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ABSTRACT

Multimodal large language models (MLLMs) capable of interpreting images can
generate highly detailed and extensive captions, owing to their advanced language
modeling capabilities. However, the captions they produce frequently contain hal-
lucinations. Furthermore, our empirical analysis reveals that existing hallucination
detection methods are less effective in detailed image captioning tasks. We attribute
this to the increasing reliance of MLLMs on their own generated text, rather than
the input image, as the sequence length grows. To address this issue, we propose a
novel corrector-based method that decomposes a given caption into atomic propo-
sitions, evaluates the factuality of each unit, and revises the caption accordingly.
Our method is training-free and can be applied in a plug-and-play manner to
any captioning model. Additionally, we introduce an evaluation framework and a
benchmark dataset to facilitate the systematic analysis of detailed captions. Our
experiments demonstrate that existing approaches to improve the factuality of
MLLM outputs may fall short in detailed image captioning tasks. In contrast, our
proposed method significantly enhances the factual accuracy of captions, even
improving those generated by GPT-4V. Finally, we highlight a limitation of VQA-
centric benchmarking by demonstrating that an MLLM’s performance on VQA
benchmarks may not correlate with its ability to generate detailed image captions.

1 INTRODUCTION

Numerous image captioning methods utilizing deep neural networks (DNNs) have been proposed
(Vinyals et al., 2015; Xu et al., 2015). However, they are generally limited to generating short and
concise captions, which constrains their broader application in real-world scenarios. For instance, in
cases such as assistance for visually impaired individuals, where it is necessary to provide highly
detailed descriptions of the scene in front of the user, these methods may not be suitable.

Following the recent success of large language models (LLMs) (Brown et al., 2020), there have been
attempts to use not only text but also information from other modalities as input to LLMs. Notably,
many studies have explored multimodal large language models (MLLMs) that incorporate visual
information (Li et al., 2023a; Dai et al., 2023; Liu et al., 2024b). These models have demonstrated
significantly superior performance compared to traditional models in tasks such as visual question
answering (VQA) and captioning (Liu et al., 2024a). In particular, MLLMs, leveraging the advanced
language capabilities of LLMs, are able to generate much longer and more detailed captions than
conventional captioning models. However, these generated captions frequently contain inaccurate
information, including descriptions of objects that are not present in the input image (Leng et al.,
2024). Such hallucination problems hinder the practical application of MLLMs in real-world settings.

Three major approaches have been recently proposed to improve the factuality of MLLM outputs:
(i) Decoding-based methods (Leng et al., 2024) reduce the probabilities of hallucination-related
tokens during the model’s decoding process without requiring additional training; (ii) Training-based
methods (Liu et al., 2023a) further train the models on curated multimodal datasets to ensure they
generate only accurate responses; (iii) Corrector-based methods (Zhou et al., 2024) employ a corrector
model that detects and either removes or revises hallucinations present in the model’s responses.

In this paper, we propose a novel corrector-based method called Visual Factuality EnhanceR
(V-FactER). Unlike existing approaches that require training a corrector (Lee et al., 2024), V-FactER
improves the factuality of detailed image captions by leveraging the collaboration between an LLM
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and MLLM, without the need for additional training. Moreover, unlike methods that target specific
types of hallucinations (Li et al., 2023b; Zhou et al., 2024), our approach does not pre-define the
hallucination types, allowing it to address a broader range of issues. The method proceeds as follows:
(i) an LLM decomposes a given detailed caption into atomic propositions; (ii) an MLLM verifies the
truthfulness of each atomic proposition based on the corresponding image; and (iii) the LLM revises
the caption accordingly. Our design is particularly motivated by the observation that, as the length of
a model’s response increases, hallucinations generated later in the sequence become more difficult
for existing methods (Wang et al., 2023; Zhou et al., 2024) to detect.

Evaluating the factuality of detailed captions is not straightforward. Through experiments, we
demonstrate that conventional caption evaluation metrics such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), METEOR (Banerjee & Lavie, 2005), and CIDEr (Vedantam et al., 2015), as
well as recently proposed methods (Hessel et al., 2021; Petryk et al., 2024), fail to accurately assess
the factuality of detailed captions. To address this issue, we propose a novel GPT-based method
for factuality evaluation and validate its effectiveness through experiments. Even if a caption
contains factual information, however, it may still be considered inadequate if it does not sufficiently
capture the visual information. To measure the coverage of captions, we construct a detailed VQA
dataset through a collaboration between humans and an AI agent (Achiam et al., 2023). If a
caption fully encapsulates the information of a given image, questions about the image should be
answerable accurately using only the caption, without referencing the image itself.

Our experiments surprisingly reveal that methods designed to improve the factuality of MLLMs,
which have proven effective in tasks like VQA (Huang et al., 2024), may be ineffective for detailed
image captioning tasks that require longer responses. In contrast, V-FactER significantly enhances
the factuality of captions and can be applied in a plug-and-play manner to any captioning model.
Our experiments further demonstrate that this improvement extends to captions generated by the
state-of-the-art closed model, GPT-4V (Achiam et al., 2023). Finally, we highlight an issue with the
current VQA-centric benchmarking (Duan et al., 2024) by showing that an MLLM’s performance on
VQA benchmarks may not correlate with its ability to generate detailed image captions.

In summary, our contributions are as follows:

• We demonstrate that existing hallucination detection methods may perform worse as MLLM
response length increases, and we propose a method that can circumvent this issue.

• We introduce V-FactER, a method that significantly enhances the factuality of given detailed image
captions. V-FactER is a pipeline that leverages a pre-trained LLM and MLLM.

• We propose an evaluation framework and benchmark dataset that overcome the limitations of
existing caption evaluation methods and enable the systematic analysis of detailed image captions.

• We show that while existing methods designed to improve the factuality of MLLM responses may
be ineffective for detailed image captioning tasks, V-FactER significantly improves their factuality.

• Our experiments demonstrate that current VQA benchmarks fail to reliably capture the potential of
MLLMs in real-world applications, such as visual assistants for the visually impaired.

2 RELATED WORK

Multimodal large language models. LLMs that process inputs from multiple modalities, including
text and other types of data, are referred to as multimodal LLMs (Yin et al., 2023a). Among these,
LLMs that handle visual input have been the most actively researched, and the MLLMs discussed
in this paper are focused on this category. Research on these models primarily explores methods
for fusing the output of an independent vision encoder into the input of an LLM. The BLIP models
(Li et al., 2023a; Dai et al., 2023) align the frozen vision encoder and LLM using a lightweight
transformer (Vaswani, 2017) called Q-Former. The trainable input tokens of the Q-Former interact
with the output tokens from the vision encoder through cross-attention, transforming them into
input tokens for the LLM. The LLaVA models (Liu et al., 2024b;a) use a simple MLP connector to
align the vision encoder with the LLM. All output tokens from the vision encoder, passed through
the MLP connector, are used as input to the LLM. The vision encoder’s parameters remain fixed
during the training of the MLP connector and the LLM. Unlike existing MLLMs, the InternVL
models (Chen et al., 2024c;b) have demonstrated the effectiveness of increasing the size of both the
vision encoder and the vision-language connector. They utilize a 6-billion parameter vision encoder
and an 8-billion parameter vision-language connector. The connector is obtained by fine-tuning the
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"Describe the given 
image in a very 
detailed manner."

<input image> <LLaVA-NeXT> <GPT-4> <Humans>

"The image presents a 
captivating scene of a 
circular design etched 
onto a gray stone
surface. The design is 
a harmonious blend of 
two distinct elements: 
a serpent and a flower. 
The serpent, ..."

"Parse the given caption 
and list all objects that 
an object detector could 
identify in the image."

[
"serpent",
"flower",
"gray stone"

]

[
"serpent",
"flower",
"gray stone"

]

Figure 1: The process of generating a data sample for evaluating the performance of hallucination detection
methods in detailed image captioning tasks. Human annotators identify and label object hallucinations within
the caption generated by LLaVA-NeXT (Liu et al., 2024a) for an input image.

pre-trained multilingual LLaMA (Cui et al., 2023). Despite the many advancements in open-source
MLLMs, closed-source MLLMs such as GPT-4V or GPT-4o1 still outperform them significantly. As
a result, these GPT models represent the upper bound performance in benchmarks and are commonly
used to evaluate MLLMs (Petryk et al., 2024). In our work, we demonstrate that captions generated by
GPT-4V can be improved using our method, and we use GPT-4o to assess the factuality of captions.

MLLM hallucinations and mitigation strategies. MLLMs sometimes generate inaccurate re-
sponses. For example, they may incorrectly describe the characteristics of objects in an input image,
misrepresent relationships between objects, or even describe objects that do not exist. To mitigate
these hallucination problems, decoding-based methods identify factors that induce hallucinations and
apply penalties to the probabilities of tokens that are likely to be hallucinations during the decoding
process. For instance, VCD (Leng et al., 2024) induces hallucinations using corrupted images, while
OPERA (Huang et al., 2024) leverages the correlation between high attention weights assigned to a
few summary tokens and hallucinations. Training-based methods focus on exploring training data
that can suppress the generation of hallucinations. Liu et al. (2023a) demonstrated that hallucinations
can be alleviated by incorporating negative samples—descriptions that explicitly state the absence of
certain objects in a given image—into visual instruction tuning datasets. Corrector-based methods
(Zhou et al., 2024; Lee et al., 2024) detect, remove, and revise hallucinations present in MLLM
responses by using a corrector model. This model is obtained by supervised fine-tuning a pre-trained
MLLM. The corrector model then revises the initial response based on the given image.

Caption evaluation methods. Since short image captions are relatively easy to obtain reference
captions for, we can use matching-based caption evaluation methods (Hossain et al., 2019) to assess
them. However, for long and detailed captions generated by MLLMs, the number of reference
captions required for such evaluations becomes exceedingly large. Thus, it becomes impractical to
evaluate detailed captioning using traditional approaches. Hessel et al. (2021) proposed CLIPScore, a
reference-free evaluation method. CLIPScore measures the distance between an image and its caption
within the pre-trained joint representation space of CLIP (Radford et al., 2021). Additionally, the
authors introduced RefCLIPScore, which uses both the image and reference captions within that
same representation space. Chan et al. (2023) addressed the limitations of matching-based methods
by utilizing an LLM. The LLM-based metric they proposed, CLAIR, assigns scores to captions based
on reference captions using an LLM. Similarly, ALOHa (Petryk et al., 2024) detects hallucinations
by comparing a generated caption and its reference information through the use of an LLM.

3 METHOD

In this paper, we propose a new corrector-based method. Corrector-based methods typically detect and
remove or revise hallucinations within model responses. Unlike existing approaches, which obtain the
corrector model through training, our method employs collaboration between a pre-trained MLLM
and LLM. Moreover, in contrast to previous methods that are limited to correcting specific types of
hallucinations (Zhou et al., 2024), our approach is free from such constraints. We also propose a
dataset and framework for evaluating the detailed image captioning capabilities of an MLLM. Unlike

1https://openai.com/index/hello-gpt-4o/
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Figure 2: The hallucination scores of the Confidence and Consistency methods based on object positions within
detailed captions. Object hallucinations near the end of the captions (192+) are undetectable by both methods.

existing methods, our proposed evaluation approach allows for the assessment of image captioning
models in terms of both factuality and coverage, evaluating each of these aspects separately.

3.1 MOTIVATING OBSERVATIONS

Here, we examine the performance of existing hallucination detection methods on tasks that require
generating long responses. To facilitate these analyses, we construct a dataset as follows: (i) We
prompt an MLLM with “Describe the given image in a very detailed manner.” and collect the model’s
responses for a specified image set; (ii) For the convenience of our analysis, we use an LLM to identify
objects that may be hallucinations; (iii) Human annotators then label each parsed object as either a
hallucination or not, based on the corresponding image. We use LLaVA-NeXT (Liu et al., 2024a)
and GPT-4 as the MLLM and LLM, respectively. Figure 1 illustrates the process of constructing
the dataset. To build the dataset, we use a subset of IIW-400 (Garg et al., 2024). We detect object
hallucinations using two of the most widely adopted hallucination detection methods:

1. Confidence (Zhang et al., 2023; Zhou et al., 2024): This method detects hallucinations using
the probability pobj predicted for the object token when LLaVA-NeXT generates the caption. For
multi-token objects, the product of the token probabilities is used. The hallucination score is
defined as Hobj = − log pobj. A higher Hobj indicates a greater likelihood of hallucination.

2. Consistency (Wang et al., 2023; Zhao et al., 2024): This method assumes that hallucinations are
more influenced by randomness during decoding. Using stochastic decoding, we have LLaVA-
NeXT generate 40 detailed captions per image and count the occurrence tobj of each object in the
dataset of Figure 1. The hallucination score is defined as Hobj = − log

tobj

40 .

Figure 2 presents the hallucination scores of each method by the position of objects appearing within
detailed captions. The horizontal axis of the graphs represents bins of object token indices, with
larger token indices indicating positions closer to the end of the caption. The vertical axis represents
the mean and standard deviation of the hallucination scores within each bin. Note that Figure 2a
reflects the positions and hallucination scores during greedy decoding, while Figure 2b is derived
from the average positions and hallucination scores across 40 stochastic decoding iterations. Figure 2
demonstrates that hallucinations generated after the 192nd token are undetectable by the Confidence
and Consistency methods. Based on these results, we can infer that existing hallucination detection
methods may be ineffective in detecting hallucinations in long detailed captions.

Table 1: Performance comparison of hallucination
detection methods for the dataset of Figure 1.

Method AUROC↑ FPR95↓
Confidence 57.5 95.1
Consistency 73.5 75.6

Object Detector 61.5 95.7
Isolation 81.4 71.7

Our hypothesis regarding these results is that as
MLLM outputs become longer, they become more
strongly grounded in the text they generate rather
than the given image. In fact, our hypothesis is sup-
ported by several recent studies. For example, Liu
et al. (2024c) demonstrated that as MLLM responses
lengthen, the attention weights assigned to image
tokens decrease, and Zhong et al. (2024) showed
that MLLM responses are significantly influenced by
prior dialogue. Based on this hypothesis, we test a
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"Decompose the given 
caption into atomic 
propositions."

<Fact-checker MLLM><Decomposer LLM>

"Based on the given 
propositions and their 
corresponding True/False,  
correct the caption."

["The image captures a
scene of a sidewalk.",
"The main focus is a 
rectangular sign.",
"The sign is painted in a     
striking shade of green.",
"The sign stands out
against the gray concrete
of the sidewalk.", ...]

<Image>

"The image captures a 
scene of a sidewalk, 
where the main focus is 
a rectangular sign. The 
sign, painted in a 
striking shade of green, 
stands out against the 
gray concrete of the 
sidewalk. The sign ..."

<Initial caption>

Prepend
“True or False?”

[0.11, 1.41, 0.79, 0.23, ...]
<Hallucination scores>

𝜋 − thresholding

[True, False, False, True, ...]

<Corrector LLM>

"The image captures a scene of a sidewalk. The sign stands out against the gray concrete of the sidewalk. The 
sign carries a message that reads \"Please Walk Bikes\", a clear directive for cyclists ... "

<Corrected caption>

Figure 3: Overview of V-FactER. The decomposer LLM breaks down an initial caption into atomic units. These
units are converted into True/False questions and fed into the MLLM along with the image, where each unit is
assigned a hallucination score according to Equation (1). Each unit is classified as True or False based on the
threshold π, and the corrector LLM then revises the initial caption based on these results.

method for determining whether each object is a hallucination by disconnecting it from its con-
text (Isolation). The Isolation method involves querying the LLaVA-NeXT model with parsed
objects using the prompt template, “Is there a {} in the photo?” along with the image. When the
probability of the “Yes” token for the object query is pYes|obj, the hallucination score is defined as
Hobj = − log pYes|obj. We compare the object hallucination detection performance of the Isolation
method with that of the Confidence method, the Consistency method, and a method based on an
object detector (Object Detector) introduced in recent studies (Yin et al., 2023c; Ge et al., 2024).
We measure their detection performance on the dataset of Figure 1 using Area Under the Receiver
Operating Characteristic (AUROC) and False Positive Rate at 95% true positive rate (FPR95). Table 1
demonstrates that the Isolation method outperforms the others. This suggests that breaking a sentence
into smaller units and examining each individually can help detect hallucinations in detailed captions.

3.2 VISUAL FACTUALITY ENHANCER

Our motivational observations demonstrate that asking about the presence of objects using a prompt
template effectively detects object hallucinations in detailed captions. However, this approach has
limitations, as it fails to detect various types of hallucinations. To overcome this limitation, we first
decompose each detailed caption into atomic propositions using an LLM. An atomic proposition is a
claim or statement that must either be true or false. For example, the caption “A house has a red roof
and a chimney” is broken down into “A house has a red roof” and “A house has a chimney.” We use
an LLM to perform this process, but we allow flexibility in cases where the results do not strictly
conform to the definition of an atomic proposition. We then investigate the truth of each decomposed
unit using an MLLM. Each unit is converted into a True/False question and independently fed to the
MLLM. The hallucination score H(u) for the unit u is defined as follows:

H(u) = − log (min (p (“True”|x,Q(u))− p (“False”|x,Q(u)) , ϵ)) (1)

p (“True”) and p (“False”) represent the MLLM’s token probabilities for the “True” and “False”
tokens, respectively. x and ϵ denote the input image and a very small constant near zero. Q(·) is a
function that converts the input text into a True/False question, which we implement by prepending
“True or False?” to the input. Each unit is included in either the True set T or the False set F , based on
its hallucination score. To achieve this, we introduce a hyperparameter π, such that T = {u|H(u) ≤
π} and F = {u|H(u) > π}. Finally, the initial caption, along with the corresponding sets T and F ,
is provided to an LLM, which corrects the initial caption to ensure it contains only factual information.
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Table 2: Meta-evaluation results across various caption evaluation methods. DOCCI and its synthetic hallucinatory
captions are used for the meta-evaluation. The highest-rated caption for each method is highlighted in bold.

Caption Evaluation Metric
BLEU ROUGE METEOR CIDEr CLIP-S RefCLIP-S CLAIR ALOHa Ours

Clean 4.2 22.0 13.7 6.4 81.3 75.5 86.9 36.2 62.8
Object 4.9 22.3 14.5 4.8 81.0 75.3 85.2 31.5 52.3

Attribution 4.1 21.8 13.6 6.2 80.9 75.2 80.0 34.3 60.9
Relation 4.1 21.8 13.7 6.7 81.4 75.6 83.5 36.9 51.9

We name this method, which improves the factuality of detailed image captions through the collabo-
ration of a pre-trained LLM and MLLM, Visual Factuality EnhanceR (V-FactER). V-FactER is
training-free and can be applied in a plug-and-play manner to any captioning model. Unlike existing
methods that can only address predefined types of hallucinations, V-FactER can detect and correct all
hallucinations at the atomic unit level. The pipeline of V-FactER is illustrated in Figure 3.

3.3 EVALUATION METHODS

Traditional caption evaluation methods rely on word matching between a predicted caption and its
reference captions. This approach works because conventional captioning models generate short
captions. However, modern MLLMs produce much longer and more detailed captions, making it
impractical to obtain sufficient reference captions for accurate evaluation. Given the enriched content
of these image captions, rather than simply evaluating them as good or bad, we aim to assess them
systematically by considering two key perspectives:

• Factuality: The degree to which the content of the caption is factual and free from hallucinations.
• Coverage: The extent to which the caption captures the information contained in the image.

We propose evaluation methods for detailed image captions from these two perspectives.

Factuality. If a human were to measure the factuality of a text, it would be natural to decompose
the text into units that can be classified as true or false, and then calculate the proportion of true
units (Maynez et al., 2020). We adopt this approach to measure the factuality of captions, utilizing
the state-of-the-art model GPT-4o. In our framework, GPT-4o decomposes each caption into atomic
propositions and determines their truthfulness based on the corresponding image and reference
caption. If the number of atomic propositions judged as true and false are T and F , respectively, the
factuality of the caption is defined as T

T+F . This approach enables reliable factuality evaluation using
only a single reference caption, unlike conventional methods (Vedantam et al., 2015).

To validate this evaluation method, we use the DOCCI dataset (Onoe et al., 2024), which contains
human-annotated detailed image captions. Specifically, for each image in a subset of the dataset, we
prepare the following four types of captions (details provided in Appendix B):

1. Clean: The original caption (e.g., An indoor top-down view captures a white cat with black patches
on a wooden floor, attempting to catch a large pale peacock feather flying above it.).

2. Object: An additional description of an object likely to exist in the image but not actually present
is added to the Clean caption (e.g., An indoor top-down view captures a white cat with black
patches on a wooden floor, attempting to catch a large pale peacock feather flying above it. A
small red ball is rolling near the cat.).

3. Attribution: Some object attributions in the Clean caption are modified to be inconsistent with the
image (e.g., An indoor top-down view captures a white cat with black patches on a metal floor,
attempting to catch a small dark peacock feather flying above it.).

4. Relation: Some relationships between objects in the Clean caption are altered to be inconsistent
with the image (e.g., An indoor top-down view captures a white cat with black patches on a
wooden floor, attempting to catch a large pale peacock feather flying below it.).

We evaluate the four types of captions using various image caption evaluation methods (BLEU,
ROUGE, METEOR, CIDEr, CLIP-S, RefCLIP-S, CLAIR, and ALOHa), including our own, to
determine whether the hallucinations in the three modified types are reflected in the scores. For a fair
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1.  What is the main focus of the photo?
A) A landscape B) A television and decorations C) A group of people D) A building

2.  Where was the photo likely taken?
A) In a park B) Inside a house C) At a beach D) In a museum

3. What is the situation depicted in the photo?
A) A family gathering B) A decorated living space C) A work meeting D) A sporting event

4.  What is in the center of the photo?
A) A painting B) A television C) A person D) A window

...

47. What is on the left side of the table in the photo?
A) A lamp B) A blue decorative tree C) A vase D) A stack of books

48. What is the texture of the table in the foreground?
A) Smooth and shiny B) Rough and rustic C) Soft and cushioned D) Metallic and cold

49. What is in the background of the photo, to the right side?
A) A kitchen B) A Christmas tree C) A bookshelf D) A window with curtains

50. What type of ornaments are on the triangular decoration on the table?
A) Animal figurines B) Christmas baubles C) Miniature houses D) Candles

Figure 4: An example of our coverage evaluation data sample. The dataset consists of multiple-choice questions
with four or fewer options. As demonstrated, the dataset includes questions with varying levels of granularity,
ranging from broad to highly detailed. We have an LLM solve these problems using only the provided captions.

comparison, all methods requiring GPT (CLAIR, ALOHa, and ours) use GPT-4o, and all methods
requiring reference captions (BLEU, ROUGE, METEOR, CIDEr, CLAIR, ALOHa, and ours) use a
separate set (Garg et al., 2024) of human-annotated captions (one reference caption per image).

Table 2 shows that existing metrics are unreliable for evaluating the factuality of detailed image
captions. Specifically, BLEU, ROUGE, METEOR, and CIDEr fail to account for hallucinations in
the scores and do not assign the highest score to the Clean captions. CLIP can only process up to 77
tokens and operates like a bag-of-words model (Yuksekgonul et al., 2023). This prevents CLIP-based
metrics from capturing the full content of detailed image captions, particularly missing Relation
hallucinations. ALOHa effectively addresses Object and Attribution hallucinations but fails to capture
Relation hallucinations due to its algorithmic limitations. CLAIR detects and reflects all three types
of hallucinations in the scores. However, CLAIR does not focus solely on factuality; instead, it allows
the GPT model to directly score each caption, applying the evaluation criteria implicitly defined by
the GPT model. In contrast, our evaluation method exclusively considers the factuality of the caption.
While it does not assign a perfect score to the Clean captions due to GPT-4o’s limitations in image
understanding, it successfully assigns the highest score to Clean among the four caption sets.

Coverage. Even if an image caption contains only factual information, it would not be highly
rated if it reflects only trivial aspects of the image. To assess the coverage of captioning models, we
propose a QA-based metric and a benchmark dataset. Our coverage evaluation method is based on
the assumption that if an image caption fully captures the information in the image, visual questions
about that image should be answerable by referencing the caption alone.

Our goal is to evaluate detailed image captioning models. Therefore, the visual questions for evaluation
must include a variety of detailed and nuanced questions about the images. Given the limitations of
existing VQA datasets in this regard (Lu et al., 2022; Yin et al., 2023b; Li et al., 2023b; Yue et al.,
2024), we construct a new VQA dataset. However, creating a new VQA dataset that includes a variety
of detailed questions requires substantial labor. To reduce the associated costs, we follow the process
outlined below to construct our dataset:

1. Generating more than 50 questions per image in the IIW-400 dataset using GPT-4o.
2. Deduplicating the questions for each image using Sentence-BERT (Reimers & Gurevych, 2019).
3. Instructing human labelers to remove or revise questions that can be answered without specific

image information, or that are ambiguous or flawed, making them difficult to answer.
4. Annotating the correct answers to the remaining and revised questions by human labelers.

Our coverage evaluation dataset contains a total of 19,899 multiple-choice questions, with each image
averaging 49.8 questions. Although we did not explicitly instruct the GPT model to generate detailed
questions, it naturally includes them while generating a large number of questions. We present an
example of our dataset in Figure 4. While our benchmark dataset can also be used to assess the visual
understanding capabilities of MLLMs, we use it to evaluate the coverage of captioning models by
having an LLM answer the questions based on the captions generated by those models.
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Table 3: Effectiveness of our proposed method across various captioning models. In the V-FactER column, the
LLM represents the decomposer and corrector, while the MLLM represents the fact-checker. Avg. denotes the
average of the CLAIR, Factuality, and Coverage results.

Captioner V-FactER Metric
LLM MLLM CLAIR Factuality Coverage Avg.

LLaVA-NeXT-7B
- - 68.8 59.9 47.9 58.9

LLaMA-3-8B LLaVA-NeXT-7B 74.1 72.2 46.9 64.4
GPT-4 LLaVA-NeXT-7B 74.6 73.4 46.2 64.7

LLaVA-NeXT-13B
- - 70.2 62.1 48.5 60.3

LLaMA-3-8B LLaVA-NeXT-13B 75.5 77.9 45.8 66.4
GPT-4 LLaVA-NeXT-13B 73.4 79.3 45.1 65.9

InternVL-Chat-V1.5
- - 74.9 65.5 48.2 62.9

LLaMA-3-8B InternVL-Chat-V1.5 78.2 75.9 47.3 67.1
GPT-4 InternVL-Chat-V1.5 77.8 75.7 47.3 66.9

GPT-4V

- - 82.4 77.1 53.5 71.0
LLaMA-3-8B LLaVA-NeXT-7B 83.3 83.3 50.8 72.4
LLaMA-3-8B LLaVA-NeXT-13B 81.9 85.3 48.4 71.9
LLaMA-3-8B InternVL-Chat-V1.5 84.6 82.1 53.5 73.4

4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 EXPERIMENTAL SETUP

We adopt LLaVA-v1.5-7B, LLaVA-NeXT-7B, LLaVA-NeXT-13B, InternVL-Chat-V1.5, and GPT-4V
as the models for both captioning and V-FactER’s fact-checking. We use LLaMA-3-8B (AI@Meta,
2024) or GPT-4 as the decomposer and corrector LLMs in V-FactER. Our experiments utilize the IIW-
400 dataset, which contains 400 images, each accompanied by a highly detailed, hallucination-free
caption. These high-quality reference captions enable precise evaluation of the captioning models.

We employ our proposed factuality and coverage evaluation methods, along with CLAIR, all of which
use GPT-4o to evaluate the generated captions. To ensure robust evaluation and assess the recall
potential of the captioning methods, we summarize the captions (Ge et al., 2024) generated from five
different input prompts using LLaMA-3-8B. The only hyperparameter in V-FactER, π, is determined
using a validation set composed of five images, their QAs, and reference captions. This validation set
is constructed by sampling five examples from the DCI dataset (Urbanek et al., 2024). The prompt
templates used in our experiments are provided in Appendix B.

4.2 IMPROVEMENT IN THE FACTUALITY OF CAPTIONING MODELS

Our proposed V-FactER exhibits a loose factuality-coverage trade-off depending on the hyperparame-
ter π. Specifically, as π decreases, the threshold for determining factual propositions becomes stricter,
leading to more propositions being identified for correction. Consequently, factuality increases while
coverage decreases (an ablation study on π is provided in Appendix A). We first investigate whether
V-FactER can enhance the factuality of various MLLMs while minimizing the reduction in coverage.

Table 3 demonstrates that V-FactER can significantly enhance the factuality of all tested MLLMs
while minimizing coverage loss. The substantial improvement in factuality, compared to the relatively
minor coverage loss in the captioning models, is also reflected in the increased CLAIR scores. Using
a more advanced LLM in V-FactER does not necessarily result in greater performance gains.
When applying V-FactER to the LLaVA and InternVL models, there is minimal difference between
the results obtained with LLaMA-3-8B and those with GPT-4. This suggests that the LLM’s role in
V-FactER is relatively straightforward. V-FactER can improve detailed image captioning even
for the state-of-the-art MLLM, GPT-4V. It can significantly enhance factuality even when used
with MLLMs far less capable than GPT-4V. However, in such cases, there is a considerable loss
in coverage, as many visual elements recognized by GPT-4V are identified as hallucinations by
V-FactER. With InternVL-Chat-V1.5, V-FactER maintains GPT-4V’s coverage while improving
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Table 4: Performance comparison between our proposed method and other methods regarding detailed image
captioning. Base refers to the default image captioning of LLaVA-v1.5-7B without additional techniques.

Method CLAIR Factuality Coverage Avg.

Base 62.1 52.8 34.3 49.7
VCD (Leng et al., 2024) 59.7 44.6 39.3 47.9

OPERA (Huang et al., 2024) 59.1 53.0 34.1 48.7
Volcano (Lee et al., 2024) 63.9 53.7 37.7 51.7

LRV-Instruction (Liu et al., 2023a) 39.7 29.1 37.8 35.5
V-FactER (ours) 66.3 63.4 33.1 54.3

Table 5: Detailed image captioning and VQA performance of various MLLMs. OpenCompass (Duan et al.,
2024) includes MMBench v1.1 (Liu et al., 2023b), MMStar (Chen et al., 2024a), MMMU val (Yue et al., 2024),
MathVista (Lu et al., 2024), OCRBench (Liu et al., 2024d), AI2D (Kembhavi et al., 2016), HallusionBench
(Guan et al., 2024), and MMVet (Yu et al., 2023). For POPE (Li et al., 2023b), we report the average F1 score
across the three categories: adversarial, popular, and random. We report the sum of the perception and cognition
scores for MME (Yin et al., 2023b). The best results for each metric are shown in bold.

Model Detailed Image Captioning Visual Question Answering

CLAIR Factuality Coverage Avg. OpenCompass MME POPE Avg.

InstructBLIP-7B 57.2 44.4 30.3 43.9 31.1 1391.4 86.1 38.4
LLaVA-v1.5-7B 61.1 56.3 30.5 49.3 36.9 1808.4 86.1 44.6

LLaVA-NeXT-7B 63.8 58.5 42.2 54.8 44.7 1769.1 87.5 50.8
LLaVA-NeXT-13B 64.5 62.8 43.0 56.8 47.6 1745.6 87.8 53.1

Idefics2-8B 58.1 85.2 13.4 52.2 53.0 1847.6 86.2 57.6
InternVL-Chat-V1.5 72.4 67.6 46.0 62.0 61.7 2189.6 87.5 65.9

MiniCPM-V-2.6 73.1 68.9 43.6 61.9 65.2 2268.7 83.2 68.6
GPT-4V 82.4 78.6 52.6 71.2 63.5 2070.2 81.8 66.4

factuality. We additionally provide a qualitative comparison in Figure 5 between LLaVA-NeXT-7B
with and without the application of V-FactER (referencing the first two rows of Table 3).

4.3 COMPARISON WITH OTHER METHODS

Various methods have been proposed to mitigate hallucinations in MLLMs, and they have primarily
been validated on VQA and simple captioning benchmarks. We compare V-FactER with two recent
decoding-based methods (VCD and OPERA), one corrector-based method (Volcano), and one training-
based method (LRV-Instruction) from the perspective of detailed image captioning. All methods,
except for LRV-Instruction, use LLaVA-v1.5-7B, while the LRV-Instruction method employs the
MiniGPT-4 model (Zhu et al., 2023), as provided by its authors.

Table 4 shows that the VCD, OPERA, and LRV-Instruction methods are ineffective for detailed image
captioning. Ironically, applying VCD significantly reduces the factuality of the LLaVA model while
increasing coverage. Volcano yields only slight improvements in LLaVA’s captions. However, V-
FactER substantially enhances the factuality of the captioning model compared to the other methods.
These results suggest that methods proposed to enhance MLLM factuality should be evaluated not
only on tasks requiring short responses, such as VQA, but also on detailed image captioning tasks.

4.4 CONSISTENCY BETWEEN MLLM CAPTIONING AND VQA EVALUATION RESULTS

Currently, MLLM evaluations are primarily conducted on tasks that require only short responses,
such as VQA tasks (Duan et al., 2024). However, to assess the potential of MLLMs in real-world
applications, such as visual assistants, it is essential to evaluate their detailed image captioning
abilities. The ranking of models used in our experiments, including LLaVA-v1.5-7B, LLaVA-NeXT-
7B, LLaVA-NeXT-13B, InternVL-Chat-V1.5, and GPT-4V, is consistent across both our captioning
evaluation results and widely used benchmarks like MMMU (Yue et al., 2024). However, for instance,
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A serene outdoor scene features a majestic black owl statue standing on a wooden post in front 
of a palm tree adorned with yellow flowers, set against a clear blue sky with fluffy white 
clouds and a warm sun shining brightly. The statue, with its wings spread wide, appears to be 
in mid-flight, while the palm tree provides a vibrant contrast to the black owl. The wooden 
post provides a solid base for the statue, and the clear blue sky adds depth to the image. The 
yellow flowers on the palm tree add a touch of color to the scene, while the sun's warm glow 
illuminates the entire scene, creating a peaceful and tranquil atmosphere.

The image depicts a serene outdoor scene featuring a stylized, three-dimensional black owl 
sculpture standing on a wooden post in a garden setting. The owl has large eyes and a detailed 
pattern of feathers, predominantly in shades of gray and black. The wooden post is situated in 
a lush garden with palm trees and other plants, which provide a textured appearance. The sun 
shines brightly in the top left corner of the image, casting a warm glow on the scene and 
creating a dramatic contrast with the cool blue of the clear sky in the background. The 
overall composition of the image presents a peaceful and tranquil setting, with the sunlight, 
the garden, and the silhouettes of the trees contributing to a picturesque and harmonious 
balance. The wooden post provides a solid base for the owl sculpture, while the clear blue sky 
adds depth to the image, creating a beautiful representation of nature and wildlife

<LLaVA-NeXT-7B>

<V-FactER>

Figure 5: An example of a caption generated by V-FactER, with LLaVA-NeXT-7B as both the captioning and
fact-checking model and LLaMA-3-8B as both the decomposer and corrector LLM.

some MLLMs may be optimized for VQA tasks that require only short responses, allowing them
to rank highly on common VQA benchmarks, yet their limited image captioning abilities could
restrict their practical use. To investigate this, we evaluate the detailed image captioning capabilities
of various MLLMs and examine whether their rankings are consistent with their rankings on widely
used VQA benchmarks. We adopt InstructBLIP-7B (Dai et al., 2023), Idefics2-8B (Laurençon et al.,
2024), and MiniCPM-V-2.6 (Yao et al., 2024) as additional MLLMs for the experiment.

Table 5 presents the evaluation results of MLLMs’ responses to the prompt “Describe the given
image in a very detailed manner” as well as the performance of these models on various VQA tasks.
From these results, we observe that the performance of an MLLM on widely used benchmarks does
not necessarily reflect its capabilities in detailed image captioning. Specifically, Idefics2-8B ranks
mid-tier among the tested models in VQA tasks but falls into the lowest-performing group in terms
of detailed image captioning. Its high factuality but low coverage indicates that Idefics2-8B has been
trained to provide short and concise answers; this conclusion remains unchanged even when using
Idefics2-8B-Chatty (Laurençon et al., 2024). Despite being a relatively small model, MiniCPM-V-2.6
attracted attention by outperforming GPT-4V on benchmarks. However, our results show that the
model significantly underperforms GPT-4V in detailed image captioning. Additionally, we find that
the factuality of the captions cannot be reliably predicted from the accuracy of MLLMs on POPE (Li
et al., 2023b), which was proposed to evaluate object hallucinations.

Based on these experimental results, we raise concerns about the current MLLM evaluations that
are centered around VQA tasks. We encourage the community to also evaluate MLLMs from the
perspective of detailed image captioning in order to showcase their full potential.

5 CONCLUSION

Detailed image captioning tasks are closely linked to critical applications, such as visual assistance
for the impaired. Our research aims to assess and enhance the potential of MLLMs in these real-
world contexts. We propose V-FactER, a method that improves detailed image captions through
the collaboration of a pre-trained MLLM and LLM. In addition, we introduce a framework and
benchmark dataset for evaluating the factuality and coverage of captioning models. Our experiments
validate the proposed evaluation framework and demonstrate that V-FactER significantly improves
the factuality of captioning models. We additionally present the following two key observations:

• Methods designed to improve MLLM factuality, which have been validated primarily on VQA or
short captioning tasks, may be ineffective for detailed image captioning and can even reduce the
factuality of the backbone model’s responses.

• High performance on commonly used VQA-centric benchmarks does not necessarily indicate that
the model will excel in detailed image captioning.

These observations raise concerns about the current VQA-centric trend in MLLM evaluation. We
encourage the community to evaluate MLLMs and related algorithms not only on VQA tasks but also
on detailed image captioning tasks to gain a more comprehensive understanding of their potential.
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REPRODUCIBILITY STATEMENT

The prompt templates used in our proposed V-FactER are provided in Appendix B. The factuality
and coverage evaluation codes are included in the supplementary material, along with a subset of our
proposed benchmark dataset. The full dataset will be made publicly available soon.
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A ABLATION STUDY

Table 6: Effectiveness of our proposed method across various captioning models as a function of π. In the V-
FactER column, the LLM represents the decomposer and corrector, while the MLLM represents the fact-checker.

Captioner V-FactER Metric

LLM MLLM π CLAIR Factuality Coverage

LLaVA-NeXT-7B

- - - 68.8 59.9 47.9
LLaMA-3-8B LLaVA-NeXT-7B 1.0 74.1 72.2 46.9
LLaMA-3-8B LLaVA-NeXT-7B 0.5 73.6 76.9 43.7
LLaMA-3-8B LLaVA-NeXT-7B 0.3 72.2 76.8 40.0

LLaVA-NeXT-13B

- - - 70.2 62.1 48.5
LLaMA-3-8B LLaVA-NeXT-13B 1.0 75.5 77.9 45.8
LLaMA-3-8B LLaVA-NeXT-13B 0.5 74.8 79.9 42.1
LLaMA-3-8B LLaVA-NeXT-13B 0.3 72.6 80.5 39.6

InternVL-Chat-V1.5

- - - 74.9 65.5 48.2
LLaMA-3-8B InternVL-Chat-V1.5 1.0 78.2 75.9 47.3
LLaMA-3-8B InternVL-Chat-V1.5 0.5 79.0 78.8 46.0
LLaMA-3-8B InternVL-Chat-V1.5 0.3 77.7 81.7 42.5

Our proposed method features a single hyperparameter, π, which serves as the threshold for classifying
atomic propositions as hallucinations or non-hallucinations. Table 6 presents the effects of V-FactER
across various models as a function of π. The results reveal a loose trade-off between factuality
and coverage depending on π. Specifically, in all tested settings, as π increases, factuality tends to
decrease while coverage increases.

B PROMPT TEMPLATES

prompt_1 = "Describe the given image in a very detailed manner."
prompt_2 = "Provide a detailed description of the specified image."
prompt_3 = "Elaborate on the details of the image provided."
prompt_4 = "Offer an in-depth description of the given image."
prompt_5 = "Thoroughly describe the features of the specified image."

Figure 6: The five prompt inputs used to generate captions in our experiments.

system:
I want to verify if the given CAPTION is accurate. To assist with this verification, decompose 
the given CAPTION into atomic propositions. All parts of the caption must be broken down into 
propositions. The outputs should follow the following format:'1. proposition one\n2. 
proposition two\n3. proposition three'. For example, break down 'He is tall, thin, and pale' 
into '1. He is tall.\n2. He is thin.\n3. He is pale.'

user:
CAPTION: {caption}

Figure 7: The prompt input for LLaMA-3-8B serving as the decomposer.
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system:
I want to create a caption that includes only facts. Please help me correct the given caption. 
The given caption contain things that are not true. Based on the given FACTS and NON-FACTS 
remove the non-factual elements from the caption. Place the revised caption between '###'.

user:
Caption: {caption}\nFACTS:\n{Non-hallucinations among the atomic propositions}\nNON-
FACTS:\n{n{Hallucinations among the atomic propositions}

Figure 8: The prompt input for LLaMA-3-8B serving as the corrector.

system:
This is a hard problem. Carefully summarize in ONE detailed caption based on the following 5 
captions by different people describing the same image. Be sure to describe everything, and 
avoid hallucination. Provide the detailed caption in the format '### {Detailed caption} ###'.

user:
Caption 1: {caption 1st}\n Caption 2: {caption 2nd}\n Caption 3: {caption 3rd}\n Caption 4: 
{caption 4th}\n Caption 5: {caption 5th}\n

Figure 9: The prompt input for LLaMA-3-8B serving as the summerizer. We use the prompt employed in the
work of Ge et al. (2024).

system:
{prompt_sys}

user (presented with the image):
Caption: {caption}

if hallucination == "Object"
prompt_sys = "I want to inject incorrect information into the caption of the given photo. 

Your role is to modify about THREE words from the latter part of the given caption that 
describe the attributes of the objects so that they do not match the photo."
elif hallucination == "Attribution"

prompt_sys = "I want to inject incorrect information into the caption of the given photo. 
Your role is to imagine an object that isn't actually in the image but could plausibly be 
there, and add a very brief part about it to the caption so that they do not match the photo."
elif hallucination == "Relation":

prompt_sys = "I want to inject incorrect information into the caption of the given photo. 
Your role is to change the spatial relationships between the objects so that they do not match 
the photo. For example, change 'A person is standing to the right of the car' to 'A person is 
standing to the left of the car.' Do not change anything other than the spatial relationships 
between the objects."

Figure 10: The prompt input for GPT-4o used to create the meta-evaluation dataset of Table 2.

system:
"I want to use an object detector to check the correctness of an image caption obtained by an 
image caption model. Can you help to parse the given CAPTION and list all objects that could 
be detected with an object detection model in the image? Please only list the object name and 
ignore the description. Please use the name in the CAPTION as it is. Please concatenate them 
together with \";\" as separation."

user:
CAPTION: {caption}

Figure 11: The prompt input for GPT-4 used to create the dataset of Figure 1. We use the prompt employed in
the work of Ge et al. (2024).
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