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Abstract

Instruction-fine-tuned large language models
(LLMs) under 14B parameters continue to un-
derperform on natural language understanding
(NLU) tasks, often trailing smaller models like
BERT-base on benchmarks such as GLUE and
SuperGLUE. Motivated by the success of re-
inforcement learning in reasoning tasks (e.g.,
DeepSeek), we explore Proximal Policy Opti-
mization (PPO) as a framework to improve the
NLU capabilities of LLMs. We frame NLU
as a reinforcement learning environment, treat-
ing token generation as a sequence of actions
and optimizing for reward signals based on
alignment with ground-truth labels. PPO con-
sistently outperforms supervised fine-tuning,
yielding an average improvement of 6.3 points
on GLUE, and surpasses zero-shot and few-
shot prompting by 38.7 and 26.1 points, respec-
tively. Notably, PPO-tuned models outperform
GPT-40 by over 4% on average across senti-
ment and natural language inference tasks, in-
cluding gains of 7.3% on the Mental Health
dataset and 10.9% on SIGA-nli. This work
highlights a promising direction for adapting
LLMs to new tasks by reframing them as rein-
forcement learning problems, enabling learning
through simple end-task rewards rather than ex-
tensive data curation.

1 Introduction

Large language models (LLMs) (Radford et al.,
2019; Brown, 2020; Touvron et al., 2023b)
have revolutionized natural language processing
(NLP) with their powerful text generation capabili-
ties (Radford, 2018). Pretrained on large-scale un-
labeled corpora, LLMs can generate coherent and
contextually relevant content. Using prompt-based
strategies like zero-shot and few-shot prompting
(Brown, 2020), these models can address a wide
range of downstream tasks without task-specific
fine-tuning. However, when applied to instruction-
fine-tuned LLMs under 14B parameters—such as

LLAMAZ2-7B-chat-hf—these methods often under-
perform on natural language understanding (NLU)
tasks compared to encoder-only models like BERT
(Devlin, 2018), which consistently excel on bench-
marks such as GLUE (Wang et al., 2019) and
SuperGLUE (Wang et al., 2020). For instance,
our evaluation of LLAMA2-7B-chat-hf shows that
zero-shot prompting with task-specific prompts
yields an average performance of 46.1 across all
GLUE datasets, while few-shot prompting im-
proves performance to 58.7—both significantly
trailing BERT-base’s 79.6, as shown in Table 1.

To enhance NLU capabilities of LLMs, we in-
vestigate reinforcement learning (RL)-based fine-
tuning approaches. Motivated by recent work such
as DeepSeek (Liu et al., 2024), which demonstrates
the utility of reward-driven optimization for im-
proving reasoning abilities, we explore the use of
Proximal Policy Optimization (PPO) (Schulman
et al., 2017a) to align model outputs with task-
specific objectives.

While standard fine-tuning (SFT) is commonly
used to adapt LLMs to downstream tasks, we find
it insufficient for NLU—often underperforming
even smaller encoder-only models like BERT-base.
In contrast, we use PPO to enhance LLM perfor-
mance by framing NLU as a reinforcement learn-
ing problem. The sequence of input tokens up to
timestep ¢ — 1 represents the state s;, and the token
generated at timestep t is treated as the action a;.
After generating the full response, a heuristic ex-
tracts the predicted answer, which is compared to
the ground-truth label to assign a scalar reward R.
PPO then updates the model to maximize this re-
ward, enabling direct optimization for task-specific
objectives. Empirically, PPO-based fine-tuning
of LLAMAZ2-7B-chat-hf improves GLUE perfor-
mance by 6.3 points over SFT, surpasses zero- and
few-shot prompting by 38.7 and 26.1 points, and
even outperforms GPT-40 by over 4% on sentiment
and inference tasks—achieving gains of 7.3% on



Premise:
The man broke his toe.

Question:

What was the cause?

Options:

(A) He dropped a hammer on
his foot.

(B) He got a new pair of shoes.

Instruction:
Choose the most plausible
option (A or B) based on the

premise. 4
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Figure 1: PPO-based fine-tuning of LLAMA2-7B-chat-hf to improve the performance on NLU tasks.

the Mental Health dataset and 10.8% on SIGA-nli.
These results demonstrate the effectiveness of re-
inforcement learning in aligning LLLMs under 14B
parameters with NLU objectives.

Pre-trained LLMs possess broad linguistic
knowledge—spanning syntactic and semantic struc-
tures—acquired from large-scale text corpora. We
show that reinforcement learning, specifically PPO,
can refine this general understanding to better align
with task-specific NLU objectives. Similar patterns
are observed in DeepSeek, where chain-of-thought
pre-training enhances reasoning capabilities, and
subsequent RL-based fine-tuning further improves
performance. Building on this insight, our findings
suggest a promising direction: adapting LLMs to
new tasks by formulating them as reinforcement
learning problems. When models are sufficiently
pre-trained, task alignment may be achieved with-
out additional labeled data—requiring only a well-
defined reward function over the outputs. PPO can
then optimize the model toward high-reward behav-
iors. This approach offers a scalable, label-efficient
alternative to conventional supervised fine-tuning
through reward-driven adaptation.

2 Related Works

Policy-based reinforcement learning (RL) directly
optimizes an agent’s policy by learning its parame-
ters to maximize long-term rewards. Unlike value-
based methods like Q-learning (Watkins and Dayan,
1992) and DQN (Hester et al., 2018), which in-
directly derive policies through value functions,

policy-based methods represent the policy as a
parameterized function. This function, py(als),
defines the probability of taking action a in state
s, where 6 represents the policy parameters. The
goal is to learn optimal parameters 8* that max-
imize the expected cumulative reward, typically
through policy gradient methods (Sutton et al.,
1999). These methods excel in high-dimensional
or continuous action spaces, where value-based
methods can struggle (Deisenroth et al., 2013).
Policy-based methods in reinforcement learning
(RL) have evolved significantly over time, starting
with REINFORCE (Williams, 1992), which opti-
mizes policies using the policy gradient theorem
but suffers from high variance due to its reliance on
Monte Carlo estimates of the reward. Monte Carlo
estimates refer to calculating the total reward based
on full episodes of interaction, meaning updates
are made only after an entire sequence of actions
and rewards is observed, which can lead to noisy
and slow learning. To address this, actor-critic
methods like A2C and A3C (Mnih, 2016) intro-
duced a critic that estimates the value of the current
state, allowing for smoother updates by reducing
the variability in policy updates and speeding up
convergence. However, these methods still faced
instability when large updates caused the new pol-
icy to diverge too far from the previous one. Trust
Region Policy Optimization (TRPO) (Schulman,
2015) tackled this by limiting the size of policy
updates using a KL divergence constraint, but its
implementation was complex and computationally
expensive. Proximal policy optimization (PPO)



(Schulman et al., 2017a) simplified this process by
introducing a clipped objective function that keeps
policy updates within a stable range while being
easier to implement. PPO’s balance between sim-
plicity and stability has made it a widely adopted
method in modern RL research.

In NLP, PPO has been effectively used in rein-
forcement learning from human feedback (RLHF)
to align LLM outputs with human preferences, as
seen in works like InstructGPT (Ouyang et al.,
2022) and Constitutional AI (Bai et al., 2022).
These approaches treat the LLM as a policy, where
model responses are actions, and human feedback
serves as rewards. PPO updates the policy based
on the reward model trained on human preferences.
Additionally, policy-based RL methods have been
applied to enhance LLM reasoning capabilities
(Ziegler et al., 2019; Havrilla et al., 2024; Hu and
Shu, 2023). In this work, we apply PPO to fine-tune
LLMs on NLU tasks.

3 Preliminaries on Application of PPO for
Fine-tuning LL.Ms

Proximal policy optimization (PPO)(Schulman
et al., 2017b) is an online reinforcement learning
algorithm. In this section, we describe the process
to fine-tune an LLM using PPO. During training,
at each timestep ¢, the LLM (policy) generates a
token prediction a; (action) based on the state sy,
which consists of the sequence of generated tokens
up to timestep ¢ — 1. The final generated output
is evaluated in the context of the downstream task,
where the environment provides feedback in the
form of rewards. The model updates its parameters
based on these rewards to improve its ability to
generate accurate predictions over time.

PPO uses gradient ascent to optimize the fol-
lowing objective, aiming to maximize cumulative
rewards:

(polar | st) 5
J(G) = E(Styat)’\‘ﬂ'g/ [mln( m At7

po (at]st)

P e ]se)

1 —¢, l—i—e)At)

(D

Here, pg(a|s;) is the probability of taking action a,
in state s; under the current policy, while pgs (a;|s;)
represents this probability under the old policy.
In PPO, the training data—specifically, the state-
action pairs (s, a;)—are sampled using the old pol-
icy mgr (the LLM before it is updated), rather than

the new policy currently being optimized. Thus,

the ratio —P2(@tlst)_
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policy has changed relative to the old policy and ad-
justs the likelihood of an action accordingly. This
ratio is multiplied by Ay, the Generalized Advan-
tage Estimation (GAE) (Schulman et al., 2018),
which measures how much better or worse an ac-
tion a; is compared to the expected outcome under
the current policy.

accounts for how much the new

Ay = Ry + Vi1 — Vi + A A,

Here, R; + vVi+1 — V; represents the temporal
difference (TD) error (Sutton, 1988). In this ex-
pression, R, is the immediate reward received after
taking action ay, V; is the expected reward before
the action, and vV, is the discounted estimate
of the future reward after the action. This term re-
flects how the action a; performed when compared
to the expected return at state s;. The second term,
’y)\flt“, is the smoothing factor in GAE, where A
is the trade-off parameter. This recursive estimate
allows the model to incorporate future informa-
tion, making the advantage estimate more stable.
Smaller values of A\ emphasize on immediate re-
wards, while larger values capture longer-term de-
pendencies. The discount factor v controls how
much emphasis is placed on future rewards com-
pared to immediate ones, with higher values of v
giving more weight to future rewards. V4, which
represents the expected future reward from state s,
is estimated by a critic model.

The clipping function clip(ratio, 1 —¢, 1+¢) lim-
its the change between the current and old policy,
ensuring stable updates by preventing large devi-
ations. This helps avoid too-large policy changes
that could destabilize training. In summary, PPO
optimizes the policy using gradient ascent to max-
imize cumulative rewards while ensuring stable
updates through clipping, with the GAE providing
a more stable and accurate advantage estimate by
incorporating future information recursively.

Critic Model The critic model consists of a value
head, which is a multi-layer perceptron attached
to the final layer of the LLM. It takes the LLMs
representation of the generated token sequence up
to timestep ¢ (i.e., the state s;) and predicts a scalar
value representing the value function V; for that
state. The critic model is updated using the square
of TD error, which is computed as:

6t = (Re + Vi1 — V2)%, 2)



where ¢, represents the L-2 loss between the actual
reward R;, combined with the discounted estimate
of future rewards yV;4 1, and the current predicted
value V; for state s;. By minimizing this TD error
via gradient descent, the critic model updates its
value function predictions, improving alignment
with the actual rewards and future outcomes. In
summary, LLM uses the PPO objective to update
its policy based on feedback from the critic model,
while the critic model is updated to better predict
the value function for future states.

4 Method

To enhance the performance of LLMs on NLU
tasks, we adopt two distinct fine-tuning methods.
The first approach involves supervised fine-tuning,
where the input consists of a concatenation of the
task-specific prompt, query and the ground truth
answer, with the model optimized using the next-
token prediction objective. The second approach
utilizes PPO, framing response generation as a re-
inforcement learning problem. In this setup, the
sequence of input tokens until timestep ¢ — 1 rep-
resents the state s;, and each token generated at
timestep ¢ is treated as an action a;. After generat-
ing the entire sequence, a heuristic-based process
extracts the final answer from this generated se-
quence, and is compared to the ground truth. PPO
is then employed to optimize the model by max-
imizing the cumulative reward derived from this
comparison. To reduce computational complexity,
we fine-tune LoRA layers instead of the full model.

4.1 Task-Specific Prompt Design

We detail the construction of task-specific prompts
used to query the LLM for NLU tasks. Each
prompt begins with a clear task description, outlin-
ing the necessary background information to guide
the model in solving the task. Following this, we
specify strict requirements for the output format,
ensuring that the response is encapsulated within a
predefined structure, specifically between ‘<Judge-
ment></Judgement>’ tags. This structure ensures
consistency in the model’s responses, facilitating
easier extraction and evaluation of the results.

For example, in the CoLLA task, which assesses
grammatical acceptability, the prompt is structured
as follows:

of a sentence. The task is to decide
the linguistic acceptability

of a sentence. If the sentence is
linguistically correct then it

is acceptable, else it is not.

The result you give should have the
following form:
<Judgement> {Insert only
No"” here} </Judgement>

Prompt:

Now judge if the sentence "{sentence
}" is linguistically acceptable.

Assistant:

<Judgement >

n

"Yes" or

System_prompt:
You are an assistant to analyze the
linguistic properties

The prompt starts with background information
about CoLLA, specifies restrictions on the output
(such as labeling a sentence as acceptable or unac-
ceptable), and concludes with a special start token,
<Judgement>, to initiate the model’s response gen-
eration.

4.2 Supervised Fine-tuning of LLM on NLU
Tasks

Given an NLU training dataset, Dtr)

{(z4, yz)}f\il where x; represents the input text
and y; the ground truth label, we fine-tune the
LLM on a sequence consisting of the task-specific
prompt p (described in section 4.1) concatenated
with the input x; and the ground truth answer y;.
The model is trained using the next-token predic-
tion objective, where it predicts the next token in
the sequence by conditioning on all preceding to-
kens. This objective trains the model to learn to
predict the correct answer for the NLU task condi-
tioned on the task-specific prompt and input.

4.3 Proximal Policy Optimization for LLM
Fine-tuning on NLU Tasks

We utilize PPO to fine-tune the LLM on NLU tasks,
following the training protocol outlined in section 3.
The reward function is specifically designed for
each NLU task. In this work, we use a simple re-
ward function, where a reward is assigned at the
end of the generation based on alignment with the
ground truth labels. We use regular expression
matching to extract answers from the LLMs out-
puts by first locating the text within the ‘<Judge-
ment></Judgement> tags. Depending on the task,
we then search for task-specific keywords (such as
“yes”, “no”, “acceptable”, or “not acceptable”) to
identify the answer. These extracted answers are
compared with the ground truth to determine the
appropriate rewards.

For instance, CoL A, which is a classification
task, answers are categorized as acceptable, un-




acceptable, or exceptional (incorrect format). For
STS-B, which is a regression task, the extracted
answer is a floating-point number between 0 and 5.
The reward per generation for classification tasks is
given by R = 1(y == y;), where ¢ is the model’s
prediction and y is the ground truth. For STS-B,
a regression task, the reward per generation is cal-
culated based on how close the prediction is to the
ground truth: R = 2.5 — |g; — yi|. Incorrectly
formatted responses are penalized with a value of
-1 for classification tasks and -2.5 for regression
tasks.

4.4 Low-Rank Adaptation

To mitigate the computational cost of full-model
fine-tuning, we employ LoRA (Hu et al., 2021)
during both the supervised fine-tuning and PPO
stages. Instead of updating the entire model, we
restrict the updates to LoRA layers, which signifi-
cantly reduces the number of trainable parameters
by decomposing the weight matrices into low-rank
matrices.

5 Experiments

5.1 Experimental Setup

We trained and evaluated our models on the
GLUE(Wang et al., 2019) and SuperGLUE(Wang
et al., 2020) benchmarks. All experiments were
conducted using instruction-tuned LLAMA2-7B
models(Touvron et al., 2023a)'. We perform both
single task and multi-task fine-tuning: 1) Single-
task Fine-tuning: For each subtask within GLUE
and SuperGLUE, a separate task-specific LoRA
module was trained independently. 2) Multi-task
Fine-tuning: In the multi-task setting, datasets from
different subtasks within each benchmark were
combined, and a single LoRA module was trained
to handle all tasks simultaneously. Please refer to
Appendix A for detailed hyperparameter settings.

5.2 Baselines

We evaluated the performance of our approach
against three baselines:

* Encoder-only models: We compare our re-
sults with encoder-only transformer models,
specifically BERT-base (110M parameters)
and BERT-large (340M parameters)(Devlin
et al., 2019).

1h'ctps ://huggingface.co/daryl149/
1lama-2-7b-chat-hf

* Zero-shot prompting: The model is pro-
vided with task-specific prompts, as outlined
in section 4.1, along with the input query.
The model is required to generate predictions
solely based on these prompts and the input
query, without any additional task-specific
fine-tuning.

* Few-shot prompting: In this setting, the
model is provided with both the task-specific
prompt and one to five labeled examples
(which ever gave the best performance) from
the training dataset as demonstrations. These
examples are provided as reference to guide
the model in generating more accurate re-
sponses for the input query. Similarly, no
task-specific fine-tuning is performed.

After generating a response, we applied regular
expression matching to extract the relevant answer
from the model’s output. We directly matched task-
specific keywords (like “yes” or “no”) in the gen-
erated text to identify the answer. This extracted
answer was then compared to the ground truth label
to evaluate the model’s performance.

5.3 Results on GLUE Benchmark

In this section, we present our experiments on
the GLUE benchmark, comparing the results with
encoder-only models such as BERT(Devlin et al.,
2019). We use the LLAMAZ2-7B-chat-hf model
as the LLM for our evaluations. The baselines in-
clude zero-shot prompting and few-shot prompting.
For fine-tuning methods, we compare both super-
vised fine-tuning and PPO across single-task and
multi-task settings. The results are summarized in
Table 1. From the results, we make the following
observations.

First, we observed that zero-shot prompting of
the LLAMAZ2-7B-chat-hf model with task-specific
prompts consistently underperformed compared to
the smaller BERT-base model. LLAMA?2-7B-chat-
hf struggled notably on simpler tasks like SST-2,
which only required classifying sentiment as posi-
tive or negative. This underscores the model’s weak
language understanding capabilities, with zero-shot
prompting proving inadequate compared to BERT-
base. Second, few-shot prompting showed im-
provements over the zero-shot baseline, achiev-
ing an average score of 58.7 compared to 46.1,
but it still lagged significantly behind the BERT-
base model’s score of 79.6. Third, supervised fine-
tuning (SFT) using LoRA modules for each task
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Models MNLI-m MNLI-mm QQP QNLI SST-2 CoLA
BERT-base 84.6 83.4 71.2 90.5 93.5 52.1
BERT-large 86.7 85.9 72.1 92.7 94.9 60.5
LLAMAZ2-7B-chat-hf
Zero-shot prompting 38.3 39.7 31.3 58.5 75.7 18.6
Few-shot prompting 62.4 61.7 30.9 60.7 84.2 29.0
PPO-ST 88.8 88.2 70.5 93.2 96.4 59.9
SFT-ST 87.0 86.5 63.8 93.6 73.8 50.7
PPO-MT 88.7 88.3 67.3 90.2 94.6 47.7
SFT-MT 84.9 84.5 62.9 86.0 72.0 414
Models STS-B MRPC RTE WNLI AX Average
BERT-base 85.8 88.9 66.4 / / 79.6
BERT-large 86.5 89.3 70.1 / / 82.1
LLAMA2-7B-chat-hf
Zero-shot prompting 27.5 66.3 59.3 44.5 9.2 46.1
Few-shot prompting 45.5 80.8 72.9 51.4 9.2 58.7
PPO-ST 92.6 89.4 84.3 747 527 84.8
SFT-ST 84.7 85.8 80.4 63.7 45.1 78.5
PPO-MT 94.7 86.7 86.9 66.4 434 82.9
SFT-MT 85.5 82.6 86.2 76.0 412 76.22

Table 1: GLUE test results are scored by the evaluation server (GLUE benchmark). Average column indicates
the averaged performance across all the datasets excluding the WNLI and AX datasets. F1 scores are reported
for QQP and MRPC, Spearman correlations for STS-B, Matthew’s correlations for CoLLA, and accuracy scores
for the other tasks. Zero-shot prompting refers to prompting with task-specific prompts and an input query, while
Few-shot prompting refers to prompting with task-specific prompts, 1-5 demonstrations (chosen based on the best
performance), and an input query. PPO stands for proximal policy optimization, and SFT refers to Supervised
Fine-tuning. “ST” represents Single-task, while “MT” represents Multi-task. The bolded results indicate the best
results, and the underlined results indicate the second-best results.

further boosted performance, bringing it closer to
BERT’s level with an average score of 78.5, though
still slightly behind BERT-base’s 79.6. Fourth,
fine-tuning with PPO delivered the best results,
achieving an average score of 84.6, surpassing even
BERT-large’s 82.1. Moreover, zero-shot and few-
shot prompting of LLAMAZ2-7B-chat-hf displayed
a noticeable output imbalance, with a tendency to
favor certain classes or values. In contrast, models
fine-tuned with PPO showed no significant bias.
Fifth, the total computational time for PPO is ap-
proximately /.32 times that of SFT, indicating only
a marginal increase in computational costs.

Additionally, we compared the results with
multi-task training, where a single LoRA module
was trained across all datasets using both SFT and
PPO to reduce time complexity. We found that
SFT on individual tasks outperformed its multi-task
fine-tuning counterpart. However, while PPO on
multi-task training did not perform as well as PPO
on single-task training, it still outperformed BERT-
large in average performance, achieving a score
of 82.9 compared to BERT-large’s 82.1. These re-

sults demonstrate that while single-task fine-tuning
yields the best performance, multi-task training
with PPO can still achieve competitive results, even
surpassing state-of-the-art models like BERT-large.

5.4 Evaluating Zero-Shot Generalization of
PPO Fine-Tuned Models and Comparison
with GPT-40

We evaluate the zero-shot generalization capabili-
ties of LLAMAZ2 7B and 13B models fine-tuned us-
ing PPO on a single dataset and subsequently tested
across multiple other datasets (Table 2). For senti-
ment analysis tasks, the models were fine-tuned on
SST-2 and evaluated on diverse datasets, including
Financial PhraseBank (Malo et al., 2014), Labelled
Financial News (Sood, 2024), Mental Health (Gaes,
2023), and Emotion (Saravia et al., 2018). Simi-
larly, for natural language inference (NLI) tasks,
the models were fine-tuned on MNLI and evalu-
ated on Babi-nli (Weston et al., 2015) and SIGA-
nli (Nizamani et al., 2024).

Our results demonstrate that PPO fine-tuning
improves the zero-shot performance of LLAMA?2-
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Tasks

LLAMA2-7B PPO-ST LLAMA2-13B PPO-ST GPT-40

Sentiment Analysis

Financial PhraseBank 97.2 97.7 97.5
Labelled Financial News 70.2 72.3 67.8
Mental Health 67.2 66.6 59.9
Emotion 78.0 76.4 77.6
Natural Language Inference

Babi-nli 68.3 69.4 63.2
SIGA-nli 46.2 46.3 354
Average 71.2 (4.37) 71.5 (4.67) 66.9

Table 2: Accuracy of different models across downstream tasks. For sentiment analysis tasks, models are fine-tuned
on SST-2 and zero-shot evaluated on Financial PhraseBank (Malo et al., 2014), Labelled Financial News (Sood,
2024), Mental Health (Gaes, 2023), and Emotion (Saravia et al., 2018). Similarly, for natural language inference
tasks, models are fine-tuned on MNLI and zero-shot evaluated on Babi-nli (Weston et al., 2015) and SIGA-
nli (Nizamani et al., 2024). PPO-ST represents fine-tuning using Proximal Policy Optimization. Gains over GPT-40

model in the average row is indicated with green arrows.

chat-hf models compared to GPT-40, a strong base-
line. For sentiment analysis, LLAMA2-13B-chat-
hf achieves 97.7% accuracy on Financial Phrase-
Bank, slightly outperforming GPT-40 (97.5%). On
Labelled Financial News, LLAMAZ2-13B-chat-hf
records 72.3%, exceeding GPT-40 by 4.5%. Sim-
ilarly, on the Mental Health dataset, LLAMAZ2-
7B-chat-hf achieves 67.2%, marking a notable
gain of 7.3% over GPT-40. For the Emotion
dataset, LLAMAZ2-7B-chat-hf achieves 78.0%,
with a smaller gain of 0.4%. For NLI tasks,
LLAMAZ2-13B-chat-hf achieves 69.4% accuracy
on Babi-nli, surpassing GPT-40 by 6.2%. Addi-
tionally, LLAMAZ2-13B-chat-hf achieves 46.3%
accuracy on SIGA-nli, outperforming GPT-40 by
more than 10%. On average, both 7B and 13B ver-
sions of PPO fine-tuned LLAMAZ2-chat-hf models
demonstrate a performance gain of over 4% com-
pared to GPT-40, which is significantly larger in
size and highly optimized.

To ensure robust comparisons, we quantify un-
certainty in our evaluations by generating 100 pre-
dictions for each example in the dataset. The
evaluation metric is then computed over the en-
tire dataset for each set, yielding a distribution of
values. The 95% confidence interval is defined by
the 2.5th and 97.5th percentiles of this distribution.
Results are presented in Table 5.

These results demonstrate the effectiveness of
simple PPO fine-tuning on a single task-specific
dataset in significantly enhancing model perfor-
mance on similar tasks. LLAMA2-chat-hf models
fine-tuned with PPO consistently outperform GPT-
40 across diverse downstream tasks, reinforcing

PPO fine-tuning as a robust approach for improv-
ing the NLU capabilities of LLMs.

We measured inference time on the Financial
PhraseBank dataset with a batch size of 4. The
BERT-base model, with 110M parameters, required
0.035s per step, while the LLAMAZ2-7B model,
with 7B parameters and multi-token generation,
took 0.997s per step. This difference is expected
given the larger model size and the need for multi-
ple forward passes in LLAMA?2-7B. While LLM in-
ference is slower, our focus is on improving natural
language understanding with PPO, which achieves
strong performance gains on both in-distribution
and out-of-distribution NLU and NLI tasks.

5.5 Evaluation of Instruction-Following in
Out-of-Distribution Tasks

To assess the instruction-following capabilities of
LLMs in tasks differing from their fine-tuned for-
mat, we conduct evaluations using the LLAMA?2-
7B-chat-hf model fine-tuned on the SST-2 dataset.
Specifically, we evaluate the performance of this
model on the Amazon review task, which requires
generating an integer rating between 1 and 5 based
on the provided textual review. Although SST-2
and Amazon reviews both involve sentiment anal-
ysis, the two tasks differ distinctly in their input-
output formatting, providing a clear measure of
instruction-following adaptability.

We compare three versions of the LLAMA2-7B-
chat-hf model: the original non-fine-tuned model,
a version fine-tuned using SFT, and another fine-
tuned with PPO. The 95% confidence intervals (CI)
reported here are defined by the 2.5th and 97.5th



percentiles of the bootstrap distribution. Using
a consistent prompt across models, we find that
the PPO-fine-tuned model achieves an accuracy of
39.35% (95% CI: 38.39, 40.29), significantly out-
performing the original model, which achieves 27%
accuracy (95% CI: 19.00, 36.03). Conversely, the
SFT-fine-tuned model demonstrates extremely poor
performance, achieving less than 1% accuracy.

Method Accuracy 95% CI

Original 27.00 (19.00, 36.03)
SFT 0.00961 (0.00, 0.03)
PPO 39.35 (38.39, 40.29)

Table 3: Performance of LLAMAZ2-7B-chat-hf on the
Amazon Review dataset. Best results are highlighted in
bold.

Qualitative analysis of sampled outputs reveals
that the PPO-fine-tuned model reliably adheres to
the instruction format and generates detailed rea-
soning to support its predictions. In contrast, the
SFT-fine-tuned model often fails to adapt its re-
sponses to the required format, demonstrating lim-
ited generalization capabilities. PPO fine-tuning
maintains proximity to the original model distri-
bution via a clipping mechanism, thus preserving
and enhancing the model’s intrinsic instruction-
following capabilities. In contrast, SFT fine-tuning
appears to narrow the model’s learned distribution
to task-specific training data, negatively impacting
its original instruction-following proficiency. We
also evaluate the impact of fine-tuning on language
modeling ability in Appendix D.

5.6 Performance Comparison Across
Different LLMs

To assess the consistency of our findings across dif-
ferent models, we evaluated Qwen2.5-7B-Instruct
and MPT-7B-chat alongside LLAMA?2-7B-chat-
hf on the STS-B dataset from the GLUE bench-
mark and the COPA dataset from the SuperGLUE
benchmark. The results confirm that PPO-based
fine-tuning consistently outperforms the BERT-
large model, as well as the zero-shot and few-shot
prompting baselines for all LLMs, highlighting its
effectiveness across different LLMs. Additionally,
the effect of few-shot prompting on COPA perfor-
mance varies across different LLLMs, indicating that
different LLMs have varying capabilities to process
and follow long-context instructions, which results

Models STS-B COPA
BERT-large 86.5 70.6
LLAMA2-7B-chat-hf

Zero-shot prompting 27.5 57.0
Few-shot prompting 45.5 73.4
PPO-ST 92.6 88.6
Qwen2.5-7B-Instruct

Zero-shot prompting 83.7 96.6
Few-shot prompting 87.0 96.0
PPO-ST 92.2 97.0
MPT-7B-chat

Zero-shot prompting 19.7 574
Few-shot prompting 21.7 57.2
PPO-ST 89.3 84.0

Table 4: Performance comparison of LLAMA?2-7B-chat-
hf, Qwen2.5-7B-Instruct(Hui et al., 2024), and MPT-
7B-chat(MosaicML, 2023) models on the GLUE STS-B
and SuperGLUE COPA tasks under zero-shot prompt-
ing, few-shot prompting, and PPO based fine-tuning.
Results are sourced from the official GLUE benchmark
and SuperGLUE benchmark evaluation servers. For
STS-B, we report Spearman correlation, and for COPA,
accuracy is used as the evaluation metric.

in variable performance outcomes.

6 Conclusion

Prompting-based approaches, including zero-shot
and few-shot prompting, are commonly used to
adapt LLMs to downstream tasks. However, our
experiments show that when applied to LLAMAZ2-
7B-chat-hf, these methods underperform on NLU
benchmarks such as GLUE and SuperGLUE (ta-
ble 6), often trailing smaller encoder-only models
like BERT-base. To address this, we investigate two
fine-tuning strategies that update only LoRA layers
for computational efficiency: SFT and PPO. While
SFT yields modest improvements, PPO provides
substantial gains by framing NLU tasks as rein-
forcement learning problems. PPO-tuned models
not only outperform strong baselines like BERT-
large but also generalize well across model fami-
lies and tasks. Notably, PPO-trained LLAMA2-7B-
chat-hf outperforms GPT-40 by 10.8% on SIGA-nli
and 7.3% on the Mental Health dataset, demonstrat-
ing strong zero-shot generalization from single-task
fine-tuning. More broadly, we highlight a promis-
ing direction: adapting LLMs to new tasks with-
out labeled data by using reward-driven learning.
With a well-defined reward function, PPO can steer
models toward high-reward behaviors—offering a
scalable, label-efficient alternative to SFT.


https://gluebenchmark.com/leaderboard
https://super.gluebenchmark.com/

Limitations

This work takes an initial step toward framing NLU
as a reinforcement learning problem for LLMs un-
der 14B parameters. While our long-term goal is to
reduce reliance on curated datasets by leveraging
richer, task-specific reward models, we currently
adopt a simple binary reward signal based on exact
label matching. This design enables a controlled
evaluation of PPO as an effective adaptation strat-
egy, showing consistent gains over prompting and
supervised fine-tuning. Although we present a pre-
liminary exploration of model-driven reward func-
tions in Appendix F, further research is needed to
develop robust and generalizable reward signals
that can support more complex or weakly super-
vised tasks without requiring extensive manual an-
notation. Overall, our findings suggest that cast-
ing nuanced tasks as reinforcement learning prob-
lems—through the design of appropriate environ-
ments and reward functions—offers a scalable and
flexible alternative to standard fine-tuning, partic-
ularly when the model is already well-initialized
through pretraining.
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A Hyperparameter Settings

For PPO-based fine-tuning, grid search is per-
formed to select the batch size in 4, 8, 12, and 16
for each task. A batch size of 24 was used across
all tasks during supervised fine-tuning (SFT). The
PPO epoch is set to 4, meaning that each sampled
batch is used for updating the model four times.
The initial learning rate for all tasks was set to
9 x 1075. We utilized the Adafactor optimizer
for PPO training and AdamW for SFT. A cosine
annealing learning rate scheduler with a warmup
phase was employed, where the learning rate was
gradually increased during the first 10% of training
steps and then reduced to one-tenth of the initial
value by the end of training. We use a rank r = 16
for the LoRA layers. We trained both PPO and
SFT models until convergence on the validation
set. The best hyperparameters were selected based
on performance on the validation set. The final
reported results for the GLUE and SuperGLUE are
from their corresponding evaluation server. For
evaluation, multinomial sampling with a tempera-
ture of 1 was used to generate a single response per
data sample. The model generated responses with
lengths between 12 and 32 tokens, with the gener-
ation process concluding using a special identifier
“</Judgement>”.

B Reward Curve for PPO Fine-Tuning

We present the reward curve from fine-tuning
LLAMAZ2-7B-chat-hf using PPO in a multitask set-
ting on the GLUE dataset. Figure 2 illustrates the
reward values over training iterations, offering in-
sights into the training dynamics of the model. The
curve serves as a key performance metric, tracking
the model’s learning progress across multiple tasks.
The consistent upward trend demonstrates that
PPO fine-tuning effectively improves LLAMAZ2-
7B-chat-hf’s ability to generate task-relevant out-
puts.

B.1 Results on SuperGLUE Benchmark

We fine-tuned the LLAMA2-7B-chat-hf model us-
ing PPO on the SuperGLUE dataset and compared
its performance against several baselines, including
BERT-large, BERT-large++, and zero-shot and few-
shot prompting of LLAMAZ2-7B-chat-hf. The term
“BERT++" refers to a BERT model fine-tuned using
the supplementary training on intermediate labeled-
data tasks (STILTs) approach (Phang et al., 2018),
where the model is first fine-tuned on related trans-
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fer tasks before being fine-tuned on SuperGLUE
tasks. For example, MNLI from the GLUE bench-
mark(Wang et al., 2019) is used as an intermediate
task for CB, RTE, and BoolQ(Wang et al., 2020).
In contrast, our experiments with LLM did not use
this method. Our models were only fine-tuned on
the datasets included in the SuperGLUE bench-
mark.

As shown in Table 6, the PPO-tuned LLAMA?2-
7B-chat-hf achieved the highest average perfor-
mance, surpassing all baselines. PPO demonstrated
particularly strong improvements on reasoning-
intensive tasks like COPA and MultiRC, where
it significantly outperformed both prompting meth-
ods and encoder-only models. These results high-
light the effectiveness of PPO in improving the
model’s capabilities, particularly for tasks requir-
ing reasoning and contextual understanding.

It is worth noting that on MultiRC, few-shot
prompting performs slightly worse than zero-shot
prompting. This may be because MultiRC involves
long input contexts, and incorporating multiple ex-
amples in a few-shot prompt can cause the total
input length to approach or exceed the LLMs maxi-
mum context window. Even in the one-shot setting,
providing an excessively long context can dilute the
model’s attention, potentially leading to reduced
performance.

C Evaluation on Reading Comprehension
Tasks

We evaluate LLAMAZ2-7B-chat-hf on the SQuAD
reading comprehension task, where the objective is
to select a passage from a given context that best
answers a question. Two training strategies are
compared: Supervised Fine-Tuning (SFT), which
directly uses the ground-truth answer as the train-
ing label, and Proximal Policy Optimization (PPO),
which leverages reward functions based on Exact
Match (EM) and F1 Score. EM metric is computed
by comparing a normalized prediction against the
normalized ground truth (with normalization in-
volving lowercasing and punctuation removal); a
perfect match yields an EM score of 1, otherwise 0.
F1 score measures word-level overlap, balancing
how many predicted words are correct (precision)
and how many ground-truth words are included
(recall).

Models were fine-tuned for one epoch on the
SQuAD training set and evaluated on the develop-
ment set. In our evaluation, zero-shot prompting



Tasks LLAMAZ2-7B PPO-ST LLAMAZ2-13B PPO-ST GPT-40
Sentiment Analysis

Financial PhraseBank (96.2,98.1) (96.9, 98.5) (96.6, 98.4)
Labelled Financial News (66.1, 74.6) (69.0, 76.6) (63.2,72.2)
Mental Health (66.6, 67.7) (66.0, 67.1) (59.3, 60.5)
Emotion (77.4,78.6) (75.8,77.0) (77.0, 78.2)
Natural Language Inference

Babi-nli (64.3,71.5) (65.1,73.0) (58.8, 67.6)
SIGA-nli (39.0, 53.9) (40.6, 53.7) (28.5,42.2)

Table 5: To quantify uncertainty in our evaluations, we generate 100 predictions for each example in the dataset.
The evaluation metric is then computed for each set over the entire dataset, forming a distribution of values. The
95% confidence interval is defined by the 2.5th and 97.5th percentiles of this distribution. For sentiment analysis,
models fine-tuned on SST-2 are evaluated in a zero-shot setting on Financial PhraseBank, Labelled Financial News,
Mental Health, and Emotion datasets. For natural language inference, models fine-tuned on MNLI are zero-shot

evaluated on Babi-NLI and SIGA-NLI.
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Figure 2: Reward curve for multitask PPO fine-tuning of LLAMAZ2-7B-chat-hf on the GLUE dataset. The plot
illustrates the relationship between training iterations (x-axis) and reward values (y-axis), demonstrating the
effectiveness of the PPO optimization approach in improving model performance over time.

yields an EM of 7.66 and an F1 score of 32.27. SFT
significantly improves these metrics (EM: 59.17,
F1: 76.48), while PPO further enhances perfor-
mance, achieving an EM of 65.74 and an F1 score
of 81.82—corresponding to improvements of 6.57
and 5.34 points over SFT, respectively.

These results indicate that optimizing with re-
ward functions based on EM and F1 via PPO leads
to further improvements in reading comprehension
performance, thereby validating our approach rela-
tive to both zero-shot prompting and standard SFT.

D Impact of Fine-Tuning on Language
Modeling Ability

We experiment with SFT and PPO to improve
NLU capabilities of LLMs and observe improved
performance using PPO. However, it is crucial
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to ensure that fine-tuning methods do not signifi-
cantly degrade the models’ general language gen-
eration abilities. To assess this, we directly evalu-
ate the PPL (jel, 1977; Chelba and Jelinek, 2000)
of LLAMAZ2-7B-chat-hf models fine-tuned on the
SST-2 dataset using the WikiText-2 test set (Mer-
ity et al., 2016), which follows a natural human-
written text distribution. We compare these fine-
tuned models against the original, non-fine-tuned
baseline model, with the expectation that the PPL
of the fine-tuned models should closely match
the baseline. Our results reveal that the origi-
nal LLAMAZ2-7B-chat-hf achieves a perplexity of
6.939. The PPO-fine-tuned model closely main-
tains this baseline performance with a perplexity
of 6.966, indicating minimal impact on its general
language modeling capabilities. In contrast, the
SFT-fine-tuned model displays a notably higher



Models BoolQ CB COPA MultiRC ReCoRD RTE
BERT-large 774  75.7/83.6 70.6 70.0/24.0 72.0/71.3 71.6
BERT-large++ 79.0 84.7/904  73.8  70.0/24.1 72.0/71.3 79.0
LLAMAZ2-7B-chat-hf
Zero-shot prompting 75.8 26.4/43.6 57.0 51.9/20.3 27.0/26.2 59.2
Few-shot prompting 80.2 49.8/66.0 73.4 46.6/154 36.3/353 729
PPO-ST 85.9 74.7/88.0  88.6 82.5/50.0 70.6/69.9 84.3
Models WiC WSC AXb AXg Average
BERT-large 69.5 643 230 97.8/51.7 69.0
BERT-large++ 69.5 643 38.0 994/514 71.5
LLAMA2-7B-chat-hf
Zero-shot prompting 544 521 9.1 64.0/55.1 49.5
Few-shot prompting 544 623 9.1 64.0/55.1 54.9
PPO-ST 721 781 527 91.0/79.8 78.3

Table 6: SuperGLUE test results are scored by the evaluation server (SuperGLUE benchmark). The experimental
data for BERT-large and BERT-large++ are taken from the original SuperGLUE paper (Wang et al., 2020). The
metrics used in the experiments are as follows: CB: F1 / Acc; MultiRC: F1 / Exact Match; ReCoRD: F1 / Exact
Match; AXb: MCC; AXg: Gender parity score / Acc. For the remaining tasks not mentioned, accuracy (Acc) is
reported. Average column corresponds to the averaged performance across all the datasets. For tasks with multiple
evaluation metrics, we first compute the average of those metrics to obtain a single task score, which is then used in
the overall average calculation. The bolded results indicate the best results, and the underlined results indicate the

second-best results.

Method EM F1

Original 7.66 32.27
SFT 59.17 7648
PPO 65.74 81.82

Table 7: Performance of LLAMA2-7B-chat-hf on the
SQuAD dataset. PPO uses Exact Match and F1 as re-
ward signals. Best results are highlighted in bold.

perplexity of 7.384, suggesting a significant reduc-
tion in generation capabilities due to convergence
toward task-specific training distributions. We con-
jecture that PPO’s clipping mechanism effectively
constrains policy updates, preventing large devia-
tions from the reference model and thereby preserv-
ing the original language modeling capabilities of
LLMs. These findings underscore PPO’s effective-
ness in maintaining the general language abilities
of LLMs during fine-tuning.

E Comparison of RL Algorithms: PPO vs.
GRPO

Our objective is to improve the natural language un-
derstanding capabilities of the base (policy) model
through RL fine-tuning. In this context, we com-
pare two approaches: PPO and Group Relative
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Method perplexity

Original 6.939
SFT 7.384
PPO 6.966

Table 8: Perplexity of LLAMA2-7B-chat-hf on the
WikiText-2 test set. Lower perplexity indicates better
language modeling ability.

Policy Optimization (GRPO) (Shao et al., 2024).
PPO is highly effective but introduces additional
computational overhead. This overhead stems from
the need for repeated sampling and from updating
a separate critic model to compute value functions.
In contrast, GRPO was designed to mitigate these
costs by bypassing the critic model entirely. Instead
of maintaining a separate value network, GRPO
samples multiple trajectories per prompt and com-
putes each trajectory’s advantage by comparing its
reward to the batch’s average (and standard devia-
tion). This method not only simplifies the architec-
ture but also reduces memory usage.

For our experiments, we utilized the TRL library
(von Werra et al., 2020) on a single Nvidia A100
GPU, with a batch size of 16 and gradient check-
pointing enabled. While SFT involves a simple


https://super.gluebenchmark.com/

Algorithm SST-2 MRPC (F1) RTE CoLA QNLI Avg. Per-Step Runtime (s)
SFT 73.8 85.8 80.4 50.7 93.6 769 4.124
PPO 96.4 89.4 84.3 59.9 93.2 84.6 4.299
GRPO 96.7 91.2 88.5 552 93.1 84.9 5.155

Table 9: Zero-shot GLUE performance (SST-2, MRPC F1, RTE, CoL A, QNLI) and per-step runtime. Best score in

each column is bolded.

forward pass, loss computation, and backward pass
per step, both PPO and GRPO add extra steps such
as LLM sampling, reward calculation, and advan-
tage estimation.

As detailed in Table 9, both PPO and GRPO
deliver notable performance improvements over
SFT. Notably, PPO only incurs about a 4% increase
in per-step runtime compared to SFT. However,
GRPO’s need to generate multiple responses per
sample results in a higher runtime, despite its mem-
ory efficiency benefits. Overall, our analysis high-
lights the trade-offs between these RL algorithms:
PPO offers efficient runtime with the cost of addi-
tional overhead from the critic model, while GRPO
reduces memory usage at the expense of increased
sampling time.

F Reward Function Design and
Evaluation

While our primary reward function is based on
matching generated outputs to true labels, we rec-
ognize that more sophisticated reward designs may
be necessary for complex NLU tasks. To address
this, we investigate the effect of integrating a re-
ward model into our PPO training, with the aim of
enhancing not only classification performance on
SST-2 but also the quality of generated analyses.
Reward Modeling Setup. For the first 5,000
training samples of the SST-2 dataset, LLAMAZ2-
7B-chat-hf generates four responses per data point.
Each response includes a sentiment judgment (Pos-
itive/Negative) and a supporting analysis. To ro-
bustly rank these responses, we use GPT-40 as an
evaluator. GPT-40 ranks the responses based on:
(i) the correctness of the sentiment judgment (i.e.,
matching the ground truth), (ii) the consistency be-
tween the judgment and its accompanying analysis,
and (iii) the overall factual correctness and helpful-
ness of the analysis. To ensure clear differentiation,
we include two reference responses—one with only
the correct answer and one with only the incorrect
answer—and define the ranking order as: correct
answer with analysis > only correct answer > incor-
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rect answer with analysis > only incorrect answer.

Training the Reward Model. A reward model
is then trained on this ranked dataset using a BERT-
based architecture (bert-base-cased). For each in-
put x, we consider pairs of responses (Y, Y1),
where y,, denotes a response ranked higher by our
evaluator (GPT-40) due to its correct sentiment and
coherent analysis, and y; denotes a lower-ranked
response. The model learns to assign higher scores
to better responses via a pairwise ranking loss:

L(9) = ~E(2,y0,9)~D

[logU(Tg(x,yw) — ro(a, yl))} 7 3)

where 7¢(z,y) is the score assigned to response
y given z, and o is the sigmoid function convert-
ing the score difference into a probability. This
loss encourages the reward model to output higher
scores for responses with superior judgments and
analyses.

Incorporating the Reward Model into PPO
Training. During PPO training on SST-2, LLM
is tasked with generating both a sentiment judg-
ment and an analysis. The trained reward model
provides the reward signal by scoring these out-
puts. As shown in Table 10a, while the PPO model
trained with reward signals from the reward model
(PPO-RM) produces analyses of higher quality, it
suffers from a significant reduction in classifica-
tion performance, dropping from 96.4% to 89.7%.
We believe this discrepancy might be due to the
limited sample size used for reward model training
and potential reward hacking (Amodei et al., 2016)
during optimization. However, we will explore this
further in our future works.

Evaluation of Generated Analyses. To further
assess the impact of our reward design, we evalu-
ated the quality of generated analyses. We sampled
100 data points from three models: the original
LLAMAZ2-7B-chat-hf, the PPO model trained us-
ing only correct-answer rewards (PPO), and the
PPO model trained with the reward model (PPO-
RM). GPT-40 then scored each analysis on a scale



Method Accuracy (%) Method GPT Eval. Score

PPO 96.4 PPO 3.479
PPO-RM 89.7 PPO-RM 4.104
(a) SST-2 performance on GLUE. (b) Quality of generated analyses.

Table 10: Comparison of reward function designs for LLAMA?2-7B-chat-hf. The model trained with a rule based
reward (PPO) achieves a high SST-2 classification accuracy of 96.4%, while incorporating a sophisticated reward
model (PPO-RM) significantly reduces accuracy (89.7%) but yields substantially improved analysis quality, with a
GPT evaluation score of 4.104 compared to 3.479 for the simple reward. Best results are highlighted in bold.

from 1 to 5 based on answer correctness and logi-
cal coherence. As indicated in Table 10b, the PPO
model using reward model signals achieved the
highest average score, suggesting that a more com-
plex reward function can enhance the quality of
generated outputs.

In summary, while the integration of a reward
model in PPO training significantly reduces classifi-
cation performance compared to using only correct-
answer rewards, it considerably improves the GPT
evaluation scores of the analyses produced by the
LLM.

15



	Introduction
	Related Works
	Preliminaries on Application of PPO for Fine-tuning LLMs
	Method
	Task-Specific Prompt Design
	Supervised Fine-tuning of LLM on NLU Tasks
	Proximal Policy Optimization for LLM Fine-tuning on NLU Tasks
	Low-Rank Adaptation

	Experiments
	Experimental Setup
	Baselines
	Results on GLUE Benchmark
	Evaluating Zero-Shot Generalization of PPO Fine-Tuned Models and Comparison with GPT-4o
	Evaluation of Instruction-Following in Out-of-Distribution Tasks
	Performance Comparison Across Different LLMs

	Conclusion
	Hyperparameter Settings
	Reward Curve for PPO Fine-Tuning
	Results on SuperGLUE Benchmark

	Evaluation on Reading Comprehension Tasks
	Impact of Fine-Tuning on Language Modeling Ability
	Comparison of RL Algorithms: PPO vs. GRPO
	Reward Function Design and Evaluation

