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ABSTRACT

Periodic patterns are a fundamental characteristic of time series in natural world,
with significant implications for a range of disciplines, from economics to cloud
systems. However, the current literature on periodicity detection faces two key
challenges: limited robustness in real-world scenarios and a lack of memory to
leverage previously observed time series to accelerate and improve inference on
new data. To overcome these obstacles, this paper presents AmortizedPeriod, an
innovative approach to periodicity identification based on amortized variational in-
ference that integrates Bayesian statistics and deep learning. Through the Bayesian
generative process, our method flexibly captures the dependencies of the periods,
trends, noise, and outliers in time series, while also considering missing data and
irregular periods in a robust manner. In addition, it utilizes the evidence lower
bound of the log-likelihood of the observed time series as the loss function to
train a deep attention inference network, facilitating knowledge transfer from the
seen time series (and their labels) to unseen ones. Experimental results show that
AmortizedPeriod surpasses the state-of-the-art methods by a large margin of 28.5%
on average in terms of micro F1-score, with at least 55% less inference time.1

1 INTRODUCTION

Periodic patterns are omnipresent in this physical world, since the cyclic movements of the earth and
the moon give rise to recurring events, and further influence the behavior of life on this planet. Identi-
fying periods in real-world time series and investigating their causes shed light upon understanding
how the world works, and further aid in more informed and accurate modeling and decision-making.
Indeed, periodicity detection plays a pivotal role in time series-related tasks, such as classifica-
tion (Orsenigo & Vercellis, 2010), clustering (Aghabozorgi et al., 2015), decomposition (Wen et al.,
2019; 2020), anomaly detection (Zhao et al., 2019), and forecasting (Oreshkin et al., 2019; Liu et al.,
2022; Ni et al., 2023). It thereby finds applications and permeates the literature in various domains,
such as economy and finance (Nerlove et al., 2014), physics and earth science (Kong et al., 2020),
biology and neuroscience (Jing et al., 2022), database and cloud operations (Rzadca et al., 2020), etc.

The large body of literature on periodicity detection can be broadly divided into four groups. The first
group identifies periods in the time domain via autocorrelation or partial autocorrelation (Elfeky et al.,
2004; Breitenbach et al., 2023), whereas the second exploits discrete Fourier transform (DFT) and
finds periods in the frequency domain (Vlachos et al., 2004; Bauer et al., 2020). The third one further
combines the time and frequency methods and allows them to complement each other (Vlachos et al.,
2005; Wen et al., 2021). However, both autocorrelation and DFT are not originally intended for
periodicity detection, and so their use requires arduous preprocessing and postprocessing steps to
alleviate their deficiencies. Instead, the fourth group (Tenneti & Vaidyanathan, 2015; 2016) projects
the time series onto the orthogonal Ramanujan subspaces (Vaidyanathan, 2014a;b), each representing
an exact period, and detects periods by identifying projections with significant energy. Despite the
progress, the practical utility of the above approaches is still hindered by two limitations:

Limited robustness: In real time series, multiple periodic components are often interlaced with
each other, and are further contaminated with trend, noise, outliers, and incomplete observations.
Moreover, there may exist irregular periods, such as the monthly pattern. Note that the number of
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days often differs in consecutive months and monthly periods are crucial for real applications such as
resource scheduling. It is thus imperative to design a periodicity detection approach that is robust to 1)
multiple and 2) possibly irregular periods as well as 3) trend, 4) noise, 5) outliers, and 6) missing data.
Unfortunately, the existing approaches only address some of these requirements (cf. Appendix B). In
particular, none of them explicitly consider irregular periods. Additionally, they typically tackle the
desiderata sequentially in a pipeline, and may suffer from the issue of error accumulation.

Memorylessness: In the aforementioned approaches, each time series is processed in isolation and the
inferences are never reused. More specifically, even if the same time series has been analyzed before,
analyzing it in the future still requires the same amount of computational cost. Consequently, these
methods may incur a daunting computational burden when tackling the huge number of time series
that can be found in real applications nowadays (Rzadca et al., 2020; Wu et al., 2023). This problem
is exacerbated for some methods in the third and the fourth group, as they are more computationally
intensive than those in the first two groups. Furthermore, memorylessness indicates that labeling
information from the past cannot help to improve the performance of these algorithms in the future,
even though human feedback can be available every now and then.

To lift these limitations, we propose AmortizedPeriod, an amortized variational inference based
method for periodicity detection. Amortized inference can be viewed as a marriage of Bayesian
statistics and deep learning (Zhang et al., 2018; Ganguly et al., 2022). The Bayesian paradigm offers
a flexible way to jointly model the period, trend, noise, and outlier components and accounts for
the uncertainties resulting from these components as well as the missing data. The deep learning-
based inference network further maps the observed time series to the parameters of the variational
periodicity distributions. By maximizing the evidence lower bound (ELBO) of the log-likelihood of
the observed time series in a self-supervised manner, the resulting inference model learns to mimic the
effect of probabilistic inference, such that on testing data, we can enjoy the benefits of probabilistic
modeling without paying a further cost for inference from scratch. Moreover, the labeling information
can be incorporated to train the inference model in a semi-supervised fashion. Viewed another way,
the periodicity detection problem can be recast as a multi-class classification problem. The inference
model is the classifier and is trained using the proposed self/semi-supervised framework. In a nutshell,
the Bayesian aspect of AmortizedPeriod addresses the challenge of limited robustness, while the deep
learning part tackles the issue of memorylessness. Our contribution is threefold:

• We propose a novel method for periodicity detection named AmortizedPeriod. To the best of our
knowledge, AmortizedPeriod is the first model that can perform period learning in the presence of
multiple and irregular periods as well as trends, noise, outliers, and missing data, whereas existing
methods only address some of these problems (see Appendix B).

• We propose an inference network based on cross-channel attention and derive the ELBO as the
loss to train this network in a self/semi-supervised manner. As a result, AmortizedPeriod is also a
fresh attempt to leverage the knowledge from the previously observed time series (and their labels)
to accelerate and improve the inference on new data.

• We conduct extensive experiments on four datasets, and find that AmortizedPeriod outperforms
the state-of-the-art methods by 28.5% on average with above 55% less amount of inference time.
Moreover, a relatively small fraction of labels (e.g., 15%) can significantly boost its performance.

2 RELATED WORKS

As mentioned in the introduction, existing methods for periodicity detection can be categorized into
four groups. The first group resorts to the (partial) autocorrelation function (ACF) in the time domain
that finds the local maxima of the similarity between the shifted and unshifted version of a time
series (Elfeky et al., 2004; Wang et al., 2005; 2006; Toller & Kern, 2017; Breitenbach et al., 2023).
However, this group tends to overlook smaller periods while emphasizing larger ones (Vlachos et al.,
2005). They also struggle with multiple periods. In this case, the least common multiple (LCM) of
the hidden periods represents the actual period, which can be significantly greater than the data length
and thus may not appear in the local maxima of the ACF at all. Additionally, the effectiveness of
these methods can be hampered by noise and outliers in the time series.

The second group of methods instead utilizes the DFT and detects periods based on the periodogram
in the frequency domain (Vlachos et al., 2004; Tominaga, 2010; Li et al., 2010; Drutsa et al., 2017;
Bauer et al., 2020). Nevertheless, the accuracy of these methods diminishes for larger periods, in
contrast to the ACF (Vlachos et al., 2005). Furthermore, the periodogram aims to provide the Fourier
terms that best reconstruct a time series when added together, and therefore may produce numerous
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false periods when trying to approximate the shape of a non-sinusoidal time series. Finally, similar to
the first group, these methods are sensitive to trend changes and outliers.

The third group of methods intends to borrow the strength of both time and frequency methods (Vla-
chos et al., 2005; Toller et al., 2019; Puech et al., 2020; Wen et al., 2021; 2023). They typically
first select a list of candidates in the frequency domain using the DFT, and then identify the exact
period in the time domain using the ACF. The fundamental idea is that a valid period revealed by
the periodogram should correspond to a peak in the ACF. RobustPeriod (Wen et al., 2021) further
enhances the robustness by first taking a preprocessing step that removes the trend, noise, and outliers
using the Hodrick-Prescott filter, then decomposing the time series into multiple scales via discrete
wavelet transform to balance the time and frequency resolution, and finally detecting and validating
the period in each scale respectively based on Huber-periodogram and Huber-ACF where the Huber
loss promotes robustness. Recent advancements in this field also address the presence of (block)
missing data (Wen et al., 2023). While the third group outperforms the previous ones, each stage (e.g.,
denoising, decomposition, detection, and validation) is processed sequentially in a pipeline, implying
that biases in one stage can negatively impact the subsequent stages. Moreover, the performance of
each stage relies on manually chosen hyperparameters, posing a practical challenge in their selection.

The aforementioned difficulties largely stem from the inadequacy of both the ACF and the DFT
for detecting periods. As a remedy, the fourth category of approaches (Tenneti & Vaidyanathan,
2015; 2016; Deng & Han, 2017; Zhang et al., 2020) utilizes the Ramanujan transform, which is
specifically tailored for periodicity detection. This technique involves projecting the time series onto
the orthogonal Ramanujan subspaces, each representing a distinct period. Identifying periods is then
posed as a linear regression problem, whose objective is to select the Ramanujan subspaces that
can best explain the time series. Despite these advancements, these techniques still exhibit limited
robustness and are not able to transfer knowledge from previously observed time series to new ones.

3 AMORTIZEDPERIOD

The limited robustness observed in previous studies can be attributed to the neglect of non-periodic
components, such as trends, noise, and outliers. While certain methods, like RobustPeriod, ac-
knowledge these components, they eliminate them individually in a deterministic and sequential
way, leading to error accumulation. Moreover, the performance of each stage is sensitive to the
choice of the corresponding hyperparameters. To overcome these difficulties, we propose a compact
Bayesian generative model that offers flexibility in modeling the interaction between all components
as well as their corresponding hyperparameters in a joint and probabilistic manner. On the other hand,
existing approaches derive period estimates for each time series from scratch by solving optimization
problems iteratively. Moreover, even if we correct the estimated periods for a time series, applying
existing methods would still yield the same erroneous results. To provide a remedy, we develop an
attention-based inference network that directly maps observed time series to the posterior distribution
of different components and the hyperparameters, including the distribution of the periods. As a
result, the inference model can provide period distributions for new time series without iterative
optimization. Moreover, the inference model can be trained using labeling information, as it can
memorize the labels. In the sequel, before delving into the generative and inference model, we first
introduce the Ramanujan subspaces, which form the foundation of AmortizedPeriod.

3.1 RAMANUJAN SUBSPACES AND PERIODICITY IDENTIFICATION

The definition of Ramanujan subspaces is cumbersome to describe and not illuminating, so we present
instead the definition of q-periodic time series as a starting point. From there, we proceed to discuss
the properties of Ramanujan subspaces relevant to periodicity detection and define exactly q-periodic
time series. We refer the readers to Appendix C for the formal definition of Ramanujan subspaces.

Definition 1. (q-periodic) A time series s(t) with time stamp t of length L (1 ≤ t ≤ L) is q-periodic
if q is the smallest integer such that s(t+ q) = s(t) for all t, and q is called the period of s(t).

This definition eliminates the ambiguity that a time series of period q is also of a period that is a
multiple of q, which plagues the time-domain methods for periodicity detection. However, another
problem comes along with this definition, that is, a time series with a period of 6, for instance, may
be further decomposed into two periodic components with periods 2 and 3 respectively, making it
necessary to detect these fundamental exact periods in practical scenarios. To attack this problem,
Vaidyanathan (2014a;b) proposed the Ramanujan subspaces, which construct a distinct linear subspace

3



Sq for each period q. The time series spanned by a subspace Sq can only possess a period of q and
cannot be decomposed into smaller periods. Moreover, two arbitrary subspaces Sq1 and Sq2 are
orthogonal to each other if q1 ̸= q2. As a result, we can define the exact period as:

Definition 2. (exactly q-periodic (Muresan & Parks, 2003)) A time series s(t) is of exact period q if
s(t) is in the Ramanujan subspace Sq and the projection of s(t) onto Sq̄ is zero for all q̄ < q.

Let Rq be the linear basis for Sq and D = [R1, · · · ,RPmax ] the resulting Ramanujan dictionary with
a maximum period of Pmax. We can ascertain the periods of a time series s(t) by decomposing it as
s = Dα, where α is the coefficient vector. Ideally, α should have non-zero entries only at locations
where the periodic components of s reside. Estimating α given s and D can be formulated as a
sparse vector recovery problem, such as basis pursuit or lasso (Tenneti & Vaidyanathan, 2016).

3.2 GENERATIVE MODEL

Unfortunately, the above formulation is susceptible to the presence of trends, noise, outliers, and
incomplete observations that often coexist with periodic components in time series, as well as the
hyperparameter promoting sparsity in basis pursuit or lasso. Conversely, Bayesian models or networks
offer a compact, flexible, and interpretable integration of various components and their associated
hyperparameters in time series, while also accounting for the accompanying uncertainty. However,
their application in the context of periodicity identification remains unexplored. To bridge the gap,
we propose a reformulation of the periodicity detection problem from the Bayesian perspective.

Suppose that a time series x = x(1 : L) after normalization can be decomposed into periods s, trend
τ , noise ϵ, and outliers δ, that is, x = s+ τ + ϵ+ δ. Next, we introduce the prior distribution for
each component individually. More details on the priors can be found in Appendix D.

The periodic component s: It follows from Section 3.1 that s = Dα, where D is the Ramanujan
dictionary and α represents the coefficient vector. αj ̸= 0 indicates that the period characterized by
Dj exits in the time series x. To distinguish between the zero and non-zero entries in α, we resort to
the horse-shoe prior (Carvalho et al., 2009), which can be interpreted as a scale mixture of Gaussians:

p(αj |σj , ν) = N (αj ; 0, ν
2σ2

j ), p(σj) = C+(0, 1), (1)
where C+(0, 1) is a standard half-Cauchy distribution on the positive reals R+, and ν and σj
respectively denote the global and local shrinkage parameters. The global shrinkage parameter ν
shrinks all αj to zero, while the heavy-tailed half-Cauchy priors for the local shrinkage parameters
σj allow some αj to escape from the shrinkage. The resulting α = [α1, · · · , αΦ] would therefore be
sparse. One attractive property of the horse-shoe distribution is that the shrinkage weight, 1/(1+σ2

j ),
has a U-shaped density (i.e., horse-shoe shape) Beta(0.5, 0.5), which is a Beta distribution with
shape parameters a = b = 0.5, as shown in Appendix D.2. It reaches the lowest value at 0.5 but
is unbounded at 0 and 1, indicating that this prior prefers σ2

j to be either very small or very large
and can well separate the zero and nonzero values in α. To facilitate the amortized inference, we
innovatively reparameterize the horse-shoe prior as:

p(αj |ωj , λ) = N
(
αj ; 0,

(
λ
1− ωj

ωj

)−1
)
, p(ωj) = Beta(ωj ; 0.5, 0.5) (2)

where λ = 1/ν2 and ωj = σ2
j /(1 + σ2

j ). As a result, the expectation of ωj provides an indicator of
whether αj = 0. We then specify the hyperprior on λ to be a Gamma distribution Gamma(aλ, bλ),
where the shape aλ and rate bλ are set small (e.g., 10−4) such that the hyperprior is non-informative.

The trend component τ : The trend is assumed to vary smoothly across time. Therefore, we employ
the thin-plate model (a.k.a the second-order intrinsic Gauss-Markov random field) (Rue & Held, 2005;
Yu & Dauwels, 2016) to describe this behavior, since it penalizes the second-order difference (i.e.,
curvature). Concretely, we model the second-order differences as a Gaussian distribution: ∆2τ (t) ∼
N (0, β−1

1 ). In other words, the density function of a thin-plate model is (cf. Appendix D.3):

p(τ ) ∝ exp
(
− β1

2

L−1∑
t=2

(
τ (t− 1)− 2τ (t) + τ (t+ 1)

)2) ∝ exp
(
− β1

2
τTKtpτ

)
, (3)

where the smoothness parameter β1 controls the curvature of the trend over time, and Ktp is the
weighted Laplacian matrix. It can be observed from (3) that the thin-plate model is invariant to the
addition of a constant, and more importantly, a linear function of time t. As such, this prior can
accommodate the linear trends without penalty. Moreover, as the Ramanujan dictionary D has a
constant subspace S0 that can describe the overall mean level of the time series, we specify the mean
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of the trend component τ to be 0. The resulting prior on τ can be expressed as:

p(τ |β0, β1) ∝ exp
(
− 1

2
τT (β0I + β1Ktp)τ

)
, (4)

where β0 measures how close to zero τ (t) is for all t. We again impose non-informative Gamma
hyperprior Gamma(10−4, 10−4) on β0 and β1.

The outliers δ and the noise ϵ: Typically, most of the elements in the outliers δ are 0, suggesting
that δ is sparse. To this end, we impose the Student’s t-distribution on δ(t), which is commonly used
as a shrinkage prior in the literature of sparse Bayesian learning (Tipping, 2001; Yu et al., 2020a).
Equivalently, it can be written in a hierarchical manner as (cf. Appendix D.1):

p(δ(t)|vδ(t)) = N (δ(t); 0, vδ(t)), p(vδ(t)) = Inv-Gamma(vδ(t); aδ(t), bδ(t)), (5)
where Inv-Gamma(vδ(t); aδ(t), bδ(t)) denotes the inverse Gamma distribution with shape parameter
aδ(t) and scale parameter bδ(t). Again, we set aδ(t) = bδ(t) = 10−4 to make the inverse gamma
hyperprior non-informative. On the other hand, we assume that ϵ ∼ N (0, vϵI) is the Gaussian white
noise and further posit the non-informative conjugate inverse Gamma prior on vϵ. Note that we use
the t-prior instead of the horse-shoe prior for the period coefficient vector α here. The latter is more
complex but comes along with a Beta distributed variable ωj that indicates whether the corresponding
period exists, which is required for the sake of periodicity detection. However, since our main focus
is not on whether the outlier exists (i.e., δ(t) = 0 or not), the simpler t-prior is a more suitable choice.

Since the outliers and the noise are independent, the distribution of their sum ϵ(t) + δ(t) can be
simplified as N (0, vϵ + vδ(t)). As a consequence, the distribution of the observed time series x given
the latent components can be expressed as:

p(x|α, τ , vϵ,vδ) = N
(
x;Dα+ τ , vϵI + diag(vδ)

)
, (6)

where I denotes the identity matrix, and diag(vδ) is a diagonal matrix with vδ(t) on the diagonal.

The overall generative model: Taken together, the overall Bayesian network w.r.t. (with regard to)
all random variables can be factorized as:

p(x,α,ω, λ, τ , β0, β1, vϵ,vδ) = p(x|α, τ , vϵ,vδ)p(α|ω, λ)p(ω)p(λ)

· p(τ |β0, β1)p(β0)p(β1)p(vϵ)p(vδ). (7)
We further consider a more general scenario where multiple time series x{i} for i = 1, · · · , N share
the same periods (as indicated by ω) but possibly with different values of the coefficients α{i}. In
other words, the zero pattern of α{i} is the same for all i, but the non-zero values in α{i} can differ.
The remaining three components τ {i}, ϵ{i}, and δ{i} can also be different. The resulting Bayesian
network can be factorized as:

p(x{1:N},α{1:N},ω, λ, τ {1:N}, β0, β1, v
{1:N}
ϵ ,v

{1:N}
δ ) =

N∏
i=1

[
p(x{i}|α{i}, τ {i}, v{i}ϵ ,v

{i}
δ )

· p(α{i}|ω, λ)p(τ {i}|β0, β1)p(v{i}ϵ )p(v
{i}
δ )
]
p(ω)p(λ)p(β0)p(β1), (8)

where the priors on α{i} is the same for all i and guarantees that the estimated periods are the same for
x{1:N}. The corresponding factor graph representation (Kschischang et al., 2001) of (8) is depicted
in Fig. 1(a). Note that the above equation amounts to (7) when N = 1. This formulation is widely
applicable to periodicity detection of time series in various fields in practice (Zhang et al., 2020),
such as the electricity usage and the workloads of data centers, to name a few. Moreover, real-world
time series are often associated with a given fundamental period (e.g., daily period), and other periods
(e.g., weekly and monthly periods) are a multiple of this fundamental period. Under this scenario, the
i-th time point in consecutive days can form a new time series x{i}. Suppose that there are N time
points in a day, and we can obtain N time series x{1:N} with common periods.

3.3 INFERENCE MODEL

The ELBO: Owing to the U-shaped prior on ωj , the posterior distribution of ωj also follows
a U-shape, as observed in (Yu et al., 2019; Chen et al., 2023). As a result, our ultimate goal
is to detect the periodicity by checking how close to 1 ωi is given the observed time series
x{1:N}, namely, p(ωj = 1|x{1:N}). To this end, we need to compute the exact posterior
p(α{1:N},ω, λ, τ {1:N}, β0, β1, v

{1:N}
ϵ ,v

{1:N}
δ |x{1:N}). Since this posterior is intractable, we in-

stead approximate it with an inference model q(α{1:N},ω, λ, τ {1:N}, β0, β1, v
{1:N}
ϵ ,v

{1:N}
δ ), which
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(b) Inference model
Figure 1: Factor graph representation (Kschischang et al., 2001) of AmortizedPeriod. The circle and square
nodes respectively denote variables and factors in the generative (8) and inference (10) model. The rectangular
plate labeled Φ or L means that there are Φ or L subgraphs of this kind. We abuse the edge direction to denote
the sampling process in the two models. Note that the inference model maintains the dependence structure of the
generative model to better approximate the true posterior. It further includes the addition (blue dashed lines) and
alteration (red solid lines) of several edges to ensure that all latent variables are dependent on the observation x.

is a probabilistic encoder outputting the latent variables given the observations, using the framework
of amortized variational inference (Zhang et al., 2018; Ganguly et al., 2022), in analogy to the
VAE (Kingma & Welling, 2014). The parameters of both the generative and the inference model can
be jointly estimated by maximizing the evidence lower bound (ELBO) L of log p(x{1:N}):

L = Eq

[
log p(x{1:N},α{1:N},ω, λ, τ {1:N}, β0, β1, v

{1:N}
ϵ ,v

{1:N}
δ )

]
+Hq, (9)

where Eq denotes expectation over the q distribution, and Hq denotes the entropy of the q distribution.

The q distributions: However, to guarantee that the inference process is tractable, the VAE (Kingma
& Welling, 2014) and the commonly-used mean-field amortized inference method (Zhang et al.,
2018; Ganguly et al., 2022) typically assumes that all latent variables are independent. Consequently,
the approximation accuracy is limited, especially when the latent variables in the original generative
model are highly dependent such as in our model (8) with a hierarchical structure, as pointed
out in (Turner & Sahani, 2011; Ranganath et al., 2016). As a remedy, we design a structured
inference network (Lin et al., 2018; Ambrogioni et al., 2021; Agrawal & Domke, 2021; Rouillard &
Wassermann, 2022) that can incorporate the dependence structure of the generative model into the
inference model in a straightforward manner. As shown in the factor graph representation in Fig. 1(b),
we consider an inference model that factorizes in a similar fashion to the generative model, but is
conditioned on the observation x{1:N}:

q(α{1:N},ω, λ, τ {1:N}, β0, β1, v
{1:N}
ϵ ,v

{1:N}
δ ) =

N∏
i=1

[
q(α{i}, τ {i}|x{i},ω, λ, β0, β1, v

{i}
ϵ ,v

{i}
δ )

· q(v{i}ϵ |x{i})q(v
{i}
δ |x{i})

] Φ∏
j=1

q(ωj |x{1:N})q(λ|x{1:N})q(β0|x{1:N})q(β1|x{1:N}). (10)

Next, we elaborate on the specification of the factors in the inference model (10). One crite-
rion for choosing the q distributions is to facilitate the computation of the expectation w.r.t q
in (9). The expectation is often computed via a Monte Carlo estimator based on the “reparam-
eterization trick” (Kingma & Welling, 2014): a variate U with a simple distribution that is inde-
pendent of all parameters θ of q is first defined, and a reparameterization function F is derived
such that F (U,θ) has distribution q. On the other hand, the q distributions should be similar
to (if not the same as) the corresponding p distributions for the sake of better approximation.
To this end, we specify q(λ|x{1:N}), q(β0|x{1:N}), q(β1|x{1:N}), q(v{i}ϵ |x{i}), and q(v{i}

δ |x{i})
to be log-normal distributions in order to approximate the Gamma and Inverse Gamma distri-
butions, and q(ωj |x{1:N}) to be the Kumaraswamy distribution (Nalisnick & Smyth, 2017) to
approximate the Beta distribution. In addition, to consider the dependence structure in the genera-
tive model, we assume that q(α{i}, τ {i}|x{i},ω, λ, β0, β1, v

{i}
ϵ ,v

{i}
δ ) takes the functional form of

p(α{i}, τ {i}|x{i},ω, λ, β0, β1, v
{i}
ϵ ,v

{i}
δ ), which is a Gaussian distribution as proven below.

Proposition 1. Given p(x{i}|α{i}, τ {i}, v
{i}
ϵ ,v

{i}
δ ), p(α{i}

j |ωj , λ), and p(τ {i}|β0, β1) as defined

in (8), p(α{i}, τ {i}|x{i},ω, λ, β0, β1, v
{i}
ϵ ,v

{i}
δ ) = N (K−1h,K−1) with precision matrix (inverse
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Figure 2: The inference network of AmortizedPeriod whose outputs are the parameters of the q distributions.
Here the N time series can exchange information via the SAB as they share common periods, but the Φ basis
cannot as they encode distinct periods. To detect periods, only operations inside the red dashed box are required.

covariance) K and potential vector h given by:

K{i} =

λ diag
(
1− ωj

ωj

)
+DT diag

(
v
{i}
ϵ + v

{i}
δ

)−1
D DT diag

(
v
{i}
ϵ + v

{i}
δ

)−1

diag
(
v
{i}
ϵ + v

{i}
δ

)−1
D β0I + β1Ktp + diag

(
v
{i}
ϵ + v

{i}
δ

)−1

 ,
h{i} =

[
DT

I

]
diag

(
v{i}ϵ + v

{i}
δ

)−1
x{i}.

Proof. See Appendix E.
The inference network: The parameters of q distributions w.r.t. ω, λ, vϵ, and vδ are expressed as
functions of the observations x{1:N} through a deep neural network, which is based on the multihead
cross attention block (CAB) (Vaswani et al., 2017). To begin with, let us define the CAB:

CAB(A,B) = LN(H + FFN(H)), H = LN(MHA(A,B,B) + A), (11)
where LN denotes layer normalization, FFN denotes the row-wise feedforward network, and
MHA(Q,K,V) is the multihead attention layer as defined in (Vaswani et al., 2017) where Q, K, and
V serve as queries, keys, and values. CAB can be interpreted as selecting keys K that are similar to the
queries Q and aggregating the corresponding values V to update the queries. Note that CAB(A,A)
amounts to performing self-attention on A, denoted as, SAB(A).

In the proposed model, the latent variables can be partitioned into two groups: those responsible for
determining which bases to be used (i.e., ω, and λ) and those associated with other components in the
time series (i.e., τ , β0, β1, vϵ, and vδ). For the former group, our objective is to update the parameters
for basis selection by checking the seasonality behavior of the N time series. Hence, after passing
the N time series x{1:N} that share common periods through two layers of the self-attention block
SAB(x{1:N}), we apply two layers of CAB(D,x{1:N}) in which the queries Q are the Ramanujan
basis D and the keys K and values V are the representations of the N time series x{1:N} given by
the last SAB. For the latter group, we aim to remove the periodic components from the time series
and estimate the latent variables related to trend, noise, and outliers. To this end, we employ two
CAB(x{1:N},D) layers with the N time series as the queries and the basis D as the keys and values.
These are each followed by a self-attention block SAB(x{1:N}).

We remark that the attention operation is computed over different time series and bases, unlike the con-
ventional approach of operating over the time dimension when acquiring time series representations
through Transformers (Zhang & Yan, 2023). As a result, such an operation is permutation equivariant
to the order of the times series and the Ramanujan bases, which is a desirable characteristic. The
overall architecture of the inference network is sketched in Figure. 2. Note that during testing, we
only need to compute q(ωj |x{1:N}). Hence, only operations within the red dashed box are required.

3.4 SEMI-SUPERVISED LEARNING

One advantage of AmortizedPeriod is that the labels of the periods can be leveraged to train the
inference network semi-supervisedly. For a time series with period of q, it is likely that all bases within
the Ramanujan subspaces associated with q and its divisors dq will be selected, as the period of a time
series equals the LCM of the exact periods of all its periodic components (cf. Proposition 2). However,
the specific bases chosen are uncertain and depend on the characteristics of the time series. By contrast,
given the exact period and its divisors, the bases corresponding to other periods can be excluded.
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Table 1: The micro F1-score and run time (seconds) averaged over all time series resulting from all benchmark
methods for four datasets. The first two datasets consist of synthetic data with different noise variance vϵ and
proportion of outliers δ%. The standard deviation resulting from 5 trials is shown in Table 6 in the appendix.

Methods
vϵ = 0.1, δ% = 0.05 vϵ = 1, δ% = 0.1 Yahoo App Flow

Train Test Time Train Test Time Train Test Time Train Test Time
AutoPeriod 0.29 0.30 1.76e-1 0.29 0.28 9.88e-2 0.75 0.73 1.50e-1 0.40 0.45 7.68e-2

RobustPeriod 0.32 0.30 5.91e2 0.31 0.29 4.41e2 0.84 0.82 1.24e2 0.57 0.56 3.72e2
RPD 0.24 0.23 5.39 0.18 0.17 5.06 0.83 0.84 1.17 0.59 0.60 8.47

AmortizedPeriod 0.80 0.76 3.23e-2 0.70 0.57 3.32e-2 0.86 0.87 3.48e-2 0.89 0.87 3.43e-2

Accordingly, let Sq and Sdq
denote the Ramanujan subspace with exact period q and its divisors

respectively. For each exact period q, we first compute the log-likelihood log q(ωj = 1|x{1:N}) for
all j ∈ Sq ∪ Sdq

. We then maximize the maximum of the above set of the likelihoods, since at least
one basis Dj from Sq ∪ Sdq

will be chosen. On the other hand, for j ̸∈ Sq ∪ Sdq
, we maximize

the minimum of the log-likelihoods log q(ωj = 0|x{1:N}) for all j, in order to learn the inference
network such that the likelihood of ωj = 0 is maximized for those non-existing periods. In summary,
to conduct semi-supervised learning, we add the following two terms to the ELBO L (9):

max
j∈Sq∪Sdq

(
log q(ωj = 1|x{1:N})

)
+ min

j ̸∈Sq∪Sdq

(
log q(ωj = 0|x{1:N})

)
. (12)

3.5 IRREGULAR PERIODS AND MISSING DATA

For irregular periods (e.g., monthly period), we assume that the true period is still regular (i.e., 31 days
for the monthly period) but the observations x are irregularly sampled. We then remove those rows
in the Ramanujan basis corresponding to the days that do not exist in reality, and use the remaining
rows in our model. On the other hand, missing data can be handled in a natural way by ignoring the
corresponding factors in the generative model. In the inference model, we also ignore the missing data
when computing q(α{i}, τ {i}|x{i}

O ,ω, λ, β0, β1, v
{i}
ϵ ,v

{i}
δ ), where x

{i}
O denotes the observed data.

This conditional distribution has a closed-form expression as explained in Appendix E. Moreover,
when training the inference network in a self or semi-supervised manner, we replace missing values
with zero. Consequently, the inference network can regard zero as missing values.

4 EXPERIMENTS

We demonstrate the usefulness of AmortizedPeriod on four datasets, including two synthetic datasets
(with different noise variance vϵ and proportions of outliers δ%) and two real datasets (Yahoo data
and App Flow data). As discussed in detail in Appendix G, the identification of periods becomes
progressively less challenging for synthetic data, App Flow data, and Yahoo data. The experiment
configuration can be found in Appendix H, and the complete results are presented in Appendix I-J.

We first benchmark the proposed AmortizedPeriod with three state-of-the-art (SOTA) methods,
including AutoPeriod (Vlachos et al., 2005) and RobustPeriod (Wen et al., 2021) in the third group, as
well as the Ramanujan Periodic Dictionary based method (Tenneti & Vaidyanathan, 2015) (referred
to as RPD) in the fourth group. As mentioned in Section 2, AutoPeriod and RobustPeriod are
time-frequency methods that borrow the strength of both time and frequency methods for periodicity
identification. For RPD, we use the Lasso formulation in (Tenneti & Vaidyanathan, 2015) which can
automatically determine whether the coefficient associated with a key in the Ramanujan dictionary is
zero with soft-thresholding. We assess all methods in terms of micro F1-score and the average run
time. The former is commonly used to evaluate the performance of multilabel classification methods,
and periodicity detection can be regarded as a multilabel classification problem. The latter measures
the efficiency of the methods. In practice, the number of time series can be huge, and therefore, a fast
approach is desired. The results for all four methods are listed in Table 1.

AmortizedPeriod demonstrates the highest micro F1-score while maintaining the shortest run time,
especially for the challenging synthetic dataset. It is worth noting that both AmortizedPeriod and
RobustPeriod consider the non-periodic components in the time series (e.g., trend changes, noise, and
outliers). However, AmortizedPeriod is even better than RobustPeriod, since it models all components
and their associated hyperparameters jointly in a flexible probabilistic manner, whereas RobustPeriod
models each component sequentially in a pipeline without fully considering their relations and
requires manual determination of hyperparameters. Furthermore, the lengthy sequential pipeline in
RobustPeriod significantly increases run time compared to other methods. In contrast, the inference
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Figure 3: The micro F1-score resulting from AmortizedPeriod as a function of the proportion of (a) missing data
and (b) labeled data for the synthetic data with vϵ = 1 and δ% = 0.1.

Table 2: The micro F1-score for the ablation study. The standard deviation is shown in Table 7 in the appendix.

Methods
vϵ = 0.1, δ% = 0.05 vϵ = 1, δ% = 0.1 Yahoo App Flow
Train Test Train Test Train Test Train Test

AmortizedPeriod 0.80 0.76 0.70 0.57 0.86 0.87 0.89 0.87
- Trend 0.58 0.55 0.58 0.48 0.85 0.86 0.88 0.86

- Outliers 0.51 0.48 0.28 0.29 0.86 0.86 0.55 0.50
- Month 0.71 0.70 0.53 0.49 - - 0.85 0.84

amortization in AmortizedPeriod leads to the shortest run time, highlighting its superiority over the
remaining methods that perform inference from scratch for each time series. Recall that the inference
model of AmortizedPeriod is a neural network. Thus, the run time can be further shortened when
the model is deployed on GPUs. On the other hand, AutoPeriod and RPD are more susceptible to
the non-periodic components in the time series. Although RPD performs relatively well for Yahoo
and App Flow data, where the periodic components dominate the time series (see Figure 7-8 in
Appendix G), its performance declines when applied to synthetic data. By integrating the Ramanujan
subspaces into the proposed framework, we significantly boost the performance of RPD.

We further investigate the impact of missing data and labeled data on AmortizedPeriod. The results
are presented in Fig. 3. As demonstrated in Fig. 3(a), missing data does not significantly affect the
performance of AmortizedPeriod when its proportion is less than or equal to 30%. However, when the
proportion exceeds 30%, the performance deteriorates rapidly. On the other hand, leveraging labeled
data to train the inference network can significantly improve the performance of AmortizedPeriod,
enhancing the micro F1-score by above 15% for both training and testing data. Notably, for testing
data, the accuracy improves faster when the first 15% of labels are introduced, and stabilizes thereafter,
indicating that a small proportion of labeled data can significantly enhance performance. This is
especially relevant in practice, where human experts can only label a small fraction of time series
data, yet such data can benefit AmortizedPeriod considerably. Other methods, however, cannot take
advantage of the labeling information.

Finally, we conduct an ablation study to verify the effectiveness of different modules in AmortizedPe-
riod. Specifically, we consider removing the trend, outliers, and the monthly basis in AmortizedPeriod.
The results are presented in Table 2. Our findings indicate that it is crucial to consider the trend,
outliers, and irregular periods during periodicity detection when such components exist in the data.
As illustrated in Appendix G, Yahoo data are almost free of trends, outliers, and monthly periods, App
Flow data is mainly corrupted by outliers, while the synthetic data consists of all these components.
The results in Table 2 are consistent with these observations.

5 CONCLUSION

In this work, we have introduced AmortizedPeriod, a new model for periodicity detection that borrows
the strength of both Bayesian statistics and deep learning. We have shown that AmortizedPeriod is
more robust to trend changes, noise, outliers, missing data, and irregular periods than existing SOTA
methods. The micro F1-score resulting from AmortziedPeriod can surpass those of SOTA methods
by 28% on average. Moreover, the inference amortization technique excludes the need to conduct
inference from scratch for every time series. Thus, the resulting run time is at least 55% shorter
than other methods. In addition, a small proportion of labeled time series can significantly boost the
performance of AmortizedPeriod. We believe that this is the first self-supervised/semi-supervised
model for periodicity identification that successfully solves the burning issues of limited robustness
and memorylessness to the SOTA methods.
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A SYMBOLS AND NOTATIONS

Table 3: Notations and their meanings.

Notation Size Meaning
q Constant exact period for a time series
q(·) variational q-distributions

x or x(t) L× 1 a time series with time stamp t
s or s(t) L× 1 periodic/seasonal components with time stamp t

Sq Ramanujan subspace with period q
Rq L× ϕ(q) Linear basis corresponding to the subspace Sq

D L×
∑Pmax

q=1 ϕ(q) Ramanujan dictionary with a maximum period of Pmax

α
∑Pmax

q=1 ϕ(q)× 1 coefficients w.r.t. each basis in the Ramanujan dictionary
τ or τ (t) L× 1 trend component
ϵ or ϵ(t) L× 1 noise component
δ or δ(t) L× 1 outlier component

ν 1× 1 global shrinkage parameter of the horse-shoe prior
σj 1× 1 local shrinkage parameter of the horse-shoe prior for each periodic coefficient αj

aωj , bωj 1× 1 shape parameters of the beta prior for ωj

λ 1× 1 inverse global shrinkage parameter of the horse-shoe prior
ωj 1× 1 inverse local shrinkage parameter in the horse-shoe prior for each periodic coefficient αj

aλ 1× 1 shape parameter of the Gamma prior for λ
bλ 1× 1 rate parameter of the Gamma prior for λ

∆2τ(t) 1× 1 second order differences, that is, ∆2τ(t) = (τ(t+ 1)− τ(t))− (τ(t)− τ(t− 1))

β1 1× 1 smoothness parameter of the thin-plate prior that controls the curvature of the trend over time
β0 1× 1 parameter of the thin-plate prior that controls how close to zero the trend is
Ktp L× L weighted Laplacian matrix of the thin-plate prior
I L× L identity matrix
aβ0

1× 1 shape parameter of the Gamma prior for β0
bβ0

1× 1 rate parameter of the Gamma prior for β0
aβ1 1× 1 shape parameter of the Gamma prior for β1
bβ1

1× 1 rate parameter of the Gamma prior for β1
vδ(t) 1× 1 variance of the zero-mean Gaussian prior for the outlier component δ(t) at timestamp t
aδ(t) 1× 1 shape parameter of the inverse Gamma prior for vδ(t)
bδ(t) 1× 1 scale parameter of the inverse Gamma prior for vδ(t)
vϵ 1× 1 variance of the zero-mean Gaussian prior for the noise component across all timestamps
x{i} L× 1 the i-th time series, where the superscript denotes the index
K{i} (

∑Pmax

q=1 ϕ(q) + L)× (
∑Pmax

q=1 ϕ(q) + L) the precision matrix of the Gaussian variational distribution q(α{i}, τ {i}|x{i},ω, λ, β0, β1, v
{i}
ϵ ,v

{i}
δ )

h{i} (
∑Pmax

q=1 ϕ(q) + L)× 1 the potential vector of the Gaussian variational distribution q(α{i}, τ {i}|x{i},ω, λ, β0, β1, v
{i}
ϵ ,v

{i}
δ )

m
{i}
δ(t)(x

{i}) 1× 1
the mean of the log-normal variational distribution for v{i}δ(t) q(v

{i}
δ(t)|x

{i}),
which is a function of x{i} determined by the inference network

ν
{i}
δ(t)(x

{i}) 1× 1
the variance of the log-normal variational distribution for v{i}δ(t) q(v

{i}
δ(t)|x

{i}),
which is a function of x{i} determined by the inference network

m
{i}
ϵ (x{i}) 1× 1

the mean of the log-normal variational distribution for v{i}ϵ q(v
{i}
ϵ |x{i}),

which is a function of x{i} determined by the inference network

ν
{i}
ϵ (x{i}) 1× 1

the variance of the log-normal variational distribution for v{i}ϵ q(v
{i}
ϵ |x{i}),

which is a function of x{i} determined by the inference network

cωj(x
{1:N}), dωj(x

{1:N}) 1× 1
the shape parameters of the Kumaraswamy distribution for ωj q(ωj |x{1:N}), ,

which is a function of x{1:N} determined by the inference network

mλ(x
{1:N}) 1× 1

the mean of the log-normal variational distribution for λ q(λ|x{1:N}),
which is a function of x{1:N} determined by the inference network

νλ(x
{1:N}) 1× 1

the variance of the log-normal variational distribution for λ q(λ|x{1:N}),
which is a function of x{1:N} determined by the inference network

mβ0
(x{1:N}) 1× 1

the mean of the log-normal variational distribution for β0 q(β0|x{1:N}),
which is a function of x{1:N} determined by the inference network

νβ0(x
{1:N}) 1× 1

the variance of the log-normal variational distribution for β0 q(β0|x{1:N}),
which is a function of x{1:N} determined by the inference network

mβ1(x
{1:N}) 1× 1

the mean of the log-normal variational distribution for β1 q(β1|x{1:N}),
which is a function of x{1:N} determined by the inference network

νβ1(x
{1:N}) 1× 1

the variance of the log-normal variational distribution for β1 q(β1|x{1:N}),
which is a function of x{1:N} determined by the inference network

Eq[f ] expectation of a function f over a distribution q
DKL(q∥p) KL divergence between distributions q and p

L the ELBO
Hq the entropy of distribution q

A, B input tensors to the cross attention block (CAB)
Q, K, V query, key, and value tensors as the input of the multihead attention (MHA)
MHA multihead attention
FFN feedforward network
LN layer norm
CAB cross attention block
SAB self attention block

B MORE DETAILS ON RELATED WORKS

Table 4 presents a comprehensive comparison of the proposed AmortizedPeriod with existing methods
discussed in Section 2, based on the six essential criteria: 1) capability to handle multiple periods, 2)
ability to accommodate irregular periods, 3) consideration of trend, 4) robustness to noise, 5) handling
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of outliers, and 6) handling of missing data. Analysis of the table reveals that the existing methods
address only a subset of these requirements, whereas AmortizedPeriod demonstrates robustness by
effectively addressing all of them.

Table 4: Comparision between AmortizedPeriod and the existing works in the four groups for periodicity
identification in terms of robustness.

Group Method
Single
Period

Multiple
Periods

Irregular
Periods Trends Noise Outliers

Missing
Data

1.
ACF

Elfeky et al. (2004) Yes Yes No No Yes No No
Wang et al. (2006) Yes No No Yes Yes No No

Toller & Kern (2017) Yes No No Yes Yes No Yes
Breitenbach et al. (2023) Yes No No Yes Yes No No

2.
DFT

Tominaga (2010) Yes Yes No No Yes No No
Drutsa et al. (2017) Yes Yes No No Yes No No
Bauer et al. (2020) Yes Yes No Yes Yes No No

3.
DFT&
ACF

AutoPeriod (Vlachos et al., 2005) Yes Yes No No Yes No No
Sazed (Toller et al., 2019) Yes No No Yes Yes No No

Puech et al. (2020) Yes Yes No Yes Yes No No
RobustPeriod (Wen et al., 2021) Yes Yes No Yes Yes Yes No

Wen et al. (2023) Yes Yes No Yes Yes Yes Yes

4.
RPD

Tenneti & Vaidyanathan (2015; 2016) Yes Yes No No Yes No No
Zhang et al. (2020) Yes Yes No No Yes No Yes
AmortizedPeriod Yes Yes Yes Yes Yes Yes Yes

C FORMAL DEFINITION OF THE RAMANUJAN SUBSPACES

The Ramanujan Subspaces can be defined from two distinct perspectives, namely the Fourier basis
and the Ramanujan sum.

From the Fourier viewpoint, the q-th Ramanujan subspace Sq encompasses all exactly q-periodic
time series sq(t) that cannot be further decomposed into smaller periods. It can be represented as:

sq(t) =

q∑
k=1,

(k,q)=1

akW
kt
q , (13)

where Wq = exp(j2π/q) is the Fourier basis, ak are the coefficient for the frequency 2πk/q, and
(k, q) = 1 means that the greatest common divisor (GCD) of k and q is 1. Note that Sq only contains
non-zero coefficients at the “coprime frequencies” 2πk/q, where 1 ≤ k ≤ q and k is coprime to q,
and therefore, the exact period of s(t) is q and not smaller. It follows that the rank of this subspace
Sq is ϕ(q), which is the Euler totient function signifying the number of integers k in 1 ≤ k ≤ q
satisfying (k, q) = 1 (Vaidyanathan, 2014a).

On the other hand, the renowned Indian mathematician Srinivasa Ramanujan introduced the concept
of the Ramanujan sum in 1918 (Ramanujan, 1918), which is given by

rq(t) =

q∑
k=1,

(k,q)=1

W kt
q . (14)

Ramanujan employed this sum to demonstrate that various standard arithmetic functions in number
theory can be expressed as linear combinations of rq(t). For any fixed integer q, rq(t) is a sequence
with periodicity q that cannot be further decomposed. Interestingly, different from the complex-valued
Fourier basis, the Ramanujan sum is always integer-valued, which is an appealing characteristic.
Moreover, it can be easily obtained via efficient recursive computations, as demonstrated in previous
works (Vaidyanathan, 2014a).
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By leveraging the definition of the Ramanujan sum, the q-th Ramanujan subspace can also be spanned
by all the ϕ(q) circularly shifted versions of rq(t) (Vaidyanathan, 2014b):

sq(t) =

ϕ(q)−1∑
k=0

bkrq(t− k). (15)

where bk denotes the real number coefficients. Since the rank of Sq is ϕ(q) as previously mentioned,
any set of ϕ(q) linearly independent vectors from Sq can span the entire subspace. The ϕ(q) circularly
shifted versions of rq(t) serve as a set of such linearly independent vectors.

Consider the sum x(t) =
∑

i xqi(t), where xqi(t) is an arbitrary qi-period time series (cf. Def-
inition 1), the period of x(t) is equal to the least common multiple (LCM) of qi, i.e., LCM(qi),
or a divisor of LCM(qi), as proven in (Vaidyanathan, 2014a; Tenneti & Vaidyanathan, 2015). For
instance, given two 2-periodic time series {1,−1, 1,−1, · · · } and {−1, 1,−1, 1, · · · }, the period of
their sum is 1, which is a divisor of LCM(2, 2) = 2. However, if the exact period of xqi(t) is qi, that
is, xqi(t) ∈ Sqi , the period of x(t) can only be LCM(qi) and not smaller. This is another attractive
property of the Ramanujan subspace. Conversely, any arbitrary q-periodic time series, as defined in
Definition 1, can be spanned by the set of Ramanujan subspaces Sqi , where qi represents all divisors
of q, including both 1 and q. For example, a 6-periodic time series can be obtained by adding periodic
components from S2 and S3, S1 and S6, or S1, S2, S3, and S6, as long as the LCM of the exact
periods corresponding to these subspaces equal 6. In other words, we can summarize this concept
with the following proposition:

Proposition 2. According to the definition of periods in Definition 1 and exact periods in Definition 2,
the period of a time series is equal to the least common multiple (LCM) of its exact periods.

In order to determine the fundamental exact periods of a time series x(t), we can decompose x(t) as

x = Dα, (16)

where D = [R1,R2, · · · ,RPmax ] denotes the Ramanujan dictionary, and Rq are the matrices of size
L× ϕ(q) whose columns are the ϕ(q) shifted versions of rq(t) (14). Ideally, the coefficient vector
α has non-zero entries only at locations where the periodic components of x reside. The number
of columns in D is Φ(Pmax) =

∑Pmax

q=1 ϕ(q), that is, O(P 2
max). Hence, D can be a fat matrix with

more columns than rows. The resulting problem of estimating α given x and D can be formulated
as a sparse vector recovery problem such as basis pursuit or lasso (Tenneti & Vaidyanathan, 2016).

D A BRIEF INTRODUCTION TO THE PRIORS FOR AMORTIZEDPERIOD

D.1 STUDENT’S t-PRIORS

Recall that we use student’s t-priors to describe the behavior of outliers. To remain meaningful, the
outliers must be relatively rare. This means that the vector δ should be sparse, with most of its entries
being zero. Assuming that the components of δ are independent and identically distributed random
variables, each entry δ(t) of the outlier vector may follow a normal distribution with zero mean and
variance vδ(t), as represented by the equation:

p(δ(t)|vδ(t)) = N (δ(t); 0, vδ(t)), (17)

The outlier precision vδ(t) is also a random variable, and since we have no prior knowledge of its
value, we adopt a non-informative conjugate prior:

p(vδ(t)) = Inv-Gamma(vδ(t); aδ(t), bδ(t)). (18)

Here, Inv-Gamma(vδ(t); aδ(t), bδ(t)) refers to the inverse Gamma distribution with shape parameter
aδ(t) and scale parameter bδ(t). By setting both aδ(t) and bδ(t) to small values, such as 10−4, the prior
becomes non-informative.

As a result, the marginal distribution for each outlier can be obtained by integrating out vδ(t),
yielding (Yu et al., 2020a):

p(δ(t)) =

∫ ∞

0

p(δ(t)|vδ(t))p(vδ(t)) dvδ(t) (19)
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Figure 4: The density of the commonly used sparse promoting priors, including the Student’s T, Laplace, and
horse-shoe prior (a), and the density of the corresponding shrinkage weights 1/(1 + σ2) (b).

=
Γ(aδ(t) +

1
2 )

Γ(aδ(t))
√
2πbδ(t)

 1

1 +
δij

2

2bδ(t)

aδ(t)+
1
2

. (20)

This equation represents a Student’s t-distribution. On one hand, the Student’s t-distribution tends to
shrink most entries in δ towards zero due to its sharp peak at zero. On the other hand, the long tail of
the distribution allows for some elements δ(t) to be far from zero. Consequently, the resulting vector
δ will be sparse.

D.2 HORSE-SHOE PRIORS

The horse-shoe prior is also a Bayesian sparsity-promoting prior that assumes that each coefficient αi

can be expressed as a scale mixture of Gaussians (Carvalho et al., 2009; Yu et al., 2020b):

p(αj |σj , ν) = N (αj ; 0, ν
2σ2

j ), (21)

p(σj) = C+(0, 1), (22)

where the standard deviation σj follows a half-Cauchy distribution C+(0, 1). Here, ν is referred to
as the global shrinkage parameter, and σj as the local shrinkage parameter.

Figure 4(a) displays the densities for commonly-used sparsity-promoting priors, including the horse-
shoe, Laplacian, and Student’s t priors. The horse-shoe prior is particularly useful as a shrinkage
prior for sparse Bayesian learning due to its unique characteristics. Its flat, Cauchy-like tails allow the
coefficients of the strong periods to remain large, while its infinitely tall spike at the origin provides
severe shrinkage for the zero elements in α. This property is not present in the Laplacian and t prior.

Viewed another way, we can represent the shrinkage weight ωj as ωj = 1/(1 + σ2
j ), and depict its

density for the horse-shoe, Laplacian, and t prior in Figure 4(b). Choosing σj ∼ C+(0, 1) implies
ωj ∼ Beta(0.5, 0.5), which is a symmetric density unbounded at both 0 and 1. In other words, the
horse-shoe prior yields a shrinkage profile that exhibits two expected outcomes: large nonzero values
(ωj ≈ 0, implying little shrinkage), and zeros (ωj ≈ 1, indicating total shrinkage). In contrast, the
Laplacian prior leads to a shrinkage profile that approaches a fixed constant as ωj approaches 1, while
vanishing entirely as ωj approaches 0. The t prior exhibits an unbounded density near ωj = 0, while
being bounded near ωj = 1.

In Section 3.2, we further reparameterize the horse-shoe prior using ωj and λ = 1/ν2 to utilize ωj as
an indicator of which periods exist.
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D.3 THIN-PLATE PRIORS

The thin-plate model (Rue & Held, 2005; Yu & Dauwels, 2016), commonly used as a smoothness prior,
is a Gaussian Markov random field (GMRF) that penalizes second-order differences. Specifically, the
second-order differences are modeled as a Gaussian distribution:

∆2τ (t) ∼ N (0, β−1
1 ). (23)

For a one-dimensional problem with variables τ (t) evenly distributed along a chain, the second-order
difference at τ (t) can be defined as ∆2τ (t) = τ (t − 1) − 2τ (t) + τ (t + 1). Consequently, the
density function of a thin-plate model with a chain structure can be expressed as:

p(τ ) ∝ exp
(
− β1

2

L−1∑
t=2

(
τ (t− 1)− 2τ (t) + τ (t+ 1)

)2) ∝ exp
(
− β1

2
τTKtpτ

)
, (24)

where the smoothness parameter β1 controls the curvature, and Ktp takes the form:

Ktp = ATA, (25)

A =


1 −2 1

. . . . . . . . .

1 −2 1

 . (26)

Note that A is a (L− 2)×L matrix. Apparently, the precision matrix (i.e., inverse covariance matrix)
of a thin-plate model is given by K = αzKtp. From equation (24), it is evident that the thin-plate
model remains unchanged by the addition of a constant or a linear function along the Markov chain. In
other words, Ktp1 = 0 and Ktps1 = 0, where 1 is a column vector of ones, and s1 = [1, 2, ..., P ]T .
As a result, this prior can accommodate linear trends without any penalty. Additionally, it can be
inferred that Ktp has two zero eigenvalues, making it rank deficient. Consequently, an improper
density is often employed in practice (Rue & Held, 2005), given by:

p(τ ) ∝ |K|0.5+ exp

{
−1

2
τTKτ

}
, (27)

where |K|+ denotes the product of the positive eigenvalues of the precision matrix K. Eq. (25)
eveals that the conditional mean of one variable τ (t), conditioned on the remaining variables
τ (1, · · · , t− 1, t+ 1, · · · , L), can be written as (Rue & Held, 2005):

E(τ (t)|τ (1, · · · , t− 1, t+ 1, · · · , L)) = 4

6
(τ (t+ 1) + τ (t− 1))− 1

6
(τ (t+ 2) + τ (t− 2)).

(28)

This can be seen as second-order polynomial interpolation based on four nearby variables +τ (t− 2),
τ (t− 1), τ (t+ 1), and τ (t+ 2) without an overall level. Therefore, the thin-plate model allows for
deviations from an overall mean level without requiring the specification of the overall mean level
itself. This property is often desirable in practice.

E PROOF OF PROPOSITION 1

As mentioned in Section 3.3, we set q(α{i}, τ {i}|x{i},ω, λ, β0, β1, v
{i}
ϵ ,v

{i}
δ ) =

p(α{i}, τ {i}|x{i},ω, λ, β0, β1, v
{i}
ϵ ,v

{i}
δ ), in order to capture the dependencies between

α{i} and τ {i} given the remaining latent variables. Recall that

p(x{i}|α{i}, τ {i}, v{i}ϵ ,v
{i}
δ ) ∝ exp

(
− 1

2
(x−Dα− τ )T (v−1

ϵ I + diag(vδ)
−1)(x−Dα− τ )

)
,

p(α
{i}
j |ωj , λ) ∝ exp

(
− λ

2

1− ωj

ωj
α
{i}
j

2)
,

p(τ {i}|β0, β1) ∝ exp
(
− 1

2
τT (β0I + β1Ktp)τ

)
.
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All these distributions are Gaussian. According to the properties of Gaussian distributions (Lin et al.,
2018), we have

p(α{i}, τ {i}|x{i},ω, λ, β0, β1, v
{i}
ϵ ,v

{i}
δ )

∝ p(x{i}|α{i}, τ {i}, v{i}ϵ ,v
{i}
δ )

Φ∏
j=1

[
p(α

{i}
j |ωj , λ)

]
p(τ {i}|β0, β1)

∝ exp

(
−1

2

[
α{i}T τ {i}T

]
K{i}

[
α{i}

τ {i}

]
+
[
α{i}T τ {i}T

]
h{i}

)

= N

([
α{i}

τ {i}

]
;K{i}−1

h{i},K{i}−1

)
, (29)

where

K{i} =

λ diag
(
1− ωj

ωj

)
+DT diag

(
v
{i}
ϵ + v

{i}
δ

)−1
D DT diag

(
v
{i}
ϵ + v

{i}
δ

)−1

diag
(
v
{i}
ϵ + v

{i}
δ

)−1
D β0I + β1Ktp + diag

(
v
{i}
ϵ + v

{i}
δ

)−1

 ,
(30)

h{i} =

[
DT

I

]
diag

(
v{i}ϵ + v

{i}
δ

)−1
x{i}. (31)

In addition, when there exist missing data, the time points t in the time series x{i}(1 : L) can be
partitioned into two sets M and O, representing the missing and observed set respectively. The
posterior distribution of α{i} and τ {i} can be computed in a natural way as:

p(α{i}, τ {i}|x{i}
O ,ω, λ, β0, β1, v

{i}
ϵ ,v

{i}
δ )

∝
∏
t∈O

p(x{i}(t)|α{i}(t), τ {i}(t), v{i}ϵ ,v
{i}
δ(t))

Φ∏
j=1

[
p(α

{i}
j |ωj , λ,

]
p(τ {i}|β0, β1). (32)

The above distribution is still Gaussian, and the corresponding K{i} and h{i} can be computed by
replacing x{i}(t) for t ∈ M with 0 in (30) and (31).

F DERIVATION OF THE ELBO

Recall that the generative model (i.e., the p distribution) can be factorized as:

p(x{1:N},α{1:N},ω, λ, τ {1:N}, β0, β1, v
{1:N}
ϵ ,v

{1:N}
δ )

=

N∏
i=1

[
p(x{i}|α{i}, τ {i}, v{i}ϵ ,v

{i}
δ )p(α{i}|ω, λ)p(τ {i}|β0, β1)p(v{i}ϵ )p(v

{i}
δ )
]

·
Φ∏

j=1

p(ωj)p(λ)p(β0)p(β1), (33)

where

p(x{i}|α{i}, τ {i}, v{i}ϵ ,v
{i}
δ ) = N

(
x{i};Dα{i} + τ {i}, v{i}ϵ I + diag(v

{i}
δ )
)
, (34)

p(α
{i}
j |ωj , λ) = N

(
αj ; 0,

(
λ
1− ωj

ωj

)−1
)
, (35)

p(τ {i}|β0, β1) = N
(
τ {i};0,

(
β0I + β1Ktp

)−1
)
, (36)

p(v{i}ϵ ) = Inv-Gamma
(
v{i}ϵ ; a{i}ϵ , b{i}ϵ

)
, (37)

p(v
{i}
δ(t)) = Inv-Gamma

(
v
{i}
δ(t); a

{i}
δ(t), b

{i}
δ(t)

)
, (38)
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p(ωj) = Beta
(
ωj ; aωj , bωj

)
, (39)

p(λ) = Gamma
(
λ; aλ, bλ

)
, (40)

p(β0) = Gamma
(
β0; aβ0 , bβ0

)
, (41)

p(β1) = Gamma
(
β1; aβ1 , bβ1

)
, (42)

(43)

and the inference model (i.e., the q distribution) can be factorized as:

q(α{1:N},ω, λ, τ {1:N}, β0, β1, v
{1:N}
ϵ ,v

{1:N}
δ |x{1:N})

=

N∏
i=1

[
q(α{i}, τ {i}|x{i},ω, λ, β0, β1, v

{i}
ϵ ,v

{i}
δ )q(v{i}ϵ |x{i})q(v

{i}
δ |x{i})

]
·

Φ∏
j=1

q(ωj |x{1:N})q(λ|x{1:N})q(β0|x{1:N})q(β1|x{1:N}), (44)

where

q(α{i}, τ {i}|x{i},ω, λ, β0, β1, v
{i}
ϵ ,v

{i}
δ ) = N

([
α{i}

τ {i}

]
;K{i}−1

h{i},K{i}−1

)
, (45)

q(v{i}ϵ |x{i}) = Lognormal
(
v{i}ϵ ;m{i}

ϵ (x{i}), ν{i}ϵ (x{i})
)
, (46)

q(v
{i}
δ(t)|x

{i}) = Lognormal
(
v
{i}
δ(t);m

{i}
δ(t)(x

{i}), ν
{i}
δ(t)(x

{i})
)
, (47)

q(ωj |x{1:N}) = Kumaraswamy
(
ωj ; cωj(x

{1:N}), dωj(x
{1:N})

)
, (48)

q(λ|x{1:N}) = Lognormal
(
λ;mλ(x

{1:N}), νλ(x
{1:N})

)
, (49)

q(β0|x{1:N}) = Lognormal
(
β0;mβ0

(x{1:N}), νβ0
(x{1:N})

)
, (50)

q(β1|x{1:N}) = Lognormal
(
β1;mβ1

(x{1:N}), νβ1
(x{1:N})

)
. (51)

Note that the parameters of q(v{i}ϵ |x{i}), q(v{i}δ(t)|x
{i}), q(ωj |x{1:N}), q(λ|x{1:N}), q(β0|x{1:N}),

and q(β1|x{1:N}) are explicit functions of x{1:N}, which is parameterized by the inference network.

By substituting the p (33) and q distributions (44) into the ELBO (9), we can obtain:

L = Eq

[
N∑
i=1

(
log p(x{i}|α{i}, τ {i}, v{i}ϵ ,v

{i}
δ ) + log p(α{i}|z, λ0, λ1) + log p(τ {i}|β0, β1)

+ log p(v{i}ϵ ) + log p(v
{i}
δ )

)
+

Φ∑
j=1

log p(ωj) + log p(λ) + + log p(β0) + log p(β1)

−
N∑
i=1

(
log q(α{i}, τ {i}|x{i}, z, λ0, λ1, β0, β1, v

{i}
ϵ ,v

{i}
δ ) + log q(v{i}ϵ |x{i})

+ log q(v
{i}
δ |x{i})

)
−

Φ∑
j=1

log q(ωj |x{1:N})− log q(λ|x{1:N})− log q(β0|x{1:N})

− log q(β1|x{1:N})

]

=

N∑
i=1

(
Eq

[
log p(x{i}|α{i}, τ {i}, v{i}ϵ ,v

{i}
δ ) + log p(α{i}|ω, λ) + log p(τ {i}|β0, β1)
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− log q(α{i}, τ {i}|x{i},ω, λ, β0, β1, v
{i}
ϵ ,v

{i}
δ )
]

−DKL

(
q(v{i}ϵ |x{i})∥p(v{i}ϵ )

)
−DKL

(
q(v

{i}
δ |x{i})∥p(v{i}

δ )
)

−
Φ∑

j=1

DKL

(
q(ωj |x{1:N})∥p(ωj)

)
−DKL

(
q(λ|x{1:N})∥p(λ)

)
−DKL

(
q(β0|x{1:N})∥p(β0)

)
−DKL

(
q(β1|x{1:N})∥p(β1)

)
, (52)

where DKL denotes the KL (Kullback-Leibler) divergence between two distributions. We now delve
into the expectations in the above expression.

It follows from Appendix E that the first term amounts to

Eq

[
log p(x{i}|α{i}, τ {i}, v{i}ϵ ,v

{i}
δ ) + log p(α{i}|ω, λ) + log p(τ {i}|β0, β1)

− log q(α{i}, τ {i}|x{i},ω, λ, β0, β1, v
{i}
ϵ ,v

{i}
δ )
]

= − 1

2

L∑
t=1

⟨log
(
v{i}ϵ + v

{i}
δ(t)

)
⟩+ 1

2

Φ∑
j=1

⟨log
(
λ
1− ωj

ωj

)
⟩

+
1

2
⟨log det(β0I + β1Ktp)⟩ −

1

2
⟨log detK⟩ − 1

2
x{i}T ⟨diag

(
v{i}ϵ + v

{i}
δ

)−1⟩x{i}

+
1

2
x{i}T ⟨diag

(
v{i}ϵ + v

{i}
δ

)−1
[
D I

]
K{i}−1

[
DT

I

]
diag

(
v{i}ϵ + v

{i}
δ

)−1⟩x{i}, (53)

where K{i} is defined in (29), and ⟨·⟩ denotes the expectation over the q distributions. Note that the
term ⟨log det(β0I + β1Ktp)⟩ can be further simplified as:

⟨log det(β0I + β1Ktp)⟩ =
L∑

t=1

⟨log(β0 + β1rt)⟩, (54)

where rt denotes the t-th eigenvalue of Ktp. We therefore use this simplification when computing
the above expectation. In addition, the expectations in (53) do not have close-form expressions, and
can only be computed via Monte-Carlo approximations. More specifically for those variables whose
q distributions are log-normal, we can use the reparameterization trick introduced in (Kingma &
Welling, 2014). Take v{i}ϵ ∼ Lognormal(m

{i}
ϵ (x{i}), ν

{i}
ϵ (x{i})) as an example,

v̂{i}ϵ =

√
ν
{i}
ϵ (x{i})e+m{i}

ϵ (x{i}), (55)

where e ∼ N (0, 1). On the other hand, for ωj ∼ Kumaraswamy(ωj ; cωj(x
{1:N}), dωj(x

{1:N})),
samples of ωj can be reparameterized as:

ω̂j =

(
1− u

1

dωj(x{1:N})
) 1

cωj(x{1:N}) , (56)

where u ∼ U(0, 1).

The second and third terms DKL(q(v
{i}
ϵ |x{i})∥p(v{i}ϵ )) and DKL(q(v

{i}
δ |x{i})∥p(v{i}

δ )) are the KL
divergence between a log-normal distribution and an inverse Gamma distribution. Suppose that the
mean and variance of the log-normal distribution are m and ν and the shape and scale of the inverse
gamma distribution are a and b. The resulting KL divergence (after removing the constant terms) can
be expressed as:

am+ b exp
(
−m+

1

2
ν
)
− 1

2
log ν. (57)

The fourth term DKL(q(ωj |x{1:N})∥p(ωj)) is the KL divergence between a Kumaraswamy (Nalis-
nick & Smyth, 2017) with shape parameters c and d and a Beta distribution with shape parameters a
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Algorithm 1 AmortizedPeriod

Require: N time series x{1:N} that share common periods, each with length L, and the Ramanujan dictionary
D with size Φ;

Ensure: q(ωj |x) for j = 1, · · · ,Φ;
1: repeat
2: Pass x{1:N} and D through the inference network to get the parameters for q(ωj |x{1:N}), q(λ|x{1:N}),

q(β0|x{1:N}), q(β1|x{1:N}), q(v{i}ϵ |x{i}), and q(v
{i}
δ |x{i});

3: Draw ℓ samples from the Kumaraswamy distribution q(ωj |x{1:N}) using the reparameterization trick
in (56);

4: Draw ℓ samples from the log-normal distributions q(λ|x{1:N}), q(β0|x{1:N}), q(β1|x{1:N}),
q(v

{i}
ϵ |x{i}), and q(v

{i}
δ |x{i}) using the reparameterization trick in (55);

5: Draw ℓ samples from q(α{i}, τ {i}|x{i},ω, λ, β0, β1, v
{i}
ϵ ,v

{i}
δ ) given the samples in the above two

steps using the reparameterization trick for Gaussian distributions (Kingma & Welling, 2014);
6: Compute the negative ELBO via Monte Carlo approximations (52);
7: Update the parameters of the inference network via gradient descent;
8: until convergence;
9: Perform inference by computing q(ωj |x) via the inference network for new time series;

and b, that is,

Eq

[
log q(ωj |x{1:N})− log p(ωj)

]
= log c+ log d+ (d− 1)⟨log(1− ωc

j)⟩ − (a− c)⟨logωj⟩ − (b− 1)⟨log(1− ωj)⟩, (58)

= log c+ log d+
1

d
−
(
1− a

c

)(
ψ(d) +

1

d
+ γ
)
− (b− 1)⟨log(1− ωj)⟩, (59)

where ψ denotes the digamma function, γ denotes the Euler–Mascheroni constant, and (59) holds
since

⟨logωj⟩ = −1

c

(
ψ(d) +

1

d
+ γ
)
, (60)

⟨log(1− ωc
j)⟩ = −1

d
. (61)

Note that the expectation ⟨log(1−ωj)⟩ cannot be computed analytically, and so Monte Carlo estimates
are required by sampling from the Kumaraswamy distribution as in (56).

The last three terms DKL(q(λ|x{1:N})∥p(λ)), DKL(q(β0|x{1:N})∥p(β0)), and
DKL(q(β1|x{1:N})∥p(β1) are the KL divergence between the log-normal distribution with
mean m and variance ν and the Gamma distribution with shape a and rate b:

−am+ b exp
(
m+

ν

2

)
− 1

2
log ν. (62)

The training and inference algorithm for AmortizedPeriod is summarized in Algorithm 1.

G DATASET DESCRIPTION

Here, we provide the details regarding the datasets used in our experiments.

• Synthetic Data: We generate periodic synthetic data with noise, outliers, and changing trends.
As a first step, we determine the number of periodic components in a time series by randomly
picking an integer from {0, · · · , 3}, where 0 means there are no periodic components and so ωj

should be 0 for all j. For each periodic components, we further choose the shape of the base
periodic signal from sinusoidal, square, and triangle waves at random, all of which are frequently
seen in the real world. The corresponding periods are chosen from {1, · · · , 28}. We further
multiply the chosen periods with 24, corresponding to 24 hours in a day. The amplitude of the
base signal is sampled uniformly from [1, 1.5]. We also add an irregular monthly period to 25% of
the time series. On the other hand, the trend component is also randomly selected as a sinusoidal,
square, or triangle wave, with a period as long as the length of the time series L. We specify
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L = 120 days × 24 hours = 2880 such that the monthly period component can repeat for about
four times. The corresponding amplitude is sampled uniformly from [5, 10]. Finally, we set
the variance of the Gaussian white noise vϵ and the proportion of outliers δ% to be (0.1, 0.05)
and (1, 0.1) respectively to generate two datasets, in order to evaluate the periodicity detection
approaches under mild and severe conditions. For each dataset, we simulate 5000 samples and
split them into training and testing sets with a ratio of 4 : 1. In particular for AmortizedPeriod,
each sample is further partitioned into N = 24 time series with the same periods, as mentioned
in Section 3.2. We depict a random selection of four time series for both datasets and their
corresponding decomposition in Figure 5 and 6. We observe that the periodic components are
heavily corrupted by trends, noise, and outliers, especially for the dataset with vϵ = 1 and
δ% = 0.1.

• Yahoo Data2: We utilize the publicly available multiple-period data from Yahoo’s webscope S5
datasets, specifically the Yahoo-A3 and Yahoo-A4 datasets. These datasets comprise 200 time
series in total, each of which contains 1680 data points across 3 period lengths: 12, 24, and 168.
The ratio between the training and testing set is 4 : 1. Similar to the synthetic data, we divide
each sample into N = 12 time series with the same periods for AmortizedPeriod. We plot out in
Figure 7 four randomly selected from this dataset. It can seen that the noise level associated with
time series in this dataset is the lowest in comparison with the other three datasets.

• App Flow Data34: We further collect the real traffic flow data for 311 micro-services deployed
on 18 logic data centers in the cloud system of Ant Group. These data are used for workload
forecasting, anomaly detection, and auto-scaling of cloud databases and computing in practice.
This dataset consists of 1000 time series, each of length 2880 (120 days×24 hours). The candidate
periods include 0 (i.e., non-periodic), 1, 7, and 15 days as well as the irregular monthly periods.
It can be observed that the periods are corrupted by changes in the periodic and trend patterns,
and the presence of noise, outliers, and even blocks of missing data. All time series are labeled
manually by experts. The ratio between the training and testing set is 4 : 1, and we again split each
sample into N = 24 time series with the same periods for AmortizedPeriod. We further present
four time series from this dataset selected at random in Figure 8. As demonstrated in this figure,
the trend of the time series is relatively stable. However, there exist outliers every now and then.
Moreover, we can observe weekly (the second figure) and monthly periods (the third figure) in
this dataset. It is important to note that the monthly pattern observed in the traffic flow of Alipay
users can be attributed to activities such as pre-authorized debit, auto-deduction of utility bills
(e.g., electricity, water), and auto-payment of credit card bills. Although these activities occur
sporadically, they may affect all Alipay users within a brief time frame. As a result, it is essential
to consider monthly patterns during resource scheduling, since they may significantly increase the
traffic flow.

H EXPERIMENT SETUP

Unless otherwise specified, in all of our experiments, we set the hidden dimension in the CAB and
SAB to 192. For optimization, we use Adabelief (Zhuang et al., 2020) with β1 = 0.5, β2 = 0.999,
and learning rate 1 × 10−4, since it offers more stable results than Adam. We conduct training
for 5000 epochs and select the checkpoints with the lowest training loss as the final model. All
simulations of training AmortizedPeriod are run using 8 NVIDIA TESLA A100 GPUs with 80 GB
of VRAM. All inferences are run on a MacBook Pro (16-inch, 2019) with a 6-core Intel i7 CPU and
16 GB of RAM. All experiments are averaged over 5 trials.

2https://webscope.sandbox.yahoo.com/catalog.php?datatype=sguccounter=1
3https://github.com/alipay/AmortizedPeriod/data/AntData/appflow_data.zip.
4a. The data set does not contain any Personal Identifiable Information (PII); b. The data set is desensitized

and encrypted; c. Adequate data protection was carried out during the experiment to prevent the risk of data
copy leakage, and the data set was destroyed after the experiment; d. The data set is only used for academic
research, it does not represent any real business situation.
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Figure 5: Time Series from the synthetic dataset with vϵ = 0.1 and δ% = 0.05.
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Figure 6: Time Series from the synthetic dataset with vϵ = 1 and δ% = 0.1.

I EXPERIMENTAL RESULTS

In this section, we present a more comprehensive comparison between AutoPeriod, RobustPeriod,
RPT, and the proposed AmortizedPeriod over the four datasets, as a supplement to the results
presented in Table 1. Concretely, apart from the micro F1-score reported in Table 1, we also employ
other performance metrics to evaluate the benchmark methods, namely the macro F1-score, weighted
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Figure 7: Time Series from the Yahoo dataset.

0 500 1000 1500 2000 2500
Time

0

2000

4000

Am
pl

itu
de

0 500 1000 1500 2000 2500
Time

0

50000

Am
pl

itu
de

0 500 1000 1500 2000 2500
Time

0

5000

Am
pl

itu
de

0 500 1000 1500 2000 2500
Time

0

500

Am
pl

itu
de

Figure 8: Time Series with a span of two months from the App Flow dataset.

F1-score, and sampled F1-score. Prior to presenting our findings, we provide an explanation of
these scores. The F1-score is a widely used metric for assessing classification model performance,
combining precision and recall into a single value that represents their balance. The different
variations of the F1-score are defined as follows:
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Table 5: Full comparison between the benchmark methods on the four datasets.

Metrics AutoPeriod RobustPeriod RPD AmortizedPeriod

v ϵ
=

0.
1,
δ%

=
0.
0
5

Micro F1-score
train 0.29 0.32 0.24 0.80
test 0.30 0.30 0.23 0.76

Macro F1-score
train 0.18 0.19 0.18 0.65
test 0.17 0.19 0.18 0.57

Weighted F1-score
train 0.30 0.31 0.39 0.87
test 0.29 0.29 0.39 0.84

Sampled F1-score
train 0.23 0.29 0.23 0.80
test 0.22 0.27 0.22 0.75

Time 1.76e-1 5.91e2 5.39 3.23e-2
Memory 2.57MB 609.48MB 144.60MB 2.79KB

v ϵ
=

1,
δ%

=
0.
1

Micro F1-score
train 0.29 0.31 0.18 0.79
test 0.30 0.29 0.17 0.57

Macro F1-score
train 0.18 0.18 0.10 0.58
test 0.18 0.17 0.10 0.45

Weighted F1-score
train 0.27 0.28 0.22 0.86
test 0.27 0.26 0.22 0.72

Sampled F1-score
train 0.22 0.28 0.12 0.73
test 0.22 0.26 0.12 0.54

Time 9.88e-2 4.41e2 1.24e2 3.72e2
Memory 2.56MB 93.98MB 144.60MB 2.90KB

Y
ah

oo

Micro F1-score
train 0.75 0.84 0.83 0.86
test 0.73 0.82 0.84 0.87

Macro F1-score
train 0.29 0.09 0.59 0.81
test 0.23 0.12 0.38 0.82

Weighted F1-score
train 0.87 0.98 0.81 0.81
test 0.92 0.98 0.84 0.82

Sampled F1-score
train 0.69 0.84 0.82 0.86
test 0.71 0.83 0.84 0.86

Time 1.50e-1 1.24e2 1.17 3.48e-2
Memory 1.33MB 50.20MB 35.87MB 2.31KB

A
pp

Fl
ow

Micro F1-score
train 0.40 0.57 0.59 0.88
test 0.45 0.56 0.60 0.85

Macro F1-score
train 0.03 0.07 0.04 0.28
test 0.04 0.08 0.06 0.26

Weighted F1-score
train 0.39 0.78 0.62 0.90
test 0.46 0.82 0.65 0.88

Sampled F1-score
train 0.30 0.55 0.62 0.82
test 0.36 0.55 0.63 0.79

Time 7.68e-2 3.72e2 8.47 3.43e-2
Memory 2.57MB 94.17MB 144.61MB 2.66KB

• Micro F1-score: This metric considers the overall count of true positives, false positives, and false
negatives across all classes. It computes the precision and recall for the entire dataset and then
derives the F1-score based on these aggregated values. It treats all classes equally and is suitable
for imbalanced datasets.

• Macro F1-score: This metric calculates the F1-score for each class individually and then takes
the average across all classes. Each class is given equal importance, irrespective of its size or
distribution in the dataset. It is appropriate when all classes are considered equally significant.

• Weighted F1-score: Similar to the macro F1-score, this metric accounts for the class distribution
within the dataset. It calculates the F1-score for each class, weighting them by the number of
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Table 6: The micro F1-score and run time (seconds) averaged over all time series resulting from all benchmark
methods for four datasets. The first two datasets consist of synthetic data with different noise variance vϵ and
proportion of outliers δ%. The results are averaged over 5 trials and the corresponding standard deviation is
provided in the brackets below.

Methods
vϵ = 0.1, δ% = 0.05 vϵ = 1, δ% = 0.1 Yahoo App Flow

Train Test Time Train Test Time Train Test Time Train Test Time

AutoPeriod
0.29 0.30 1.76e-1 0.29 0.28 9.88e-2 0.75 0.73 1.50e-1 0.40 0.45 7.68e-2
(0) (0) (1.67e-2) (0) (0) (2.11e-2) (0) (0) (7.17e-3) (0) (0) (4.98e-3)

RobustPeriod
0.32 0.30 5.91e2 0.31 0.29 4.41e2 0.84 0.82 1.24e2 0.57 0.56 3.72e2

(1.54e-3) (7.75e-4) (3.76e1) (3.88e-3) (2.31e-3) (4.41e1) (0) (0) (7.33) (0) (0) (5.06e1)

RPD
0.24 0.23 5.39 0.18 0.17 5.06 0.83 0.84 1.17 0.59 0.60 8.47

(5.98e-5) (7.59e-5) (4.59e-1) (1.89e-5) (7.42e-5) (4.31e-1) (0) (0) (9.52e-2) (4.46e-5) (0) (2.68e-1)

AmortizedPeriod
0.80 0.76 3.23e-2 0.70 0.57 3.32e-2 0.86 0.87 3.48e-2 0.90 0.85 3.43e-2

(1.62e-2) (2.02e-2) (2.10e-3) (1.58e-2) (9.37e-3) (4.69e-3) (2.36e-2) (2.54e-2) (2.92e-3) 2.00e-2) (2.57e-2) (4.11e-3)

instances in each class, and then takes the average. This evaluation provides a more balanced
assessment when the classes have varying sizes.

• Sampled F1-score: Comparable to the macro F1-score, this metric calculates the F1-score for
each individual sample and subsequently takes the average across all samples. It assigns equal
importance to each sample, irrespective of its class or distribution. This metric is useful for
evaluating classifier performance on a per-sample basis, without considering class imbalances or
class-specific performance.

Moreover, in addition to the running time shown in Table 1, we also show the peak memory
consumption during inference. All of these results are summarized in Table 5.

In terms of estimation accuracy, AmortizedPeriod demonstrates superior performance compared to
other methods for most datasets and variants of the F1-score, establishing its dominance. However,
for the Yahoo dataset, RobustPeriod surpasses AmortizedPeriod in terms of the weighted F1-score
while falling short in other F1-score variants. This discrepancy can be attributed to RobustPeriod
generating more false positives for nonexistent periods, yet yielding fewer false negatives for existing
periods. Notably, when computing the weighted F1-score, the weights assigned to non-existing
periods are set to zero, thereby disregarding the false positives produced by RobustPeriod and inflating
the resulting weighted F1-score.

In terms of efficiency, AmortizedPeriod exhibits remarkable superiority over other methods, as it
requires the least running time and memory resources. Unlike RobustPeriod and RPT, which involve
iterative optimization algorithms with computationally intensive operations such as matrix inverses
for accurate period estimation, AmortizedPeriod solely relies on the inference network that takes the
original time series as input and outputs the estimated periods. Specifically, we focus exclusively
on inferring the existence of a period (i.e., q(ω)) during inference, making the distribution of other
components irrelevant. Thus, we employ only the inference network within the red dashed box
depicted in Figure 2, resulting in a lightweight network architecture. Additionally, when applying
AmortizedPeriod, we leverage a strategy where the original time series is divided into N subseries
with identical periods, based on the base periods of the time series. This approach is elaborated upon
at the end of Section 3.2 and in Appendix G when introducing the datasets. For instance, consider a
time series spanning 120 days, with each day comprising N = 24 time points. By aggregating the
i-th time point across consecutive days, we create N = 24 time series, each with a length of 120.
Consequently, we can collectively detect common periods (e.g., daily, weekly, and monthly) for these
24 time series. This practice effectively reduces the number of potential bases in the Ramanujan
dictionary D. Recall that the attention is computed between the set of time series and the basis
vectors, and so shrinking D can enhance efficiency. Unfortunately, this strategy is not applicable to
other methods, as they can only detect periods for a single time series instead of identifying common
periods among a set of time series.

Furthermore, we report the standard deviation computed over five trials in Table 6 and 7. Our analysis
reveals that the standard deviation for all methods is relatively small in comparison to the mean,
especially for the SOTA methods.
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Table 7: The micro F1-score for the ablation study. The results are averaged over 5 trials and the corresponding
standard deviation is provided in the brackets below.

Methods
vϵ = 0.1, δ% = 0.05 vϵ = 1, δ% = 0.1 Yahoo App Flow

Train Test Train Test Train Test Train Test

AmortizedPeriod
0.80 0.76 0.70 0.57 0.86 0.87 0.89 0.87

(1.62e-2) (2.02e-2) (1.58e-2) (9.37e-3) (2.36e-2) (2.54e-2) (2.00e-2) (2.57e-2)

- Trend
0.58 0.55 0.58 0.48 0.85 0.86 0.88 0.86

(7.52e-3) (7.13e-3) (4.33e-3) (3.16e-3) (2.87e-2) (6.29e-3) (5.61e-3) (1.11e-2)

- Outliers
0.51 0.48 0.28 0.29 0.86 0.86 0.55 0.50

(2.75e-2) (4.83e-2) (2.91e-2) (2.85e-2) (1.11e-3) (3.12e-3) (4.88e-2) (5.12e-2)

- Month
0.71 0.70 0.53 0.49 - - 0.85 0.84

(1.88e-2) (2.62e-2) (1.62e-2) (1.21e-2) - - (3.84e-2) (5.51e-2)

Table 8: Full comparison between the benchmark methods on the CRAN dataset.

Metrics AutoPeriod RobustPeriod RPD AmortizedPeriod

Micro F1-score
train 0.05 0.23 0.26 0.50
test 0.12 0.18 0.20 0.25

Macro F1-score
train 0.02 0.13 0.12 0.25
test 0.08 0.12 0.10 0.12

Weighted F1-score
train 0.05 0.42 0.49 0.51
test 0.06 0.31 0.46 0.18

Sampled F1-score
train 0.02 0.25 0.34 0.50
test 0.06 0.17 0.26 0.25

Time 1.76e-1 4.96e2 1.14e1 1.47
Memory 2.57MB 29.84MB 103.36MB 2.40KB

J ADDITIONAL EXPERIMENTS ON THE CRAN DATASET WITH SINGLE
PERIODS

In this section, we evaluate the four methods for period detection using the CRAN data. The dataset
consists of univariate time series extracted from open-source packages listed in the "Time Series
Data" section of the CRAN Task View on Time Series Analysis Toller et al. (2019) 5. It includes 82
time series in a diverse range of application domains, including economic indicators like employment
rates and retail sales, as well as environmental measurements such as pollution levels and sunspot
counts.

It should be noted that the time series within this dataset have varying lengths. To enable the
application of AmortizedPeriod to this dataset, a preprocessing step is undertaken involving linear
interpolation and truncation. This ensures that all resulting time series have the same length of 1040.
Specifically, if a time series x{i} has a length L{i} less than 1040, we perform linear interpolation
by introducing ⌊1040/L{i}⌋ + 1 new points between each pair of consecutive time points in the
original series, where ⌊·⌋ represents the floor function. When L{i} is greater than or equal to 1040,
we truncate the original series, retaining the first 1040 time points. Following this preprocessing step,
it is observed that the true periods for all time series are multiples of 8, with the exception of two
series6. Consequently, these two series are excluded from the analysis. The resulting periods for
all remaining time series range from 8 to 528. Similar to the aforementioned datasets, each sample
is partitioned into N = 8 time series, each sharing the same period. The training and testing sets
maintain a ratio of 4:1, respectively. For AmortizedPeriod, we train the inference network with 5e4
epochs and choose the checkpoints with the lowest training loss. The remaining settings are the same
as before.

5https://cran.r-project.org/web/views/TimeSeries.html
6These two series initially have periods of 7 and 52.1786, respectively.
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The results of our experiments are presented in Table 8, where it can be observed that the proposed
AmortizedPeriod consistently outperforms other methods in terms of accuracy and efficiency across
most evaluation criteria. It is worth noting that the performance of AmortizedPeriod on the testing
data is comparatively lower than that on the training data. This discrepancy arises due to the limited
number of time series in the training set (i.e., 64), which restricts the generalization capability of the
learned inference network to unseen testing data. Nevertheless, we would like to emphasize that the
periods for the training data are estimated in a self-supervised manner. Consequently, the superior
F1-score achieved by AmortizedPeriod indicates the versatility of the proposed generative model in
describing the training data, while the inference model effectively maps the observed time series to
the distribution of the periods.

On the other hand, the hyperparameters for AutoPeriod and RobustPeriod were set to be the same as
those used in the four datasets discussed in Section 4. These parameters were manually tuned to yield
good performance on those datasets. Although tuning these parameters specifically for the CRAN
data might potentially enhance their performance, it would require additional effort. This underscores
the importance of adaptive hyperparameter learning from the data, a feature effectively addressed by
AmortizedPeriod.

Finally, for RPD, we employed cross-validation to select the single hyperparameter in all our
experiments, which contributes to its relatively robust performance. However, since RPD does not
account for the non-periodic components in the data, its performance remains inferior to that of
AmortizedPeriod, particularly for the training data.

K LIMITATIONS, DISCUSSIONS, AND FUTURE WORK

K.1 LIMITATIONS OF AMORTIZEDPERIOD

First, AmortizedPeriod is more suitable for scenarios where there are hundreds or thousands of time
series, as some training data is required to train the inference network. When there are only a few
time series, we recommend utilizing the existing SOTA methods. In addition, before using it for
inference, AmortizedPeriod needs to be trained for a relatively long time. When the training dataset is
larger, the training process can be time-consuming. However, after AmortizedPeriod is well-trained,
the inference process is relatively fast, as shown in our experiments.

K.2 DISCUSSIONS ON THE USAGE OF PERIODICITY DETECTION

As mentioned in Section 1, periodicity detection offers benefits for other time series-related tasks,
such as classification, clustering, decomposition, anomaly detection, and forecasting. In this regard,
we will now delve deeper into how accurately estimated periods can boost the performance of these
tasks.

• Time series classification and clustering: Periodic patterns in time series data often contain infor-
mative and discriminative features that can distinguish different classes or clusters with the noise
and irrelevant variations in time series filter out. For example, in heart rate monitoring, periodicity
detection can identify recurring patterns, such as beat-to-beat intervals, enabling the differenti-
ation between normal heart rhythms and irregularities related to cardiac conditions (Thungtong
et al., 2018). Similarly, in customer behavior analysis, periodicity detection helps identify regular
patterns in purchasing behavior, facilitating the clustering of customers based on their shopping
habits (Guidotti et al., 2018).

• Time series decomposition: Many typical time series decomposition methods, such as MSTL (Ban-
dara et al., 2021) and robustSTL (Wen et al., 2019), rely on predefined periods for extracting
seasonal components. By accurately detecting periodic patterns, we can extract underlying
seasonal variations more effectively, leading to a cleaner and more accurate decomposition.

• Anomaly detection: Periodicity detection aids in accurately identifying and characterizing normal
patterns or behaviors in time series data. Establishing a baseline for normal behavior based on
the underlying periodic patterns enables the detection of anomalies or deviations from expected
periodic behavior (Shehu & Harper, 2023). For instance, in network traffic analysis, periodicity de-
tection helps identify regular communication and data transfer patterns, enabling the identification
of anomalies that deviate from the expected periodic behavior (Akpinar & Ozcelik, 2020).
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• Time series forecasting: Periodicity detection allows for the identification and modeling of
seasonal, trend, and noise patterns in time series data, as mentioned above. By accurately
capturing the underlying periodic components, we can extract and model seasonal and trend
variations more accurately, while reducing the influence of unpredictable noise. Periodicity
patterns have been exploited explicitly or implicitly in various forecasting algorithms, including
ARIMA (Box & Jenkins, 1968), prophet (Taylor & Letham, 2018), N-BEATS (Oreshkin et al.,
2019), Pyraformer (Liu et al., 2022), TimesNet (Wu et al., 2023), etc.

K.3 FUTURE WORK

In future research, an intriguing avenue to explore is the concept of pre-training in the context of time
series analysis. Specifically, we can investigate the feasibility of pre-training an inference network
using a large and diverse set of time series data. This pre-trained network can then be directly
applied to perform periodicity detection without requiring additional training. Additionally, it would
be valuable to assess whether the features extracted by the pre-trained inference network are also
effective for other time series-related tasks, such as classification and forecasting. To this end, the
pre-trained inference network could be utilized for downstream tasks with some fine-tuning, further
investigating its potential for enhancing performance across various time series analysis applications.
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