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ABSTRACT

This work presents strategies to learn an Energy-Based Model (EBM) according
to the desired length of its MCMC sampling trajectories. MCMC trajectories of
different lengths correspond to models with different purposes. Our experiments
cover three different trajectory magnitudes and learning outcomes: 1) shortrun sam-
pling for image generation; 2) midrun sampling for classifier-agnostic adversarial
defense; and 3) longrun sampling for principled modeling of image probability
densities. To achieve these outcomes, we introduce three novel methods of MCMC
initialization for negative samples used in Maximum Likelihood (ML) learning.
With standard network architectures and an unaltered ML objective, our MCMC
initialization methods alone enable significant performance gains across the three
applications that we investigate. Our results include state-of-the-art FID scores for
unnormalized image densities on the CIFAR-10 and ImageNet datasets; state-of-
the-art adversarial defense on CIFAR-10 among purification methods and the first
EBM defense on ImageNet; and scalable techniques for learning valid probability
densities.

1 INTRODUCTION

Generative modeling of complex signals is one of the fundamental challenges of computational
cognition. The importance of studying generative models is often justified by the Analysis-by-
Synthesis hypothesis, which posits that human cognition is an interplay of bottom-up information
from world states and top-down synthesis of imagined states. Powerful generative models could
provide the foundation of the imaginative capabilities of future machine intelligence. One approach to
generative modeling is to posit the existence of a density q(x) of signals x that generates data samples,
and to learn q(x) using a flexible model p(x; θ), where θ is a model parameter. This approach is
taken by Energy-Based Models (EBMs) (Xie et al., 2016), normalizing flows (Kingma & Dhariwal,
2018), score-based models (Song & Ermon, 2019; 2020), and auto-regressive models (Oord et al.,
2016), as well as by Variational Auto-encoders (VAEs) (Kingma & Welling, 2013) using a joint
model p(x, z; θ). In this work we consider modeling q(x) using an EBM density p(x; θ) for image
signals x. See Appendix A for a brief review of Maximum Likelihood learning with an EBM.

The primary goal of most deep generative modeling is to generate realistic images. It is well-known
that shortrun sampling with an EBM is an effective method for image generation, but synthesis
results still lag behind GANs (Goodfellow et al., 2014), score models, and diffusion models (Ho
et al., 2020). Other directions of EBM research include learning valid densities (Nijkamp et al.,
2020), combining discriminative and generative learning via the Joint Energy Model (Grathwohl
et al., 2020) and relatives, and using an EBM for defense against adversarial attacks (Hill et al.,
2021). In this work, we focus on unconditional learning where EBMs are trained exclusively on
unlabeled images. We explore the tasks of image synthesis, adversarial defense, and density modeling
to examine a breadth of capabilities for the unconditional EBM. Image synthesis is a shared goal
across all generative models, while defense and density modeling are tasks that are especially suitable
for EBMs. See Appendices B and I for a thorough comparison of EBM and other generative models
from the perspective of synthesis, defense, and density estimation.

Each task is naturally associated with a certain length of MCMC trajectory. Image synthesis is most
effective with shortrun trajectories (about 20 to 200 steps) that can rapidly generate new images.
Adversarial defense requires midrun trajectories (about 200 to 2000 steps) that can preserve the class
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Figure 1: Illustration of the sampling trajectories that we study in this work. The shortrun samples are
initialized from a generator that is trained in tandem with the EBM because the goal is self-contained
synthesis. Midrun and longrun samples are initiated from a high-quality starting image obtained from
a pre-trained SNGAN, and we study the ability of the EBMs to preserve the quality of the input image
from defense and density estimation points of view. The plots show the FID score (Heusel et al., 2017)
of 5,000 samples across Langevin steps. The shortrun samples improve on the generator initialization
to achieve high-quality synthesis around 250 steps. The midrun samples achieve reasonably low FID
in a critical range of about 2k steps where defense can be achieved. The longrun sample maintains
reasonable synthesis across the entire trajectory, and much further. The shortrun and midrun samples
eventually produce defective results outside of their tuned window of stability.

features while sampling removes adversarial signals. Density modeling requires longrun trajectories
(50K steps or more) to ensure proper calibration of probability mass for the model steady-state. It
is known that EBMs have a near universal tendency to learn a misaligned steady-state focusing on
unrealistic images (Nijkamp et al., 2020), and there are very few existing solutions to correct this.
We intuitively refer to the spectrum of trajectories as the life cycle of an MCMC sample, from youth
through middle age to maturity. Young samples have the highest quality visual appearance, middle
age samples are useful for securing classifiers, and mature samples represent grounded knowledge
of the data density (or lack thereof in the widespread case of a misaligned steady-state). Figure 1
illustrates the sampling paths that we study in this work.

Ideally, a valid density estimator would also be a good synthesizer and a good defender. However,
synthesis quality and density modeling are goals that tend to be at odds with each other. High-quality
synthesis is easier to achieve using shortrun sampling with a defective density rather than long-run
sampling with a stable density (Nijkamp et al., 2020). Unfortunately, models with high-quality
shortrun synthesis lack the stability needed for defense. The EBM defense from Hill et al. (2021)
advocates for the use of a valid density approximation to stabilize trajectories, but this requirement
might be too strict given the difficulty of density estimation. Learning midrun sampling trajectories
sufficient for defense is much more feasible for complex datasets such as ImageNet than full density
estimation, even if longrun samples from the defensive model are not realistic. Our work is the first
to explore this possibility. The overarching purpose of this paper is to discuss techniques for building
sample paths from shortrun to longrun, with the hope that these techniques will eventually enable
both high quality synthesis and defense to be accomplished with a model that is also a valid density.
For now, the difficulty of valid density modeling leads us to restrict our focus to separate time scales
of the sampling regime necessary for each task. Interestingly, EBM training naturally accommodates
learning at different trajectory lengths.

Strategies for improving EBM learning beyond the standard framework (e.g. Xie et al. (2018); Du
& Mordatch (2019); Nijkamp et al. (2020)) can broadly be divided into methods that focus on the
initialization of MCMC samples (Xie et al., 2018; Gao et al., 2018; Nijkamp et al., 2019) and methods
that focus on the ML learning objective (Yu et al., 2020b). Some works explore both (Gao et al.,
2020a; Du et al., 2020). Our novel learning methods focus on MCMC initialization, and we retain the
standard ML objective and use conventional network architectures. We introduce three new MCMC
initialization strategies which are tailored to the three different trajectories lengths we explore. During
training we exclusively use shortrun MCMC to ensure computational feasibility. Learning models
with midrun and longrun trajectories is accomplished by simulating longer trajectories via well-

2



Under review as a conference paper at ICLR 2022

chosen initialization and optimizer annealing. Our initialization strategies are able to significantly
improve the state-of-the-art across the tasks we investigate. We summarize our contributions below.

• We propose a hybridization of persistent (Tieleman, 2008) and cooperative (Xie et al., 2018)
initialization to overcome limitations of each. The proposed method yields state-of-the-art FID
scores for unconditional unnormalized image densities for the CIFAR-10 and ImageNet datasets.
The ImagetNet results surpass GANs trained with similar resources. See Section 2.

• We show that persistent initialization with appropriately tuned rejuvenation from in-distribution
states can be used to train EBMs with stable trajectories of several thousand MCMC steps. This
allows us to extend the method of Hill et al. (2021) to obtain state-of-the-art purification-based
defense for CIFAR-10 and to scale the EBM defense to ImageNet. See Section 3.

• We propose a method for principled density estimation that allows incorporation of a rejuvenation
step for persistent states. Incorporating rejuvenation allows us to learn well-formed EBM densities
at a greater scale than previously possible. See Section 4.

Our initialization methods will primarily build upon persistent (Tieleman, 2008; Du & Mordatch,
2019) and cooperative (Xie et al., 2018) initialization. All of our methods will use a generator network
as the source of rejuvenation for persistent states. Our shortrun experiments will learn the generator
in tandem with the EBM so the synthesis process is self-contained, while our midrun and longrun
experiments will use pretrained generators since we will apply sampling paths from in-distribution
initial images rather than synthesizing from scratch.

2 HYBRID PERSISTENT COOPERATIVE LEARNING FOR IMAGE SYNTHESIS

In this section, we focus on on the conventional task of learning an EBM for high quality synthesis
with shortrun sampling. We restrict our attention to achieving high quality synthesis without use of
pretrained models, in contrast with works such as Che et al. (2020); Alayrac et al. (2019). Our method
involves hybridizing persistent (Tieleman, 2008) and cooperative (Xie et al., 2018) initialization. We
first briefly cover the strengths and weaknesses of these methods, then discuss our hybridization, and
finally present experimental results.

2.1 MOTIVATION: LIMITATIONS OF PERSISTENT AND COOPERATIVE INITIALIZATION

A common framework for learning synthesis with an EBM is to use persistent initialization for
MCMC samples with a certain rate of rejuvenation (e.g. 5% chance) from a noise distribution (Du
& Mordatch, 2019). This approach can cause instability because shortrun samples used to update
the model include a mix of higher-energy burn-in samples and lower-energy realistic images, which
can destabilize training by increasing the variance of the gradient of the negative samples in (4).
On the other hand, removing rejuvenation can decrease the quality of the learned images because
persistent images often become stuck in local modes and develop defects that linger for many updates.
Persistent banks also scale poorly to large datasets such as ImageNet because the bank cannot
efficiently represent the diversity of the data. Initialization from a cooperative generator network is
an appealing alternative because it could enable efficient in-distribution generation of highly diverse
appearances. Using a generator for rejuvenation allows samples to begin much closer to the correct
energy spectrum, thereby avoid the instability of noise rejuvenation. However, we observe a major
limitation of cooperative learning that affects the generator ability to produce diverse initial states.
In particular, a generator trained with the cooperative learning objective has difficulty breaking the
symmetry of its activations. This happens because shortrun EBM samples are unable to provide
novel diversity if the generator initialization already lacks diversity. This is illustrated in Figure 5.
Learning quickly becomes unstable without auxiliary techniques such as batch normalization to break
generator symmetry. The lack of diversity of shortrun EBM samples limits the results of cooperative
learning even when training succeeds.

The strengths and limitations of these methods are complementary. Persistent initialization can
reliably provide a diverse set of initial images that represent prior samples of several different
model snapshots. Even if a single EBM update is biased to a certain image defect (e.g. MCMC
samples are blue-tinged or too bright), samples across previous iterations have the correct diversity on
average. On the other hand, the generator can quickly propose in-distribution states for rejuvenation
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instead of relying on out-of-distribution noise samples or aggressively augmented persistent samples.
Furthermore, training the generator in tandem with the EBM provides an efficient way of generating
new samples from scratch after training that match the samples used during training. In contrast,
models trained with persistent initialization often cannot produce good samples after training without
an in-distribution initialization (Nijkamp et al., 2020). Learning a generator and EBM jointly enables
self-contained and reproducible FID implementation to evaluate the learned model.

2.2 HYBRID PERSISTENT COOPERATIVE INITIALIZATION

We visualize our proposed initialization technique in Figure 2. The method features two banks of
persistent states. One bank is for persistent images and the other bank is for persistent latent vectors.
There will always be a one-to-one pairing between persistent images and persistent latents, meaning
that paired states will be drawn from the banks, return to the banks, and experience rejuvenation
at the same time. All samples are rejuvenated from the current generator. Other than the pairing
and generator rejuvenation source, sampling from banks and rejuvenation with a fixed probability is
conducted in the same way as persistent initialization. This pairing is necessary for the cooperative
learning loss used to train the generator. Given a batch of paired samples {Zi}ni=1 and {X−i,0}ni=1

drawn from the latent and image bank respectively and a generator network g(z;φ), we learn φ using
gradient descent on the reconstruction loss

L(φ) ∝
n∑
i=1

‖g(Zi;φ)− T (X−i,0; θ)‖22 (1)

Figure 2: Cooperative-persistent initializa-
tion uses paired latent and image states that
a drawn from persistent banks to learn the
EBM and generator.

where T (X−i,0; θ) = X−i represents a shortrun Langevin
trajectory with the EBM p(x; θ). This loss can be de-
rived in the ML framework as a way to teach the output
of g(z;φ) to match the distribution of p(x; θ). A full
implementation of cooperative learning requires an ad-
ditional sampling process on Zi, but we use a straight-
through estimator (Bengio et al., 2013) and approximate
latent sampling with the identity function as originally
done in the official MATLAB implementation from Xie
et al. (2018). We review further details of the coopera-
tive learning loss in Appendix C.

Intuitively, the loss (1) encourages the output of the
generator to match the outcome of the Langevin sam-
pling process (5). Cooperative learning always uses
Xi,0 = g(Zi;φ), which corresponds to rejuvenating
with probability 1 in our method. This is the root of
the limitation of cooperative learning. If g(z;φ) has
little diversity, T (g(z;φ); θ) will also have little diver-
sity. This causes extreme oscillation in both the EBM
and generator output as p(x; θ) attempts to cover the
modes of q(x) with shortrun samples from low diversity

initialization. Despite oscillation in appearance across φ, generator samples tend to remain nearly
identical for any fixed φ, thereby perpetuating the instability and preventing further learning. By
drawing samples from the image bank, we are effectively choosing Xi,0 = T ′(g(z;φ′)) where φ′
represents a past generator parameter and T ′(x) represents the composition of Langevin sampling
with past EBMs. This allows us to learn φ using appropriately diverse initializations spanning samples
of several past models. We observe that this simple adjustment has a dramatic effect for improving
EBM learning with generator initialization.

2.3 EXPERIMENTS: IMAGE SYNTHESIS WITH SHORTRUN MCMC

We present the results of our new learning process applied to the CIFAR-10, Celeb-A, and ImageNet
benchmark datasets, using the image sizes 32× 32, 64× 64, and 128× 128 respectively. A sketch of
the hybrid learning algorithm is given in Appendix D. Besides standard deep learning techniques for
stable optimization, our framework is fully described by the ML objective and MCMC initialization
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Table 1: Comparison of FID scores among representative generative models. (*=EBM, †=conditional)

CIFAR-10 32× 32

Model FID

Ours* 22.1
Du et al. (2020)* 25.1

Grathwohl et al. (2021)* 27.5
Xie et al. (2018)* 33.6

Gao et al. (2020a)* 37.3
Grathwohl et al. (2020)* 38.4
Du & Mordatch (2019)* 40.6

Yu et al. (2020a)*† 30.9
Du & Mordatch (2019)*† 37.9

Ho et al. (2020) 3.2
Song & Ermon (2020) 10.9

Brock et al. (2019) 14.7
Miyato et al. (2018) 21.7

Celeb-A 64× 64

Model FID

Ours* 16.3
Miyato et al. (2018) 5.7

Song & Ermon (2020) 10.2
Han et al. (2019)* 31.9

ImageNet 128× 128

Model FID

Ours* 38.9
Chen et al. (2019) 43.9
Lee et al. (2021) 58.9

Miyato et al. (2018) 65.7
Miyato et al. (2018)† 27.6

Du & Mordatch (2019)*† 43.7

above. We use the SNGAN (Miyato et al., 2018) architectures for all models, where EBMs use
the SNGAN discriminator with no normalization. The generator has batch normalization for the
CIFAR-10 and Celeb-A experiments only. Table 1 displays the FID scores achieved by our model in
comparison with prior methods.

When calculating FID scores, samples are first initialized from the generator then updated with the
EBM using a number of Langevin updates tuned to provide optimal synthesis quality. As mentioned
before, an appealing aspect of EBM learning with generator initialization is the ease of generating new
images from scratch, in contrast with persistent initialization. We use 50K samples with the official
FID code from Heusel et al. (2017) to calculate all FID scores. In particular, our scores and framework
are consistent with the GAN replication library from Lee & Town (2020). We publicly release the
checkpoints, learning code, and FID code for each model. The checkpoints are representative of what
is achievable within an ordinary run of the code provided. Our CIFAR-10 results show a significant
improvement over prior EBM synthesis and contribute to closing the gap between EBMs and other
generative models. Surprisingly, our ImageNet results surpass the results of GANs such as SNGAN
(Miyato et al., 2018) and SSGAN (Chen et al., 2019) on unconditional synthesis using a similar
magnitude of computational resources.

3 MIDRUN SAMPLERS FOR ADVERSARIAL DEFENSE

This section presents a method for learning EBMs that are capable of preserving the appearance of
an in-distribution initial state across several thousand MCMC steps. Such models are useful for the
purpose of adversarial defense. Our defense framework is based on the approach in Hill et al. (2021),
which uses an EBM to defend an independent naturally trained classifier. Appendix E briefly reviews
the EBM defense and compares this approach with other defense methods. We then present our
proposed method for learning a defensive EBM (3), which is based on persistent initialization using
a fixed pretrained generator as a source of rejuvenation. Finally, we apply our defense to achieve
state-of-the-art performance for purification-based defense on CIFAR-10 and ImageNet.

One limitation of prior EBM defense is the reliance on persistent initialization with no rejuvenation
to learn the defensive model. This is done to ensure that defensive sampling trajectories remain
stable for arbitrary numbers of steps. However, removing rejuvenation from persistent learning has
drawbacks discussed in Section 2.1. In particular, it becomes very difficult to learn meaningful EBMs
for large and complex datasets such as ImageNet in this framework because the persistent bank
cannot represent the diversity of the dataset and the quality of persistent images without rejuvenation
quickly degrades. Methods for efficient learning of defensive EBMs at a greater scale are needed to
extend the EBM defense to more realistic situations.
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We propose to overcome this obstacle by building on the observation that fully stable sampling paths
are not required for successful defense. While the defense from Hill et al. (2021) uses EBMs with
stable sampling for 100K steps or more, the defense results require less than 2000 steps. A natural
question is whether it is possible to learn stable MCMC trajectories for only a predefined midrun
range to achieve the defensive benefits without fully stabilizing samples over longrun trajectories.
Defining a learning procedure to obtain such models is the goal of this section. Efficiently learning
EBMs with stable midrun trajectories allows us to scale up the EBM defense to significantly more
challenging domains.

3.1 IN-DISTRIBUTION REJUVENATION FOR LEARNING A DEFENSIVE EBM

The initialization method for our midrun sampler is similar to standard persistent initialization with
the adjustment that persistent states are rejuvenated from a frozen pretrained generator rather than
noise. We use a generator in our experiments so that the EBM and generator could be used after
training to sample from scratch. This choice is not necessary and rejuvenation from data samples, or
another efficient in-distribution initialization, is also effective for learning defensive EBMs. We note
that MCMC initialization from a trained generator or from data samples is not explored in recent work
because the goal of most current EBM learning is image synthesis, which becomes trivial if EBM
trajectories are always initialized from high-quality samples. From the perspective of synthesis our
learning process is nearly invisible but from the perspective of defense its utility becomes concrete.

Figure 3: Persistent ini-
tialization. Positive sam-
ples are from data samples
and negative samples are
MCMC samples initialized
from a batch from an image
bank. Some states are ran-
domly rejuvenated.

Learning an EBM for defense involves tuning the length of the sam-
pling trajectory via the number of shortrun training steps and the reju-
venation rate, and tuning the annealing schedule of the EBM optimizer.
Given a desired number of MCMC steps Kdef for a defensive update
and a shortrun trajectory K ≈ 100, we simply set the rejuvenation rate
to prejuv = K/Kdef to ensure that on average samples will travel Kdef
steps before rejuvenation. While in practice we use Kdef = 2000 and
prejuv = 0.05, we have found that this method can yield stable paths
for at least Kdef = 50K MCMC steps when prejuv is low.

Initialization alone is insufficient to stabilize MCMC pathways when
model weights are changing quickly. Using a low learning rate late in
training is a key aspect of stabilizing sampling paths (Nijkamp et al.,
2020; Hill et al., 2021). Intuitively, if the EBM optimizer has a suf-
ficiently low learning rate then MCMC trajectories in the persistent
image bank can function as approximate trajectories from the current
model, since weights change very little as the persistent states are up-
dated. By annealing in tandem with our initialization, we are effectively
using midrun trajectories of length Kdef initialized from the generator
to update the EBM while we are actually using shortrun trajectories of
length K from the persistent bank. Annealing is a crucial component
for stabilizing both midrun and longrun trajectories. Without annealing,
sampling paths are not able to maintain realism for large Kdef.

3.2 EXPERIMENTS: DEFENDING NATURAL CLASSIFIERS WITH AN EBM

We train our EBMs using the persistent initialization described above in tandem with a pretrained
generator on both CIFAR-10 and ImageNet. We use the same SNGAN models as before for our
CIFAR-10 experiments, with the exception that the generator is pretrained instead of learned. For our
ImageNet experiments, we use the BigGAN (Brock et al., 2019) discriminator architecture for our
EBM modified for input size 224× 224 and a pretrained BigGAN Generator. Our naturally trained
classifier f(x) is a pretrained WideResNet 28-10 (Zagoruyko & Komodakis, 2016) for CIFAR-10
and a pretrained EfficientNetB-7 architecture (Tan & Le, 2020) for ImageNet.

We evaluate our models using the attack gradient (8) and Algorithm 2. For CIFAR-10 we use
Kdef = 500 Langevin steps with l∞ adversarial parameters ε = 8

255 and α = 2
255 , where ε is the size

of the l∞ ball and α is the gradient step size. For ImageNet we used Kdef = 200 Langevin steps for
defense with l∞ adversarial parameters ε = 2

255 and α = 1
255 . We attack ImageNet for 50 attacks
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Table 2: Defense vs. whitebox attacks with l∞ perturbation ε = 8/255 for CIFAR-10.

Defense f(x) Train Ims. T (x) Method Attack Nat. Adv.

Ours Natural Langevin BPDA+EOT 0.866 0.676
(Hill et al., 2021) Natural Langevin BPDA+EOT 0.8412 0.5490
(Song et al., 2018) Natural Gibbs Update BPDA 0.95 0.09

(Srinivasan et al., 2019) Natural Langevin PGD – 0.0048
(Yang et al., 2019) Transformed Mask + Recon. BPDA+EOT 0.94 0.15

(Carmon et al., 2019) Adversarial – PGD 0.897 0.625
(Zhang et al., 2019) Adversarial – PGD 0.849 0.5643
(Shafahi et al., 2019) Adversarial – PGD 0.859 0.4633
(Madry et al., 2018) Adversarial – PGD 0.873 0.458

steps across 10K val samples. For CIFAR-10 we perform the same number of attacks across 4K
validation samples.

Table 3: Defense vs. l∞ whitebox attacks for ImageNet.

Defense f(x) Train Ims. ε Nat. Adv.

Ours Natural 2
255

0.684 0.418
(Wong et al., 2020) Adversarial 2

255
0.609 0.4339

(Shafahi et al., 2019) Adversarial 2
255

0.644 0.4339
(Qin et al., 2019) Adversarial 4

255
0.822 0.427

(Xie et al., 2021) Adversarial 4
255

0.822 0.586

On CIFAR-10, we surpass the
robustness of the existing EBM
defense using a much more re-
liable learning framework. The
importance of midrun learning is
clearly demonstrated by our suc-
cessful application of EBM de-
fense to ImageNet at the resolu-
tion 224 × 224. The robustness
of a naturally trained classifier se-
cured by our EBM is comparable
with adversarial training. While

the ImageNet results for EBM defense are not yet on par with state-of-the-art adversarially trained
models, our experiments are an important proof of concept that the method can be scaled. See
Appendix F for diagnostics and further discussion.

4 LONGRUN SAMPLING FOR DENSITY ESTIMATION

Our final objective is to introduce scalable tools for learning a valid image density with an EBM.
Nijkamp et al. (2020) revealed that, in the absence of careful implementation, EBM learning always
results in an unexpected outcome where steady-state samples from the learned density p(x; θ) have
an oversaturated and unrealistic appearance that differs drastically from shortrun samples used during
learning. This outcome affects all EBMs that are not specifically trained to overcome this defect, as
well as related models such as Score Matching (Song & Ermon, 2019; 2020) as shown in Figure 8.
To our knowledge, across different generative models, the only way to learn a well-formed potential
energy surface approximating a complex density q(x) that is compatible with efficient MCMC
sampling is using an EBM.

Despite the theoretical formulation of the EBM as a potential surface, the problem of principled
density estimation has received relatively little attention. Successful image synthesis is sometimes
used as misleading evidence of successful density estimation, but we emphasize these outcomes not
equivalent. In this section, we address the lack scalable methods to learn valid densities of complex
signals by introducing an MCMC initialization can incorporate rejuvenation while still simulating
extremely long trajectories. Learning a valid density is a fundamental computational problem that is
important in its own right, and we further hope that our learning method leads to EBM clustering
techniques based on the potential energy basins of a well-formed density (Nijkamp et al., 2020).

4.1 INCORPORATING REJUVENATION IN DENSITY ESTIMATION

Prior work has suggested that persistent learning is the most effective method for learning a valid
EBM density. Furthermore, works that learn a valid density have avoided rejuvenation because
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the incorporation of newly rejuvenated samples into the persistent bank ensures that EBM updates
will always include samples that are not at the steady-state. However, persistent learning without
rejuvenation has shortcomings mentioned in Section 3. We present hypothesized conditions for
learning a valid density that motivate the design of our MCMC initialization:

• After a certain point in training, all samples used to update the EBM must be approximate steady-
state samples of the current model p(x; θ).

• Persistent samples that are newly rejuvenated (up to about 50K Langevin steps since rejuvenation,
and possibly many more) cannot be approximate steady-state samples for any known rejuvenation
sources, including data, generators, and noise.

• Persistent samples that have undergone sufficiently many lifetime Langevin updates for a model
whose weights are changing very slowly can be approximate steady-state samples.

Figure 4: Visualization of our longrun
initializatin procedure. Newly reju-
venated samples must remain the the
burnin bank until they have approach
the model steady-state, at which point
they move to the update bank to be
used for model gradients.

Both the second and third point are corroborated by prior
work (Nijkamp et al., 2020; Hill et al., 2021) as well as
our own observations. The third point means that persistent
states updated with shortrun Langevin can eventually act as
longrun Langevin samples if the optimizer learning rate is
small, because the EBM samples in previous timesteps are
essentially samples from the current EBM.

Learning a valid density that includes rejuvenation while
satisfying the conditions above requires separating the newly
rejuvenated samples from samples that are used to update the
EBM. This leads us to introduce two persistent image banks:
one for newly rejuvenated samples, and one for samples
that will be used to update the EBM. Samples in the newly
rejuvenated bank that have been updated sufficiently many
times will eventually replace samples from the bank used to
update the EBM, at which point newly rejuvenated states will
be added to the burn-in bank. Figure 4 shows a visualization
of the MCMC initialization method. As in Section 3, we will
use a pre-trained generator to efficiently obtain high-quality
rejuvenated samples so that the generation process is fully
synthetic, although data samples could be used as well. Our
goal is to preserve the sample quality for an arbitrary number

of MCMC steps. We note that this is a sufficient but not necessary condition for learning a valid EBM
density. Nonetheless, stable sampling is an important step towards rigorous probabilistic EBMs.

Table 4: FID for 5K samples
after 100K Langevin and 1M
Langevin steps. FID remains
stable over long trajectories.

Data 100K 1M
CIFAR-10 49.2 51.7
Celeb-A 37.4 45.9

ImageNet 82.3 77.8

Even with our improved initialization, we find that extremely lon-
grun trajectories of 1 million or more MCMC steps still tend to
oversaturate, although to a much lesser degree. To further stabilize
the appearance of extremely longrun Langevin samples, we include
prior energy terms in the model. Our longrun EBMs have the form

Uθ0,σ(x; θ) = U ′(x; θ) + U ′(x; θ0) +
1

2σ2
‖x‖22 (2)

where U ′(x; θ) is the model whose weights are updated, U0(x; θ0) is
a prior EBM with fixed weights θ0 and σ is a parameter controlling
the strength of a Gaussian prior. We used a prior EBM in a shortrun
manner. The role of the prior EBM is to provide some stability but

also to provide a tendency to oversaturate at longer trajectories so that the current EBM learns to
correct oversaturation. The Gaussian prior is meant to discourage unbounded activations outside of
the image hypercube. Further discussion is in Appendix H. We find that including both of these terms
significantly improves the ability to learn quality synthesis over long trajectories.

4.2 EXPERIMENTS: EBM DENSITY ESTIMATION

In these experiments, we learn EBM models that have stable MCMC trajectories for an arbitrary
number of steps. We apply the longrun learning method in Algorithm 4 to CIFAR-10, Celeb-A, and
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ImageNet at the resolutions 32× 32, 64× 64, and 64× 64 respectively. Pre-trained SNGANs are
used to rejuvenate images for CIFAR-10 and Celeb-A, while a resized images from a pre-trained
BigGAN are used to rejuvenate ImageNet samples. We require that samples have been updated for
50K to 75K Langevin steps since the last rejuvenation before states are moved from the burn-in bank
to the update bank. Our EBMs all use the discriminator architecture of the SNGAN model without
spectral normalization. We use pretrained midrun samples for our prior EBM terms in the learned
energy (2). See Appendix K for an algorithm sketch. Figure 1 shows the evolution of FID score over
Langevin steps starting from the generator network for our CIFAR-10 model. Table 4 shows the
FID scores of 5K samples for each dataset. Visualizations of longrun samples with 100K steps and
extremely longrun samples using 1 million Langevin steps are shown in Appendix M. See Appendix J
for a discussion of our evaluation in comparison to log likelihood.

5 RELATED WORK

Energy-Based Models. Early forms of EBMs include the exponential family distribution, the
FRAME model (Zhu et al., 1998) and Restricted Boltzmann Machines (Hinton, 2002). Recent work
has introduced the EBM with a ConvNet potential (Xie et al., 2016; Du & Mordatch, 2019). This
dramatically increased the learning capacity of the model which led to many follow-up works on
image synthesis (Gao et al., 2018; Lee et al., 2018; Nijkamp et al., 2019), adversarial robustness (Hill
et al., 2021), and joint learning of discriminative and generative models (Grathwohl et al., 2020).
Several works investigate training and EBM in tandem with an auxilary model. Kim & Bengio (2016)
train an EBM and generator and tandem without MCMC by using samples from the generator as
direct approximations of the EBM density and training the generator using a variational objective.
A similar approach is explored by Grathwohl et al. (2021). Cooperative learning (Xie et al., 2018)
trains the EBM and generator by using the generator to initialize samples needed to train the EBM
and uses reconstruction loss between generator and EBM samples to learn the generator. Gao et al.
(2020a) learn an EBM using Noise Contrastive Estimation with an auxiliary flow model. Xiao et al.
(2021) use a pretrained VAE to facilitate EBM learning. Our work builds on cooperative learning by
identifying and resolving symmetry breaking problems in early training, leading to state-of-the-art
EBM synthesis for unconditional ImageNet. Despite the formulation of the EBM as an unnormalized
density, it has been shown that most EBMs have strong misaligned steady-state distributions (Nijkamp
et al., 2020). Our work introduces new methods to learn a model with correct steady-state alignment.

Adversarial Robustness. Adversarial Training (AT) (Madry et al., 2018), which trains a classifier
using PGD-generated adversaries, is the most popular and studied adversarial defense. Many varia-
tions and improvements have been introduced, including optimizing the training loop by recycling
gradients of past adversaries (Shafahi et al., 2019), combining single step FGSM with random ini-
tialization to achieve similar robustness Wong et al. (2020), learning with auxiliary unlabeled data
Carmon et al. (2019), local linearization (Qin et al., 2019), and the use of smooth activation functions
Xie et al. (2021). An alternative approach to adversarial training involves the use of preprocessing
transformations. Randomized smoothing (Cohen et al., 2019) and related methods (Salman et al.,
2020) add noise to the input signal to remove adversarial signals. Many other preprocessing defenses
have been proposed (Guo et al., 2018; Song et al., 2018; Yang et al., 2019), but nearly all of these
methods can be broken by adaptive attacks that are aware of the preprocessing method (Athalye
et al., 2018). A notable exception is the EBM defense (Hill et al., 2021), which uses midrun MCMC
trajectories to purify images. We ease the restriction of learning EBMs with stability for arbitrary
MCMC runs in the EBM defense by introducing a midrun sampler that enables faster learning of
defensive EBMs and allows the EBM defense to scale to more complex datasets.

6 CONCLUSION AND FUTURE WORK

We have described three unique MCMC initializations for EBM using different sampling trajectories:
shortrun for synthesis, midrun for defense, and long-run for density estimation. Furthermore, we have
elaborated on different MCMC initialization strategies used to stabilize these models for different
sampling lengths. We have demonstrated the flexibility of these mechanisms by using similar
architectures, data, and training platforms to create different EBMs for different applications. We
hope that future research incorporates these new training initialization schemes to improve their
generative models for a wide variety of tasks.
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7 REPRODUCIBILITY

We have made our results reproducible by releasing the anonymized github repository https:
//anonymous.4open.science/r/lifecycle-3346/. All hyperparameters can be found
in the configuration files, all checkpoints for the various EBMs are also under the release section and
there is a README.MD describing how to use this repository to reproduce the results described
herein. We will release a non-anonymous repository at a later date. All our results were trained on the
standard CIFAR-10, ImageNet, and Celeb-A datasets which are publicly available. Our computational
resources were primarily 5 TPUv2-8 machines and 5 TPUv3-8 machines made available by the
Tensorflow Research Cloud (TRC) program sponsored by Google. These resources are widely
available to researchers who apply to the program from accredited institutions. We are very grateful
to Google for granting us access to the resources that made this work possible.
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A REVIEW OF EBM LEARNING AND MCMC INITIALIZATION

We briefly review the main components of EBM learning following the standard method derived
from works such as Hinton (2002); Zhu et al. (1998); Xie et al. (2016). Throughout our experiments,
we will use this framework and focus on exploring different possibilities for MCMC initialization. A
deep EBM has the form

p(x; θ) =
1

Z(θ)
exp{−U(x; θ)} (3)

where U(x; θ) is a ConvNet with weights θ and Z(θ) is the intractable normalizing constant. Max-
imum Likelihood (ML) learning uses the objective arg minθDKL(q(x)||p(x; θ)), which can be
minimized using the stochastic gradient

∇L(θ) ≈ 1

n

n∑
i=1

∇θU(X+
i ; θ)− 1

n

n∑
i=1

∇θU(X−i ; θ) (4)

where the positive samples {X+
i }ni=1 are a set of data samples and the negative samples {X−i }ni=1

are samples from the current model p(x; θ). To obtain the negative samples for a deep EBM, it is
common to use MCMC sampling with the K steps of Langevin equation

X(k+1) = X(k) − η2

2
∇X(k)U(X(k); θ) + ηZk, (5)

where η is the step size and Zk ∼ N(0, I). The Langevin trajectories are initialized from a set of
states {X−i,0}ni=1 obtained from a certain initialization strategy. The method of MCMC initialization
determines many of the properties of the learned model.

There are a number of different methods of MCMC initialization for EBM learning. Early Restricted
Boltzmann Machines use data samples as the initial states in every iteration (Hinton, 2002). Persistent
initialization (Zhu et al., 1998; Tieleman, 2008) maintains a bank of MCMC samples from previous
model updates as the source of MCMC states in the current iteration. Persistent states can be
rejuvenated with a certain probability instead of returning to the image bank. Potential sources
for rejuvenation include noise samples (Du & Mordatch, 2019), data augmentation applied to
persistent states (Du et al., 2020), data samples, or samples from a generator network. Cooperative
learning initializes MCMC states from a generator learned in tandem with an EBM (Xie et al.,
2018). The Multi-grid model (Gao et al., 2018) initializes samples from lower resolution images.
Noise initialization is explored by Nijkamp et al. (2019). The VAEBM (Xiao et al., 2021) initializes
samples from a pretrained VAE generator. EBMs can learn stable shortrun synthesis from virtually
any initialization distribution as long as the initialization distribution remains fairly consistent
across training updates. EBM sampling can produce realistic images after training when the testing
initialization closely matches the training initialization, while synthesis can fail for test initializations
unseen during training. (Nijkamp et al., 2020).

B COMPARISON OF EBM AND OTHER GENERATIVE MODELS

In this section, we briefly compare the EBM with other kinds of generative models. Besides the
probabilistic model families mentioned in the introduction, we consider two other popular approaches.
One approach is to design an objective that promotes realistic synthesis by producing fake samples
and distinguishing these from real samples, as done by the Generative Adversarial Network (GAN)
model (Goodfellow et al., 2014) and its many variations. Another approach comes from recent
diffusion models that define a sequence of intermediate distributions to transport a signal between a
reference density p0(x) and q(x) (Ho et al., 2020; Song et al., 2020).

Among probabilistic models, the synthesis quality is typically the highest for score matching models
that only try to learn distribution gradients and typically lower for models like normalizing flows
and auto-regressive objectives that model the full normalized density. EBM synthesis usually lies
somewhere in between. Score-matching does not require MCMC sampling during learning and as a
consequence learning tends to be more straightforward than learning for EBMs. Yet we believe that
MCMC sampling is not yet fully optimized for EBM learning and that EBMs can match or surpass
score-matching models. Our shortrun initialization method is an effort in this direction.

14



Under review as a conference paper at ICLR 2022

Figure 5: Comparison of cooperative learning (Xie et al., 2018) and our hybrid cooperative-persistent
learning using appearance of shortrun samples after 500 updates of the EBM using a generator with
and without batch norm. The cooperative models have difficulty achieving diversity in the shortrun
samples because the EBM is unable to significantly change the appearance of initial generator images.
In fact, we find cooperative learning is not possible at all without generator batch normalizatin. Our
hybrid initialization increases the diversity of shortrun samples by including persistent samples from
previous EBM updates. This accelerates learning and dramatically improves synthesis results.

GANs and diffusion models differ fundamentally from probabilistic models of the form p(x; θ) in the
sense that the former are explicitly formulated from the perspective of synthesis while the latter are
formulated for density modeling and synthesis is a byproduct. In the literature, the former types of
models are sometimes referred to as generative models (in a more specific sense of the term than
typical) while the latter are called descriptive models (Guo et al., 2003; Zhu, 2003). Generative
models map one set to another (e.g. a generator mapping a latent vector to an image), while descriptive
models define a concept in terms of the set of states that have a certain descriptive property (e.g.
steady-state samples of an EBM). A descriptive model can be used for generative purposes (e.g.
Langevin sampling with an EBM) but this is not the direct goal of descriptive learning.

From this perspective, it is perhaps unsurprising that generative methods such as GANs and diffusion
models surpass EBMs in terms of synthesis, since that the model formulations are geared directly
towards generation. Nonetheless, we believe that EBMs have unique properties that distinguish
them from generative models and other descriptive models. In particular, EBM learning offers a
control of the MCMC sampling paths from a learned model that p(x; θ) is, to our knowledge, is
unobtainable under other current frameworks. Unlike GAN models which map a trivial distribution
to a complex signal distribution without actually describing the signal distribution, EBMs directly
model the complex signal distribution via a potential energy surface. Normalizing flow models are
too large for efficient MCMC sampling. VAE models cannot be efficiently marginalized. Score-based
models exhibit the same oversaturation behavior as miscalibrated EBMs when sampling at a constant
noise level for many steps (see Figure 8), and one cannot adjust MCMC stability during learning
as we do for EBMs, because sampling is not used when training a score model. Diffusion-based
methods do not learn an approximation p(x; θ), but rather can be formulated as learning a conditional
probability p(x|x′; θ) that describes a state x given a state x′ a rung above or below x in the ladder of
distributions between p0(x) and q(x) (Gao et al., 2020b). Auto-regressive models depend on a certain
sequence of components for generation, and are not compatible with joint updates of all pixels. On
the other hand, MCMC sampling with an EBM is a natural and relatively efficient process. Uniquely
among all methods, the desired stability and length of MCMC sampling trajectories for an EBM can
easily be controlled by adjusting the sampling phase of Maximum Likelihood (ML) learning. This
can yield model capabilities not obtainable by other kinds of unsupervised models.

C COOPERATIVE LEARNING FOR GENERATOR NETWORK

In this section we briefly review the Maximum Likelihood framework for cooperatively learning
the generator in tandem with the EBM (Xie et al., 2018). The generator model assumes a joint
distribution (X,Z) of images X and latent signals Z given by

Z ∼ N(0, I) and X|Z ∼ N(g(Z;φ), τ2I)
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for a generator network g with weights φ and a Gaussian parameter τ controls the spread of X around
g(Z;φ). Given i.i.d. pairs {Xi, Zi}ni=1, the observations have a joint negative log probability

− log p({Xi, Zi}ni=1;φ) =

n∑
i=1

[
‖Xi − g(Zi;φ)‖22/(2τ2) +

1

2
‖Zi‖22

]
+ C.

In practice, the Xi are shortrun MCMC samples from an EBM and the Zi are unobserved. The
full formulation of cooperative learning involves latent MCMC using the conditional distribution
p(Z|Xi;φ) to infer each Zi. In practice, since the Xi are shortrun samples that are paired with Zi
through the process of rejuvenation, one can roughly approximate the latent MCMC process with an
identity function and obtain a gradient (1). We find that this works as well or better than including a
latent sampling step on Z, and it is consistent with the original implementation from Xie et al. (2018).

Figure 5 illustrates the importance of including a persistent image bank in the cooperative learning
framework. Shortrun samples from the generator in standard cooperative learning have low diversity
and it is difficulty for the generator to break the symmetry of its activations early in training. This
can lead to catastrophic instability without auxiliary techniques like batch norm to help break the
symmetry. Incorporating persistent states from prior EBM updates when updating the generator helps
the shortrun distribution achieve a health diversity that enables stable and effective learning.

D COOPERATIVE-PERSISTENT ALGORITHM FOR SHORTRUN LEARNING

Algorithm 1 Cooperative-Persistent Hybrid Learning
Require: Natural images {x+m}Mm=1, EBM U(x; θ), generator g(z;φ) Langevin noise η, number of shortrun

steps K, EBM optimizer hU , generator optimizer hg , initial weights θ0 and φ0, rejuvenation probability p,
max update rounds w, number of training iterations T .

Ensure: Learned weights θT and φT .
Initialize bank of random latent states {Zi}Ni=1.
Initialize image bank {X−i }

N
i=1 from generator using X−i = g(Zi;φ0)

for 1 ≤ t ≤ T do
Select batch {X̃+

b }
B
b=1 from data samples {x+m}Mm=1.

Get paired batches {Z̃b}Bb=1 and {X̃−b,0}
B
b=1 from {Zi}Ni=1 and {X−i }

N
i=1.

Update {X̃−b,0}
B
b=1 with K Langevin steps (5) to obtain negative samples {X̃−b }

B
b=1.

Get learning gradient ∆
(t)
U using (4) with samples {X̃+

b }
B
b=1 and {X̃−b }

B
b=1.

Update θt using gradient ∆
(t)
U and optimizer hU .

Get learning gradient ∆
(t)
g using (1) with samples {Z̃b}Bb=1 and {X̃−b }

B
b=1.

Update φt using gradient ∆
(t)
g and optimizer hg .

Rejuvenate each Z̃b from latent distribution with probability p.
Also rejuvenate states Z̃b for which X̃b has been updated more than w times.
If Z̃b is rejuvenated, rejuvenate X̃b = g(Z̃b;φt).
Return {Z̃b}Bb=1 to {Zi}Ni=1 and {X̃−b }

B
b=1 to {X−i }

N
i=1 by overwriting previous states.

end for

E BACKGROUND ON EBM DEFENSE

The most popular method for adversarial defense is adversarial training (AT) (Madry et al., 2018;
Wong et al., 2020; Shafahi et al., 2019) which aims to train a classifier to correctly predict adversarial
samples within a small ball around a natural input. Another popular defense method is randomized
smoothing (Cohen et al., 2019), which adds Gaussian noise to images to remove adversarial signals
before classification. Both of these approaches modify classifier training. Although many methods
have been proposed to secure a naturally trained classifier, most have been broken by stronger attacks.
A recent method that has been shown to secure a natural classifier is Langevin sampling with an EBM
(Hill et al., 2021).

The EBM defense uses a classifier trained with labelled natural images and an EBM trained with
unlabelled natural images. The two networks are trained independently, which is a key advantage of
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EBM defense over adversarial training and randomized smoothing. Since the EBM is independent of
the classifier, EBM defense has the potential to secure many classifiers across diverse tasks with a
single defensive model, while existing methods are typically tailored to a single method. Starting
with a naturally classifier trained on natural images f(x), we define its robust counterpart as

F (x) = ET (x)[f(T (x))] (6)

where T (x) is a random variable representing K steps of the Langevin transformation (5) initialized
from a state x. We cannot evaluate F (x) directly so we approximate it using

F̂H(x) =
1

H

H∑
h=1

f(x̂h) where x̂h ∼ T (x) i.i.d., (7)

where f(.) is a forward pass of our classifier to return logits and where the accuracy of approximation
is driven by the number of replicates H . Meaningful evaluation of adversarial defenses must be
based on adaptive attack methods which are aware of both f(x) and T (x). For our attack we use the
BPDA+EOT formulation from (Athalye et al., 2018; Tramer et al., 2020) to obtain the attack gradient

∆BPDA+EOT(x, y) =
1

Hadv

Hadv∑
h=1

∇x̂hL

(
1

Hadv

Hadv∑
h=1

f(x̂h), y

)
, x̂h ∼ T (x) i.i.d. (8)

which we use in the standard PGD framework to generate adversarial examples. Algorithm 2 gives a
sketch of the defense evaluation.

Algorithm 2 EBM Defense Algorithm
Require: Natural images {x+m}Mm=1, EBM U(x; θ), classifier f , Langevin noise η, attack replicates Hadv,

defense replicates Hdef, l∞ radius ε, attack step size, α, Langevin steps K
Ensure: Defense record {Dm}Mm=1 for each image initialized as ones.

for 1 ≤ i ≤M do
select(Xi, yi)from batch
Randomly initialize adversary X̂0 inside L∞ ball around Xi

for 1 ≤ j ≤ N do
cj = arg max`[F̂Hadv (X̂j−1)]`
∆j = ∆BPDA+EOT(X̂j−1, yi)
if cj 6= yi then

c′j = arg max`[F̂Hdef (X̂j−1)]`
if c′j 6= yi then

Di = 0
end if

end if
X̂j = PGD(X̂j−1,∆j , ε, α)

end for
end for

F EBM DEFENSE EXPERIMENT DETAILS AND DIAGNOSTICS

Table 5: Defense for l∞ against high-power whitebox attacks on ImageNet and on CIFAR-10.

Dataset Nat Adv Hadv Hdef samples

ImageNet 0.683 0.38 32 64 1600
CIFAR-10 0.858 0.64 48 128 5120

To verify the integrity of our results we ran an attack with heavily increased resources for ImageNet
and CIFAR-10 compared to our standard evaluation. While using these resources for all attacks
is infeasible in practice, we want to ensure our defense maintains robustness as attacker resources
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Algorithm 3 Training a midrun sampler for EBM defense
Require: Natural images {x+m}Mm=1, EBM U(x; θ), frozen pre-trained generator g(z), Langevin noise η,

Langevin steps K, EBM optimizer hU , initial weights θ0, rejuvenation probability p, number of training
iterations T .

Ensure: Weights θT for defensive EBM.
Initialize image bank {X−i }

N
i=1 from generator using X−i = g(Z)

for 1 ≤ t ≤ T do
Select batch {X̃+

b }
B
b=1 from data samples {x+m}Mm=1.

Get negative sample batch {X̃−b,0}
B
b=1 from {X−i }

N
i=1.

Update {X̃−b,0}
B
b=1 with K Langevin steps (5) to obtain negative samples {X̃−b }

B
b=1.

Get learning gradient ∆
(t)
U using (4) with samples {X̃+

b }
B
b=1 and {X̃−b }

B
b=1.

Update θt using gradient ∆
(t)
U and optimizer hU .

Rejuvenate each X̃b from a pretrained generator g with probability p.
Return {X̃−b }

B
b=1 to {X−i }

N
i=1 by overwriting previous states.

end for

increase. As shown in Table 5, our benchmark accuracy remains consistent when we increase the
number of attack steps (from 50 to 200) and EOT attack replicates (Hadv).

We also demonstrate results over varying numbers of langevin steps K. We can see in Fig 6 that our
sampling trajectory for defending imagenet at K = 200 is reasonable to achieve high natural image
classification as well as robustness. On CIFAR-10 we are able to reduce the number of langevin
steps from 1500 in Hill et al. (2021) to K = 500, which greatly reduces our compute overhead and
demonstrates that a non-convergent model can outperform a convergent model (+13% robustness)
while using less steps.
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Figure 6: Accuracy over varying numbers of langevin steps K for both the CIFAR-10 and Imagenet
experiments. For CIFAR-10 we used Hadv = 24 in these experiments to compare against Hill et al.
(2021) so the accuracy reported here is slightly higher than in table 2 that uses Hadv = 48

G IMPORTANCE OF LEARNING RATE ANNEALING

This section demonstrates the importance of learning rate annealing for learning a robust energy
landscape. We repeat the midrun and longrun learning experiments for CIFAR-10 except that we
never anneal the learning rate. We then sample with the models for 1500 steps for the model trained
with the midrun method and 100K steps for the model trained with the longrun method. The results
in Figure 7 show that learning rate annealing is essential for stabilizing both midrun and longrun
trajectories.

The importance of annealing can be understood as follows. If the EBM is being updated with a very
low learning rate, then samples from recent EBM snapshots can function as samples from the current
EBM. In the case of midrun trajectory, annealing allows the model to robustify trajectories that are
approximately as long as the lifetime of a persistent sample between rejuvenation. In the case of
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Figure 7: Ablation study showing the importance of annealing. Left: Samples from a non-annealed
model trained with the midrun method after 1500 MCMC steps. Right: Samples from a non-annealed
model trained with the longrun method ater 100K MCMC steps. MCMC samples were initialized
from data. This shows that rejuvenation of the midrun trajectories from data and the separation of
longrun samples into burn-in and update banks alone is not enough. Annealing ensures that samples
from past EBMs function as approximate samples from the current EBM, since the weights are
changing very slowly.

longrun learning, annealing allows the burnin samples to approximately reach the model steady-state
before they are included in the update bank. This allows the persistent samples in the update bank to
function as approximate steady-state samples from the current EBM, leading to proper modeling of
probability mass.

H PRIOR EBM FOR LONGRUN LEARNING

This section discusses the choice of training longrun EBMs by using a fixed shortrun EBM as a prior
distribution. Intuitively, the prior EBM learns a reasonable but imperfect approximation of the energy
landscape that we know will have energy basins which leak to low-energy states. Using a fixed
misaligned prior EBM allows the EBM which is being actively updated to focus on learning landscape
features which were not correctly learned by the prior EBM. In particular, our longrun allows the
actively updated EBM to focus on sealing the leaky energy basins of the prior EBM so that the full
model learn the correct distribution of probability mass. By separating the burn-in and update banks
and longrun learning, we guarantee that the prior EBM alone would lead to extreme oversaturation
by the time a state reaches the update bank unless the actively updated EBM is counteracting the
oversaturation tendency to preserve realism. This additional effect of directly driving states towards
the oversaturated regions in the absence of a correcting force leads to improved stability for longrun
models learned with a prior EBM compared to models learned without a prior EBM. The technique
has precedent in ResNets. In both cases, it is easier to learn an approximate direct model first and
then to approximate the residual that remains.

I COMPARISON TO SCORE-BASED DENOISERS, NORMALIZING FLOWS, AND
DIFFUSION MODELS

The score-based model from (Song & Ermon, 2020) and its annealed Langevin dynamics process
has recently been used for purifying adversarial signals (Lee & Oh, 2021; Yoon et al., 2021). One
approach is add noise and the using the score model to denoise (Lee & Oh, 2021). The robustness
of this method is upper-bounded by standard randomized smoothing (Cohen et al., 2019). Another
approach is to initiate the Langevin process of the score model from a natural image as done in the
EBM defense. A score model can be used in a langevin process T (x) that is a direct analogue to the
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Figure 8: Score-based Langevin experiment on the CIFAR-10 dataset. Left: Accuracy of natural and
adversarial images resulting from a BPDA+EOT defense using a score-based model with an annealed
langevin purification method for 125 samples over varying steps. Right: Samples received from this
annealed langevin diffusion process over the same sampling lengths.

EBM langevin process in (5) and (8). Given a score model Sθ(x) for a low noise value σ, one can
define the Langevin equation

Xt = Xt−1
η2

2
Sθ(Xt−1) + ηZt

where Sθ(x) ≈ ∇x log q(x) since σ is low. In both cases, the score-based model is trained with the
loss:

L(θ) =
1

2L

L∑
i=1

Eq(x)Eqσi (x̃|x)

[∥∥∥∥σisθ(x̃, σi) +
x̃− x
σi

∥∥∥∥2
2

]
where qσi(x̃|x) represents adding Gaussian noise of standard deviation σi to an image x sampled
from q.

We experimented with this process as a defense mechanism by selecting the smallest trained noise
value σ = 0.01 and using the Langevin process as a method to purify adversaries. We evaluated this
method using our BPDA+EOT attack framework over different numbers of Langevin steps during
purification. In contrast to reports from Yoon et al. (2021), we were unable to obtain any significant
defense using a pretrained score model when initializing sampling directly from adversarial or
natural images. In Figure 8, one can see that the score-based model drives natural images toward
saturation quickly, leading to a sharp decrease in natural classification that undermines the possibility
of robustness from sampling. Since the score-based model does not perform sampling during training,
and one cannot adjust the stability of its sampling process as we do in this work. While it is not
immediately clear how to overcome this problem, we believe that defense with a score model is
possible and we hope that our observation lead to efforts to stabilize the sampling paths of score
models as we do for EBMs in this work.

To underscore our claims about the difficulty of calibrating the probability mass of a density model,
we further investigate longrun MCMC samples from a normalizing flow and diffusion model. We
find that the normalizing flow from the GLOW model (Kingma & Dhariwal, 2018) and the recovery
likelihood diffusion model (Gao et al., 2020b) have misaligned steady-states as well. This shows
that the problem of improper density estimation extends well beyond the EBM. Tractable density
modeling with a normalizing flow does not prevent steady-state misalignment. These experiments
corroborate our claim that log likelihood experiments in previous works are not able to detect the
misaligned probability mass of many prior models. We believe that the calibration of the model
steady-state is currently best diagnosed with longrun MCMC sampling because the distribution of
longrun MCMC samples represents the probability mass of the model.

Figure 9 (left) displays initial and final states from a GLOW model density after 100K sampling
steps. Despite the fact that the GLOW model has a fully tractable density, it is unable to learn a valid
distribution of probability mass. Figure 9 (right) shows initial and final samples from the Recovery
Likelihood T6 model after 100K steps of the conditional model at the lowest noise value. We observe
the same oversaturation for the conditional density as for the unconditional density of a standard
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Figure 9: Left: MCMC samples after 100K steps using a GLOW model (Kingma & Dhariwal,
2018) trained on CIFAR-10. Right: MCMC samples after 100K steps using a conditional recovery
likelihood model (Gao et al., 2020b) trained on CIFAR-10. MCMC samples were initialized from
data samples. Neither model can correctly approximate the distribution of probability mass for
the data density. The problem of steady-state misalignment extends beyond EBMs to many other
generative density models. We tried several different temperatures close to 1 for the GLOW model
and found equivalent results.

EBM. Code for the T1K model that the authors evaluate in their longrun experiments is not released
so we have not yet been able to directly test their results. The T1K model is equivalent to an EBM
version of the score model in Figure 8 which we have shown has a misaligned steady-state. Further,
we note the longrun experiments with the T1K model are very misleading because the experiments
use 100 steps with 1000 distinct conditional models and claim this is a longrun evaluation of 100K
steps. The correct evaluation is to use 100K steps on a single conditional model. We strongly believe
that the Recovery Likelihood model as originally presented has a misaligned steady-state like many
other methods. We hope that the observations in our work can lead to efforts to stabilize the sampling
trajectories of many existing models.

J REGARDING DENSITY ESTIMATION AND LOG LIKELIHOOD

In this work, we are primarily interested in learning density models that assign the majority of
probability mass in realistic regions of the image space. This goal is, surprisingly, distinct from the
goal of likelihood maximization. In particular, one can achieve high likelihood with mixture models
where only an infinitesimal portion of mass is assigned to a mixture component that approximates
the true density, while the majority of probability mass is assigned to a degenerate distribution (see
Theis et al. (2016), “Great Log Likelihood but Poor Samples”). The steady-state of MCMC sampling
with such a mixture distribution would concentrate on the degenerate distribution even though the
structures of the true density exist in high-energy regions. Therefore, log likelihood cannot detect if a
model has assigned probability mass in realistic region of the image space. Recent observations have
shown that this situation is not just hypothetical (Nijkamp et al., 2020). Non-convergent EBMs are
practical examples, since these models consist of a mixture of partially formed high-energy energy
basins enabling effective shortrun synthesis in realistic regions of the image space and much lower-
energy basins in unrealistic image regions that dominate the probability mass. The same misaligned
landscape structure extends beyond EBM to RBMs (Decelle et al., 2021), score models, normalizing
flows, and diffusion models (see Appendix I). Log likelihood can only indicate the presence of
energy landscape features that are similar to the ground truth landscape, but it cannot detect whether
these features will leak into lower-energy basins that represent the true mass distribution. Like
shortrun sample quality, high log likelihood is often misleading false evidence that a model density
concentrates on realistic images.

Overall, we believe that FID using true samples from the EBM and data samples is an appropriate, if
rough, measure of successful density modeling. The subtlety involves generating true samples from
the EBM. We believe that longrun MCMC sampling is the most practical and principled tool for
obtaining approximate samples from the EBM steady-state, and our investigations show that density
modeling with properly calibrated probability mass is currently most effectively accomplished using
MCMC-based EBM training. Though we use the FID metric, our density modeling experiments are
best described as realism preservation experiments rather than image generation experiments.
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K LONGRUN LEARNING ALGORITHM

Algorithm 4 Training a longrun sampler for density estimation
Require: Natural images {x+m}Mm=1, EBM U(x; θ), frozen pre-trained generator g(z) Langevin noise η,

Langevin steps K, EBM optimizer hU , initial weights θ0, update threshold D, number of training iterations
T .

Ensure: Weights θT for EBM with stable longrun samples.
Initialize burn-in image bank {X∗i }N1

i=1 and update image bank {X+
i }

N2
i=1 from generator using X−i = g(Z).

Initialize update counts {di}N1
i=1 using di ∼ Unif({0, . . . , D}).

for 1 ≤ t ≤ T do
Select batch {X̃+

b }
B
b=1 from data samples {x+m}Mm=1.

Get initial sample batch {X̃∗b,0}Bb=1 from {X∗i }N1
i=1 and {X̃−b,0}

B
b=1 from {X−i }

N2
i=1.

Get counts d̃b corresponding to samples {X̃∗b,0}Bb=1.
Update {X̃−b,0}

B
b=1 with K Langevin steps (5) to obtain negative samples {X̃−b }

B
b=1.

Update {X̃∗b,0}Bb=1 with K Langevin steps (5) to obtain updated burn-in samples {X̃∗b }Bb=1.
Get learning gradient ∆

(t)
U using (4) with samples {X̃+

b }
B
b=1 and {X̃−b }

B
b=1.

Update θt using gradient ∆
(t)
U and optimizer hU .

Update the burn-in count d̃b ← d̃b + 1.
for 1 ≤ b ≤ B do

if d̃b ≥ D then
Randomly overwrite one X̃−b using X̃∗b .
Rejuvenate X̃b from generator and set d̃b to 0.

end if
end for
Return {X̃∗b,0}Bb=1 from {X∗i }N1

i=1 and {X̃−b }
B
b=1 to {X−i }

N2
i=1 by overwriting previous states.

end for
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L SHORTRUN SYNTHESIS RESULTS

Figure 10: Shortrun samples from CIFAR-10 EBM at resolution 32× 32.
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Figure 11: Shortrun samples from Celeb-A EBM at resolution 64× 64.
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Figure 12: Shortrun samples from ImageNet EBM at resolution 128× 128.
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M LONGRUN SYNTHESIS RESULTS

CIFAR-10, 100K steps CIFAR-10, 1M steps

Celeb-A, 100K steps Celeb-A, 1M steps

ImageNet, 100K steps ImageNet, 1M steps

Figure 13: Longrun samples at 100,000 steps and extremely longrun samples at 1 million steps
for EBMs trained on three datasets. Our initialization is able to preserve a high degree of realism
over the first 100K steps, and a reasonable degree of realism over very long trajectories. While
oversaturation and distortion is noticeable for some samples using 1M steps, many samples have
reasonable appearance and there is high diversity. Our method makes significant progress towards
aligning longrun samples with high-quality samples from training to ensure that the model is a valid
density.
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N TABLES OF EXPERIMENT PARAMETERS

This section gives a full list of experiment parameters. Some notable minor additions beyond what
are discussed in the text are a fixed MCMC temperature parameter to regulate gradient strength at the
beginning of training, a gradient clipping parameter to restrict the magnitude of EBM and generator
weight updates. We only use gradient clipping for shortrun experiments.

We use the annealing schedule

γanneal = [(10−4, 0), (10−5, 50000), (10−6, 75000), (10−7, 100000), (10−8, 125000)]

in all experiments that involve annealing, where the pairs denote a learning rate and model update
step at which that learning rate is first used. We denote this schedule as γanneal in the tables.

Shortrun Training
Dataset Celeb-A CIFAR-10 ImageNet

Training Steps 150000 100000 300000
Data Epsilon 1e-2 1e-2 1e-2

EBM LR 1e-4 1e-4 1e-4
EBM Optimizer Adam Adam Adam

EBM Gradient Clip 0 0 50
Langevin Epsilon 3e-3 5e-3 3e-3

MCMC Steps 75 100 50
Rejuvenation Probability 0.5 0.5 0.5

MCMC Temperature 1e-6 1e-4 1e-7
Max Update Rounds 2 2 2
Persistent Bank Size 10000 10000 10000

Generator LR 1e-4 1e-4 5e-5
Generator Optimizer Adam Adam Adam

Generator Gradient Clip 0 0 50
Generator Batch Norm No Yes No

Shortrun Evaluation
Dataset Celeb-A CIFAR-10 ImageNet

Langevin Epsilon 3e-3 5e-3 3e-3
MCMC Steps 300 350 320

MCMC Temperature 1e-6 1e-4 1e-7
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Defense Training
Dataset CIFAR-10 ImageNet

Training Steps 150000 150000
Data Epsilon 2.5e-2 3e-2

EBM LR γanneal γanneal
EBM Optimizer Adam Adam

Langevin Epsilon 1.25e-2 2e-2
MCMC Steps 100 100

Rejuvenation Probability 0.05 0.05
MCMC Temperature 1e-4 1e-5
Persistent Bank Size 25000 10000

Defense Evaluation
Dataset CIFAR-10 ImageNet

Adversarial Steps 50 50
Adversarial Epsilon 8

255
2

255
Adversarial Eta 2

255
1

255
EOT Attack Reps 48 16

EOT Defense Reps 128 64
Langevin Steps 500 200

Langevin Epsilon 1.25e-2 2e-2
MCMC Temperature 1e-4 1e-5

Longrun Training
Dataset Celeb-A CIFAR-10 ImageNet

Training Steps 250000 250000 250000
Data Epsilon 2e-2 2e-2 2e-2

EBM LR γanneal γanneal γanneal
EBM Optimizer Adam Adam Adam

Langevin Epsilon 1e-2 1e-2 1e-2
MCMC Steps 100 100 100

Burn-in Update Rounds 750 750 750
MCMC Steps Burn-in 100 100 100
MCMC Temperature 1e-4 1e-4 1e-5

Tau 1.5e-1 1.5e-1 1.5e-1
Persistent Bank Size 15000 10000 15000
Burn-in Bank Size 1000 1000 1000

Prior EBM
Dataset Celeb-A CIFAR-10 ImageNet

Training Steps 150000 150000 150000
Data Epsilon 2e-2 2e-2 1.5e-2

EBM LR 1e-4 1e-4 1e-4
EBM Optimizer Adam Adam Adam

Langevin Epsilon 1e-2 1e-2 1e-2
MCMC Steps 100 50 100

Rejuvenation Probability 0.2 0.2 0.2
MCMC Temperature 1e-4 1e-4 1e-5

Tau 1.5e-1 1.5e-1 1.5e-1
Persistent Bank Size 10000 10000 10000
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