

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INTERACTCOMP: EVALUATING SEARCH AGENTS WITH AMBIGUOUS QUERIES

Anonymous authors

Paper under double-blind review

ABSTRACT

Language agents are increasingly deployed for web search, yet most benchmarks assume queries are fully specified and unambiguous. In practice, user queries are often incomplete and require clarification before accurate answers can be produced. To systematically evaluate this overlooked capability, we introduce INTERACTCOMP, a benchmark explicitly designed to evaluate whether agents can recognize and resolve such ambiguity by deciding when to search, when to ask clarifying questions, and when to answer. INTERACTCOMP contains 210 expert-curated questions spanning 9 domains, constructed through a systematic target-distractor methodology that ensures genuine ambiguity and controlled disambiguation. Extensive experiments on 17 models reveal striking behavioral patterns: even state-of-the-art models achieve less than 14% accuracy, not because they lack reasoning ability, but because they exhibit systematic overconfidence and underutilize interaction opportunities. Ablation and forced-interaction analyses confirm this bottleneck: when compelled to interact, models achieve significant performance gains, demonstrating latent capacity that current strategies fail to unlock. A longitudinal study further highlights a blind spot in model development, while retrieval benchmarks show rapid improvement, interactive capabilities remain stagnant. By exposing this overlooked weakness, InteractComp provides not only a diagnostic tool but also a foundation for designing agents that are uncertainty-aware, strategically interactive, and aligned with real-world user behavior.

1 INTRODUCTION

Language agents have demonstrated remarkable potential for information retrieval in the digital world (Mialon et al., 2023; Chen et al., 2025a; Wei et al., 2025; Zheng et al., 2025). Search agents (Zheng et al., 2025; Li et al., 2025; Wu et al., 2025) can handle complex user queries by actively decomposing them and performing search and browse actions across the internet to gather information. However, they face a fundamental challenge in real-world deployment: human search behavior is typically iterative rather than comprehensive. Users often begin with ambiguous queries and progressively refine them through interaction, yet current benchmarks assume complete query specification from the outset.

This mismatch poses significant obstacles for practical deployment, as agents that cannot handle ambiguous queries will make incorrect assumptions about user intent, pursuing irrelevant search paths and wasting resources. Existing benchmarks fall into two categories with distinct limitations: interaction benchmarks (Qian et al., 2024; Yao et al., 2024; Luo et al., 2025) focus primarily on general conversational settings rather than goal-oriented search tasks, while search benchmarks (Mialon et al., 2023; Wei et al., 2025; Zhou et al., 2025) excel at complex reasoning but consistently assume users can articulate their information needs precisely. This creates a significant evaluation gap: current benchmarks cannot assess agents’ ability to handle the common scenario where users begin with incomplete information needs and must iteratively refine their queries through strategic collaboration with the agent.

Constructing benchmarks for ambiguous query handling presents significant challenges, as queries must appear reasonable yet lack sufficient information for accurate resolution. User ambiguity is particularly pronounced when dealing with similar concepts that share overlapping attributes. Inspired by this observation, we design a construction strategy that systematically pairs an obscure

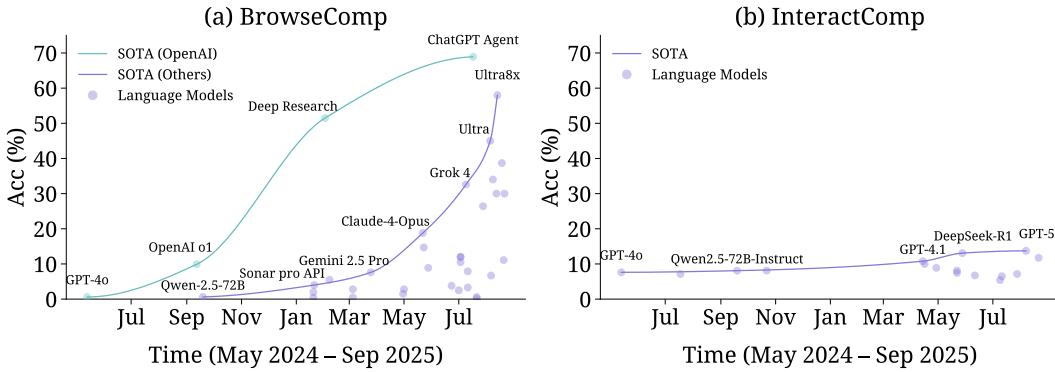


Figure 1: Evolution of different search agent capabilities over time. (a) BrowseComp demonstrates rapid progress on well-specified queries requiring no interaction. (b) INTERACTCOMP reveals stagnation in handling ambiguous queries requiring strategic interaction.

target entity with a similar popular entity, crafting questions using only their shared attributes while withholding distinctive information. This methodology reveals systematic overconfidence in language models by creating scenarios where direct answering fails and strategic interaction becomes necessary.

To address this evaluation gap, we introduce INTERACTCOMP, a benchmark specifically designed to test search agents' ability to handle ambiguous queries through strategic interaction. INTERACTCOMP contains 210 expert-curated questions spanning 9 domains, each following this construction paradigm. Each dataset instance contains an ambiguous question, contextual information for disambiguation, the correct answer, along with domain and identifier metadata.

We evaluate 17 models using the ReAct framework across three action spaces: direct answering, search-augmented responses, and full interaction capabilities. Results reveal profound limitations: even GPT-5 achieves only 13.73% accuracy, while most models struggle to reach double-digit performance. The results expose systematic overconfidence as the primary bottleneck. Models consistently underutilize interaction opportunities, GPT-4o uses ask actions in merely 9.26% of rounds, while GLM-4.5 nearly never asks (0.25% rate). Forced interaction experiments confirm this: when compelled to gather information, models show dramatic improvements, validating that strategic interaction is essential. Ablation studies establish performance ceilings: with complete context, OpenAI o3 reaches 71.50% and GPT-5 achieves 67.88%. However, in direct answering mode, the same models achieve only 5.18% and 7.62% respectively, highlighting the fundamental necessity of strategic information gathering for ambiguous queries.

Our contributions are threefold: (1) INTERACTCOMP, an easy-to-use and easy-to-verify benchmark designed to address models' reluctance to engage in strategic interaction when facing ambiguous queries, (2) systematic evaluation of 17 models revealing widespread overconfidence that prevents effective information gathering, and (3) longitudinal analysis demonstrating that while traditional search capabilities have improved significantly, interaction abilities have remained stagnant across all evaluated models.

2 RELATED WORK

Deep Search Benchmarks and Agents. As large language models become increasingly capable of using external tools, the information retrieval abilities of current-stage Agents have shown remarkable potential. Recent research has focused on evaluating their capacity for retrieving and reasoning about real-world information. To further enhance these retrieval and reasoning capabilities, while also mitigating the issues of timeliness and hallucination in agents, the Search Agent has gradually become a core branch of agent research.

A Search Agent enables a model to proactively call external search tools during its reasoning process, thereby constructing a closed loop that integrates external retrieval with internal reasoning and continuously introduces external facts for cross-verification to constantly self-correct and progress.

108 sively optimize its reasoning path. To systematically evaluate this, the academic community has
 109 proposed a series of complex web search benchmarks.
 110

111 The BrowseComp([Wei et al., 2025](#)) benchmark focuses on evaluating a web browsing agent’s ability
 112 to navigate, find, and integrate distributed information across multiple websites, and has spawned a
 113 specialized Chinese version, BrowseComp-ZH([Zhou et al., 2025](#)), as well as an enhanced version,
 114 BrowseComp-Plus([Chen et al., 2025b](#)), which introduces more difficult tasks. At the same time,
 115 GAIA evaluates a general-purpose AI assistant’s ability to solve multi-step reasoning problems us-
 116 ing various tools in simulated real-world scenarios. Meanwhile, WebWatcher([Geng et al., 2025](#))
 117 introduces a multimodal domain, requiring the agent to combine and understand both text and im-
 118 age information on a webpage to successfully complete a task, expanding the boundaries of research
 119 from different dimensions.

120 To tackle these benchmarks, a series of representative Search Agent works have subsequently been
 121 proposed. Search-R1([Jin et al., 2025](#)), through reinforcement learning, enables an LLM to au-
 122 tonomously generate multiple search query results during step-by-step reasoning and interactively
 123 verify them with real-time retrieval results, significantly enhancing the model’s adaptability. Build-
 124 ing on this, R1-Searcher([Song et al., 2025](#))[song2025r1](#) further strengthens the paradigm of learning
 125 to call external search tools and complete evidence alignment spontaneously in interaction based
 solely on task rewards, without any human-supervised priors.

126 Furthermore, WebSailor([Li et al., 2025](#)) focuses on high-uncertainty tasks, proposing a framework
 127 based on task difficulty construction and agentic RL optimization to improve the model’s perfor-
 128 mance in long-range planning and open search spaces. Meanwhile, WebDancer([Wu et al., 2025](#)),
 129 using ReAct as its foundational action framework, implements cold-start supervised fine-tuning
 130 through web browsing data and trajectory sampling, combined with reinforcement learning for gen-
 131 eralization optimization, significantly improving the model’s interaction and search capabilities in
 132 real web environments.

133 However, existing Search Agent research has its limitations: it generally assumes that the user’s
 134 initial query is clear and unambiguous, which is disconnected from real-world scenarios where users
 135 often pose vague or incomplete questions.

136 **Interaction Benchmarks and Agents.** To address scenarios involving ambiguous or incomplete
 137 questions, another line of research treats interaction as a core capability of agents, aiming to build
 138 more collaborative agents that can understand the inherent ambiguity of real-world user needs.
 139

140 Existing benchmarks such as IN3 and Tau-Bench systematically evaluate an agent’s ability to clarify
 141 ambiguous instructions through dialogue. Additionally, AskToAct explores how an agent can un-
 142 derstand user intent through proactive questioning. Nevertheless, this interactive research also has
 143 its problems: it is often detached from concrete, verifiable task scenarios, which makes the effects
 144 of interaction difficult to quantify and lacks real, dynamic feedback.

145 **InteractComp** posits that searching is an excellent scenario for interaction. Real-world user search
 146 behavior is an iterative process of continuous questioning, clarification, and refinement, which pro-
 147 vides a natural context for interaction. More importantly, the search task itself is highly refinable;
 148 the success of a search and the relevance of the returned results can provide a very significant re-
 149 ward signal for an agent’s interaction strategy. This type of research, based on real-world feedback,
 150 represents a unique advantage that many other interactive benchmarks do not possess. Therefore,
 151 our work is based on this issue, aiming to solve the gap in existing research by building a unified
 152 interaction and search benchmark.

153 3 THE INTERACTCOMP BENCHMARK

154 The InteractComp dataset was constructed entirely by human annotators with the assistance of both
 155 search tools and language models. While BrowseComp ([Wei et al., 2025](#)) focuses on creating ques-
 156 tions requiring complex search and reasoning, InteractComp aims to construct questions requiring
 157 complex search, interaction, and reasoning. Our core design principle follows “**Easy to verify, Am-
 158 biguous to resolve**”: the final answer can be quickly verified once found, but the initial question
 159 deliberately contains ambiguities that require precise multi-turn interaction to resolve. We designed
 160

162 **Algorithm 1** Data Construction Pipeline

163 **Require:** target A , distractor B
164 1: $F_A \leftarrow$ attributes of A ; $F_B \leftarrow$ attributes of B
165 2: Build ambiguous Q from $F_A \cap F_B$
166 3: Add context C from $F_A \setminus Q$
167 4: Validate (Q, C) :
168 5: **while** not finished **do**
169 6: **if** candidate set too large **or** Q answerable **then**
170 7: refine Q
171 8: **else if** answer not unique **then**
172 9: refine C
173 10: **else if** cross-validation fails **then**
174 11: repair Q **or** C
175 12: **return** finalized instance (Q, C, A)

176
177 a specialized pipeline for this purpose, with data collection and verification processes detailed in
178 Algorithm 1.
179

180 3.1 TASK OVERVIEW

181 Table 1: A task instance from INTERACTCOMP. Tasks in INTERACTCOMP comprise an ambiguous
182 query, the simulated user’s contextual information, and a concise answer phrase.

183 **Question:** Which team-based striking sport features
184 two sides alternating offense and defense, where
185 individuals sequentially hit a high-speed projectile and
186 teammates coordinate to intercept it in the air? Out-
187 comes depend on whether the projectile is intercepted
188 or lands within the valid playing field. Defense relies
189 on wide positioning and collaboration, all offensive
190 players take turns striking, flight speeds often exceed
191 100 mph, protective gear is required due to impact
192 risk, and the sport is governed by long-standing as-
193 sociations or leagues.
194

Context: Struck object is a plastic puck, resembling
an ice hockey puck. Striking method uses a whip-like
swing: the hitter lashes the puck with a long wooden
rod. Defenders wield wooden boards, swinging them
to block the puck in mid-air. Field is a giant fan shape,
about 300 meters long with a 10–12 degree angle. De-
fensive teams deploy 18–20 players spread across the
field to form a defensive line. Scoring is based on dis-
tance and landing point: offensive points depend on
how far the puck travels and whether it touches the
ground.

Answer: *Hornussen*

195
196
197 As shown in Table 1, In INTERACTCOMP, a typical interaction begins with an ambiguous question
198 that could refer to multiple possible entities or concepts. Agents receive the question and must deter-
199 mine when the question lacks sufficient information, strategically interact by asking yes/no questions
200 to gather disambiguating details, and then provide the correct answer. Each agent operates with three
201 available actions: search to retrieve web information, interact to pose clarification questions to the
202 human responder, and answer to provide the final response. The human responder, simulated in our
203 evaluation, can only reply with “yes,” “no,” or “I don’t know” only based on the information from
204 context to maintain controlled interaction conditions. The agent and responder settings detailed in
205 Appendix A.2 and Appendix A.3
206

207 3.2 DATA CONSTRUCTION AND VERIFICATION

208 Our approach draws inspiration from BrowseComp’s reverse construction strategy (Wei et al., 2025),
209 but fundamentally shifts focus from search complexity to ambiguity resolution. The key insight
210 is that genuine ambiguity arises most naturally when similar entities share overlapping attributes,
211 making it difficult to distinguish the intended target without additional context. This observation
212 leads us to design a systematic target-distractor methodology: we deliberately select an obscure
213 target entity A alongside a popular distractor entity B that shares sufficient common characteristics,
214 then craft questions using only their shared attributes while withholding distinctive information that
215 would enable unique identification.

216 3.2.1 DATASET CONSTRUCTION
217

218 We employ an entity-pairing approach: annotators start with a target answer, identify a similar
219 distractor entity, then craft ambiguous questions using only their shared attributes while reserving
220 distinctive attributes as contextual information.

221 *“You need to find a pair of entities that are similar but differ in popularity. Use their shared
222 attributes to construct an ambiguous question, and reserve the remaining distinctive attributes to
223 form the context.”*
224

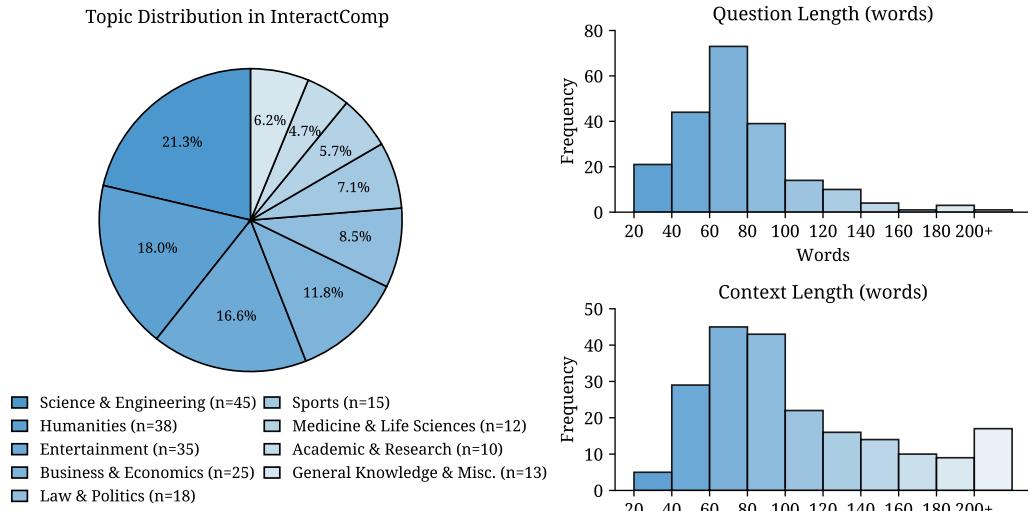
225 Expert annotators begin with entity selection, choosing target-distractor pairs with overlapping char-
226 acteristics. They categorize attributes into shared (common to both entities) and distinctive (unique
227 to the target), then use only a subset of shared attributes to create questions that naturally admit mul-
228 tiple plausible candidates. The remaining attributes become contextual information that provides
229 disambiguation cues without directly revealing the answer, ensuring the complete question-context
230 pair uniquely identifies the target while the question alone remains genuinely ambiguous.

231 3.2.2 DATA VERIFICATION
232

233 We implement a **two-stage quality control protocol** focusing on completeness and interaction ne-
234 cessity.
235

236 **Stage 1: Completeness Verification.** Independent annotators validate that (1) target answers pos-
237 sess all described attributes, (2) question-context combinations admit only one valid answer, and (3)
238 instances with alternative answers are discarded.

239 **Stage 2: Interaction Necessity Validation.** We ensure questions require strategic interaction by (1)
240 verifying they cannot be resolved through direct search in the first five Google pages, and (2) auto-
241 mated testing with three models (GPT-5, GPT-5-mini, Claude-4-Sonnet) in 5-round trials. Questions
242 successfully answered by two or more models are flagged as insufficiently ambiguous and enhanced.

243 3.3 DATA STATISTICS
244

264 Figure 2: Topic distribution and question/context length statistics in INTERACTCOMP.
265

266 In this section, we present statistics on the topic distribution, question and context length distribution
267 of our curated INTERACTCOMP dataset.
268

269 **Topic distribution.** Figure 2 presents the distribution of samples across 9 topic domains in the
INTERACTCOMP dataset. The most represented categories include Science & Engineering (21.3%),

270 Humanities (18.0%), and Entertainment (16.6%). The dataset also features Business & Economics
 271 (11.8%), Law & Politics (8.5%), and Sports (7.1%). Conversely, domains like Medicine & Life
 272 Science (5.7%), Academic & Research (4.7%), and General Knowledge & Misc. (6.2%) have fewer
 273 samples.

274 **Question and Context Length distribution.** Figure 2 illustrates the distribution of question and
 275 context lengths in the INTERACTCOMP dataset. Question length predominantly ranges between
 276 40 to 80 words, with the majority falling within this interval. Context length shows a broader
 277 distribution, typically spanning from 40 to over 200 words, with peak frequency in the 60-100 word
 278 range. These distributions demonstrate that questions are concise yet informative, while contexts
 279 provide comprehensive disambiguation information.

280 **Language distribution.** The INTERACTCOMP dataset comprises bilingual instances with English
 281 accounting for 139 samples (66.19%) and Chinese contributing 71 samples (33.81%), enabling eval-
 282 uation of interaction capabilities across different linguistic contexts.

284 4 EXPERIMENTS

285 4.1 EXPERIMENTAL SETUP

288 To systematically evaluate agent capabilities across different interaction paradigms, we design a
 289 controlled experimental framework that isolates and measures the incremental contribution of core
 290 agent capabilities: knowledge recall, information retrieval, and interactive clarification.

292 **Agent Architecture:** We employ the ReAct framework (Yao et al., 2023) as our base architec-
 293 ture, implementing three complementary configurations: (1) *Answer-only*: direct response genera-
 294 tion testing pure knowledge recall, (2) *Answer+Search*: incorporating web search for informa-
 295 tion retrieval, and (3) *Answer+Search+Interact*: adding interactive clarification through responder
 296 queries. This design enables measurement of capability increments while maintaining architectural
 297 consistency. For ablation studies, we implement a Force structure requiring minimum interaction
 298 thresholds before answer generation. The settings detailed in Appendix A.2

299 **Models:** We evaluate across diverse model families including proprietary models (GPT-4o-mini,
 300 GPT-4o, GPT-4.1, GPT-5, OpenAI o3, Grok-4, Doubao-1.6, Claude-Sonnet-4, Claude-Opus-4,
 301 Claude-3.5-Sonnet) and open-weight models (GLM-4.5, Kimi-K2, Deepseek-V3.1, Deepseek-R1,
 302 Qwen3-235B-A22B, Qwen2.5). Following established benchmarking practices, we standardize pa-
 303 rameters where supported: temperature=0.6, top_p=0.95. We employ GPT-4o (temperature=0.0) as
 304 our grader, providing ground truth, agent response, and question context for binary correctness
 305 judgments. We implement a controlled responder simulation using GPT-4o (temperature=1.0) that
 306 provides structured feedback when agents employ the *interact* action.

307 **Metrics:** We evaluate agents across five key dimensions: (1) **Interaction Metrics**: Round (aver-
 308 age number of conversation turns) and percentage of rounds where interact actions are used (IR)
 309 measuring behavioral patterns and action utilization; (2) **Performance Metrics**: Accuracy (Acc.)
 310 measuring the percentage of correctly answered queries, and Calibration Error (C.E.) measuring
 311 confidence calibration using 5 confidence bins; and (3) **Cost**: measured in USD reflecting computa-
 312 tional resources usage for practical deployment considerations.

313 4.2 MAIN RESULTS

315 Table 2 presents comprehensive results across 17 models, revealing striking patterns in how different
 316 architectures handle ambiguous queries. The results expose fundamental limitations even in state-
 317 of-the-art systems, with the highest-performing model (GPT-5) achieving only 13.73% accuracy,
 318 demonstrating the benchmark’s challenging nature.

319 **Interaction Behavior Reveals Model Personalities.** Models exhibit dramatically different inter-
 320 action strategies, creating distinct behavioral profiles. GPT-4o-mini stands out as an extreme case:
 321 it asks questions in 73.95% of available rounds, by far the highest interaction rate, yet achieves
 322 only 7.14% accuracy, close to GLM-4.5 which barely interacts (0.25% IR). This suggests that ex-
 323cessive questioning without strategic purpose can be counterproductive. Conversely, DeepSeek-R1
 324 demonstrates more balanced behavior with 44.72% IR yielding 13.08% accuracy, the highest among

324 Table 2: Performance comparison of 17 large language models on the INTERACTCOMP dataset.
 325 The table reports both interaction behaviors like average number of conversation turns(Round) and
 326 percentage of rounds where interact actions (IR) are used; final performance like accuracy (Acc.
 327 with std in parentheses) and calibration error (C.E.), along with the estimated total cost. Models are
 328 grouped into *open-weight* and *closed-weight* categories for clarity. Best accuracy is highlighted in
 329 bold.

331 Model	332 Interaction	333 Performance		334 Cost(\$)
335	336 Round	337 IR	338 Acc.	339 C.E.
<i>Open Weights Models</i>				
340 GLM-4.5 (Zhipu AI, 2025)	6.91	0.25	7.14 (± 0.48)	80.64
341 Kimi-K2 (Moonshot AI, 2025)	4.95	5.98	6.51 (± 1.53)	87.10
342 Deepseek-V3.1 (DeepSeek, 2025a)	7.26	11.60	11.74 (± 2.71)	74.79
343 Deepseek-R1 (DeepSeek, 2025b)	6.58	44.72	13.08 (± 0.29)	77.00
344 Qwen2.5-72B-Instruct (Yang et al., 2024)	7.45	31.88	8.08 (± 0.73)	77.57
345 Qwen3-235B-A22B (Qwen Team, 2025)	5.64	27.75	8.89 (± 0.72)	82.63
<i>Proprietary Models</i>				
346 GPT-4o-mini (OpenAI, 2024b)	4.16	73.95	7.13 (± 0.42)	37.44
347 GPT-4o (OpenAI, 2024a)	5.65	9.26	7.62 (± 0.79)	79.50
348 GPT-4.1 (OpenAI, 2025a)	5.49	34.02	10.79 (± 1.22)	82.11
349 OpenAI o3 (OpenAI, 2025c)	2.96	15.03	10.00 (± 1.44)	41.96
350 GPT-5 (OpenAI, 2025b)	4.33	30.87	13.73 (± 2.55)	68.67
Grok-4 (xAI, 2025)	4.92	4.55	8.40 (± 1.24)	69.00
Doubaot-1.6 (ByteDance, 2025)	3.08	10.60	6.73 (± 0.97)	84.35
Claude-3.5-Sonnet (Anthropic, 2024)	5.63	27.57	8.10 (± 1.91)	80.04
Claude-Sonnet-4 (Anthropic, 2025b)	6.90	10.76	7.46 (± 1.37)	79.62
Claude-Opus-4 (Anthropic, 2025a)	8.55	10.86	8.10 (± 0.96)	78.42
				115.47

353 open-weight models, indicating that willingness to interact can translate to better performance when
 354 done strategically.

355 **Calibration Quality Correlates with Interaction Patterns.** A remarkable finding is that models
 356 with higher interaction rates often exhibit superior calibration. GPT-4o-mini’s aggressive question-
 357 ing strategy, while not improving accuracy, results in dramatically better calibration (37.44 CE)
 358 compared to low-interaction models like Doubaot-1.6 (84.35 CE). This pattern suggests that interac-
 359 tion, even when not optimally strategic, helps models develop more realistic confidence assessments
 360 about their knowledge limitations.

361 **Open-Weight vs. Proprietary Model Divide.** The performance gap between open-weight and pro-
 362 prietary models is stark and consistent. All open-weight models struggle with interaction rates below
 363 45%, with most falling under 32%. GLM-4.5, Kimi-K2, and Qwen3-235B-A22B show particularly
 364 conservative interaction behavior (0.25%, 5.98%, and 27.75% respectively), suggesting that open-
 365 weight models may have been trained to minimize uncertain responses rather than seek clarifica-
 366 tion. In contrast, proprietary models like GPT-4.1 and GPT-5 show more balanced interaction patterns
 367 (34.02% and 30.87%), though even they fall short of optimal information-gathering behavior.

368 These findings collectively demonstrate that current language models, regardless of scale or sophisti-
 369 cation, struggle fundamentally with strategic information gathering, often exhibiting either excessive
 370 conservatism or ineffective over-questioning when faced with genuine ambiguity.

372 4.3 ABLATION ANALYSIS

374 To validate that our benchmark specifically tests interaction abilities rather than general reasoning,
 375 we conduct ablation studies across three evaluation modes using 8 representative models.

376 Table 3 reveals dramatic performance gaps confirming interaction as the critical missing compo-
 377 nent. **Answer-only mode exposes fundamental limitations:** OpenAI o3 achieves only 5.18%,

378 GPT-5 reaches 7.62%, with catastrophic overconfidence (60.94-93.17% calibration errors). **Search**
 379 **augmentation provides minimal benefits**: o3 increases to just 8.81% and GPT-5 to 9.52%, demon-
 380 strating that information retrieval alone cannot resolve ambiguity. **Complete contextual informa-**
 381 **tion reveals the performance ceiling**: o3 soars to 71.50% (13.8x increase), GPT-5 reaches 67.88%,
 382 and calibration errors plummet to 7.44%, confirming underlying reasoning capabilities exist but are
 383 inaccessible without proper context.

384 The massive gap between search-only (6.74-9.52%) and with-context (40.93-71.50%) performance
 385 validates our benchmark design: strategic interaction to acquire disambiguating information is the
 386 true bottleneck, not reasoning ability. Models possess the knowledge to answer correctly but fail at
 387 recognizing when and how to seek necessary clarification.

389 Table 3: Ablation study comparing model performance under three evaluation settings: answer-
 390 only (models respond without additional evidence), search-only (responses based solely on retrieved
 391 information), and with-context (responses supported by complete disambiguating context). Results
 392 are reported in terms of accuracy (Acc.) and calibration error (C.E.). The best scores in each column
 393 are highlighted in bold.

Model	answer-only		search-only		with-context	
	Acc.	C.E.	Acc.	C.E.	Acc.	C.E.
GPT-4o	2.38	88.76	7.77	80.52	40.93	47.33
GPT-5	7.62	76.26	9.52	79.14	67.88	21.36
OpenAI o3	5.18	60.94	8.81	52.62	71.50	7.44
GLM-4.5	2.38	84.40	6.74	82.41	64.77	22.37
Kimi-K2	1.43	90.36	7.53	86.87	53.37	40.62
Gemini-2.5-Pro	2.38	93.17	7.25	90.65	69.95	28.60
DeepSeek-V3.1	3.11	85.60	8.29	79.24	65.28	24.17
Claude-Sonnet-4	2.85	87.12	7.25	81.70	59.07	26.31

409 Table 4: Scaling analysis of model performance across different interaction rounds (5, 10, and 20)
 410 on a 50-question subsample. We report the average number of interact rounds (IRound), accuracy
 411 (Acc.), and calibration error (C.E.) for four representative models: GPT-4o-mini, GPT-5, Claude-
 412 Sonnet-4, and Deepseek-V3.1.

Rounds	GPT-4o-mini			GPT-5			Claude-Sonnet-4			Deepseek-V3.1		
	IRound	Acc.	C.E.	IRound	Acc.	C.E.	IRound	Acc.	C.E.	IRound	Acc.	C.E.
5	2.00	4.00	49.50	1.14	14.00	71.50	0.16	6.00	79.90	0.38	10.00	77.00
10	3.62	8.00	47.60	1.76	16.00	71.54	0.70	4.00	80.24	0.74	8.00	80.30
20	2.76	8.00	33.20	1.90	20.00	70.06	0.78	8.00	81.84	1.54	10.00	75.20

4.4 SCALING ANALYSIS

423 The ablation studies revealed that models possess the capabilities to handle ambiguous queries when
 424 given complete context, but fail to gather necessary information through interaction. We investigate
 425 whether providing more interaction opportunities (5, 10, and 20 rounds) encourages information
 426 gathering. As shown in Figure 3(a) and Table 4

427 Results show that **models fail to scale interaction usage with available opportunities**. Despite
 428 tripling round limits, GPT-5 increases interactions from just 1.14 to 1.90, while Claude-Sonnet-4
 429 barely reaches 0.78 interactions per instance. However, models that do interact more achieve better
 430 performance like GPT-5 improves from 14.00% to 20.00% accuracy as interactions increase. This
 431 reveals **systematic overconfidence as the primary bottleneck**: models prematurely conclude they
 have sufficient information despite evidence that continued questioning improves performance.

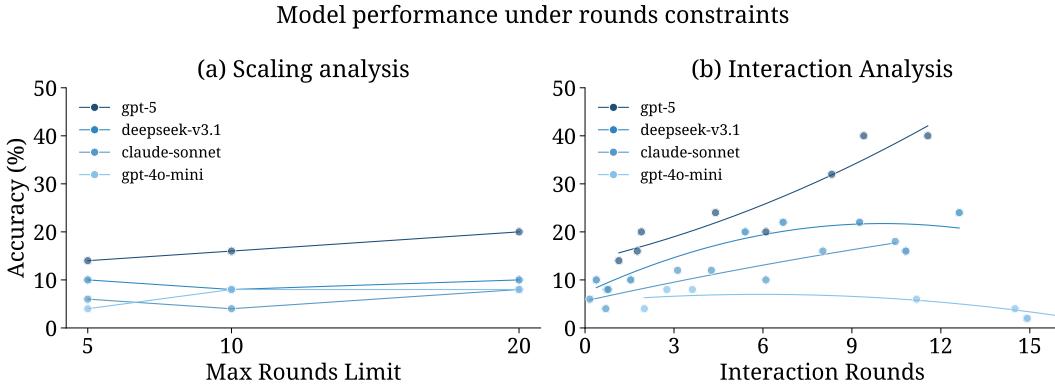


Figure 3: Model performance under different rounds constraints.

4.5 FORCED INTERACTION ANALYSIS

To test whether removing choice unlocks latent capabilities, we implement forced interaction protocols requiring 2-10 interactions before answering as shown in Figure 3(b). Results reveal dramatic model-specific differences: **GPT-5 doubles its accuracy from 20% to 40% when compelled to ask 8 questions**, confirming strong reasoning capabilities hindered by voluntary underuse of interaction. However, not all models benefit, Claude-Sonnet-4 shows modest gains while GPT-4o-mini’s performance actually degrades under forced interaction. This demonstrates that **strategic information acquisition is a distinct capability varying significantly across architectures**, suggesting limitations extend beyond overconfidence to fundamental differences in information-seeking strategies.

4.6 LONGITUDINAL STUDY

Tracking 15 months of model development reveals a concerning divergence: while BrowseComp performance improved seven-fold (10% to 70%), **INTERACTCOMP performance remained stagnant**. Recent models like GPT-5, DeepSeek-R1, and GPT-4.1 cluster around 10-15% accuracy with minimal variation over time. This exposes a fundamental blind spot in AI development priorities: **rapid progress on search-focused tasks coincides with complete neglect of interaction-based problem-solving**. Without explicit focus on interaction capabilities, models advance in reasoning and retrieval while remaining primitive at recognizing ambiguity and gathering clarification still have a critical limitation for practical deployment.

5 CONCLUSION

This paper presented INTERACTCOMP, a benchmark targeting one of the most overlooked capabilities of language agents: resolving ambiguous queries through strategic interaction. Unlike existing datasets that assume well-specified queries, INTERACTCOMP deliberately encodes uncertainty, forcing agents to decide when to search, when to interact, and when to answer.

Our extensive evaluation across 17 models reveals a clear pattern: reasoning and retrieval alone are insufficient, interaction is indispensable, yet current systems consistently underutilize it due to systematic overconfidence. Ablation and forced-interaction studies further show that models already possess the reasoning capacity to succeed—what is missing is the willingness and strategy to acquire disambiguating evidence. The longitudinal analysis highlights a worrying trend: while retrieval benchmarks have driven rapid progress, interaction skills have remained stagnant.

By exposing this gap, INTERACTCOMP serves not only as a diagnostic tool but also as a call to action. Progress toward trustworthy AI assistants will require moving beyond retrieval-centric optimization to methods that cultivate adaptive, uncertainty-aware, and user-aligned interaction strategies. We hope this benchmark provides both the incentive and foundation for that next stage of development.

486 REPRODUCIBILITY STATEMENT
487488 We provide all details necessary to reproduce our benchmark and experiments. The complete IN-
489 TERACTCOMP dataset, including all ambiguous questions, contexts, and annotations, will be re-
490 leased along with construction scripts and validation protocols (see Section 3.2). Our experimental
491 setup is fully described in Section 4.1, covering model selection (17 open-weight and proprietary
492 models), inference settings (temperature, top-p). And evaluation procedures grader configuration
493 is in Appendix A.4, responder simulation is in A.3. Hardware requirements are minimal, as most
494 evaluations rely on API-based models; reproducibility only requires access to the corresponding
495 APIs or checkpoints. To ensure transparency, we will release code for data generation, evaluation,
496 and ablation studies, together with few-shot prompts and configuration files.
497498 ETHICS STATEMENT
499500 We have read and will adhere to the ICLR Code of Ethics and the ICLR Code of Conduct. Our re-
501 search introduces INTERACTCOMP, a benchmark evaluating search agents with ambiguous queries
502 through controlled, simulated interaction protocols. The tasks and supporting materials are derived
503 from public, academic-use benchmarks and curator-reviewed public web content; they contain no
504 PII or sensitive real-world data.505 The study did not involve human subjects or crowd-sourcing that collect personal data, nor scraping
506 of non-public sources; therefore, IRB approval was not required. We acknowledge potential dual-use
507 concerns for autonomous agents; to mitigate these, we confine experiments to benign, closed-world
508 tasks and release code/evaluation artifacts that enable transparent scrutiny without enabling misuse.509 We follow good scholarly practice by fully reporting methods, configurations, and results, and by
510 accurately citing prior work. Authors declare no competing interests and no external sponsorships
511 that could have influenced the research outcomes.
512513 REFERENCES
514515 Anthropic. Claude 3.5 sonnet. <https://www.anthropic.com/news/clause-3-5-sonnet>, 2024.517 Anthropic. Claude opus 4. <https://www.anthropic.com/clause/opus>, 2025a.519 Anthropic. Claude sonnet 4. <https://www.anthropic.com/clause/sonnet>, 2025b.521 ByteDance. Doubao 1.6. https://seed.bytedance.com/en/seed1_6, 2025.523 Kaiyuan Chen, Yixin Ren, Yang Liu, Xiaobo Hu, Haotong Tian, Tianbao Xie, Fangfu Liu, Haoye
524 Zhang, Hongzhang Liu, Yuan Gong, et al. xbench: Tracking agents productivity scaling with
525 profession-aligned real-world evaluations. *arXiv preprint arXiv:2506.13651*, 2025a.526 Zijian Chen, Xueguang Ma, Shengyao Zhuang, Ping Nie, Kai Zou, Andrew Liu, Joshua Green,
527 Kshama Patel, Ruoxi Meng, Mingyi Su, et al. Browsecemp-plus: A more fair and transparent
528 evaluation benchmark of deep-research agent. *arXiv preprint arXiv:2508.06600*, 2025b.529 DeepSeek. Deepseek-chat. <https://huggingface.co/deepseek-ai/DeepSeek-V3.1>, 2025a.532 DeepSeek. DeepSeek-R1. <https://huggingface.co/deepseek-ai/DeepSeek-R1>,
533 2025b.534 Xinyu Geng, Peng Xia, Zhen Zhang, Xinyu Wang, Qiuchen Wang, Ruixue Ding, Chenxi Wang,
535 Jialong Wu, Yida Zhao, Kuan Li, et al. Webwatcher: Breaking new frontiers of vision-language
536 deep research agent. *arXiv preprint arXiv:2508.05748*, 2025.538 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
539 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. *arXiv preprint arXiv:2503.09516*, 2025.

540 Kuan Li, Zhongwang Zhang, Huirong Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
 541 uan Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web
 542 agent. *arXiv preprint arXiv:2507.02592*, 2025.

543 Tianqi Luo, Chuhan Huang, Leixian Shen, Boyan Li, Shuyu Shen, Wei Zeng, Nan Tang, and Yuyu
 544 Luo. nvbench 2.0: Resolving ambiguity in text-to-visualization through stepwise reasoning, 2025.
 545 URL <https://arxiv.org/abs/2503.12880>.

546 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
 547 a benchmark for general ai assistants. In *The Twelfth International Conference on Learning
 548 Representations*, 2023.

549 Moonshot AI. Kimi K2. <https://moonshotai.github.io/Kimi-K2/>, 2025.

550 OpenAI. Hello GPT-4o. <https://openai.com/index/hello-gpt-4o/>, 2024a.

551 OpenAI. GPT-4o mini: Advancing cost-efficient intelligence. <https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/>, 2024b.

552 OpenAI. Introducing GPT-4.1. <https://openai.com/index/gpt-4-1/>, 2025a.

553 OpenAI. Introducing GPT-5. <https://openai.com/index/introducing-gpt-5/>,
 554 2025b.

555 OpenAI. Introducing openai o3 and o4-mini. <https://openai.com/index/introducing-openai-o3-and-o4-mini/>, 2025c.

556 Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng, Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou,
 557 Yankai Lin, Zhiyuan Liu, et al. Tell me more! towards implicit user intention understanding of
 558 language model driven agents. *arXiv preprint arXiv:2402.09205*, 2024.

559 Qwen Team. Qwen3-235B-A22B. <https://arxiv.org/abs/2505.09388>, 2025.

560 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
 561 and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
 562 learning. *arXiv preprint arXiv:2503.05592*, 2025.

563 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 564 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 565 challenging benchmark for browsing agents. *arXiv preprint arXiv:2504.12516*, 2025.

566 Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
 567 Zekun Xi, Gang Fu, Yong Jiang, et al. Webdancer: Towards autonomous information seeking
 568 agency. *arXiv preprint arXiv:2505.22648*, 2025.

569 xAI. Grok 4. <https://x.ai/news/grok-4>, 2025.

570 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 571 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint
 572 arXiv:2412.15115*, 2024.

573 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 574 React: Synergizing reasoning and acting in language models. In *International Conference on
 575 Learning Representations (ICLR)*, 2023.

576 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
 577 tool-agent-user interaction in real-world domains, 2024. URL <https://arxiv.org/abs/2406.12045>.

578 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 579 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
 580 ments. *arXiv preprint arXiv:2504.03160*, 2025.

581 Zhipu AI. Glm-4.5. <https://z.ai/blog/glm-4.5>, 2025.

582 Peilin Zhou, Bruce Leon, Xiang Ying, Can Zhang, Yifan Shao, Qichen Ye, Dading Chong, Zhiling
 583 Jin, Chenxuan Xie, Meng Cao, et al. Browsecmp-zh: Benchmarking web browsing ability of
 584 large language models in chinese. *arXiv preprint arXiv:2504.19314*, 2025.

594 **A APPENDIX**
595596 **A.1 THE USE OF LARGE LANGUAGE MODELS(LLMs)**
597598 We used Large Language Models (LLMs), specifically Gemini 2.5 Pro, Claude Sonnet 4, and GPT-5,
599 solely as assistive tools for grammar correction and minor stylistic edits to improve the manuscript's
600 clarity and logical flow. The LLMs did not generate, modify, or determine any scientific ideas, meth-
601 ods, experiments, analyses, results, or conclusions. All technical content was written and verified
602 by the authors.603 To preserve anonymity and confidentiality, no identifying information or nonpublic materials were
604 shared with any LLM service. Text provided for editing was de-identified. All LLM suggestions
605 were reviewed by at least one author before incorporation, and any unverifiable suggestions were
606 discarded. The authors take full responsibility for the content of this paper.607
608 **A.2 AGENT IMPLEMENTATION**
609610 Our agent implementation is built upon the ReAct framework (Yao et al., 2023), which combines
611 reasoning and acting in a unified architecture. We implement three distinct agent configurations to
612 systematically evaluate different capability combinations:613 Configuration 1: Answer-only: The agent directly generates responses using its internal knowledge
614 without external information gathering. This configuration serves as a baseline to measure pure
615 knowledge recall capabilities on ambiguous queries.616 Configuration 2: Answer+Search: The agent can perform web search actions to retrieve external
617 information before generating answers. Available actions include:618

- 619 • `search(query)`: Performs web search with the specified query
- 620 • `answer(response, confidence)`: Provides final answer with confidence score

621 Configuration 3: Answer+Search+Ask: The full interaction-enabled agent that can additionally re-
622 quest clarification from users. This configuration adds:623

- 624 • `ask(question)`: Poses yes/no questions to gather missing information

625 **Action Space Design** - Each agent operates with a maximum of 10 rounds, where each round
626 allows exactly one action. The agent maintains an internal memory of previous actions and observa-
627 tions. For forced interaction experiments, we implement a constraint requiring minimum interaction
628 thresholds before answer generation is permitted.

629 The complete system prompts and interaction protocols are detailed below.

632 Prompt
<pre> 633 634 SYSTEM_PROMPT = """ 635 ## Goal 636 You are an intelligent agent, designed to answer user's question. 637 In each round, you can execute one action, and you can get the action's result as 638 ↳ observation. 639 You should think step by step, and output the action you want to execute. 640 ### Evidence first 641 Before answering, you MUST: 642 1. Identify ALL missing information dimensions (time, scope, context, conditions etc.) 643 2. Systematically gather evidence for each dimension 644 3. Verify key assumptions through multiple sources/questions 645 4. Only answer when you can confidently justify each part of your response 646 **Critical**: Most questions have hidden complexities. Your initial understanding is 647 ↳ likely incomplete. 648 ### Using ask 649 When the ask action is available, you may pose closed-ended questions to fill gaps such 650 ↳ as time, scope, conditions, relationships, or quantities. </pre>

```
448
449 - Do **not** ask the user to confirm a complete candidate answer or entity name.
450 ↳ request neutral attributes or other missing evidence instead.
451
452 **Important: When you choose the ask action, you can only ask closed-ended, yes/no
453 ↳ questions. The user will only respond with "yes", "no", or "I don't know".**
454
455 ## Available actions:
456 {actions}
457
458 ## Output Format
459 When you output the action,
460 you should output the action name and parameters in the json format, and only one
461 ↳ action.
462 Such as,
463 ```json
464 {{{
465   "action": "",
466   "params": {{
467     "<param_name>": "<param_value>"  

468   }}  

469 }}  

470 `````
471 Before output, you should think step by step.
472
473 ## Question
474 {question}
475 """
476
477 ACT_PROMPT = """
478 ## Memory
479 {memory}
480
481 ## Observation
482 Last action: {last_action}
483 Observation: {last_observation}
484
485 ## Question
486 {question}
487
488 ## Action
489 You should output the action you want to execute.
490 Output your next action in JSON format, e.g.
491 ```json
492 {{{
493   "action": "",
494   "params": {{
495     "<param_name>": "<param_value>"  

496   }}  

497 }}  

498 `````
499
500 ## ROUNDS
501 Current round: {round_info}
502 You have only one opportunity to provide your final answer.
503 Use your remaining rounds wisely to collect evidence and test your theories before
504 ↳ committing to an answer.
505 The above shows your remaining action rounds.
506 """
507
508
509 FINAL_ROUND_ACT_PROMPT = """
510
511 Given the question and information you have gathered, output the final answer.
512
513 ## Round
514 {round_info}
515
516 ## Memory
517 {memory}
518
519 ## Question
520 {question}
521
522 ## Action
523 You should output the answer action, you can think step by step before you output the
524 ↳ answer.
525 Return the final answer action in JSON, for example:
526 ```json
527 {{
```

```

702     "action": "answer",
703     "params": {
704         "answer": "<param_value>",
705         "confidence": "<param_value>"
706     }
707     ...
708
709 """

```

711 A.3 RESPONDER SIMULATION

712
713 We implement a controlled responder simulation using GPT-4o (temperature=1.0) that provides
714 structured feedback when agents employ the *ask* action. Upon receiving agent queries, the responder
715 evaluates questions against available context and responds with one of three standardized options:
716 "yes", "no", or "I don't know". The responder state s_r consists of the given context and interaction
717 history, with transitions $T_r : (s_r, q_{agent}) \rightarrow o_r \in \{\text{yes, no, unknown}\}$ conditioned on context-
718 question alignment. While maintaining response diversity through LLM generation, the constrained
719 output format ensures evaluation consistency.

720 The complete responder prompts are detailed below.

Prompt
<pre> 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 </pre> <p>RESPONDER_PROMPT = """ You are a specialized Q&A agent. Think step by step before you output the answer. Rules: - Reply with exactly one of: yes, no, or i don't know. - Treat the context as the entire truth. - Use only the provided CONTEXT to judge the yes/no question. - Answer yes only if the context clearly states the proposition is correct. - Answer no if the context contradicts the proposition (for example it states an ↳ incompatible attribute). - If the context neither confirms nor denies it, answer i don't know. - Do not rely on outside knowledge, analogies, or multi-hop guesses. Compare the ↳ relevant words directly. CONTEXT {context} QUESTION {question} Output: yes no i don't know """ </p>

741 A.4 EVALUATION PROTOCOL

742
743 We validate simulation reliability through repeated sampling across identical context-question pairs
744 across $k = 3$ trials, indicating stable behavior despite the stochastic generation process. We employ
745 GPT-4O (temperature = 0.0) as our grader, providing ground truth, agent response, and ques-
746 tion context for binary correctness judgments. Grader reliability is validated through spot-checking
747 against human evaluation.

748 The complete responder prompts are detailed below.

Prompt
<pre> 750 751 752 753 754 755 </pre> <p>GRADING_PROMPT = """ \nYou are an impartial grader. Question: {question} Predicted Answer: {predicted_answer} </p>

```

756     Correct Answer: {correct_answer}
757
758     CRITICAL GRADING INSTRUCTIONS:
759     1. The predicted answer must match the CORRECT ANSWER
760     2. Look for EXACT name matches or clear references to the same entity
761     3. Consider different languages, translations, or alternative names as potential
    ↪   matches
762     4. Be strict: partial matches or vague similarities should be 'no'
763
764     IMPORTANT: Give ONLY one score:
765     - 'yes': The predicted answer correctly identifies the same entity as the correct
    ↪   answer
    - 'no': The predicted answer is wrong, matches the popular answer, or refers to a
    ↪   different entity
766
767     Respond with ONLY 'yes' or 'no', nothing else. """
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

```

810
811 A.5 DATA CONSTRUCTION PIPELINE812
813 Table A1: Data Construction Pipeline: Step-by-Step Example

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 Step	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 Component	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 Example Content
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 Step 1	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 Target Entity A Distractor B	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 <i>Hornussen</i> (Swiss team striking sport) <i>Baseball</i> (globally popular team bat-and-ball sport)
	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 Step 2	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 Shared Attributes Distinctive Attributes
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 Step 3	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 Ambiguous Question Q	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 “Which team-based striking sport features two sides alternating offense and defense, where individuals sequentially hit a high-speed projectile and teammates coordinate to intercept it in the air? Outcomes depend on whether the projectile is intercepted or lands within the valid playing field. Defense relies on wide positioning and collaboration, all offensive players take turns striking, flight speeds often exceed 100 mph, protective gear is required due to impact risk, and the sport is governed by long-standing associations or leagues.”
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 Step 4	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 Contextual Information	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 – Struck object is a plastic puck, resembling an ice hockey puck. – Striking method uses a whip-like swing with a long wooden rod. – Defenders use wooden boards to block the puck in mid-air. – Field: fan shape, ~300m long, 10–12° angle. – Defensive line: 18–20 players. – Scoring: distance/landing-based.
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 Step 5	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 Reasoning Path	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 Q gives a plausible candidate set (e.g., Baseball vs Hornussen). Adding context clarifies unique Hornussen features (puck, whip swing, fan-shaped field, defensive boards), leading to the unique answer = Hornussen.

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863