cooling, leading to an
evolution of the temperature distribution across time. The heat at θ∗ flows towards surrounding areas,
ultimately reaching the solver’s location. This provides valuable information for the solver, as it can
trace the direction of heat flow to locate the θ∗.

3.1 Heat diffusion on the parameter space

Now we introduce heat diffusion for combinatorial optimization. We extent the parameter space
of θ from [0, 1]n to R̄n with R̄ = R ∪ {−∞,+∞}. To keep the probabilistic distribution p(s|θ)
meaningful for θ /∈ [0, 1]n, we now redefine p(si = ±1|θ) = clamp(0.5± (θi − 0.5), 0, 1), where
the clamp function is calculated as clamp(x, 0, 1) = max(0,min(x, 1)). Denote the temperature at
location θ and time τ as u(τ,θ), which is the solution to the following unbounded heat equation [29]{

∂τu(τ,θ) = ∆θu(τ,θ), τ > 0, θ ∈ Rn

u(τ,θ) = h(θ), τ = 0, θ ∈ Rn , (6)

where ∆ is the Laplacian operator: ∆g(x) =
∑n

i=1 ∂xi
g(x). For θ ∈ R̄n/Rn, we define

u(τ,θ) = limθn→θ u(τ,θn), where {θn} is a sequence in Rn converged to θ. Heat equation
in the combinatorial optimization exhibits two beneficial characteristics. Firstly, the propagation
speed of heat is infinite [22], implying that the information can reach the solver instantaneously.
Secondly, the location of the global minima does not change across time τ , as demonstrated in the
following theorem.
Theorem 1. For any τ > 0, the function u(τ,θ) and h(θ) has the same global minima in R̄n

argminθ∈R̄nu(τ,θ) = argminθ∈R̄nh(θ) (7)

Consequentially, we can generalize the gradient descent approach Eq. (3) by substituting the function
h(θ) with u(τt,θ) for different τt > 0 at different iteration step t in Eq. (3), as follows

θt+1 = θt − γ ▽θ u(τt,θt), (8)

where the subscript ’t’ in τt means that τt can vary across different steps. In this way, the solver
can receive the gradient information about distant region of the landscape that is propagated by
the heat diffusion, resulting in a more efficient navigation. However, Eq. (8) will converge to

θ̌i =

{
+∞, s∗i = +1

−∞, s∗i = −1 , since θt are unbounded. To make the procedure Eq. (8) practicable, we

project the θt back to I after gradient descent at each iteration

θt+1 = ProjI
(
θt − γ ▽θ u(τt,θt)

)
, (9)

so that θt ∈ I always holds, where we define the projection as ProjI(x)i = min(1,max(0, xi))
for i = 1, . . . , n and for x ∈ Rn. Eq. (9) is a reasonable update rule for finding the minimum θ∗

within I for the following two reasons: (1) The projection of the θ̌ is the minimum of h(θ) in I,
i.e., ProjI

(
θ̌
)
= θ∗; (2) Due to the property of the projection, if the solver moves towards θ̌, it also

gets closer to θ∗. More importantly, since the coordinates of θ̌ are all infinite, the convergent point
of Eq. (9) must be one of the vertices of I, i.e., {0, 1}n. This suggests that Eq. (9) tends to give an
output θ that diminishes the uncertainty V (θ) (Eq. (4)).

3.2 Solving the heat equation

To develop an algorithm for solving the combinatorial optimization problem from Eq. (9), we must
solve the heat equation Eq. (6), which seems a significant challenge when the dimension n is high.
Fortunately, the solution has a closed form if the target function f(s) can be written as a multi-linear
polynomial of s

f(s) = a0 +
∑
i1

a1,i1si1 +
∑
i1<i2

a2,i1i2si1s12 + · · ·+
∑

i1<···<iK

aK,i1...iKsi1 · · · siK , (10)

a condition met by a wide range of combinatorial optimization problems [16].

4

Theorem 2. Supposed that f(s) is a multilinear polynomial of s, then the solution to Eq. (6) is

u(τ,θ) = Ep(x)[f(erf(
θ − x√

τ
))], x ∈ Unif[0, 1]n, (11)

where erf(x) = 2√
π

∫ x

0
e−t2dt is the error function.

For more general cases other then Eq. (10) (such as Eq. (13)), we still use the approximation
(Eq. (11)).

3.3 Proposed algorithm

Based on Eq. (9) and Thm. 2, we proposed heat diffusion optimization (HeO), a gradient-based
algorithm for combinatorial optimization, as illustrated in Alg. 1, where we estimate Eq. (11) with
one sample xt ∼ Unif[0, 1]n, and we denote

√
τ t = σt for short. Our HeO can be equipped

with momentum, which is shown in Alg. 3 in Appendix. In contrast to those methods designed for
solving special class of PBO (Eq. (1)) such as quadratic unconstrained binary optimization (QUBO),
our HeO can directly solve PBO problems with general form. Although PBO can be represented
as QUBO [30], this necessitates the introduction of auxiliary variables, which may consequently
increase the problem size and leading to additional computational overhead [31]. Compared to other
algorithms, our HeO has relatively low complexity. The most computationally intensive operation at
each step is gradient calculation, which can be explicitly expressed or efficiently computed with tools
like PyTorch’s autograd, and can be accelerated using GPUs. As shown in Fig. S1 of the in Appendix,
the time cost per iteration of our methods increases linearly with the problem dimension, with a small
constant coefficient. Therefore, our HeO is efficient even in high-dimensional cases.

Algorithm 1 Heat diffusion optimization (HeO)
Input: target function f(·), step size γ, σ schedule {σt}, iteration number T
initialize elements of θ0 as 0.5
for t = 0 to T − 1 do

sample xt ∼ Unif[0, 1]n

gt ←▽θf(erf(
θt−xt

σt
))

θt+1 ← ProjI
(
θt − γgt

)
end for
Output: binary configuration sT = sgn(θT − 0.5)

One counter-intuitive thing is that to minimize the target function h(θ), the HeO actually are
minimizing different functions u(τt,θ) at different step t. We interpret this by providing an upper
bound for the target optimization loss h(θ)− h(θ∗).

Theorem 3. Denote f̆ = maxs f(s). Given τ2 > 0 and ϵ > 0, there exists τ1 ∈ (0, τ2), such that

h(θ)− h(θ∗) ≤
[
(f̆ − f∗)

(
u(τ2,θ)− u(τ2,θ

∗) +
n

2

∫ τ2

τ1

u(τ,θ)− u(τ,θ∗)

τ
dτ

)]1/2
+ ϵ. (12)

Accordingly, minimizing u(τ,θ) for each τ cooperatively aids in minimizing the original target
function h(θ). Thus, we refer to HeO as a cooperative optimization paradigm, as illustrated in Fig. 1.

4 Experiments

We apply our HeO to a variety of NP-hard combinatorial optimization problems to demonstrate its
broad applicability. Unless explicitly stated otherwise, we employ the τt schedule as

√
τt =: σt =√

2(1− t/T) for HeO throughout this work. The sensitivity of other parameter settings including
the step size γ and iterations T are shown in Fig. S2. This choice is motivated by the idea that the
reversed direction of heat flow guides the solver towards the original of its source, i.e., the global
minima. Noticed that this choice is not theoretically necessary, as elaborated in Discussion.

Toy example. We consider the following target function

f(s) = aT2 sigmoid(W s+ a1) (13)

5

Figure 2: Performance of HeO (Alg. 3, Appendix), Monte Carlo gradient estimation (MCGE),
Hopfield neural network (HNN) and simulated annealing (SA) on minimizing the output of a neural
network (Eq. (13)). Top panel: the target function. Bottom panel: the uncertainty V (θ) (Eq. (4)).

graph
node partition

cut number: 2cut number: 3

cut number: 5

examples of cut

example of max cut

 a b

Figure 3: a, Illustration of the max-cut problem. b, Performance of HeO (Alg. 1) and representative
iterative approximation methods including LQA [10], aSB [12], bSB [13], dSB [13], CIM [35] and
SIM-CIM [15] on max-cut problems from the Biq Mac Library [36]. Top panel: average relative loss
for each algorithm over all problems. Bottom panel: the count of instances where each algorithm
ended up with one of the bottom-2 worst results among the 7 algorithms.

where sigmoid(x) = 1
1+e−x , and the elements of the network parameters a1 ∈ Rn, a2 ∈ Rm,

W ∈ Rm,n are uniformly sampled from [−1, 1] and fixed during optimizing. According to the
universal approximation theory [32], f(s) can approximate any continuous function with sufficiently
large m, thereby representing a general target function. We compare the performance of our HeO with
momentum (Alg. 3) against several representative methods: the conventional gradient-based solver
MCGE [28] (with or without momentum), the simulated annealing [33], and the Hopfield neural
network [34]. As shown in Fig. 2, our HeO demonstrates exceptional superiority over all other
methods, and efficiently reduces its uncertainty compared to MCGE.

Quadratic unconstrained binary optimization (QUBO). QUBO is the combinatorial optimization
problem with quadratic target function (J ∈ Rn×n is a symmetric matrix with zero diagonals)

f(s) = sTJs. (14)

This corresponds to the case where K = 2 in Eq. (10). A well-known class of QUBO is max-cut
problem [27], in which we divide the vertices of a graph into two distinct subsets and aim to maximize
the number of edges between them. Its target function is expressed as Eq. (14), where J is determined
by the adjacency matrix of the graph.

We compare our HeO with representative iterative approximation methods especially developed for
solving QUBO including LQA [10], aSB [12], bSB [13], dSB [13], CIM [35], and SIM-CIM [15]

6

Conjunctive normal form (CNF)

OR

AND

Circuit representation

satisfying or not

 a b

Figure 4: a, Illustration of the boolean 3-satisfiability (3-SAT) problem. b, Performance of
HeO (Alg. 4, Appendix), 2-order and 3-order oscillation Ising machine (OIM) [16] on 3-SAT
problems with various number of variables from the SATLIB [37]. We report the mean percent of
constraints satisfied (left) and probability of satisfying all claims (right) for each algorithm.

on max-cut problems in the Biq Mac Library [36]1. We report the relative loss averaged over all
instances and the count of the instances where each algorithm gives the bottom-2 worse result among
the 7 algorithms. As shown in Fig. 3, our HeO is superior to other methods in terms of two metrics.

Polynomial unconstrained binary optimization (PUBO). PUBO is a class of combinatorial
optimization problems, in which higher-order interactions between bits si appears in the target
function. Existing methods for solving PUBO fall into two categories: the first approach involves
transforming PUBO into QUBO by adding auxiliary variables through a quadratization process, and
then solving it as a QUBO problem [38], and the one directly solves PUBO [16]. Quadratization may
dramatically increases the dimension of the problem, hence brings heavier computational overhead,
while our HeO can be directly used for solving PUBO. A well-known class of PUBO is the Boolean
3-satisfiability (3-SAT) problem [27], which involves determining the satisfiability of a Boolean
formula over n Boolean variables b1, . . . , bn where bi ∈ {0, 1}. The Boolean formula is structured in
Conjunctive Normal Form (CNF) consisting of H conjunction (∧) of clauses, and each clause h is a
disjunction (∨) of exactly three literals (either a Boolean variable or its negation). An algorithm of
3-SAT aims to find the Boolean variables that makes as many as clauses satisfied.

To apply our HeO to the 3-SAT, we encode each Boolean variable bi as si, which is assigned with
value 1 if bi = 1, otherwise si = −1. For a literal, we define a value chi

, which is −1 if the literal
is the negation of the corresponding Boolean variable, otherwise it is 1. Then finding the Boolean
variables that satisfies as many as clauses is equivalent to minimize the target function

f(s) =

H∑
h=1

3∏
i=1

1− chishi

2
. (15)

This corresponds to the case where K = 3 in Eq. (10). We compared our HeO (Alg. 4, Appendix) with
the second-order oscillator Ising machines (OIM) solver that using quadratization and the state-of-art
3-order OIM proposed in [16] on 3-SAT instance in SATLIB 2. As shown in Fig. 4, our HeO is
superior to other methods in attaining higher quality of solutions and finding more the complete
satisfiable solution (solutions that satisfying all clauses). Notably, for the cases of 175-250 variables,
our HeO is able to find more complete satisfiable solutions, compared to the 3-order OIM, while the
2-order OIM fails to find any complete solutions [16].

Ternary optimization. Neural networks excel in learning and modeling complex functions, but
they also bring about considerable computational demands due to their vast number of parameters.
A promising strategy to mitigate this issue is quantization, which converts network parameters into
discrete values [39]. However, directly training networks with discrete parameters introduces a
significant challenge due to the high-dimensional combinatorial optimization problem it presents.

We apply our HeO and MCGE to directly train neural networks with ternary value (−1, 0, 1). Sup-
posed that we have an input-output dataset D generated by a ground-truth ternary single-layer per-

1https://biqmac.aau.at/biqmaclib.html
2https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

7

https://biqmac.aau.at/biqmaclib.html
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

 a b v

 {(v, y),...}

 y W

 W’

 dataset

 training by HeO

 ReLU x =

accuracy

Figure 5: a, Training networks with ternary-value parameters. b, The weight value accuracy of
the HeO (Alg. 5, Appendix) and Monte Carlo gradient estimation (MCGE) with momentum under
different sizes of training set (n = 100,m = 1, 2, 5). We estimate the mean and std from 10 runs.

Figure 6: The variable selection of 400-dimensional linear regressions using HeO (Alg. 6, Appendix),
Lasso (L1) regression [40] and L0.5 regression [41]. We report the accuracy of each algorithm in
determining whether each variable should be ignored for prediction and their MSE on the test set.
The mean (dots) and standard deviation (bars) are estimated over 10 runs.

ceptron y = Γ(v;WGT) = ReLu(WGTv), where ReLu(x) = max{0, x}, WGT ∈ {−1, 0, 1}m×n

is the ground-truth ternary weight parameter, v ∈ {−1, 0, 1}n is the input, and y is the model
output. We aim to find the ternary configuration W ∈ {−1, 0, 1}m×n minimizing the loss
MSE(W,D) = 1

|D|
∑

(v,y)∈D ∥Γ(v;W)− y∥2. We generalize our HeO from the binary to the
ternary case by representing a ternary variable with two bits, where each element of W can be
represented as a function of s (see Alg. 5, Appendix for details), and the target function is defined as

f(s) =
1

|D|
∑

(v,y)∈D

∥Γ(v;W (s))− y∥2 . (16)

As shown in Fig. 5, HeO robustly exceeds MCGE under different dataset size |D| and output size m.

Mixed combinatorial optimization. In high-dimensional linear regression, usually only a small
fraction of the variables significantly contribute to prediction. Identifying and selecting a subset
of variables with strong predictive power—a process known as variable selection—is crucial, as
it improves the generalizability and interpretability of the regression model [42]. However, direct
variable selection is an NP-hard combinatorial optimization mixed with continuous variables [43].
As a practical alternative, regularization methods like Lasso algorithm are commonly employed [40].

Supposed a dataset is generated from a linear model, in which the relation between input v and output
y is y = β∗ · v + ϵ, where β∗ is the ground-truth linear coefficient and ϵ is independent Gaussian
noise with standard deviation σϵ. Suppose that only a small proportion (denoted as q ∈ (0, 1)) of
coordinates in β∗

i are non-zero. Our goal is to identify these coordinates through an indicator vector
s ∈ {−1, 1}n (1 for selection and −1 for non-selection) and estimate these non-zero coefficients.
The target function of the problem is (1 ∈ Rn is the all-one vector)

f(s,β) =
1

|D|
∑

(v,y)∈D

∣∣∣∣(β ⊙ s+ 1

2

)
· v − y

∣∣∣∣2 . (17)

8

We solve the problem through HeO (Alg. 6, Appendix), where we minimize the loss relative to θ
while slowing varying β via its error gradient. After obtaining the indicator s, we conduct an ordinary
least squares regression on the variables selected by the s to estimate their coefficients, and treat other
variables’ coefficients as zero. As shown in Fig.6, our HeO outperforms both Lasso regression and the
more advanced L0.5 regression [41] in terms of producing more accurate indicators s and achieving
lower test prediction errors across various q and σϵ settings. Importantly, to give the variable selection
prediction, our HeO does not need to know the level of q and σϵ in advance.

graph

covered vertex

examples of vertex cover examples of minimum vertex cover

Figure 7: The illustration of minimum vertex cover.

Table 1: Attributes of graphs and the vertex cover sizes of HeO (Alg. 7, Appendix) and FastVC [44].

Graph name Vertex number Edge number FastVC HeO

tech-RL-caida 190914 607610 78306 77372 (17)
soc-youtube 495957 1936748 149458 148875 (25)
inf-roadNet-PA 1087562 1541514 588306 587401 (104)
inf-roadNet-CA 1957027 2760388 1063352 1061339 (32)
socfb-B-anon 2937612 20959854 338724 312531 (194)
socfb-A-anon 3097165 23667394 421123 387730 (355)
socfb-uci-uni 58790782 92208195 869457 867863 (36)

Constrained binary optimization. Minimum vertex cover (MVC) is a class of the constrained
combinatorial optimization which has wide applications [45], as illustrated in Fig. 7. Given an
undirected graph G with vertex set V and edge set E , the MVC is to find the minimum subset Vc ⊂ V ,
so that for each edge e ∈ E , at least one of its endpoints belongs to Vc. The target function and the
constrains are expressed as

f(s) =

n∑
i=1

si + 1

2
, subject to gij(s) = (1− si + 1

2
)(1− sj + 1

2
) = 0, ∀i, j, eij ∈ E . (18)

We combine the HeO with penalty function (Alg. 7, Appendix) for solving MVC. We compare our
HeO with FastVC [44], a powerful MVC heuristic algorithm, on massive real world graph datasets 3.
For a fair comparison, we keep the run time of two algorithms as the same for each dataset. As shown
in Tab. 1, our HeO can find smaller cover sets than that of FastVC.

5 Discussion

Existing model-based combinatorial optimization approaches encode the solution space via a parame-
terized distribution with iterative parameter updates [46]. In contrast to HeO, which requires only
one sample per iteration, they necessitate a large number of samples per iteration. The Gibbs-With-
Gradient algorithm [47] uses gradient information for combinatorial optimization but searches in
the discrete solution space instead of the continuous one, as did HeO. Denoising diffusion model
(DDM) [24] has been applied for solving combinatorial optimization problems [48]. Although the
diffusion process in DDMs akin to the heat diffusion in our HeO, DDMs require a substantial data for
training and necessitate reversing the diffusion process to generate data that from the target distribu-
tion. In contrast, HeO needs no training, and it is unnecessary to strictly adhering to the monotonic τt
in the optimization process, as under different τ , the function u(τ,θ) shares the same optima with
that of the original problem h(θ). This claim is empirically corroborated in Fig. S3, Appendix, where
HeO applying non-monotonic schedules of τt still demonstrates superior performance.

3http://networkrepository.com/

9

http://networkrepository.com/

Our HeO can be viewed as a stochastic Gaussian continuation (GC) method [49] with projection.
GC has been applied for non-convex optimization, though it has not yet been used for combinatorial
optimization. The optimal convexification of GC [50] underpins potentially theoretical advantages of
HeO. One key distinction is that GC typically optimizes each sub-problem (corresponding to u(θ, τt))
at each t up to some criteria, whereas HeO merely performs a single-step gradient descent. Also,
Eq. (8) corresponds to a variation of the evolution strategy, a robust optimizer for non-differentiable
function [51], while HeO use a different gradient estimation (Eq. (11)), see Appendix for details.
Additionally, our HeO is related to randomized smoothing, which has been applied to non-smooth
optimization [52] or neural network regularization [53]. The distinctive feature of our HeO is
that, across different τ , the smoothed function u(τ,θ) retains the optima of the original function
h(θ) (Thm. 1). This distinguishes our HeO from methods based on quantum adiabatic theory [9],
bifurcation theory [12] and other relaxation strategies [54], in which the optima of the smoothed
function can be different from the original one [27, 55]. This is verified in Fig. S3, Appendix.

The heat equation in our HeO can be naturally extended to general parabolic differential equations,
given that a broad spectrum of them obey the backward uniqueness [56]. For example, we can use
∂τu(τ,θ) = ▽θ[A▽θ u(τ,θ)] to replace the Eq. (6), where A is a real positive definite matrix. Prior
researches have demonstrated that the optimization procedure can be significantly accelerated by
preconditioning [57] or Fisher information matrix [58], implying that choosing a proper matrix A
could substantially improve the efficacy of the HeO. Additionally, since τt does not necessarily have
to be monotonic due to the cooperative optimization property of HeO, it is feasible to explore various
τt schedules (possibly non-monotonic) to further enhance performance. Moreover, our HeO can be
integrated with other existing techniques for combinatorial optimization problems with constraints,
such as Augmented Lagrangian methods, to achieve better performance [59].

Despite the effectiveness of HeO on the combinatorial optimization problems from different domains
we have considered, it has limitations. First, current HeO is inefficient for integer linear programming
and routing problems, primarily due to that it is cumbersome to encode integer variables through
the Bernoulli distribution in our framework. Nevertheless, integrating HeO with other techniques
such as advanced Metropolis-Hastings algorithm [60] may path to broaden the applicability of our
methodology to a wider range of combinatorial optimization problems. Besides, our HeO allows
for further customization by incorporating additional terms that integrate problem-specific prior
knowledge or by hybridizing with other metaheuristic algorithms, allowing for more effective
exploration of the configuration space. Second, our HeO can not be theoretically guaranteed for
converging to the global minimum. In general, finding the global minimum is not theoretically
guaranteed for non-convex optimization problems [61], such as the combinatorial optimization
problems studied in this paper. However, it can be demonstrated that the gradient of the target
function under heat diffusion satisfies the inequality [22]:

|▽θu(τ,θ)| ≤
C√
τ
,

where the constant C depends on the dimension. This implies that the target function becomes weakly
convex, enabling the finding of global minima and faster convergence under certain conditions [62].

6 Conclusion

In conclusion, grounded in the heat diffusion, we present a framework called heat diffusion optimiza-
tion (HeO) to solve various combinatorial optimization problems. The heat diffusion facilitates the
propagation of information from distant regions to the solver, expanding its receptive field, which in
turn enhances its ability to search for global optima. Demonstrating exceptional performance across
various scenarios, our HeO highlights the potential of utilizing heat diffusion to address challenges
associated with navigating the solution space of combinatorial optimization.

Acknowledgements

This work was supported by the National Science and Technology Major Project of China (No.
2018AAA0100303) and the Science & Technology Commission of Shanghai Municipality (No.
23JC1400800).

10

References
[1] Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. An application of

combinatorial optimization to statistical physics and circuit layout design. Operations Research,
36(3):493–513, 1988.

[2] Jun Wang, Tony Jebara, and Shih-Fu Chang. Semi-supervised learning using greedy max-cut.
The Journal of Machine Learning Research, 14(1):771–800, 2013.

[3] Chetan Arora, Subhashis Banerjee, Prem Kalra, and SN Maheshwari. An efficient graph cut
algorithm for computer vision problems. In Computer Vision–ECCV 2010: 11th European
Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings,
Part III 11, pages 552–565. Springer, 2010.

[4] Hayato Ushijima-Mwesigwa, Christian FA Negre, and Susan M Mniszewski. Graph partitioning
using quantum annealing on the d-wave system. In Proceedings of the Second International
Workshop on Post Moores Era Supercomputing, pages 22–29, 2017.

[5] Florian Neukart, Gabriele Compostella, Christian Seidel, David Von Dollen, Sheir Yarkoni, and
Bob Parney. Traffic flow optimization using a quantum annealer. Frontiers in ICT, 4:29, 2017.

[6] Román Orús, Samuel Mugel, and Enrique Lizaso. Quantum computing for finance: Overview
and prospects. Reviews in Physics, 4:100028, 2019.

[7] Rafael Marti and Gerhard Reinelt. Exact and Heuristic Methods in Combinatorial Optimization,
volume 175. Springer, 2022.

[8] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren, and Daniel
Preda. A quantum adiabatic evolution algorithm applied to random instances of an np-complete
problem. Science, 292(5516):472–475, 2001.

[9] John A Smolin and Graeme Smith. Classical signature of quantum annealing. Frontiers in
physics, 2:52, 2014.

[10] Joseph Bowles, Alexandre Dauphin, Patrick Huembeli, José Martinez, and Antonio Acín.
Quadratic unconstrained binary optimization via quantum-inspired annealing. Physical Review
Applied, 18(3):034016, 2022.

[11] Mária Ercsey-Ravasz and Zoltán Toroczkai. Optimization hardness as transient chaos in an
analog approach to constraint satisfaction. Nature Physics, 7(12):966–970, 2011.

[12] Hayato Goto, Kosuke Tatsumura, and Alexander R Dixon. Combinatorial optimization by simu-
lating adiabatic bifurcations in nonlinear hamiltonian systems. Science advances, 5(4):eaav2372,
2019.

[13] Hayato Goto, Kotaro Endo, Masaru Suzuki, Yoshisato Sakai, Taro Kanao, Yohei Hamakawa,
Ryo Hidaka, Masaya Yamasaki, and Kosuke Tatsumura. High-performance combinatorial
optimization based on classical mechanics. Science Advances, 7(6):eabe7953, 2021.

[14] Takahiro Inagaki, Yoshitaka Haribara, Koji Igarashi, Tomohiro Sonobe, Shuhei Tamate, Toshi-
mori Honjo, Alireza Marandi, Peter L McMahon, Takeshi Umeki, Koji Enbutsu, et al. A
coherent ising machine for 2000-node optimization problems. Science, 354(6312):603–606,
2016.

[15] Egor S Tiunov, Alexander E Ulanov, and AI Lvovsky. Annealing by simulating the coherent
ising machine. Optics express, 27(7):10288–10295, 2019.

[16] Connor Bybee, Denis Kleyko, Dmitri E Nikonov, Amir Khosrowshahi, Bruno A Olshausen,
and Friedrich T Sommer. Efficient optimization with higher-order ising machines. Nature
Communications, 14(1):6033, 2023.

[17] Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization
with physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

11

[18] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, pages 1–3, 2023.

[19] David Pisinger and Stefan Ropke. Large neighborhood search. Handbook of metaheuristics,
pages 99–127, 2019.

[20] Pierre Hansen, Nenad Mladenović, and Jose A Moreno Perez. Variable neighbourhood search:
methods and applications. Annals of Operations Research, 175:367–407, 2010.

[21] Haoran Sun, Hanjun Dai, Wei Xia, and Arun Ramamurthy. Path auxiliary proposal for mcmc in
discrete space. In International Conference on Learning Representations, 2021.

[22] Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society,
2022.

[23] Jean-Michel Ghidaglia. Some backward uniqueness results. Nonlinear Analysis: Theory,
Methods & Applications, 10(8):777–790, 1986.

[24] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39, 2023.

[25] Endre Boros and Peter L Hammer. Pseudo-boolean optimization. Discrete applied mathematics,
123(1-3):155–225, 2002.

[26] Yves Crama and Peter L Hammer. Boolean functions: Theory, algorithms, and applications.
Cambridge University Press, 2011.

[27] Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial optimization, volume 1.
Springer, 2011.

[28] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. The Journal of Machine Learning Research, 21(1):5183–5244,
2020.

[29] David Vernon Widder. The heat equation, volume 67. Academic Press, 1976.

[30] Avradip Mandal, Arnab Roy, Sarvagya Upadhyay, and Hayato Ushijima-Mwesigwa. Com-
pressed quadratization of higher order binary optimization problems. In Proceedings of the 17th
ACM International Conference on Computing Frontiers, pages 126–131, 2020.

[31] Martin Anthony, Endre Boros, Yves Crama, and Aritanan Gruber. Quadratic reformulations of
nonlinear binary optimization problems. Mathematical Programming, 162:115–144, 2017.

[32] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

[33] Michel Gendreau, Jean-Yves Potvin, et al. Handbook of metaheuristics, volume 2. Springer,
2010.

[34] John J Hopfield and David W Tank. “neural” computation of decisions in optimization problems.
Biological cybernetics, 52(3):141–152, 1985.

[35] Zhe Wang, Alireza Marandi, Kai Wen, Robert L Byer, and Yoshihisa Yamamoto. Coherent ising
machine based on degenerate optical parametric oscillators. Physical Review A, 88(6):063853,
2013.

[36] Angelika Wiegele. Biq mac library—a collection of max-cut and quadratic 0-1 programming
instances of medium size. Preprint, 51, 2007.

[37] Holger H Hoos and Thomas Stützle. Satlib: An online resource for research on sat. Sat,
2000:283–292, 2000.

12

[38] Andrew Lucas. Ising formulations of many np problems. Frontiers in physics, 2:5, 2014.

[39] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. In Low-Power Com-
puter Vision, pages 291–326. Chapman and Hall/CRC, 2022.

[40] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 58(1):267–288, 1996.

[41] Zongben Xu, Hai Zhang, Yao Wang, XiangYu Chang, and Yong Liang. L 1/2 regularization.
Science China Information Sciences, 53:1159–1169, 2010.

[42] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements
of statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

[43] Xiaoping Li, Yadi Wang, and Rubén Ruiz. A survey on sparse learning models for feature
selection. IEEE transactions on cybernetics, 52(3):1642–1660, 2020.

[44] Shaowei Cai, Jinkun Lin, and Chuan Luo. Finding a small vertex cover in massive sparse
graphs: Construct, local search, and preprocess. Journal of Artificial Intelligence Research,
59:463–494, 2017.

[45] Alexander C Reis, Sean M Halper, Grace E Vezeau, Daniel P Cetnar, Ayaan Hossain, Phillip R
Clauer, and Howard M Salis. Simultaneous repression of multiple bacterial genes using
nonrepetitive extra-long sgrna arrays. Nature biotechnology, 37(11):1294–1301, 2019.

[46] Enlu Zhou and Jiaqiao Hu. Gradient-based adaptive stochastic search for non-differentiable
optimization. IEEE Transactions on Automatic Control, 59(7):1818–1832, 2014.

[47] Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris Maddison. Oops
i took a gradient: Scalable sampling for discrete distributions. In International Conference on
Machine Learning, pages 3831–3841. PMLR, 2021.

[48] Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial
optimization. Advances in neural information processing systems, 2023.

[49] Hossein Mobahi and John Fisher III. A theoretical analysis of optimization by gaussian
continuation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29,
2015.

[50] Hossein Mobahi and John W Fisher. On the link between gaussian homotopy continuation
and convex envelopes. In Energy Minimization Methods in Computer Vision and Pattern
Recognition: 10th International Conference, EMMCVPR 2015, Hong Kong, China, January
13-16, 2015. Proceedings 10, pages 43–56. Springer, 2015.

[51] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. Journal of Machine Learning Research, 15(27):949–980, 2014.

[52] John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized smoothing for stochastic
optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.

[53] Mo Zhou, Tianyi Liu, Yan Li, Dachao Lin, Enlu Zhou, and Tuo Zhao. Toward understanding
the importance of noise in training neural networks. In International Conference on Machine
Learning, pages 7594–7602. PMLR, 2019.

[54] Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework
for combinatorial optimization on graphs. Advances in Neural Information Processing Systems,
33:6659–6672, 2020.

[55] Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for
combinatorial optimization with principled objective relaxation. Advances in Neural Information
Processing Systems, 35:31444–31458, 2022.

[56] Jie Wu and Liqun Zhang. Backward uniqueness for general parabolic operators in the whole
space. Calculus of Variations and Partial Differential Equations, 58:1–19, 2019.

13

[57] Hengyuan Ma, Li Zhang, Xiatian Zhu, and Jianfeng Feng. Accelerating score-based generative
models with preconditioned diffusion sampling. In European Conference on Computer Vision,
pages 1–16. Springer, 2022.

[58] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. The Journal of Machine Learning Research, 15(1):949–980, 2014.

[59] Ernesto G Birgin and José Mario Martínez. Practical augmented Lagrangian methods for
constrained optimization. SIAM, 2014.

[60] Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, and Hanjun Dai. Revisiting
sampling for combinatorial optimization. In International Conference on Machine Learning,
pages 32859–32874. PMLR, 2023.

[61] Feng-Yi Liao, Lijun Ding, and Yang Zheng. Error bounds, pl condition, and quadratic growth
for weakly convex functions, and linear convergences of proximal point methods. In 6th Annual
Learning for Dynamics & Control Conference, pages 993–1005. PMLR, 2024.

[62] Felipe Atenas, Claudia Sagastizábal, Paulo JS Silva, and Mikhail Solodov. A unified analysis
of descent sequences in weakly convex optimization, including convergence rates for bundle
methods. SIAM Journal on Optimization, 33(1):89–115, 2023.

[63] Paul Bertens and Seong-Whan Lee. Network of evolvable neural units: Evolving to learn at a
synaptic level. arXiv preprint, 2019.

[64] Juntao Wang, Daniel Ebler, KY Michael Wong, David Shui Wing Hui, and Jie Sun. Bifurcation
behaviors shape how continuous physical dynamics solves discrete ising optimization. Nature
Communications, 14(1):2510, 2023.

14

Appendix

A Proof of theorems

A.1 Proof of Thm. 1

To prove the Thm. 1, we recall the backward uniqueness of the heat equation [23], which asserts that
the initial state of a heat equation can be uniquely determined by its state at a time point τ under mild
conditions, as shown in the following theorem.
Theorem S4. Given two bounded function h1(x), h2(x) with domain on Rn. Denote u1(τ,x) and
u2(τ,x) as the solutions to the heat equation (Eq. (6)) with initial condition u1(0,x) = h1(x) and
u2(0,x) = h2(x) respectively. If there exists a τ > 0, such that

u1(τ,x) = u2(τ,x), ∀x ∈ Rn, (S1)

we have h1 = h2.

Proof of the Thm. 1.

Proof. We first show that the global minima of u(τ,θ) is also the global minima of h(θ). The corner-
stone of the proof is Thm. S4. To utilize the backward uniqueness, we consider a reparameterization
of p(s|θ) by introducing a random variable x ∼ Unif(0, 1)n. It is easy to see that sgn(θi−xi) obeys
Bernoulli distribution with probability θi to be 1 and 1− θi to be −1. Replacing si by xi in Eq. (2),
we have a new expression of h(θ)

h(θ) = Ep(x)[f(sgn(θ − x))], x ∼ Unif(0, 1)n. (S2)

Since the solution to the heat equation can be represented by the heat kernel, we have [22]

u(τ,θ) = Ep(z)[h(θ +
√
2τz)], p(z) = N (0, I). (S3)

Therefore, we have

u(τ,θ) = Ep(z)[Ep(x)[f(sgn(θ +
√
2τz− x)]] = Ep(x)[Ep(z)[f(sgn(θ − (x+

√
2τz))]]. (S4)

Denote u(τ,x;θ) = Ep(z)[f(sgn(θ − (x +
√
2τz)))], x ∈ (0, 1)n. Noticed that u(τ,x;θ) is the

solution of the following unbounded heat equation respect to the time τ and location x restricted on
the region x ∈ (0, 1)n{

∂τu(τ,x;θ) = ∆xu(τ,x;θ), τ > 0, x ∈ Rn

u(τ,x;θ) = f(sgn(θ − x)), τ = 0, x ∈ Rn , (S5)

hence the latter can be considered as an extension of the former. Since u(τ,x;θ) is analytic respect to
x ∈ (0, 1)n for τ > 0, this extension is unique. Therefore, the value of u(τ,x;θ) on (0, 1)n, τ > 0
uniquely determines the solution of Eq. (S5). Denote θ̌ as

θ̌i =

{
+∞, s∗i = +1

−∞, s∗i = −1. (S6)

Then u(τ,x; θ̌) = f∗, for any τ ≥ 0 and x ∈ Rn, and we have

u(τ, θ̌) = Ep(x)[u(τ,x; θ̌)] = f∗. (S7)

Noticed that for θ ∈ R̄n, we have

u(τ,θ) = Ep(x)[u(τ,x;θ)] = Ep(x)[Ep(z)[f(sgn(θ − (x+
√
2τz)))]] ≤ Ep(x)[Ep(z)[f

∗]] = f∗,
(S8)

and the equality is true if and only if u(τ,x;θ) = f∗ is true for x ∈ Rn. Therefore, if θ̂ is the one of
the minimas of u(τ,θ), and we have u(τ, θ̂) ≥ f∗. Similarly, since

u(τ, θ̂) = Ep(x)[u(τ,x; θ̂)] = Ep(x)[Ep(z)[f(sgn(θ̂ − (x+
√
2τz)))]] ≤ Ep(x)[Ep(z)[f

∗]] = f∗,
(S9)

1

we also have u(τ, θ̂) ≤ f∗, hence

u(τ,x; θ̂) = f∗ = u(τ,x;θ∗), x ∈ Rn. (S10)

Due to the backward uniqueness of the heat equation, we have

u(0,x; θ̂) = u(0,x;θ∗), x ∈ Rn, (S11)

that is

h(θ̂) = h(θ∗) = f∗. (S12)

As a result, θ̂ is the one of minimas of h(θ). Conversely, using Eq. (S7), it is obviously to see that if
θ̂ is one of minimas of h(θ), it is also one of minimas of u(τ,θ).

A.2 Proof of Thm. 2

Recall Eq. (S3) and use the definition of h(θ) (see Sec. 2 of the main paper), we have

u(τ,θ) = Ep(z)[Ep(s|θ+
√
2τz)[f(s)]]. (S13)

To construct a low-variance estimation, instead of directly using the Monte Carlo gradient estimation
by sampling from p(z) and p(s|θ +

√
2τz) for gradient estimation, we manage to integrate out the

stochasticity respect to z. Use the reparameterization Eq. (S2) and Eq. (S3), we have

u(τ,θ) = Ep(x)[Ep(z)[f(sgn(θ +
√
2τz− x))]]. (S14)

Now we can calculate the inner term Ep(z)[f(sgn(θ +
√
2τz − x))]. Due to the assumption, the

target function f(s) can be written as a K-order multilinear polynomial of s

f(s) = a0 +
∑
i1

a1,i1si1 +
∑
i1<i2

a2,i1i2si1s12 +
∑

i1<i2<i3

a3,i1i2i3si1s12si3 + · · ·

+
∑

i1<···<iK

aK,i1...iKsi1 · · · siK .
(S15)

Integrating respect to each dimension of the Gaussian integral, we have [50]

Ep(z)[f(sgn(θ +
√
2τz− x))]

= a0 +
∑
i1

a1,i1 s̃i1 +
∑
i1<i2

a2,i1i2 s̃i1 s̃12 +
∑

i1<i2<i3

a3,i1i2i3 s̃i1 s̃12 s̃i3

+ · · ·+
∑

i1<···<iK

aK,i1...iK s̃i1 · · · s̃iK ,

(S16)

where

s̃i = Ep(zi)[sgn(θi +
√
2τzi − xi)] = erf(

θi − xi√
τ

), (S17)

where erf(·) is the error function. Therefore, we have

u(τ,θ) = Ep(x)[f(erf(
θ − x√

τ
))], (S18)

where erf(·) is the element-wise error function.

A.3 Proof of Thm. 3

Proof. Define the square loss of θ as

e(θ) = (h(θ)− h(θ∗))2. (S19)

According to the definition of h(θ), we have

e(θ) = Ep(x)[f(sgn(θ − x))− f(sgn(θ∗ − x))]2 ≤ Ep(x)[(f(sgn(θ − x))− f(sgn(θ∗ − x)))2].
(S20)

2

Define the error function

r(τ,x;θ) = u(τ,x;θ)− u(τ,x;θ∗). (S21)

Then the error function satisfies the following heat equation{
∂τr(τ,x;θ) = ▽xr(τ,x;θ)
r(0,x;θ) = f(sgn(θ − x))− f(sgn(θ∗ − x))

. (S22)

Define the energy function of the error function r(τ,x;θ) as

E(τ ;θ) =

∫
Rn

r2(τ,x;θ)p(x)dx. (S23)

Then applying the heat equation and the integration by parts, we have

d

dτ
E(τ ;θ) = −2

∫
Rn

∥▽r(τ,x;θ)∥2 p(x)dx. (S24)

Hence we have for 0 < τ1 < τ2

E(τ1;θ) = E(τ2;θ) + 2

∫ τ2

τ1

∫
Rn

∥▽r(τ,x;θ)∥2 p(x)dxdτ. (S25)

Use the Harnack’s inequality [22], we have

∥▽r(τ,x;θ)∥2 ≤ r(τ,x;θ)∂τr(τ,x;θ) +
n

2τ
r2(τ,x;θ), (S26)

combine with Eq. (S25), we have

E(τ1;θ) ≤ E(τ2;θ) +
n

2

∫ τ2

τ1

E(τ ;θ)

τ
dτ. (S27)

Using the Minkowski inequality on the measure p(x), we have

h(θ)− h(θ∗) = e1/2(θ) ≤
(∫

Rn

(f(sgn(θ − x))− u(τ1;x;θ))
2p(x)dx

)1/2
+
(∫

Rn

(u(τ1;x;θ)− u(τ1;x;θ
∗))2p(x)dx

)1/2
+
(∫

Rn

(f(sgn(θ∗ − x))− u(τ1;x;θ
∗))2dx

)1/2
=

(∫
Rn

(f(sgn(θ − x))− u(τ1;x;θ))
2p(x)dx

)1/2
+
(∫

Rn

(f(sgn(θ∗ − x))− u(τ1;x;θ
∗))2dx

)1/2
+ E1/2(τ1;θ).

(S28)

Recall the continuity of the heat equation:

lim
τ→0

∫
Rn

(u(τ,x;θ)− f(sgn(θ − x)))2p(x)dx = 0. (S29)

Therefore, given ϵ > 0, there exists a τ1 > 0, such that(∫
Rn

(f(sgn(θ − x))− u(τ1;x;θ))
2p(x)dx

)1/2
+
(∫

Rn

(f(sgn(θ∗ − x))− u(τ1;x;θ
∗))2p(x)dx

)1/2
< ϵ.

(S30)

Recall Eq. (S27), we then have the error control for e(θ):

e1/2(θ) ≤ E1/2(τ1;θ) + ϵ ≤
(
E(τ2;θ) +

n

2

∫ τ2

τ1

E(τ ;θ)

τ
dτ

)1/2
+ ϵ. (S31)

Noticed that

E(τ ;θ) ≤ (f̆ − f∗)Ep(x)[u(τ,x;θ)− u(τ,x;θ∗)] = (f̆ − f∗)(u(τ,θ)− u(τ,θ∗)), (S32)

where f̆ = maxs f(s), and we prove the theorem.

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
dimension 1e9

0
5

10
15
20
25
30
35
40

tim
e

pe
r i

te
ra

tio
n

(m
s)

Figure S1: The time cost per iteration (ms) of the HeO framework increases linearly with the
dimensionality of the problem. We present the results averaged over five tests, with error bars
representing three standard deviations.

Figure S2: Mean result target function values (lower is better) of our HeO on three datasets (Ising,
gka, and rudy) under various step sizes (γ) and iteration counts (T). The star denotes the settings
used in Figure 3 of the main paper.

B Complexity analysis

We empirically estimate the time cost per iteration of our HeO for problems of different dimension n
in Fig. S1.

C Parameter sensitivity analysis

We report the performance of our HeO on a wide range of parameter settings in Fig. S2.

4

D Relation to evolution strategy

We show that the update in Eq. (8) is equivalent to a variation of the evolution strategy (ES) which is
a robust and powerful algorithm for solving black-box optimization problem [51]. In fact, we have

▽θu(τ,θ) = ▽θEp(z)[h(θ +
√
2τz)]

= ▽θ

∫
1

√
4πτ

n exp(− 1

4τ
∥z− θ∥2)h(z)dz

=
1

2τ

∫
1

√
4πτ

n exp(− 1

4τ
∥z− θ∥2)h(z)(z− θ)dz

=
1

2τ

∫
1
√
2π

n exp(−1

2
∥z∥2)h(θ +

√
2τz)zdz

=
1

2τ
Ep(z)[h(θ +

√
2τz)z].

(S33)

The random vector z corresponds to the stochastic mutation and h(θ +
√
2τz) corresponds to the

fitness in Alg. 1 in [63]. In ES, the standard deviation 2τ is fixed in general, while in our HeO
√
2τt

is varying across time. As shown in Thm. 3, the varying τt in our HeO offers a theoretical benefit that
it controls the upper bound of the optimization result. In contrast, a constant τ in ES does not provide
this benefit. Another difference between our HeO and ES is that we integral out z and using Eq. (11)
to estimate the gradient, while in ES the gradient is estimated based on sampling z.

E Relation to denoising diffusion models

Our approach, while bearing similarities to the DDM—a highly regarded and extensively utilized
artificial generative model [24] that relies on the reverse diffusion process for data generation—differs
in key aspects. The DDM necessitates reversing the diffusion process to generate data that from the
target distribution. In contrast, it is unnecessary for our HeO to strictly adhering to the reverse time
sequence τt in the optimization process, as under different τ , the function u(τ,θ) shares the same
optima with that of the original problem h(θ). This claim is corroborated in Fig. S3. as shown below,
where HeO applying non-monotonic schedules of τt still demonstrates superior performance. Hence,
it is possible to explore diverse τt schedules to further performance enhancement.

F Cooperative optimization

0 0.25 0.5 0.75 1
5000

10000

15000

20000

25000

30000

cu
t v

al
ue

LQA
bSB
dSB
aSB
CIM
SIM-CIM
HeO
Best known

Figure S3: Verifying the cooperative optimization mechanism of HeO. The best cut value over
10 runs for each algorithm on the K-2000 problem [14] when the control parameters are randomly
perturbed by different random perturbation level δ. The red dash line is the best cut value ever find.

Our study suggests that HeO exhibits a distinct cooperative optimization mechanism, setting it
apart from current methodologies. Specifically, HeO benefits from the fact that target functions
u(τ,θ) share the same optima as the original problem h(θ) for any τ > 0. This characteristic
allows the solver to transition between different τ values during the optimization process, eliminating
the necessity for a monotonic τt schedule. In contrast, traditional methods such as those based on
quantum adiabatic theory or bifurcation theory require a linear increase of a control parameter at
from 0 to 1. This parameter is analogous to τt in the HeO framework.

5

To empirically verify the above claim, we introduce a random perturbation to the τ schedule in Alg. 1,
rendering it non-monotonic: τ̃t = c2t τt, where ct is uniformly distributed on [1 − δ, 1 + δ] with δ
controlling the amplitude of the perturbation. For other methods based on quantum adiabatic theory
or bifurcation theory, we correspondingly introduce the perturbation as ãt = clamp(ctat, 0, 1).
If an algorithm contains cooperative optimization mechanism, it still works well even when the
control parameter is not monotonic, as optimizing the transformed problems under different control
parameters cooperatively contributes to optimizing the original problem. As shown in Fig. S3, the
performance of other methods are all dramatically deteriorated. In contrast, HeO shows no substantial
decline in performance, corroborating that HeO employs a cooperative optimization mechanism.

G Implementation details

All the experiments are conducted on a single NVIDIA RTX-3090 GPU (24GB) and an Intel(R)
Xeon(R) Gold 6226R CPU (2.90GHz). For convenience, we denote

√
τ t = σt.

Monte Carlo gradient estimation for combinatorial optimization. Based on Eq. (5), we construct
a combinatorial optimization algorithm using the Monte Carlo gradient estimation (MCGE), as shown
in Alg. 2. Noticed that we clamp the parameter θt in the [0, 1] for numerical stability; additionally,
we binarize the θT to obtain the optimized binary configuration sT in the end.

Algorithm 2 Monte Carlo gradient estimation for combinatorial optimization (MCGE)
Input: target function f(·), step size γ, sample number M , iteration number T
initialize elements of θ0 as 0.5
for t = 0 to T − 1 do

sample s(m) ∼i.i.d. p(s|θt), m = 1, . . . ,M

gt ← 1
M

∑M
m=1 f(s

(m))▽θt log p(s
(m)|θt)

θt+1 ← clamp
(
θt − γgt, 0, 1

)
end for
sT ← sgn(θT − 0.5)
Output: binary configuration sT

Gradient descent with momentum. We provide HeO with momentum in Alg. 3.

Algorithm 3 Heat diffusion optimization (HeO) with momentum
Input: target function f(·), step size γ, momentum κ, σ schedule {σt}, iteration number T , set
g−1 = 0
initialize elements of θ0 as 0.5
for t = 0 to T − 1 do

sample xt ∼ Unif[0, 1]n

wt ←▽θt
f(erf(θt−xt

σt
))

gt ← κgt−1 + γwt

θt+1 ← ProjI
(
θt + gt

)
end for
sT ← sgn(θT − 0.5)
Output: binary configuration sT

Toy example. We set the momentum κ = 0.9999, learning rate γ = 2 and iteration number
T = 5000 for HeO (Alg. 3). For MCGE without momentum, we set T = 50000, we set γ =1e-6,
momentum κ = 0, and M = 10. For MCGE with momentum, we set momentum as 0.9.

Max-cut problem. For solving the max-cut problems from the Biq Mac Library [36], we set the
steps T = 5000 for all the algorithms. For HeO, we set γ = 2 and σt linearly decreases from 1 to 0
for HeO, and we set momentum as zero. For LQA and SIM-CIM, we use the setting in [10]. For bSB,
dSB, aSB, and CIM, we apply the settings in [64]. To reduce the fluctuations of the results, for each
algorithm alg and instant i, the relative loss is calculated as |Ci,alg − Ci

min|/|Ci
min|, where Ci,alg is

the lowest output of the algorithm alg on the instance i over 10 tries, and Ci
min is the lowest output of

all 7 the algorithm on the instance i. For each test, we estimate the mean and std from 10 runs.

6

3-SAT problem. For Boolean 3-satisfiability (3-SAT) problem, we set the momentum κ = 0.9999,
T = 5000, γ = 2, and σt linearly decreases from

√
2 to 0 for HeO. According to the empirical

finding that high-order loss function leads to better results [16], we include higher order terms in the
target function. However, since

(
1− cisi

2
)k =

1− cisi
2

(S34)

for any si, ci ∈ {−1, 1}, directly introducing higher order term in the f(s) is useless. Instead, we
adjust the gradient from

▽θtf(erf(
θt − xt

σt
))) = ▽θt [

H∑
h=1

3∏
i=1

1

2
(1− chi

(
erf(

θt − xt

σt
)
)
hi
)], (S35)

to

▽θt [

H∑
h=1

3∏
i=1

(
1

2
(1− chi

(
erf(

θt − xt

σt
)
)
hi
))4]. (S36)

We consider the 3-SAT problems with various number of variables from the SATLIB [37]. For each
number of variables in the dataset, we consider the first 100 instance. We apply the same configuration
of that in [16] for both 3-order solver and 2-order oscillation Ising machine solver. The energy gap of
the 2-order solver is set as 1. For each test, we estimate the mean and std from 100 runs.

Algorithm 4 Heat diffusion optimization (HeO) for 3-SAT problem

Input: adjusted target function f(s) =
∑H

h=1

∏3
i=1

(1−chi
shi

2

)4
(Eq. (S36)), step size γ, momen-

tum κ, σ schedule {σt}, iteration number T
initialize elements of θ0 as 0.5, set g−1 = 0
for t = 0 to T − 1 do

sample xt ∼ Unif[0, 1]n

wt ←▽θt
f(erf(θt−xt

σt
))

gt ← κgt−1 + γwt

θt+1 ← ProjI
(
θt − γgt

)
end for
sT ← sgn(θT − 0.5)
Output: binary configuration sT

Ternary-value neural network learning. We represent a ternary variable st ∈ {−1, 0, 1} as
st = 1

2 (sb,1 + sb,2) with two bits sb,1, sb,2 ∈ {−1, 1}. In this way, each element of W can be
represented as a function of s ∈ Rm×n×2. We denote this relation as a matrix-value function
W = W (s)

Wij(s) =
1

2
(sij,1 + sij,2), i = 1, . . . ,m, , j = 1, . . . , n, (S37)

Based on the above encoding procedure, we design the training algorithm for based on HeO in Alg. 5.
The input v of the dataset D is generated from the uniform distribution on {−1, 0, 1}n. For HeO,
we set T = 10000, γ = 0.5, κ = 0.999, and σt linearly decreasing from

√
2 to 0. For MCGE, we

set T = 10000, γ = 1e− 7, M = 10, and κ = 0.9999. We empirically find that MCGE need high
sampling number (M) and low learning rate (γ) for stability, while this is not the case for HeO. For
each test, we estimate the mean and std from 10 runs.

Variable selection problem. We construct an algorithm for variable selection problem based on
HeO as shown in Alg. 6, where the function f(s,β) is defined in Eq. (17).

We randomly generate 400-dimensional datasets with 1000 training samples. The input v is sampled
from a standard Gaussian distribution. The element of the ground-truth coefficient β∗ is uniformly
distributed on [−2,−1]∪ [1, 2], and each element haves 1−q probability of being set as zero and thus
should be ignored for the prediction. We apply a five-fold cross-validation for all of methods. For our
HeO, we set T = 2000 and γ = 1, κ = 0.999. We generate an ensemble of indicators s of size 100.

7

Algorithm 5 Heat diffusion optimization (HeO) for training ternary-value neural network
Input: dataset D, step size γ, momentum κ, σ schedule {σt}, iteration number T
initialize elements of θ0 as 1, initialize elements of β̃0 as 0, set g−1 = 0
for t = 0 to T − 1 do

sample xt ∼ Unif[0, 1]n

Wt ←W (erf(θt−xt

σt
)) (Eq. (S37))

MSE← 1
|D|

∑
(v,y)∈D ∥Γ(v;Wt)− y∥2

wt ←▽θtMSE
gt ← κgt−1 + γwt

θt+1 ← ProjI
(
θt − gt

)
end for
sT = sgn(θT − 0.5)
Output: WT = W (sT)

Algorithm 6 Heat diffusion optimization (HeO) for linear regression variable selection
Input: dataset D, step size γ, momentum κ, σ schedule {σt}, iteration number T
initialize elements of θ0 as 1, initialize elements of β̃0 as 0, set gβ

−1 = gθ
−1 = 0.

for t = 0 to T − 1 do
sample xθ

t ∼ Unif[0, 1]n

wβ
t ←▽β̃t

f(erf(θt−xt

σt
),β)

gβ
t ← κgβ

t−1 +
γ
T w

β
t

β̃t+1 ← β̃t − gβ
t

wθ
t ←▽θt

f(erf(θt−xt

σt
),β)

gθ
t ← κgθ

t−1 + γwθ
t

θt+1 ← ProjI
(
θt − γgθ

t

)
end for
sT ← sgn(θT − 0.5)
Output: sT

For each s in the ensemble, we fit a linear model by implementing an OLS on the non-zero variables
indicated by s and calculate the average MSE loss of the linear model on the cross-validation sets.
We then select the linear model with lowest MSE on the validate sets as the output linear model. For
Lasso and L0.5 regression, we follow the implementation in [41] with 10 iterations. the regularization
parameter is selected by cross-validation from {0.05, 0.1, 0.2, 0.5, 1, 2, 5}. For each test, we estimate
the mean and std from 10 runs.

Table S2: The attributes of the real world graphs and the parameter settings of HeO.
graph name |V | |E| T γ λt σt

tech-RL-caida 190914 607610 200 2.5 linearly from 0 to 2.5

linearly from
√
2 to 0

soc-youtube 495957 1936748 200 2.5 linearly from 0 to 2.5
inf-roadNet-PA 1087562 1541514 200 2.5 linearly from 0 to 7.5
inf-roadNet-CA 1957027 2760388 200 5 linearly from 0 to 7.5
socfb-B-anon 2937612 20959854 50 2.5 linearly from 0 to 5
socfb-A-anon 3097165 23667394 50 2.5 linearly from 0 to 5
socfb-uci-uni 58790782 92208195 50 2.5 linearly from 0 to 5

Minimum vertex cover problem. For constrained binary optimization

min
s∈{1,1}n

f(s), (S38)

gk(s) ≤ 0, , k = 1, . . . ,K, (S39)

8

we put the constrains as the penalty function with coefficient λ into the target function

fλ(s) = f(s)− λ

K∑
k=1

gk(s), (S40)

and the corresponding algorithm is shown in Alg. 7.

Algorithm 7 Heat diffusion optimization (HeO) for constrained binary optimization
Input: target function with penalty fλ, step size γ, σ schedule {σt}, penalty coefficients schedule
{λt}, iteration number T
initialize elements of θ0 as 0.5, set g−1 = 0.
for t = 0 to T − 1 do

sample xt from Unif[0, 1]n

wt ←▽θtfλt(
θt−xt

σt
)

gt ← κgt−1 + γwt

θt+1 ← ProjI
(
θt − γgt

)
end for
sT ← sgn(θT − 0.5)
Output: sT

Algorithm 8 Refinement of the result of MVC
Input: the result of HeO sT
for i = 1 to n do

set sT,i as 0 if sT is still a vertex cover
end for
Output: sT

We implement the HeO on a single NVIDIA RTX 3090 GPU for all the minimum vertex cover
(MVC) experiments. Let s be the configuration to be optimized, in which si is 1 if we select i-th
vertex into Vc, otherwise we do not select i-vertex into Vc. The target function to be minimize is the
size of Vc: f(s) =

∑n
i=1

si+1
2 , and the constrains are

gij(s) = (1− si + 1

2
)(1− sj + 1

2
) = 0, ∀i, j, eij ∈ E , (S41)

where eij represent the edge connecting the i and j-th vertices. We construct the target function
fλ(s) = f(s) + λ

∑
eij∈E gij(s). The term with the positive factor λ penalizes vector s when there

are uncovered edges. After the HeO outputs the result sT , we empirically find that its subset may
also form a vertex cover for the graph G, so we implement the following refinement on the result sT ,
as shown in Alg. 8. We report the vertex number, edge number and settings of HeO in Tab. S2. For
FastVC, we follow the settings in [44] and use its codebase, and set the cut-off time as the same as
the time cost of HeO. For each test, we estimate the mean and std from 10 runs.

9

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose a framework for solving general combinatorial optimization
problems based on heat diffusion called HeO. We provide theoretical explanation and
exhaustive experiments to demonstrate the superior performance of our framework on
combinatorial optimization problems across different fields.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in the last paragraph of the Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

10

Answer: [Yes]

Justification: We provide detailed proofs in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide information of reproduction in Implementation details section of
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

11

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The codes are provided in the supplementary files.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide experiment details in Implementation details section of Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars for all experiments in Fig. 3-6 and reports the std in
Tab. 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

12

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide experiment details in Implementation details section of Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The research on combinatorial optimization has no immediate social impact or
potential harms.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

13

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not contain pretrained language models, image generators, or
scraped datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The URLs of the datasets are provided in the main paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

14

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The released code is well-documented, and the documentation can be found in
the README.md file within the codebase.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

15

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16

	Introduction
	Failure of gradient-based combinatorial optimization
	Monte Carlo gradient estimation

	Heat diffusion optimization
	Heat diffusion on the parameter space
	Solving the heat equation
	Proposed algorithm

	Experiments
	Discussion
	Conclusion
	Proof of theorems
	Proof of Thm. 1
	Proof of Thm. 2
	Proof of Thm. 3

	Complexity analysis
	Parameter sensitivity analysis
	Relation to evolution strategy
	Relation to denoising diffusion models
	Cooperative optimization
	Implementation details

