
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNDERSTANDING VIDEO FROM ENCODED BYTES

Anonymous authors
Paper under double-blind review

ABSTRACT

We present an approach to understand video from encoded bytes, e.g., mp4s.
These compressed videos are 99% smaller than the RGB pixel representations
which are currently commonly used for video understanding. Encoded videos
are able to compress the pixels by taking advantage of the redundant information
across the frames using special encoding, such as key frames and motion residuals
to handle this. However, standard video understanding models do not take advan-
tage of this significant compression already available for each video, and instead
either heavily subsample the frames or only work on short segments of the video.
Here, we present an approach to understanding video from encoded bytes directly.
We note that simply applying existing models, e.g., Transformers or State-Space
models, to video byte sequences does not work, both due to difficulty in handling
very long video byte sequences and easy overfitting. To address these challenges,
we design a State-Space model with sequence parallelism to handle very long byte
sequences, reaching 15 million tokens in training, and essentially unlimited to-
kens in inference. We also propose a multilevel SSM activation fusion that reduces
sequence length, which we find also benefits video understanding. We evaluate on
common video understanding and natural extension to video + audio understand-
ing tasks and demonstrate competitive performance, illustrating, for the first time,
the feasibility of learning from compressed video byte representations.

1 INTRODUCTION

Video understanding is an important problem in computer vision. Unlike images, videos contain
many frames. In traditional settings, these frames are treated as a sequence of images (Simonyan &
Zisserman, 2014; Carreira & Zisserman, 2017; Yue-Hei Ng et al., 2015; Tran et al., 2015), which
greatly increases the compute costs and memory requirements and makes it hard to scale to longer
and longer videos. Here, we propose an alternative approach to instead understand videos as encoded
bytes, e.g., mp4 byte streams. The main advantage is the significant memory savings in processing
compressed video, since the compression codecs take advantage of redundant pixels in consecutive
frames, they are greatly able to reduce the size of a video. We also note that the video byte streams
are naturally suited for sequential models, as they were designed for video streaming and playback,
where the decoders reconstruct the sequential frames from the bytes, and further, byte streams do
not contain strong inductive biases, and so do not require operations like convolution as in ViTs
(Dosovitskiy et al., 2020). While byte-based representations are highly compressed, both pixel and
byte based representations contain the same information, and both have a complex, inconsistent,
non-linear mapping between the inputs and semantic understanding, thus it is theoretically possible
to learn any video understanding task from either input.

As a motivation, using the standard video representation of float16 [F ×H ×W × 3], and assuming
30fps and 480 resolution, one would need roughly 40 megabytes of memory per second of video
for storing just the pixels (not including the model weights or intermediate activations). For a 10
minute video at 30 FPS and 480 resolution, this would use roughly 25GB of memory just for the
pixel inputs. However, that same video encoded with a bitrate of 2Mbps (YouTube’s recommended
compression rate for 480p videos), would use only about 150MB for the same 10-minute video,
which, compared to 25GB, yields a significant reduction in filesize, i.e., about 99% smaller. If we
are able to perform video understanding on compressed byte inputs, this will allow for great compute
savings and enable scaling to long videos.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Sequence Length ActivityNet-QA Acc (%)

250,000 42.5
2 Million 54.2

15 Million 56.3

Table 1: Our approach excels at handling in-
credibly long byte sequences from raw com-
pressed video formats, supporting up to 15 Mil-
lion byte tokens during training, leading to sig-
nificant performance improvements.

Sequence Length ActivityNet-QA Acc (%)

15 Million 56.3
20 Million 57.1

Table 2: Testing on longer sequence lengths
(20 Million bytes, which corresponds to ∼13
minutes of video) than training (15M bytes)
yields further gains, and can theoretically sup-
port unlimited tokens during inference.

Further, existing specialized video models either focus on modeling sparse temporal relationships on
image-based features (e.g., (Yue-Hei Ng et al., 2015; Piergiovanni et al., 2017; Chen et al., 2023; Lin
et al., 2025)) or use tube-based features on short segments of video (Arnab et al., 2021; Piergiovanni
et al., 2023) or apply segment-based pooling (Shou et al., 2016). These prior works perform well
on video, but are essentially leveraging existing image-based models for short or sparsely sampled
video segments. Instead here, based on the observation that compressed videos contain all the
information needed to reconstruct the pixels, but with much less redundant information, we design
an approach to directly learn specifically from video bytes. We also note that most video training
datasets contain very short clips, and datasets focused on long videos (LVBench (Wang et al., 2024a),
MLVU (Zhou et al., 2024), VUE-TR (Team et al., 2025b), Neptune (Nagrani et al., 2024), etc.) are
focused on the evaluation of models, since training on long videos is still a challenging task. Even
recent works, such as InternVideo2 (Wang et al., 2024b) and VIDI (Team et al., 2025b) only train on
short segments with 8 frames and 1 fps up to 120 frames, respectively, and Hour-LLaVA (Lin et al.,
2025) very sparserly samples video tokens from a frozen image encoder.

Training on video bytes allows using all the frames with much less memory, however, as we show
in the experiments, this is a non-trivial task due to a few issues. First, encoded video bytes are very
long sequences. Instead of a video being a [F ×H ×W × 3] that can be further compressed with
spatial and temporal pooling, we have an input of [L × D], where L is the sequences length and
D is the embedding size of the model. For video bytes, this results in sequences with millions of
tokens, which is extremely long even compared to modern LLMs (e.g., LLAMA 3.1 (Grattafiori
et al., 2024) supports 128,000 tokens in inference, Gemma (Team et al., 2025a) was trained with
an 8k sequence length). This presents a real problem, as this becomes a long-sequence length
learning problem. Second, we find that Transformers are not the best suited model for this task,
due to the long sequences and poor scaling of self-attention. Finally, understanding the encoded
representation is far more challenging than understanding pixels, as the representation is much more
compressed. Thus, taking an existing LLM model and directly training it on encoded video bytes
does not perform well at all. We propose a method to learn from encoded video bytes that works
on very long sequences, which are of different structure than text inputs, and we find a multilevel,
sequential modeling of video bytes works for this. In this work, we make several key contributions
that enable the understanding of videos from bytes:

• We present the first approach to understand video from raw, encoded bytes, circumvent-
ing the decoding process which increases the video volume processed by over 100x, and
leveraging the highly compressed video inputs which are ubiquitous video representations.

• We propose an efficient parallelization and gradient accumulation method, with a novel
correction and propagation of the state, that enables training on extremely long bytes se-
quences, e.g., 15 million (Tables 1, 2), and theoretically unlimited inference length.

• We present a ‘multilevel’ SSM which efficiently accumulates SSM activations and, together
with the sequence parallelism, enables scaling to very long sequences during both training
and inference. This model greatly outperforms standard SSMs and Transformers when
applied to encoded video bytes (Table 9).

• We find that data augmentation and pre-training on video bytes is extremely important, and
without such training, the model greatly overfits and generalizes poorly. We note that here
we do not use any prior knowledege about the structure of the bytes, e.g., information about
the codec, which could be further leveraged in future work.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 LEARNING FROM RAW VIDEO BYTES

0000001A6764001FACD9A014016E0000000168EBCCB22C….Input Bytes (L):

L x D embedding

…

SSM Stack …

…

…

Pooling

Ls x 2ᐧD embedding
N

M

Projection

001FACD9A014016E0000000168EBCCB22C1FAC000168EBD9…

L x D embedding

…

SSM Stack …

…

…

Pooling

Ls x 2ᐧD embedding
N

M

Projection

Output

Prior sequence state

Continued byte seq:

Figure 1: Model outline. The bytes are embedded, then processed by M
Mamba SSM layers in a multilevel module (Sec. 3) with pooling between
layers, which is repeated N times. This is a sequentially parallel model
(Sec. 3.1) which accumulates and corrects the state, allowing for efficient
paralelization and extension to long sequences.

Our approach takes
a sequence of raw
video bytes as input,
rather than pixels as in
most prior works. For
this work, we use the
standard h.264 codec
(Wiegand et al., 2003)
and mp4 container
(mp4, 2020) to obtain
the video bytes. One
observation is that
these codecs are de-
signed for streaming
video. Importantly,
this means that when
decoding and recon-

structing the pixels, the decoder algorithm does it byte-by-byte, or based on short segments of bytes.
This means that bytes that are far apart, e.g., the 10th and 10,000th byte do not really depend on each
other to reconstruct the pixels, since they are compressed with streaming in mind. As a result the
standard global self-attention in Transformer models is not really needed to understand video bytes.
This is a unique characteristic of compressed video bytes, which is not present in text sequences and
language modeling. However, to understand a video, i.e., for classification or question answering
purposes, the model does need to be able to understand the whole sequence. To address this, we
develop techniques which (a) work with extremely long sequences, (b) use sequential modeling
to better model streaming video bytes, rather than self-attention as Transformers use. This allows
understanding both low-level local features as well as high level details of the full video. This
model is shown in Fig. 1 and described further in Sec. 3. Another issue is that the model tends to
overfit and not generalize well when given bytes as input, which we present a solution to in Sec.
3.2.

0000001A6764001FACD9A014016E0000000168EBCCB22C….Input Bytes (L):

L x D embedding

…

SSM Stack …

…

…

Pooling

L/4 x 2ᐧD embeddingProjection

…

…

…

SSM Stack

Pooling

Projection L/8 x 4ᐧD embedding

…

…

Figure 2: The multilevel SSM. The input is pro-
cessed sequentially by SSM layers. The pooling
layers reduce the sequence length; projection lay-
ers increase the dimensionality. This process is re-
peated multiple times, forming the multilevel SSM.
This is further parallelized in order to handle long
sequences (Sec. 3.1)

On the other hand, learning from raw
bytes presents opportunities for learning from
much more economical and efficient com-
pressed video formats which are already read-
ily available, as videos are stored in these
formats. Additionally, the approach directly
transfers to audio+video inputs, as shown in
the experiments. We further save compute in
the input pipeline, as we do not need to de-
code the bytes into pixels , though for larger
models this is not the bottleneck, as the com-
pute time of the model is the primary bottle-
neck.

3 PROPOSED APPROACH -
PARALLELIZED MULTILEVEL SSM

To learn from very long sequences, we first
design a multilevel SSM module, which has
a better handle over the sequence informa-
tion. Recent SSM models (Gu et al., 2021;
Gu & Dao, 2023; Gu et al., 2022), which
scale linearly and are more suitable for long
sequences, are still not able to fully address
some main challenges, such as long-range re-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

call, recency bias, global sequence understanding, and still have some inefficiencies, e.g., Video-
Mamba (Li et al., 2024) trained on only 8 frames and evaluated on up to 64 frames. While some
hierarchical SSMs have been proposed before (e.g., (Bhirangi et al., 2024)), we present a differ-
ent approach which preserves better the sequence signal. We choose to build upon an SSM for a
few reasons. First the SSM (Gu et al., 2021) does not use self-attention, thus it scales linearly to
long sequences. Second, the SSM processes the bytes sequentially as they are input. Since video
codecs like mp4s were designed for streaming videos, an SSM is naturally applicable to this input,
processing the bytes and updating the state in the order the bytes are input. Specifically, we use
the Mamba (Gu & Dao, 2023) architecture as the base model, given its strong performance among
existing SSMs, hardware efficiency, and ability to vary the representation with time (Gu et al., 2021;
2022; Gu & Dao, 2023; Chen et al., 2024). An overview of the multilevel SSM is shown in Figure
2. Given an input sequence, S, that consists of L bytes, we first embed the bytes as D-dimensional
vectors, which are input to Mamba. We then apply M standard Mamba layers. After this, we pool
the bytes which decreases the sequences from length L to length L

Ls
, e.g, Ls = 2 to reduce it be half.

We explore different forms of this pooling. We repeat this stack of M Mamba layers, followed by
a pooling layer N times, forming the multilevel SSM. Finally, we average pool over the remaining
tokens and a fully connected layer for classification tasks. Compared to a prior hierarchical SSM
(Bhirangi et al., 2024), the key differences is that our SSM is over the whole input sequence, rather
over segments and we stack many levels (4 in our experiments) of the pooling, rather than just two
levels. Since SSMs scale linearly with sequence length, there is no benefit to splitting the sequence
into segments when running the SSM, and applying the SSM to the whole sequence allows the
model to have knowledge of the whole sequence through the SSM state.

For the embedding, as there are 256 bytes, we use a vocabulary size of 256 tokens with an embed-
ding dimension (D) of 256. We explore the embedding dimension in the ablations. We note that
this embedding dimension increases, more memory is used. Despite the fact that using 256 dimen-
sions has more expressiveness than the original 256 bytes, we found using fewer dimensions greatly
reduced performance, and going above 256 did slightly improve performance, but also increases
memory usage. To address this, we make a few important steps: 1) make the input to the embed-
ding a uint8 type, rather than an int32 as is standard in LLMs (due to their larger vocabulary size).
This saves ∼75% of memory by needing only 8 bits per token; 2) we use 16-bit precision on the
embeddings themselves, finding no difference to 32-bit precision, but saving memory. We evaluate
attention, averaging and concatenation as pooling methods (see the appendix for details Sec. A.1).

3.1 HANDLING LONG SEQUENCES WITH PARALLELISM

Full Sequence (L)

Tokens
[0, N]

Tokens
[N, 2N] … Tokens

[(k-1)N, kN]

TPU TPU TPU

Parallel Processing on TPUs

State Correction

Compute Loss

Tokens
[L-kN, L-(k-1)N]

Tokens
[L-(k-1)N, L-(k-2)N] … Tokens

[L-N, L]

TPU TPU TPU

Parallel Processing on TPUs

State Correction

Compute Loss

…

+
Accumulate
Gradients

Backprop

Prior State

Figure 3: Using sequence parallelism and gradient
accumulation to train on sequence lengths of up to
15 million. A key benefit of the SSM is parallel
computation of the states, plus a cheap correction
calculation (Sec. 3.1), making it easy to scale and
suited for streaming video byte data.

Due to the very long sequences that video bytes
have, we propose a sequence parallelism tech-
nique, utilizing multilevel SSM states. We ob-
serve that the SSM outputs can be computed for
any part of the sequence without having access
to the prior state, then propose a simple update
applied when given the state. This allows us
to parallelize by placing subsequences on dif-
ferent devices and computing the SSM on each
device, then applying an update on the outputs,
once each device is done computing. This al-
lows cheap parallelism along the sequence axis,
which allows us to scale more efficiently to long
sequences. We find that sequence parallelism
is around 2x faster than model parallelism for
this SSM. Namely, we compute and store the
hidden states for each device as if the sequence
starts with hidden state set to zero. Consider a
signal with L tokens x = [x1, x2, ..., xL] and
V devices, we divide the signal into V subse-
quences each of length K = L

V and apply SSM
on each device independently, i.e., the initial
hidden state is set to zero for every device. The

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

final hidden states h(i) (Eq. 1) and outputs y(i) of the SSM (Eq. 2) applied to each of the V subse-
quences is as given below. Given A,B,C are the parameters of the SSM and h is the state:

h(1) = BxK +ABxK−1 + · · ·+AK−1Bx1

h(2) = Bx2K +ABx2K−1 + · · ·+AK−1BxK+1

h(V) = BxL +ABxK−1 + · · ·+AK−1Bx(V−1)K+1

(1)

y(1) = [CBx1, CBx2 + CABx1, . . . , CBxK + CABxK−1 + · · ·+ CAK−1Bx1]

y(2) = [CBxK+1, CBxK+2 + CABxK+1, . . . , CBx2K + CABx2K−1 + · · ·+ CAK−1BxK+1]

y(V) = [CBx(V−1)K+1, . . . , CBxV K + CABxV K−1 + · · ·+ CAK−1Bx(V−1)K+1]
(2)

The above hidden states are computed in parallel. As observed, they lack the contribution of state
from the previous chunks, which are computed on other devices. Thus, the final hidden state from
previous sequence shard is added to correct for the missing factor. The equations for corrected
hidden states are given in Eq. 3.

h
(1)
corrected = h(1)

h
(2)
corrected = AKh(1) + h(2)

h
(V)
corrected = AKh

(V−1)
corrected + h(V)

(3)

Here h0 is the hidden state to the entire sequence before splitting into subsequences. The equations
for the output after the inclusion of correction factor to the hidden state is as given below (Eq. 4):

y
(1)
corrected[i] = y(1)[i]

y
(2)
corrected[i] = CA(i)h

(1)
corrected + y(2)[i]

y
(V)
corrected[i] = CA(i)h

(V−1)
corrected + y(V)[i]

(4)

Here i ∈ [1,K] is the index of the output within the given subsequence. As shown, this allows us
to compute the SSM in parallel across the devices, then correct the state afterwards, with a cheaper
correction calculation.

Training on even longer sequences. Building on that, we further push the limits to train on se-
quence lengths of up to 15 million using gradient accumulation. Here, we split a very long sequence
into subsequences that are as long as we can fit into device memory. We run the first subseqeunce
and compute the loss, but rather than taking an optimization step, we save the gradients, and run on
the next subsequence using the last state h as the current state on the next subsequence. We can then
repeat this process as many times as needed to reach any length sequence. We note however that this
setting has a few drawbacks. First, it requires output and computing the loss for each subsequence,
which means if for example its a question answering task, and the question hasn’t been answered
yet, it will result in some strange learning signal. Second, this introduces arbitrary boundaries in the
learning, as the loss won’t propagate over these boundaries. However, in practice we find these are
not major limitations and the model is still able to learn from these long signals, and perform better
than training without them (Table 1, 2).

3.2 ADDRESSING OVERFITTING

We find that training data and augmentation is especially important. We observed that the model
very easily overfits when trained on encoded videos. However, if we train on individual frames
encoded on JPEGs, we did not observe this overfitting. We realized that when training on individual
frames we randomly sampled one of the frames, and as Kinetics videos are 10 seconds long, and we
had data at 25 fps, we had roughly 250 frames we were sampling from, i.e., we roughly increased
the data by 250 times. If instead we trained the model using only a single JPEG byte string per

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Model PT Data PT Modalities Params TFLOPS K600 K400

ViViT-L (Arnab et al., 2021) JFT-300M Img - - 82.9 83.5
ViViT-H (Arnab et al., 2021) JFT-300M Img - - 85.8 84.9
MerlotReserve-H (Zellers et al., 2022) YT-1B Vid+Audio+Text 644M - 91.1 -
TubeViT-H (Piergiovanni et al., 2023) ImageNet Img - 17.64 91.8 90.9
InternVideo2 (Wang et al., 2024b) Many Img+Vid+Audio+Text 6B - 91.9 92.1
VideoMamba (Li et al., 2024) CLIP-400M Img+Text 74M 28.42 - 85.0

VideoMAE (Tong et al., 2022) None - 600M 88.76 - 87.4
ST-MAE (Feichtenhofer et al., 2022) IG-uncurated Vid 600M 25.1 - 86.8
Bytes-B (ours) HowTo100M Vid 500M 1.88 60.5 61.3
Bytes-L (ours) HowTo100M Vid 1B 4.12 85.2 86.8

Table 3: Kinetics-600 and Kinetics-400 results. We note that our model is significantly cheaper than
prior works, as shown in Table 13 and trained on much less data. PT stands for Pre-training.

video, e.g., the 100th frame, we saw the same overfitting behavior. In both these cases, when trained
on a single encoded video or single encoded frame, the loss would go to 0 very quickly, while the
evaluation accuracy would be extremely low, around 4%, regardless of input format. Based on this,
we thought that the model would need significantly more training data, either in the form of data
augmentation and/or pre-training.

Our next observation is that if we take two video clips and apply mild data augmentation, e.g., some
slight color jittering, as is standard in training video models (e.g., ViViT (Arnab et al., 2021)), and
encode them into mp4s, and compute the Levenshtein distance on the byte strings of these clips,
we saw that over half the byte string is different. Visually, the two videos are indistinguishable.
This suggests that the compressed bytes-based representations have a large amount of variation
even with seemingly small changes to the visual inputs. Because of this, when training video byte
based models, we apply a large amount of data augmentation during training. Specifically, we
apply random temporal and spatial cropping, color jittering, contrast adjustment, color inversion,
posterization, solarization, brightness, sharpness, and cutout augmentations. These augmentations
are all done on the RGB space, then encoded into mp4s and used to train the model. We don’t apply
any augmentation to the bytes themselves (e.g., byte-level dropout, random substrings, etc), and
leave explorations of that for future work.

Self-supervised Pre-training. We also explore self-supervised pre-training for video byte based
models. Byte-based representations enable many different fully self-supervised tasks. First, we
can train a model that takes the encoded video bytes as input and produces the RGB pixels of the
video as output. However, as video generation is a complex task, itself having many specialized
models and methods which are computationally intensive (e.g., video diffusion), and since we don’t
care about actually generating videos, just about training a video understanding model on byte-
based representations, we simplify the RGB prediction significantly. Here, we take the output of
the multilevel SSM model, and use an attention pooling layer to generate F ′ ·H ′ ·W ′ ·D tokens.
This is then reshaped to F ′ ×H ′ ×W ′ ×D, which gives us the rough size of the video. We then
apply a small UNet-based (Ronneberger et al., 2015) model to upsample this to the video tensor
F × H ×W × 3. We then apply a MSE loss between the predicted video and ground truth video
RGB pixels. To further reduce compute, we generate only 10 frames per video (i.e., 1 fps for 10
second clips) at a low resolution of 128 × 128. While the reconstrustions do not look perfect, this
provides a good enough learning signal to the model. Second, we explore a pre-training similar to
how language models are trained: next byte prediction. I.e., the input to the model is a encoded mp4
byte string and the models task is to predict the next byte based on the previous bytes.

4 EXPERIMENTS

4.1 MAIN RESULTS

We present the main experimental results on the Kinetics-400 (Carreira & Zisserman, 2017),
Kinetics-600 (Carreira et al., 2018), MLB YouTube (Piergiovanni & Ryoo, 2018), and Kinetics-
Sounds (Arandjelovic & Zisserman, 2017) benchmarks, which are popular video or video+audio
understanding benchmarks. Please see the appendix for implementation details (Sec. A.2).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model MAP

MLBYouTube 62.6
Bytes-B 500M 63.5
Bytes-L 1B 64.5

Table 4: MLBYouTube (Piergiovanni & Ryoo,
2018) results for fine-grained video understand-
ing.

Model Audio MAP

MBT (Nagrani et al., 2021) yes 85.0
Bytes-L no 81.4
Bytes-L yes 84.4

Table 5: Kinetics-Sounds (Arandjelovic & Zis-
serman, 2017) results. We see that including au-
dio in the encoded video helps.

Model ActivityNet-QA CinePile

VideoCoca (Yan et al., 2022) 56.1
UMT-L (Li et al., 2023) 47.9 -
Mirasol-3B (Piergiovanni et al., 2024) 51.1 -
LLaVA-OV-7B 56.6 49.3
Bytes-L (1B) 57.1 47.5

Table 6: Results on longer video understanding on AcitivityNet-QA and CinePile.

Table 3 shows the classification performance of the proposed method on the commonly used activity
understanding benchmarks, Kinetics-400/Kinetics-600, with 400/600 classes. We note that Kinetics
has 10 second videos, and we used 25 fps (far higher than previous works) giving us 250 frames
per video, but after encoding, the input is only approximately 250,000 bytes long. We also note
that prior works benefit from image-based pre-training, while we here only use video pre-training.
Our results show strong performance, even when compared to larger video and video foundational
models, despite using far less data and compute.

Table 4 further evaluates the performance on the MLB Youtube benchmark (Piergiovanni & Ryoo,
2018), which is a benchmark for distinguishing between fine-grained activities, which requires un-
derstanding motion at higher FPS than other datasets, like Kinetics. As seen, the model performs
very well, outperforming the state-of-the-art approaches, using encoded bytes as input.

Our model easily extends to Audio+Video from bytes, showing competitive performance (Table 5).

Finally, we show results on longer videos (Table 6, see the appendix for details on this experiment).

4.2 MODEL EFFICIENCY

One advantage of the proposed approach is the compute and time savings since it operates on a
highly compressed format. In Figure 4, we present the results comparing the FLOPs and runtime

Num Frames

A
cc

ur
ac

y
(K

60
0)

45

50

55

60

65

0 50 100 150 200 250

ViT ViViT Bytes

Runtime (ms)

A
cc

ur
ac

y
(K

60
0)

45

50

55

60

65

0 100 200 300 400 500

ViT Bytes ViViT

Figure 4: Plot of accuracy vs. runtime and frames, where the size of each model indicates how many
FLOPs it uses. This shows the bytes models scale better to longer sequences, uses less FLOPs even
as the model scales up, showing the potential of this approach.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model K600

256 Embedding 25.4
512 Embedding 25.7

1024 Embedding 21.2

Table 7: Scaling ablation on Kinetics, using
Bytes-Tiny model. Increasing the embedding
dimension of the model leads to overfitting.

Method TFLOPs K600

Attention Pooling 1.33 23.9
Average Pooling 0.38 20.7
Concatenation Pooling 0.47 25.4

Table 8: Pooling method experiments, using
Bytes-Tiny.

of the proposed model. As seen our models are much more lightweight. Furthermore, with other
approaches a very limited number of frames can be sampled, e.g., up to 32, and these models become
prohibitively expensive to sample more frames, whereas here the information content of all frames
is processed which exceeds the upper bounds over number of frames for other models, e.g., all 250
frames on Kinetics (10 second clips at 25fps) for ours vs 32 or 64 for prior works.

Parameter Efficiency Discussion Encoded video bytes are a compressed representation and as such
we found it took more parameters and training iterations to match the performance of pixel-based
models. Models operating on pixels start with a representation that is already structured for (human)
perception. Nearby pixels are spatially related, and basic patterns (edges, textures) are immediately
available, and that is used by convolution/patch based models. However, starting from bytes, the
model must first implicitly learn the ‘language’ of the codec. Thus some portion of the model’s
parameters are dedicated to solving this problem of ‘decoding’ the byte stream into a useful latent
representation, which pixel-based models don’t have to do, instead starting with the inductive bias
of convolution/patches. In some sense, a bytes-based model is doing more with each parameter,
since it has no inductive bias. We note that the FLOPs, runtime and memory usage of the model is
significantly lower than pixel based ViTs, despite the larger parameter count. Since the relationship
between FLOPs, runtime, memory usage, and parameters depends a lot on the network structure,
the multilevel SSM on bytes-based data enables these compute savings even with more parameters.

4.3 ABLATIONS

For the ablations, we report the accuracy on Kinetics-600 using the Bytes-Tiny model.

Model ablations. Table 7 shows how the model scales with size, particularly, with increasing the
size of the dimensionality of the feature representation in the model, which also results in larger
model. As seen larger feature representation is beneficial, however, we observe overfitting for very
large model sizes. Table 8 compares different versions of the pooling, we use concatenation pooling
as it performs best for relatively small increase in FLOPs.

Table 9 explores several versions of the proposed model. As seen, using SSM-style models provides
benefits for this application due to the sequence lengths and nature of the encoded byte structure,
compared to a Transformer (Vaswani et al., 2017) model. The proposed multilevel SSM provides a
further large jump in performance, as it has much higher capacity for increased sequence lengths.
We also compare to a multilevel Transformer, which uses the same pooling methods as the multilevel
SSM, but replaces the Mamba blocks with standard Transformer blocks.

We further compare to a causal convolution based model as well as the one proposed in (Horton et al.,
2023), which uses many pooling layers and sliding window attention for encoded e.g., JPEG/PNG
images. We note that here we are using longer sequences than those tested in that paper (262,144
vs. 150,000). For both, we used models matching the same parameter count as Bytes-Tiny. In Table
9 (Lines 3, 4), we find that our approach significantly outperforms these variants, as well.

Pre-training Experiments. Table 10 explores different methods for pre-training for the proposed
models. We compare RGB reconstruction to next-byte prediction, finding that RGB reconstruction
is slightly better as a pre-training task, but both are effective.

We also see how transferable byte-based models are. In Table 11, we compare no pre-training to a
model pre-trained for RGB reconstruction vs a model pre-trained on JPEG bytes for classification.
Previously, most video works used image pre-trained backbones which were then further trained on
video data, and this experiment is similar to that. We see some benefit from pre-training with image

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model K600

Transformer N/A
Transformer with local attention with 512 tokens 15.4

Causal Conv (roughly equivalent params to our Bytes-Tiny) 15.8
BF-Ti Horton et al. (2023) 17.5

Multilevel Transformer 16.7
Mamba (Baseline SSM) 18.4

Bytes-Tiny (with Multilevel SSM) (ours) 25.4

Table 9: Comparing different forms of the model. A standard Transformer with full global attention
did not fit into memory with the long sequence lengths videos have (Bytes-Tiny model).

Method K600

None 25.4
RGB prediction 31.2

Next-byte prediction 28.6

Table 10: Effects of pre-training
tasks, using the Bytes-Tiny
model, on HowTo100M.

Method K600

No Pre-training 25.4
JPEG Pre-trained 27.2
mp4 Pre-trained 31.2

Table 11: Training on JPEG
bytes and transferring to mp4
bytes, using Bytes-Tiny model.

K600

1x data 2.4
10x data 5.2

100x data 18.6
200x data 25.4

Table 12: Effects of data aug-
mentation. Using Bytes-Tiny
model.

JPEG bytes, compared to no pre-training, but it is not as good as video byte based pre-training. This
is expected, but also shows these models are learning some generalization knowledge about encoded
byte structures, even for very different encodings.

Data Augmentation Effects. Table 12 shows the effect of data augmentation when training. We
generated a fixed number of samples by applying data augmentation as described above to gener-
ate 1 to 200 samples for each video. We find that increasing the data augmentation increases the
performance of the model a lot.

Preprocessing Cost Comparisons We further compare the different preprocessing steps and times.
In some cases, videos are stored in different formats, so a one-time transcoding operation may be
needed. For these comparisons, we used the Kinetics videos. For the bytes input pipeline, we had a
one-time transcoding cost of 193ms per video, 10ms to load the mp4 into memory, <1ms to transfer
it to the TPU/GPU, for a total of 203ms. For pixel-based pipelines, we had 180ms to decode a
mp4 into RGB pixels, 69ms for crop, resize, etc. 4ms to transfer 64 frames to TPU/GPU, a total of
254ms. These are very similar. The transcode, though, only needs to be done once, so for training,
our input pipeline is significantly faster.

5 RELATED WORKS
Many works have studied efficient video representations, with some focused on compressed videos.
For example (Wu et al., 2018) showed the benefit of using the compressed components (e.g., i-
frames, p-frames) rather than decoding all frames. However, this work used a CNN on the pixels of
the various frames formats. While this showed the potential, the use of the CNN and construction
of the P-frames and i-frames removed some of the savings of working directly with the byte repre-
sentation, and also designed a complex network to track motion over frames. Another work (Wiles
et al., 2023) proposes learning neural codecs by learning a VQ-VAE model to compress videos. The
model learns how to work in this compressed space, including things such as data augmentation,
achieving good results on short video understanding (Kinetics) (Carreira & Zisserman, 2017). How-
ever, the bulk of the learning is placed on the neural codec model, while still using a CNN on top
of the representation. Some works have explored learning from image bytes (Horton et al., 2023).
However, the sequence lengths are only a few thousand bytes, limiting it to small images.

6 CONCLUSIONS

We propose a novel approach to understand videos from encoded and compressed byte representa-
tions. This has the advantage of saving memory and compute, compared to working on pixels, and
better scales to longer sequences, reaching 15 Million. We show strong performance on this new
and challenging task and demonstrate there is much potential in learning from raw video bytes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Coding of audio-visual objects. ISO/IEC 14496-14:2020, 2020.

Relja Arandjelovic and Andrew Zisserman. Look, listen and learn. In Proceedings of the IEEE international
conference on computer vision, pp. 609–617, 2017.

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid. Vivit: A
video vision transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 6836–6846, 2021.

Raunaq Bhirangi, Chenyu Wang, Venkatesh Pattabiraman, Carmel Majidi, Abhinav Gupta, Tess Hellebrekers,
and Lerrel Pinto. Hierarchical state space models for continuous sequence-to-sequence modeling. arXiv
preprint arXiv:2402.10211, 2024.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In
CVPR, 2017.

Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier, and Andrew Zisserman. A short note about
kinetics-600. In CVPR Workshop on Computer Vision in Sports, 2018.

Guo Chen, Yifei Huang, Jilan Xu, Baoqi Pei, Zhe Chen, Zhiqi Li, Jiahao Wang, Kunchang Li, Tong Lu, and
Limin Wang. Video mamba suite: State space model as a versatile alternative for video understanding. In
https://arxiv.org/abs/2403.09626, 2024.

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu, Carlos Riquelme
Ruiz, Xiao Wang Sebastian Goodman, Yi Tay, Daniel Salz Siamak Shakeri, Mostafa Dehghani, Mario Lu-
cic, Michael Tschannen, Arsha Nagrani, Hexiang Hu, Mandar Joshi, Bo Pang, Ceslee Montgomery, Paulina
Pietrzyk, Marvin Ritter, AJ Piergiovanni, Matthias Minderer, Filip Pavetic, Austin Waters, Gang Li, Ibrahim
Alabdulmohsin, Lucas Beyer, Julien Amelot, Kenton Lee, Andreas Peter Steiner, Yang Li, Daniel Keysers,
Anurag Arnab, Yuanzhong Xu, Keran Rong, Alexander Kolesnikov, Mojtaba Seyedhosseini, Anelia An-
gelova, Xiaohua Zhai, Neil Houlsby, and Radu Soricut. PaLI-X: On scaling up a multilingual vision and
language model. In ArXiv:2305.18565, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and Kaiming He. Masked autoencoders as spatiotemporal
learners. In ArXiv:2205.09113, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
arXiv:2312.00752, 2023.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Re. Combining
recurrent, convolutional, and continuous-time models with the structured learnable linear state space layer.
2021.

Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and initialization of diagonal
state space models. 2022.

Maxwell Horton, Sachin Mehta, Ali Farhadi, and Mohammad Rastegari. Bytes are all you need: Transformers
operating directly on file bytes. In arxiv.org/pdf/2306.00238, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Kunchang Li, Yali Wang, Yizhuo Li, Yi Wang, Yinan He, Limin Wang, and Yu Qiao. Unmasked teacher:
Towards training-efficient video foundation models. In ICCV, 2023.

Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba: State
space model for efficient video understanding. In https://arxiv.org/pdf/2403.06977, 2024.

Jingyang Lin, Jialian Wu, Ximeng Sun, Ze Wang, Jiang Liu, Yusheng Su, Xiaodong Yu, Hao Chen, Jiebo
Luo, Zicheng Liu, et al. Unleashing hour-scale video training for long video-language understanding. arXiv
preprint arXiv:2506.05332, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Arsha Nagrani, Shan Yang, Anurag Arnab, Aren Jansen, Cordelia Schmid, and Chen Sun. Attention bottlenecks
for multimodal fusion. 2021.

Arsha Nagrani, Mingda Zhang, Ramin Mehran, Rachel Hornung, Nitesh Bharadwaj Gundavarapu, Nilpa Jha,
Austin Myers, Xingyi Zhou, Boqing Gong, Cordelia Schmid, et al. Neptune: The long orbit to benchmarking
long video understanding. arXiv preprint arXiv:2412.09582, 2024.

A Piergiovanni, Chenyou Fan, and Michael Ryoo. Learning latent subevents in activity videos using temporal
attention filters. In Proceedings of the AAAI conference on artificial intelligence, volume 31, 2017.

AJ Piergiovanni and Michael S. Ryoo. Fine-grained activity recognition in baseball videos. In CVPR Workshop
on Computer Vision in Sports, 2018.

AJ Piergiovanni, Weicheng Kuo, and Anelia Angelova. Rethinking video vits: Sparse video tubes for joint
image and video learning. CVPR, 2023.

AJ Piergiovanni, Isaac Noble, Dahun Kim, Michael Ryoo, Victor Gomes, and Anelia Angelova. Mirasol3B: A
multimodal autoregressive model for time-aligned and contextual modalities. In CVPR, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision. In ICML, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th inter-
national conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pp. 234–241. Springer,
2015.

Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal action localization in untrimmed videos via
multi-stage cnns. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
1049–1058, 2016.

Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition in videos.
Advances in neural information processing systems, 27, 2014.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical report. arXiv preprint
arXiv:2503.19786, 2025a.

Vidi Team, Celong Liu, Chia-Wen Kuo, Dawei Du, Fan Chen, Guang Chen, Jiamin Yuan, Lingxi Zhang,
Lu Guo, Lusha Li, et al. Vidi: Large multimodal models for video understanding and editing. arXiv preprint
arXiv:2504.15681, 2025b.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-efficient
learners for self-supervised video pre-training. 2022.

Hugo Touvron, Matthieu Cord, Alaaeldin El-Nouby, Piotr Bojanowski, Armand Joulin, Gabriel Synnaeve,
and Hervé Jégou. Augmenting convolutional networks with attention-based aggregation. arXiv preprint
arXiv:2112.13692, 2021.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spatiotemporal
features with 3d convolutional networks. In Proceedings of the IEEE international conference on computer
vision, pp. 4489–4497, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. 2017.

Weihan Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu Huang, Bin
Xu, Yuxiao Dong, et al. Lvbench: An extreme long video understanding benchmark. arXiv preprint
arXiv:2406.08035, 2024a.

Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng, Zun Wang,
Yansong Shi, et al. Internvideo2: Scaling foundation models for multimodal video understanding. In Euro-
pean Conference on Computer Vision, pp. 396–416. Springer, 2024b.

Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview of the h. 264/avc video
coding standard. IEEE Transactions on circuits and systems for video technology, 13(7):560–576, 2003.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Olivia Wiles, Joao Carreira, Iain Barr, Andrew Zisserman, and Mateusz Malinowski. Compressed vision for
efficient video understanding. In ACCV, 2023.

Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R Manmatha, Alexander J Smola, and Philipp Krähenbühl. Com-
pressed video action recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 6026–6035, 2018.

Shen Yan, Tao Zhu, ZiRui Wang, Yuan Cao, Mi Zhang, Soham Ghosh, Yonghui Wu, and Jiahui Yu. Videococa:
Video-text modeling with zero-shot transfer from contrastive captioners. In ArXiV:2212.04979, 2022.

Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol Vinyals, Rajat Monga, and George
Toderici. Beyond short snippets: Deep networks for video classification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 4694–4702, 2015.

Rowan Zellers, Jiasen Lu, Ximing Lu, Youngjae Yu, Yanpeng Zhao, Mohammadreza Salehi, Aditya Kusupati,
Jack Hessel, Ali Farhadi, and Yejin Choi. Merlot reserve: Neural script knowledge through vision and
language and sound. In CVPR, 2022.

Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang, Tiejun Huang,
and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video understanding. arXiv preprint
arXiv:2406.04264, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A SUPPLEMENTAL MATERIALS

A.1 POOLING METHODS

Given the input embedding sequence, L×D, we input this to the SSM. Specifically, this model is the
Mamba SSM architecture. We do not make any changes to the layers or operations themselves. To
create the multilevel SSM, we instead add pooling or merging layers within the SSM. We explore
several approaches to this: (1) using attention-based pooling layers, (2) average pooling, and (3)
concatenation pooling.

Attention Pooling. Here, we pass a sub-sequence of length Ls into the attention layer and output 1
token, thus pooling Ls tokens. For example, given a sequence length of S, and Ls = 4, we reduce
the sequence by 4 by creating a S

Ls
×Ls ×D tensor, then applying attention pooling e.g., (Touvron

et al., 2021). Specifically, we use a query vector with 1 latent embedding, when when applied to the
input key/value tensor which has size Ls × D, results in a 1 × D output. When applied along the
whole sequence, this results in a S

Ls
×D tensor. This can then be passed to the next SSM block.

Average pooling. This is similar to the above approach, expect we apply average pooling over
the Ls dimension, resulting in the same S

Ls
× D tensor, but without the attention operation, only

averaging.

Concatenation pooling. Here, we create a tensor of shape S
Ls
×D ·Ls, by re-arranging the tensor to

group multiple tokens into 1 by combining along the embedding axis. I.e., we reshape from S ×D
to S

Ls
×D · Ls.

Finally, after any of the pooling layers, we apply a fully-connected layer to project the resulting
tensor to the final dimension Dout, which can either be the same as D or larger. We found Ls = 4
and Dout = 2 ·D worked well in our experiments. This reduces the memory used by the sequence
by a factor of 2 each time a pooling layer is applied.

A.2 IMPLEMENTATION DETAILS

We encode the videos as H.264 and in mp4 containers with a image size of 384 and a bitrate of
200kbps. This roughly matches resolution standard video models use. The model architectures
used, Bytes-Tiny, Bytes-Base (Bytes-B), Bytes-Large (Bytes-L), are described in Table 16. Unless
otherwise noted, we use only the video stream and do not include audio in the encoded video. We
find the model is sensitive to learning rates, both different tasks (e.g., pre-training vs. classification
finetuning) and model scales need different learning rates. We use 9e−5 as the pre-training learning
rate for the Bytes-Tiny model, 7e−5 for the Bytes-Base model and 5e−5 for Bytes-Large. For fine-
tuning, we use 5e−5, 3e−5, and 1e−5 for the tiny, base and large models, respectively. We pre-train
with a batch size of 64, a sequence length of 218 (262144) and for 2,000,000 steps. We fine-tune
with the same settings, but for 1,000,000 steps. We note that with sufficient data augmentation, we
do not observe overfitting behaviors even with 200 epochs of training on Kinetics-600. We use the
Adam optimizer (Kingma, 2014), which is also important, with default settings. We use 512 TPU
v5p to train the model. The Tiny model runs at approximately 20 steps per second, Base runs about
9 steps/sec and large about 4 steps/sec. Thus to train the model it takes about 27 hours, 61, and
127 hours to pre-train the models respectively. And about 14, 30, 63 hours for fine-tuning. In the
Appendix (Table 16) we give the details for each model configuration used in the paper.

Long Video Training To reduce compute costs, we train the model in stages. First, we do the pre-
training as above on short video segments. This provides us with a good base model that understands
video bytes. Next, we do two stage of long video training, using the method described in Sec. 3.1.
We train on the VideoMarathon (Lin et al., 2025) data in two stages, first with sequence lengths of
2 million then 15 million bytes, roughly 1.3 minutes and 10 minutes long. We emphasize here that
we are training on the full video, without any subsampling, unlike prior works.

A.3 FURTHER EXPERIMENTS

In Table 13 and Figure 5, we provide the rest of the efficiency comparisons. In Table 14, we compare
the model using different codecs and containers. While these results show the performance is pretty

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Model Num. Frames Params TFLOPs Runtime K600

ViT-B 1 frame 86M 0.05 8ms 42.4
ViT-B 32 frame 86M 1.72 194ms 49.4
ViT-L 1 frame 307M 0.16 24ms 51.3
ViT-L 32 frames 307M 5.23 220ms 57.5
ViViT-L 32 frames >307M 11.94 523ms 60.3
Bytes-B all (250 frames) 500M 1.88 79ms 45.3
Bytes-L all (250 frames) 1B 4.12 166ms 64.2

Table 13: Model efficiency, we computed these values based on available implementations. ViTs
are run per frame + average pooling before classification. Note that we did not use any pre-training
for these models, just directly trained on Kinetics 600.

Params (Millions)

A
cc

ur
ac

y
(K

60
0)

45

50

55

60

65

200 400 600 800 1000

ViT ViViT Bytes

Figure 5: Plot of accuracy vs. params, where the size of each model indicates how many FLOPs
it uses. Showing the bytes scale to larger models sizes while using fewer flops and gaining more
accuracy.

similar across codecs, it is possible some are easier for the model to learn than others. In Table 15, we
compare our proposed multilevel SSM to the chunked based one in (Bhirangi et al., 2024), the main
difference being we apply the SSM to the entire sequence, while the other chunks the sequence and
then applies the SSM independently to each chunk. Due to our efficient implementation of sequence
parallelism, there is no meaningful difference in compute costs or runtime between the approaches,
and for video byte inputs, applying the SSM to the whole sequence is better. In Table 16, we detail
the configurations used for each model.

Codec Container K600

h.264 mp4 25.4
h.265 mp4 25.1
h.264 mov 25.8
h.265 mov 24.7
VP9 mp4 24.3
VP9 WebM 24.9

Table 14: Experiment showing performance of different video codecs and containers, using Bytes-
Tiny. We see there is a small difference between the settings, but in general, they all perform very
similarly.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Model K600

Ours 25.4
Chunked (Bhirangi et al., 2024) 25.1

Table 15: Multilevel SSM applied to the whole sequence vs. chunked (as in (Bhirangi et al., 2024).
We note that there is no noticeable difference in FLOPs or compute time between these two ap-
proaches.

Model Layers D Ls N M Params TFLOPs

Bytes-Tiny 12 256 4 4 3 103M 0.47
Bytes-B 33 256 4 4 8 500M 1.88
Bytes-L 45 256 4 4 11 1B 4.12

Table 16: Model configs used in the paper.

B ACTIVITYNET-QA AND CINEPILE LONG VIDEO EXPERIMENTS

For the experiments in table 6, we needed to add a language model to handle the question answering
task. To do this, we used the Gemma model Team et al. (2025a). Specifically, we then took the final
representations from the SSM model as the video representation, and added that to the enmbedded
text representations and then trained gemma to generate the answers.

For CinePile, since it is a multiple choice dataset, we evalute using standard accuracy, if the pre-
dicted answer (e.g., a, b, c, or d) matches the ground truth. For ActivityNet, since it is open-ended
questions, we use string equality to compare the answers.

CinePile videos average 3 minutes of duration, with some as long as 8 minutes. It has both a training
and evaluation set, so we finetune the 15M token model on this data for 1 epoch. We train the entire
model with a learning rate of 0.00001 on this question answering task.

ActivityNet-QA has videos with the average duration between 5 and 10 minutes. It also has a
training and evaluation set, and we finetune for 1 epoch as well with a learning rate of 0.00001.

C DISCUSSIONS ON SELF-SUPERVISED PRE-TRAINING

There are many other pre-training tasks could be explored, such as codec translation, e.g., mp4
(H.264) as input and generate a VP9 encoded video as output, using a standard per-token cross-
entropy loss, or predicting features from a known visual encoder (e.g., CLIP (Radford et al., 2021)
features) rather than directly predicting pixels. Similarly contrastive losses across different codecs
could be used. Weakly supervised tasks such as predicted ASR transcripts from video byte inputs
could be explored. We leave these explorations as future work.

15

	Introduction
	Learning from Raw Video Bytes
	Proposed Approach - Parallelized Multilevel SSM
	Handling Long Sequences with Parallelism
	Addressing Overfitting

	Experiments
	Main results
	Model efficiency
	Ablations

	Related Works
	Conclusions
	Supplemental Materials
	Pooling Methods
	Implementation Details
	Further Experiments

	ActivityNet-QA and Cinepile Long Video Experiments
	Discussions on Self-Supervised Pre-training

