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Abstract001

Instruction-fine-tuned large language models002
(LLMs) under 14B parameters continue to un-003
derperform on natural language understanding004
(NLU) tasks, often trailing smaller models like005
BERT-base on benchmarks such as GLUE and006
SuperGLUE. Motivated by the success of re-007
inforcement learning in reasoning tasks (e.g.,008
DeepSeek), we explore Proximal Policy Opti-009
mization (PPO) as a framework to improve the010
NLU capabilities of LLMs. We frame NLU011
as a reinforcement learning environment, treat-012
ing token generation as a sequence of actions013
and optimizing for reward signals based on014
alignment with ground-truth labels. PPO con-015
sistently outperforms supervised fine-tuning,016
yielding an average improvement of 6.3 points017
on GLUE, and surpasses zero-shot and few-018
shot prompting by 38.7 and 26.1 points, respec-019
tively. Notably, PPO-tuned models outperform020
GPT-4o by over 4% on average across senti-021
ment and natural language inference tasks, in-022
cluding gains of 7.3% on the Mental Health023
dataset and 10.9% on SIGA-nli. This work024
highlights a promising direction for adapting025
LLMs to new tasks by reframing them as rein-026
forcement learning problems, enabling learning027
through simple end-task rewards rather than ex-028
tensive data curation.029

1 Introduction030

Large language models (LLMs) (Radford et al.,031

2019; Brown, 2020; Touvron et al., 2023b)032

have revolutionized natural language processing033

(NLP) with their powerful text generation capabili-034

ties (Radford, 2018). Pretrained on large-scale un-035

labeled corpora, LLMs can generate coherent and036

contextually relevant content. Using prompt-based037

strategies like zero-shot and few-shot prompting038

(Brown, 2020), these models can address a wide039

range of downstream tasks without task-specific040

fine-tuning. However, when applied to instruction-041

fine-tuned LLMs under 14B parameters—such as042

LLAMA2-7B-chat-hf—these methods often under- 043

perform on natural language understanding (NLU) 044

tasks compared to encoder-only models like BERT 045

(Devlin, 2018), which consistently excel on bench- 046

marks such as GLUE (Wang et al., 2019) and 047

SuperGLUE (Wang et al., 2020). For instance, 048

our evaluation of LLAMA2-7B-chat-hf shows that 049

zero-shot prompting with task-specific prompts 050

yields an average performance of 46.1 across all 051

GLUE datasets, while few-shot prompting im- 052

proves performance to 58.7—both significantly 053

trailing BERT-base’s 79.6, as shown in Table 1. 054

To enhance NLU capabilities of LLMs, we in- 055

vestigate reinforcement learning (RL)-based fine- 056

tuning approaches. Motivated by recent work such 057

as DeepSeek (Liu et al., 2024), which demonstrates 058

the utility of reward-driven optimization for im- 059

proving reasoning abilities, we explore the use of 060

Proximal Policy Optimization (PPO) (Schulman 061

et al., 2017a) to align model outputs with task- 062

specific objectives. 063

While standard fine-tuning (SFT) is commonly 064

used to adapt LLMs to downstream tasks, we find 065

it insufficient for NLU—often underperforming 066

even smaller encoder-only models like BERT-base. 067

In contrast, we use PPO to enhance LLM perfor- 068

mance by framing NLU as a reinforcement learn- 069

ing problem. The sequence of input tokens up to 070

timestep t− 1 represents the state st, and the token 071

generated at timestep t is treated as the action at. 072

After generating the full response, a heuristic ex- 073

tracts the predicted answer, which is compared to 074

the ground-truth label to assign a scalar reward R. 075

PPO then updates the model to maximize this re- 076

ward, enabling direct optimization for task-specific 077

objectives. Empirically, PPO-based fine-tuning 078

of LLAMA2-7B-chat-hf improves GLUE perfor- 079

mance by 6.3 points over SFT, surpasses zero- and 080

few-shot prompting by 38.7 and 26.1 points, and 081

even outperforms GPT-4o by over 4% on sentiment 082

and inference tasks—achieving gains of 7.3% on 083

1



LLAMA2-7B
Premise:

The man broke his toe.

Question:

What was the cause?

Options:

(A) He dropped a hammer on 

his foot.  

(B) He got a new pair of shoes.

Instruction:

Choose the most plausible 

option (A or B) based on the 

premise.

Input query

LLAMA2-7B

Training 

instances

PPO-based optimization

LoRA layers

LLAMA2-7B

Improved 
performance

Reward Generation

Frozen components 

PPO fine-tuned model

Trainable components 

Zero-shot/Few-shot prompting

Figure 1: PPO-based fine-tuning of LLAMA2-7B-chat-hf to improve the performance on NLU tasks.

the Mental Health dataset and 10.8% on SIGA-nli.084

These results demonstrate the effectiveness of re-085

inforcement learning in aligning LLMs under 14B086

parameters with NLU objectives.087

Pre-trained LLMs possess broad linguistic088

knowledge—spanning syntactic and semantic struc-089

tures—acquired from large-scale text corpora. We090

show that reinforcement learning, specifically PPO,091

can refine this general understanding to better align092

with task-specific NLU objectives. Similar patterns093

are observed in DeepSeek, where chain-of-thought094

pre-training enhances reasoning capabilities, and095

subsequent RL-based fine-tuning further improves096

performance. Building on this insight, our findings097

suggest a promising direction: adapting LLMs to098

new tasks by formulating them as reinforcement099

learning problems. When models are sufficiently100

pre-trained, task alignment may be achieved with-101

out additional labeled data—requiring only a well-102

defined reward function over the outputs. PPO can103

then optimize the model toward high-reward behav-104

iors. This approach offers a scalable, label-efficient105

alternative to conventional supervised fine-tuning106

through reward-driven adaptation.107

2 Related Works108

Policy-based reinforcement learning (RL) directly109

optimizes an agent’s policy by learning its parame-110

ters to maximize long-term rewards. Unlike value-111

based methods like Q-learning (Watkins and Dayan,112

1992) and DQN (Hester et al., 2018), which in-113

directly derive policies through value functions,114

policy-based methods represent the policy as a 115

parameterized function. This function, pθ(a|s), 116

defines the probability of taking action a in state 117

s, where θ represents the policy parameters. The 118

goal is to learn optimal parameters θ∗ that max- 119

imize the expected cumulative reward, typically 120

through policy gradient methods (Sutton et al., 121

1999). These methods excel in high-dimensional 122

or continuous action spaces, where value-based 123

methods can struggle (Deisenroth et al., 2013). 124

Policy-based methods in reinforcement learning 125

(RL) have evolved significantly over time, starting 126

with REINFORCE (Williams, 1992), which opti- 127

mizes policies using the policy gradient theorem 128

but suffers from high variance due to its reliance on 129

Monte Carlo estimates of the reward. Monte Carlo 130

estimates refer to calculating the total reward based 131

on full episodes of interaction, meaning updates 132

are made only after an entire sequence of actions 133

and rewards is observed, which can lead to noisy 134

and slow learning. To address this, actor-critic 135

methods like A2C and A3C (Mnih, 2016) intro- 136

duced a critic that estimates the value of the current 137

state, allowing for smoother updates by reducing 138

the variability in policy updates and speeding up 139

convergence. However, these methods still faced 140

instability when large updates caused the new pol- 141

icy to diverge too far from the previous one. Trust 142

Region Policy Optimization (TRPO) (Schulman, 143

2015) tackled this by limiting the size of policy 144

updates using a KL divergence constraint, but its 145

implementation was complex and computationally 146

expensive. Proximal policy optimization (PPO) 147
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(Schulman et al., 2017a) simplified this process by148

introducing a clipped objective function that keeps149

policy updates within a stable range while being150

easier to implement. PPO’s balance between sim-151

plicity and stability has made it a widely adopted152

method in modern RL research.153

In NLP, PPO has been effectively used in rein-154

forcement learning from human feedback (RLHF)155

to align LLM outputs with human preferences, as156

seen in works like InstructGPT (Ouyang et al.,157

2022) and Constitutional AI (Bai et al., 2022).158

These approaches treat the LLM as a policy, where159

model responses are actions, and human feedback160

serves as rewards. PPO updates the policy based161

on the reward model trained on human preferences.162

Additionally, policy-based RL methods have been163

applied to enhance LLM reasoning capabilities164

(Ziegler et al., 2019; Havrilla et al., 2024; Hu and165

Shu, 2023). In this work, we apply PPO to fine-tune166

LLMs on NLU tasks.167

3 Preliminaries on Application of PPO for168

Fine-tuning LLMs169

Proximal policy optimization (PPO)(Schulman170

et al., 2017b) is an online reinforcement learning171

algorithm. In this section, we describe the process172

to fine-tune an LLM using PPO. During training,173

at each timestep t, the LLM (policy) generates a174

token prediction at (action) based on the state st,175

which consists of the sequence of generated tokens176

up to timestep t − 1. The final generated output177

is evaluated in the context of the downstream task,178

where the environment provides feedback in the179

form of rewards. The model updates its parameters180

based on these rewards to improve its ability to181

generate accurate predictions over time.182

PPO uses gradient ascent to optimize the fol-183

lowing objective, aiming to maximize cumulative184

rewards:185

J(θ) = E(st,at)∼πθ′

[
min

( pθ(at | st)
pθ′(at | st)

Ât,

clip
( pθ(at|st)
pθ′ (at|st)

, 1− ϵ, 1 + ϵ
)
Ât

)]
(1)

186

Here, pθ(at|st) is the probability of taking action at187

in state st under the current policy, while pθ′(at|st)188

represents this probability under the old policy.189

In PPO, the training data—specifically, the state-190

action pairs (st, at)—are sampled using the old pol-191

icy πθ′ (the LLM before it is updated), rather than192

the new policy currently being optimized. Thus, 193

the ratio pθ(at|st)
pθold (at|st)

accounts for how much the new 194

policy has changed relative to the old policy and ad- 195

justs the likelihood of an action accordingly. This 196

ratio is multiplied by Ât, the Generalized Advan- 197

tage Estimation (GAE) (Schulman et al., 2018), 198

which measures how much better or worse an ac- 199

tion at is compared to the expected outcome under 200

the current policy. 201

Ât = Rt + γVt+1 − Vt + γλÂt+1, 202

Here, Rt + γVt+1 − Vt represents the temporal 203

difference (TD) error (Sutton, 1988). In this ex- 204

pression, Rt is the immediate reward received after 205

taking action at, Vt is the expected reward before 206

the action, and γVt+1 is the discounted estimate 207

of the future reward after the action. This term re- 208

flects how the action at performed when compared 209

to the expected return at state st. The second term, 210

γλÂt+1, is the smoothing factor in GAE, where λ 211

is the trade-off parameter. This recursive estimate 212

allows the model to incorporate future informa- 213

tion, making the advantage estimate more stable. 214

Smaller values of λ emphasize on immediate re- 215

wards, while larger values capture longer-term de- 216

pendencies. The discount factor γ controls how 217

much emphasis is placed on future rewards com- 218

pared to immediate ones, with higher values of γ 219

giving more weight to future rewards. Vt, which 220

represents the expected future reward from state st, 221

is estimated by a critic model. 222

The clipping function clip(ratio, 1−ϵ, 1+ϵ) lim- 223

its the change between the current and old policy, 224

ensuring stable updates by preventing large devi- 225

ations. This helps avoid too-large policy changes 226

that could destabilize training. In summary, PPO 227

optimizes the policy using gradient ascent to max- 228

imize cumulative rewards while ensuring stable 229

updates through clipping, with the GAE providing 230

a more stable and accurate advantage estimate by 231

incorporating future information recursively. 232

Critic Model The critic model consists of a value 233

head, which is a multi-layer perceptron attached 234

to the final layer of the LLM. It takes the LLMs 235

representation of the generated token sequence up 236

to timestep t (i.e., the state st) and predicts a scalar 237

value representing the value function Vt for that 238

state. The critic model is updated using the square 239

of TD error, which is computed as: 240

δt = (Rt + γVt+1 − Vt)
2, (2) 241
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where δt represents the L-2 loss between the actual242

reward Rt, combined with the discounted estimate243

of future rewards γVt+1, and the current predicted244

value Vt for state st. By minimizing this TD error245

via gradient descent, the critic model updates its246

value function predictions, improving alignment247

with the actual rewards and future outcomes. In248

summary, LLM uses the PPO objective to update249

its policy based on feedback from the critic model,250

while the critic model is updated to better predict251

the value function for future states.252

4 Method253

To enhance the performance of LLMs on NLU254

tasks, we adopt two distinct fine-tuning methods.255

The first approach involves supervised fine-tuning,256

where the input consists of a concatenation of the257

task-specific prompt, query and the ground truth258

answer, with the model optimized using the next-259

token prediction objective. The second approach260

utilizes PPO, framing response generation as a re-261

inforcement learning problem. In this setup, the262

sequence of input tokens until timestep t− 1 rep-263

resents the state st, and each token generated at264

timestep t is treated as an action at. After generat-265

ing the entire sequence, a heuristic-based process266

extracts the final answer from this generated se-267

quence, and is compared to the ground truth. PPO268

is then employed to optimize the model by max-269

imizing the cumulative reward derived from this270

comparison. To reduce computational complexity,271

we fine-tune LoRA layers instead of the full model.272

4.1 Task-Specific Prompt Design273

We detail the construction of task-specific prompts274

used to query the LLM for NLU tasks. Each275

prompt begins with a clear task description, outlin-276

ing the necessary background information to guide277

the model in solving the task. Following this, we278

specify strict requirements for the output format,279

ensuring that the response is encapsulated within a280

predefined structure, specifically between ‘<Judge-281

ment></Judgement>’ tags. This structure ensures282

consistency in the model’s responses, facilitating283

easier extraction and evaluation of the results.284

For example, in the CoLA task, which assesses285

grammatical acceptability, the prompt is structured286

as follows:287
288

System_prompt:289
You are an assistant to analyze the290
linguistic properties291

of a sentence. The task is to decide 292
the linguistic acceptability 293
of a sentence. If the sentence is 294
linguistically correct then it 295
is acceptable , else it is not. 296

The result you give should have the 297
following form: 298
<Judgement > {Insert only "Yes" or " 299
No" here} </Judgement > 300

Prompt: 301
Now judge if the sentence "{ sentence 302
}" is linguistically acceptable. 303

Assistant: 304
<Judgement > 305306

The prompt starts with background information 307

about CoLA, specifies restrictions on the output 308

(such as labeling a sentence as acceptable or unac- 309

ceptable), and concludes with a special start token, 310

<Judgement>, to initiate the model’s response gen- 311

eration. 312

4.2 Supervised Fine-tuning of LLM on NLU 313

Tasks 314

Given an NLU training dataset, D(tr) = 315

{(xi, yi)}Ni=1, where xi represents the input text 316

and yi the ground truth label, we fine-tune the 317

LLM on a sequence consisting of the task-specific 318

prompt p (described in section 4.1) concatenated 319

with the input xi and the ground truth answer yi. 320

The model is trained using the next-token predic- 321

tion objective, where it predicts the next token in 322

the sequence by conditioning on all preceding to- 323

kens. This objective trains the model to learn to 324

predict the correct answer for the NLU task condi- 325

tioned on the task-specific prompt and input. 326

4.3 Proximal Policy Optimization for LLM 327

Fine-tuning on NLU Tasks 328

We utilize PPO to fine-tune the LLM on NLU tasks, 329

following the training protocol outlined in section 3. 330

The reward function is specifically designed for 331

each NLU task. In this work, we use a simple re- 332

ward function, where a reward is assigned at the 333

end of the generation based on alignment with the 334

ground truth labels. We use regular expression 335

matching to extract answers from the LLMs out- 336

puts by first locating the text within the ‘<Judge- 337

ment></Judgement>’ tags. Depending on the task, 338

we then search for task-specific keywords (such as 339

“yes”, “no”, “acceptable”, or “not acceptable”) to 340

identify the answer. These extracted answers are 341

compared with the ground truth to determine the 342

appropriate rewards. 343

For instance, CoLA, which is a classification 344

task, answers are categorized as acceptable, un- 345
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acceptable, or exceptional (incorrect format). For346

STS-B, which is a regression task, the extracted347

answer is a floating-point number between 0 and 5.348

The reward per generation for classification tasks is349

given by R = 1(ŷ == yi), where ŷ is the model’s350

prediction and y is the ground truth. For STS-B,351

a regression task, the reward per generation is cal-352

culated based on how close the prediction is to the353

ground truth: R = 2.5 − |ŷi − yi|. Incorrectly354

formatted responses are penalized with a value of355

-1 for classification tasks and -2.5 for regression356

tasks.357

4.4 Low-Rank Adaptation358

To mitigate the computational cost of full-model359

fine-tuning, we employ LoRA (Hu et al., 2021)360

during both the supervised fine-tuning and PPO361

stages. Instead of updating the entire model, we362

restrict the updates to LoRA layers, which signifi-363

cantly reduces the number of trainable parameters364

by decomposing the weight matrices into low-rank365

matrices.366

5 Experiments367

5.1 Experimental Setup368

We trained and evaluated our models on the369

GLUE(Wang et al., 2019) and SuperGLUE(Wang370

et al., 2020) benchmarks. All experiments were371

conducted using instruction-tuned LLAMA2-7B372

models(Touvron et al., 2023a)1. We perform both373

single task and multi-task fine-tuning: 1) Single-374

task Fine-tuning: For each subtask within GLUE375

and SuperGLUE, a separate task-specific LoRA376

module was trained independently. 2) Multi-task377

Fine-tuning: In the multi-task setting, datasets from378

different subtasks within each benchmark were379

combined, and a single LoRA module was trained380

to handle all tasks simultaneously. Please refer to381

Appendix A for detailed hyperparameter settings.382

5.2 Baselines383

We evaluated the performance of our approach384

against three baselines:385

• Encoder-only models: We compare our re-386

sults with encoder-only transformer models,387

specifically BERT-base (110M parameters)388

and BERT-large (340M parameters)(Devlin389

et al., 2019).390

1https://huggingface.co/daryl149/
llama-2-7b-chat-hf

• Zero-shot prompting: The model is pro- 391

vided with task-specific prompts, as outlined 392

in section 4.1, along with the input query. 393

The model is required to generate predictions 394

solely based on these prompts and the input 395

query, without any additional task-specific 396

fine-tuning. 397

• Few-shot prompting: In this setting, the 398

model is provided with both the task-specific 399

prompt and one to five labeled examples 400

(which ever gave the best performance) from 401

the training dataset as demonstrations. These 402

examples are provided as reference to guide 403

the model in generating more accurate re- 404

sponses for the input query. Similarly, no 405

task-specific fine-tuning is performed. 406

After generating a response, we applied regular 407

expression matching to extract the relevant answer 408

from the model’s output. We directly matched task- 409

specific keywords (like “yes” or “no”) in the gen- 410

erated text to identify the answer. This extracted 411

answer was then compared to the ground truth label 412

to evaluate the model’s performance. 413

5.3 Results on GLUE Benchmark 414

In this section, we present our experiments on 415

the GLUE benchmark, comparing the results with 416

encoder-only models such as BERT(Devlin et al., 417

2019). We use the LLAMA2-7B-chat-hf model 418

as the LLM for our evaluations. The baselines in- 419

clude zero-shot prompting and few-shot prompting. 420

For fine-tuning methods, we compare both super- 421

vised fine-tuning and PPO across single-task and 422

multi-task settings. The results are summarized in 423

Table 1. From the results, we make the following 424

observations. 425

First, we observed that zero-shot prompting of 426

the LLAMA2-7B-chat-hf model with task-specific 427

prompts consistently underperformed compared to 428

the smaller BERT-base model. LLAMA2-7B-chat- 429

hf struggled notably on simpler tasks like SST-2, 430

which only required classifying sentiment as posi- 431

tive or negative. This underscores the model’s weak 432

language understanding capabilities, with zero-shot 433

prompting proving inadequate compared to BERT- 434

base. Second, few-shot prompting showed im- 435

provements over the zero-shot baseline, achiev- 436

ing an average score of 58.7 compared to 46.1, 437

but it still lagged significantly behind the BERT- 438

base model’s score of 79.6. Third, supervised fine- 439

tuning (SFT) using LoRA modules for each task 440
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Models MNLI-m MNLI-mm QQP QNLI SST-2 CoLA

BERT-base 84.6 83.4 71.2 90.5 93.5 52.1
BERT-large 86.7 85.9 72.1 92.7 94.9 60.5
LLAMA2-7B-chat-hf
Zero-shot prompting 38.3 39.7 31.3 58.5 75.7 18.6
Few-shot prompting 62.4 61.7 30.9 60.7 84.2 29.0
PPO-ST 88.8 88.2 70.5 93.2 96.4 59.9
SFT-ST 87.0 86.5 63.8 93.6 73.8 50.7
PPO-MT 88.7 88.3 67.3 90.2 94.6 47.7
SFT-MT 84.9 84.5 62.9 86.0 72.0 41.4

Models STS-B MRPC RTE WNLI AX Average

BERT-base 85.8 88.9 66.4 / / 79.6
BERT-large 86.5 89.3 70.1 / / 82.1
LLAMA2-7B-chat-hf
Zero-shot prompting 27.5 66.3 59.3 44.5 9.2 46.1
Few-shot prompting 45.5 80.8 72.9 51.4 9.2 58.7
PPO-ST 92.6 89.4 84.3 74.7 52.7 84.8
SFT-ST 84.7 85.8 80.4 63.7 45.1 78.5
PPO-MT 94.7 86.7 86.9 66.4 43.4 82.9
SFT-MT 85.5 82.6 86.2 76.0 41.2 76.22

Table 1: GLUE test results are scored by the evaluation server (GLUE benchmark). Average column indicates
the averaged performance across all the datasets excluding the WNLI and AX datasets. F1 scores are reported
for QQP and MRPC, Spearman correlations for STS-B, Matthew’s correlations for CoLA, and accuracy scores
for the other tasks. Zero-shot prompting refers to prompting with task-specific prompts and an input query, while
Few-shot prompting refers to prompting with task-specific prompts, 1-5 demonstrations (chosen based on the best
performance), and an input query. PPO stands for proximal policy optimization, and SFT refers to Supervised
Fine-tuning. “ST” represents Single-task, while “MT” represents Multi-task. The bolded results indicate the best
results, and the underlined results indicate the second-best results.

further boosted performance, bringing it closer to441

BERT’s level with an average score of 78.5, though442

still slightly behind BERT-base’s 79.6. Fourth,443

fine-tuning with PPO delivered the best results,444

achieving an average score of 84.6, surpassing even445

BERT-large’s 82.1. Moreover, zero-shot and few-446

shot prompting of LLAMA2-7B-chat-hf displayed447

a noticeable output imbalance, with a tendency to448

favor certain classes or values. In contrast, models449

fine-tuned with PPO showed no significant bias.450

Fifth, the total computational time for PPO is ap-451

proximately 1.32 times that of SFT, indicating only452

a marginal increase in computational costs.453

Additionally, we compared the results with454

multi-task training, where a single LoRA module455

was trained across all datasets using both SFT and456

PPO to reduce time complexity. We found that457

SFT on individual tasks outperformed its multi-task458

fine-tuning counterpart. However, while PPO on459

multi-task training did not perform as well as PPO460

on single-task training, it still outperformed BERT-461

large in average performance, achieving a score462

of 82.9 compared to BERT-large’s 82.1. These re-463

sults demonstrate that while single-task fine-tuning 464

yields the best performance, multi-task training 465

with PPO can still achieve competitive results, even 466

surpassing state-of-the-art models like BERT-large. 467

5.4 Evaluating Zero-Shot Generalization of 468

PPO Fine-Tuned Models and Comparison 469

with GPT-4o 470

We evaluate the zero-shot generalization capabili- 471

ties of LLAMA2 7B and 13B models fine-tuned us- 472

ing PPO on a single dataset and subsequently tested 473

across multiple other datasets (Table 2). For senti- 474

ment analysis tasks, the models were fine-tuned on 475

SST-2 and evaluated on diverse datasets, including 476

Financial PhraseBank (Malo et al., 2014), Labelled 477

Financial News (Sood, 2024), Mental Health (Gaes, 478

2023), and Emotion (Saravia et al., 2018). Simi- 479

larly, for natural language inference (NLI) tasks, 480

the models were fine-tuned on MNLI and evalu- 481

ated on Babi-nli (Weston et al., 2015) and SIGA- 482

nli (Nizamani et al., 2024). 483

Our results demonstrate that PPO fine-tuning 484

improves the zero-shot performance of LLAMA2- 485
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Tasks LLAMA2-7B PPO-ST LLAMA2-13B PPO-ST GPT-4o

Sentiment Analysis
Financial PhraseBank 97.2 97.7 97.5
Labelled Financial News 70.2 72.3 67.8
Mental Health 67.2 66.6 59.9
Emotion 78.0 76.4 77.6

Natural Language Inference
Babi-nli 68.3 69.4 63.2
SIGA-nli 46.2 46.3 35.4
Average 71.2 (4.3↑) 71.5 (4.6↑) 66.9

Table 2: Accuracy of different models across downstream tasks. For sentiment analysis tasks, models are fine-tuned
on SST-2 and zero-shot evaluated on Financial PhraseBank (Malo et al., 2014), Labelled Financial News (Sood,
2024), Mental Health (Gaes, 2023), and Emotion (Saravia et al., 2018). Similarly, for natural language inference
tasks, models are fine-tuned on MNLI and zero-shot evaluated on Babi-nli (Weston et al., 2015) and SIGA-
nli (Nizamani et al., 2024). PPO-ST represents fine-tuning using Proximal Policy Optimization. Gains over GPT-4o
model in the average row is indicated with green arrows.

chat-hf models compared to GPT-4o, a strong base-486

line. For sentiment analysis, LLAMA2-13B-chat-487

hf achieves 97.7% accuracy on Financial Phrase-488

Bank, slightly outperforming GPT-4o (97.5%). On489

Labelled Financial News, LLAMA2-13B-chat-hf490

records 72.3%, exceeding GPT-4o by 4.5%. Sim-491

ilarly, on the Mental Health dataset, LLAMA2-492

7B-chat-hf achieves 67.2%, marking a notable493

gain of 7.3% over GPT-4o. For the Emotion494

dataset, LLAMA2-7B-chat-hf achieves 78.0%,495

with a smaller gain of 0.4%. For NLI tasks,496

LLAMA2-13B-chat-hf achieves 69.4% accuracy497

on Babi-nli, surpassing GPT-4o by 6.2%. Addi-498

tionally, LLAMA2-13B-chat-hf achieves 46.3%499

accuracy on SIGA-nli, outperforming GPT-4o by500

more than 10%. On average, both 7B and 13B ver-501

sions of PPO fine-tuned LLAMA2-chat-hf models502

demonstrate a performance gain of over 4% com-503

pared to GPT-4o, which is significantly larger in504

size and highly optimized.505

To ensure robust comparisons, we quantify un-506

certainty in our evaluations by generating 100 pre-507

dictions for each example in the dataset. The508

evaluation metric is then computed over the en-509

tire dataset for each set, yielding a distribution of510

values. The 95% confidence interval is defined by511

the 2.5th and 97.5th percentiles of this distribution.512

Results are presented in Table 5.513

These results demonstrate the effectiveness of514

simple PPO fine-tuning on a single task-specific515

dataset in significantly enhancing model perfor-516

mance on similar tasks. LLAMA2-chat-hf models517

fine-tuned with PPO consistently outperform GPT-518

4o across diverse downstream tasks, reinforcing519

PPO fine-tuning as a robust approach for improv- 520

ing the NLU capabilities of LLMs. 521

We measured inference time on the Financial 522

PhraseBank dataset with a batch size of 4. The 523

BERT-base model, with 110M parameters, required 524

0.035s per step, while the LLAMA2-7B model, 525

with 7B parameters and multi-token generation, 526

took 0.997s per step. This difference is expected 527

given the larger model size and the need for multi- 528

ple forward passes in LLAMA2-7B. While LLM in- 529

ference is slower, our focus is on improving natural 530

language understanding with PPO, which achieves 531

strong performance gains on both in-distribution 532

and out-of-distribution NLU and NLI tasks. 533

5.5 Evaluation of Instruction-Following in 534

Out-of-Distribution Tasks 535

To assess the instruction-following capabilities of 536

LLMs in tasks differing from their fine-tuned for- 537

mat, we conduct evaluations using the LLAMA2- 538

7B-chat-hf model fine-tuned on the SST-2 dataset. 539

Specifically, we evaluate the performance of this 540

model on the Amazon review task, which requires 541

generating an integer rating between 1 and 5 based 542

on the provided textual review. Although SST-2 543

and Amazon reviews both involve sentiment anal- 544

ysis, the two tasks differ distinctly in their input- 545

output formatting, providing a clear measure of 546

instruction-following adaptability. 547

We compare three versions of the LLAMA2-7B- 548

chat-hf model: the original non-fine-tuned model, 549

a version fine-tuned using SFT, and another fine- 550

tuned with PPO. The 95% confidence intervals (CI) 551

reported here are defined by the 2.5th and 97.5th 552
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percentiles of the bootstrap distribution. Using553

a consistent prompt across models, we find that554

the PPO-fine-tuned model achieves an accuracy of555

39.35% (95% CI: 38.39, 40.29), significantly out-556

performing the original model, which achieves 27%557

accuracy (95% CI: 19.00, 36.03). Conversely, the558

SFT-fine-tuned model demonstrates extremely poor559

performance, achieving less than 1% accuracy.560

Method Accuracy 95% CI

Original 27.00 (19.00, 36.03)
SFT 0.00961 (0.00, 0.03)
PPO 39.35 (38.39, 40.29)

Table 3: Performance of LLAMA2-7B-chat-hf on the
Amazon Review dataset. Best results are highlighted in
bold.

Qualitative analysis of sampled outputs reveals561

that the PPO-fine-tuned model reliably adheres to562

the instruction format and generates detailed rea-563

soning to support its predictions. In contrast, the564

SFT-fine-tuned model often fails to adapt its re-565

sponses to the required format, demonstrating lim-566

ited generalization capabilities. PPO fine-tuning567

maintains proximity to the original model distri-568

bution via a clipping mechanism, thus preserving569

and enhancing the model’s intrinsic instruction-570

following capabilities. In contrast, SFT fine-tuning571

appears to narrow the model’s learned distribution572

to task-specific training data, negatively impacting573

its original instruction-following proficiency. We574

also evaluate the impact of fine-tuning on language575

modeling ability in Appendix D.576

5.6 Performance Comparison Across577

Different LLMs578

To assess the consistency of our findings across dif-579

ferent models, we evaluated Qwen2.5-7B-Instruct580

and MPT-7B-chat alongside LLAMA2-7B-chat-581

hf on the STS-B dataset from the GLUE bench-582

mark and the COPA dataset from the SuperGLUE583

benchmark. The results confirm that PPO-based584

fine-tuning consistently outperforms the BERT-585

large model, as well as the zero-shot and few-shot586

prompting baselines for all LLMs, highlighting its587

effectiveness across different LLMs. Additionally,588

the effect of few-shot prompting on COPA perfor-589

mance varies across different LLMs, indicating that590

different LLMs have varying capabilities to process591

and follow long-context instructions, which results592

Models STS-B COPA

BERT-large 86.5 70.6
LLAMA2-7B-chat-hf
Zero-shot prompting 27.5 57.0
Few-shot prompting 45.5 73.4
PPO-ST 92.6 88.6
Qwen2.5-7B-Instruct
Zero-shot prompting 83.7 96.6
Few-shot prompting 87.0 96.0
PPO-ST 92.2 97.0
MPT-7B-chat
Zero-shot prompting 19.7 57.4
Few-shot prompting 21.7 57.2
PPO-ST 89.3 84.0

Table 4: Performance comparison of LLAMA2-7B-chat-
hf, Qwen2.5-7B-Instruct(Hui et al., 2024), and MPT-
7B-chat(MosaicML, 2023) models on the GLUE STS-B
and SuperGLUE COPA tasks under zero-shot prompt-
ing, few-shot prompting, and PPO based fine-tuning.
Results are sourced from the official GLUE benchmark
and SuperGLUE benchmark evaluation servers. For
STS-B, we report Spearman correlation, and for COPA,
accuracy is used as the evaluation metric.

in variable performance outcomes. 593

6 Conclusion 594

Prompting-based approaches, including zero-shot 595

and few-shot prompting, are commonly used to 596

adapt LLMs to downstream tasks. However, our 597

experiments show that when applied to LLAMA2- 598

7B-chat-hf, these methods underperform on NLU 599

benchmarks such as GLUE and SuperGLUE (ta- 600

ble 6), often trailing smaller encoder-only models 601

like BERT-base. To address this, we investigate two 602

fine-tuning strategies that update only LoRA layers 603

for computational efficiency: SFT and PPO. While 604

SFT yields modest improvements, PPO provides 605

substantial gains by framing NLU tasks as rein- 606

forcement learning problems. PPO-tuned models 607

not only outperform strong baselines like BERT- 608

large but also generalize well across model fami- 609

lies and tasks. Notably, PPO-trained LLAMA2-7B- 610

chat-hf outperforms GPT-4o by 10.8% on SIGA-nli 611

and 7.3% on the Mental Health dataset, demonstrat- 612

ing strong zero-shot generalization from single-task 613

fine-tuning. More broadly, we highlight a promis- 614

ing direction: adapting LLMs to new tasks with- 615

out labeled data by using reward-driven learning. 616

With a well-defined reward function, PPO can steer 617

models toward high-reward behaviors—offering a 618

scalable, label-efficient alternative to SFT. 619
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Limitations620

This work takes an initial step toward framing NLU621

as a reinforcement learning problem for LLMs un-622

der 14B parameters. While our long-term goal is to623

reduce reliance on curated datasets by leveraging624

richer, task-specific reward models, we currently625

adopt a simple binary reward signal based on exact626

label matching. This design enables a controlled627

evaluation of PPO as an effective adaptation strat-628

egy, showing consistent gains over prompting and629

supervised fine-tuning. Although we present a pre-630

liminary exploration of model-driven reward func-631

tions in Appendix F, further research is needed to632

develop robust and generalizable reward signals633

that can support more complex or weakly super-634

vised tasks without requiring extensive manual an-635

notation. Overall, our findings suggest that cast-636

ing nuanced tasks as reinforcement learning prob-637

lems—through the design of appropriate environ-638

ments and reward functions—offers a scalable and639

flexible alternative to standard fine-tuning, partic-640

ularly when the model is already well-initialized641

through pretraining.642
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A Hyperparameter Settings823

For PPO-based fine-tuning, grid search is per-824

formed to select the batch size in 4, 8, 12, and 16825

for each task. A batch size of 24 was used across826

all tasks during supervised fine-tuning (SFT). The827

PPO epoch is set to 4, meaning that each sampled828

batch is used for updating the model four times.829

The initial learning rate for all tasks was set to830

9 × 10−6. We utilized the Adafactor optimizer831

for PPO training and AdamW for SFT. A cosine832

annealing learning rate scheduler with a warmup833

phase was employed, where the learning rate was834

gradually increased during the first 10% of training835

steps and then reduced to one-tenth of the initial836

value by the end of training. We use a rank r = 16837

for the LoRA layers. We trained both PPO and838

SFT models until convergence on the validation839

set. The best hyperparameters were selected based840

on performance on the validation set. The final841

reported results for the GLUE and SuperGLUE are842

from their corresponding evaluation server. For843

evaluation, multinomial sampling with a tempera-844

ture of 1 was used to generate a single response per845

data sample. The model generated responses with846

lengths between 12 and 32 tokens, with the gener-847

ation process concluding using a special identifier848

“</Judgement>”.849

B Reward Curve for PPO Fine-Tuning850

We present the reward curve from fine-tuning851

LLAMA2-7B-chat-hf using PPO in a multitask set-852

ting on the GLUE dataset. Figure 2 illustrates the853

reward values over training iterations, offering in-854

sights into the training dynamics of the model. The855

curve serves as a key performance metric, tracking856

the model’s learning progress across multiple tasks.857

The consistent upward trend demonstrates that858

PPO fine-tuning effectively improves LLAMA2-859

7B-chat-hf’s ability to generate task-relevant out-860

puts.861

B.1 Results on SuperGLUE Benchmark862

We fine-tuned the LLAMA2-7B-chat-hf model us-863

ing PPO on the SuperGLUE dataset and compared864

its performance against several baselines, including865

BERT-large, BERT-large++, and zero-shot and few-866

shot prompting of LLAMA2-7B-chat-hf. The term867

“BERT++” refers to a BERT model fine-tuned using868

the supplementary training on intermediate labeled-869

data tasks (STILTs) approach (Phang et al., 2018),870

where the model is first fine-tuned on related trans-871

fer tasks before being fine-tuned on SuperGLUE 872

tasks. For example, MNLI from the GLUE bench- 873

mark(Wang et al., 2019) is used as an intermediate 874

task for CB, RTE, and BoolQ(Wang et al., 2020). 875

In contrast, our experiments with LLM did not use 876

this method. Our models were only fine-tuned on 877

the datasets included in the SuperGLUE bench- 878

mark. 879

As shown in Table 6, the PPO-tuned LLAMA2- 880

7B-chat-hf achieved the highest average perfor- 881

mance, surpassing all baselines. PPO demonstrated 882

particularly strong improvements on reasoning- 883

intensive tasks like COPA and MultiRC, where 884

it significantly outperformed both prompting meth- 885

ods and encoder-only models. These results high- 886

light the effectiveness of PPO in improving the 887

model’s capabilities, particularly for tasks requir- 888

ing reasoning and contextual understanding. 889

It is worth noting that on MultiRC, few-shot 890

prompting performs slightly worse than zero-shot 891

prompting. This may be because MultiRC involves 892

long input contexts, and incorporating multiple ex- 893

amples in a few-shot prompt can cause the total 894

input length to approach or exceed the LLMs maxi- 895

mum context window. Even in the one-shot setting, 896

providing an excessively long context can dilute the 897

model’s attention, potentially leading to reduced 898

performance. 899

C Evaluation on Reading Comprehension 900

Tasks 901

We evaluate LLAMA2-7B-chat-hf on the SQuAD 902

reading comprehension task, where the objective is 903

to select a passage from a given context that best 904

answers a question. Two training strategies are 905

compared: Supervised Fine-Tuning (SFT), which 906

directly uses the ground-truth answer as the train- 907

ing label, and Proximal Policy Optimization (PPO), 908

which leverages reward functions based on Exact 909

Match (EM) and F1 Score. EM metric is computed 910

by comparing a normalized prediction against the 911

normalized ground truth (with normalization in- 912

volving lowercasing and punctuation removal); a 913

perfect match yields an EM score of 1, otherwise 0. 914

F1 score measures word-level overlap, balancing 915

how many predicted words are correct (precision) 916

and how many ground-truth words are included 917

(recall). 918

Models were fine-tuned for one epoch on the 919

SQuAD training set and evaluated on the develop- 920

ment set. In our evaluation, zero-shot prompting 921
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Tasks LLAMA2-7B PPO-ST LLAMA2-13B PPO-ST GPT-4o

Sentiment Analysis
Financial PhraseBank (96.2, 98.1) (96.9, 98.5) (96.6, 98.4)
Labelled Financial News (66.1, 74.6) (69.0, 76.6) (63.2, 72.2)
Mental Health (66.6, 67.7) (66.0, 67.1) (59.3, 60.5)
Emotion (77.4, 78.6) (75.8, 77.0) (77.0, 78.2)

Natural Language Inference
Babi-nli (64.3, 71.5) (65.1, 73.0) (58.8, 67.6)
SIGA-nli (39.0, 53.9) (40.6, 53.7) (28.5, 42.2)

Table 5: To quantify uncertainty in our evaluations, we generate 100 predictions for each example in the dataset.
The evaluation metric is then computed for each set over the entire dataset, forming a distribution of values. The
95% confidence interval is defined by the 2.5th and 97.5th percentiles of this distribution. For sentiment analysis,
models fine-tuned on SST-2 are evaluated in a zero-shot setting on Financial PhraseBank, Labelled Financial News,
Mental Health, and Emotion datasets. For natural language inference, models fine-tuned on MNLI are zero-shot
evaluated on Babi-NLI and SIGA-NLI.

Figure 2: Reward curve for multitask PPO fine-tuning of LLAMA2-7B-chat-hf on the GLUE dataset. The plot
illustrates the relationship between training iterations (x-axis) and reward values (y-axis), demonstrating the
effectiveness of the PPO optimization approach in improving model performance over time.

yields an EM of 7.66 and an F1 score of 32.27. SFT922

significantly improves these metrics (EM: 59.17,923

F1: 76.48), while PPO further enhances perfor-924

mance, achieving an EM of 65.74 and an F1 score925

of 81.82—corresponding to improvements of 6.57926

and 5.34 points over SFT, respectively.927

These results indicate that optimizing with re-928

ward functions based on EM and F1 via PPO leads929

to further improvements in reading comprehension930

performance, thereby validating our approach rela-931

tive to both zero-shot prompting and standard SFT.932

933

D Impact of Fine-Tuning on Language934

Modeling Ability935

We experiment with SFT and PPO to improve936

NLU capabilities of LLMs and observe improved937

performance using PPO. However, it is crucial938

to ensure that fine-tuning methods do not signifi- 939

cantly degrade the models’ general language gen- 940

eration abilities. To assess this, we directly evalu- 941

ate the PPL (jel, 1977; Chelba and Jelinek, 2000) 942

of LLAMA2-7B-chat-hf models fine-tuned on the 943

SST-2 dataset using the WikiText-2 test set (Mer- 944

ity et al., 2016), which follows a natural human- 945

written text distribution. We compare these fine- 946

tuned models against the original, non-fine-tuned 947

baseline model, with the expectation that the PPL 948

of the fine-tuned models should closely match 949

the baseline. Our results reveal that the origi- 950

nal LLAMA2-7B-chat-hf achieves a perplexity of 951

6.939. The PPO-fine-tuned model closely main- 952

tains this baseline performance with a perplexity 953

of 6.966, indicating minimal impact on its general 954

language modeling capabilities. In contrast, the 955

SFT-fine-tuned model displays a notably higher 956
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Models BoolQ CB COPA MultiRC ReCoRD RTE

BERT-large 77.4 75.7/83.6 70.6 70.0/24.0 72.0/71.3 71.6
BERT-large++ 79.0 84.7/90.4 73.8 70.0/24.1 72.0/71.3 79.0
LLAMA2-7B-chat-hf
Zero-shot prompting 75.8 26.4/43.6 57.0 51.9/20.3 27.0/26.2 59.2
Few-shot prompting 80.2 49.8/66.0 73.4 46.6/15.4 36.3/35.3 72.9
PPO-ST 85.9 74.7/88.0 88.6 82.5/50.0 70.6/69.9 84.3

Models WiC WSC AXb AXg Average

BERT-large 69.5 64.3 23.0 97.8/51.7 69.0
BERT-large++ 69.5 64.3 38.0 99.4/51.4 71.5
LLAMA2-7B-chat-hf
Zero-shot prompting 54.4 52.1 9.1 64.0/55.1 49.5
Few-shot prompting 54.4 62.3 9.1 64.0/55.1 54.9
PPO-ST 72.1 78.1 52.7 91.0/79.8 78.3

Table 6: SuperGLUE test results are scored by the evaluation server (SuperGLUE benchmark). The experimental
data for BERT-large and BERT-large++ are taken from the original SuperGLUE paper (Wang et al., 2020). The
metrics used in the experiments are as follows: CB: F1 / Acc; MultiRC: F1 / Exact Match; ReCoRD: F1 / Exact
Match; AXb: MCC; AXg: Gender parity score / Acc. For the remaining tasks not mentioned, accuracy (Acc) is
reported. Average column corresponds to the averaged performance across all the datasets. For tasks with multiple
evaluation metrics, we first compute the average of those metrics to obtain a single task score, which is then used in
the overall average calculation. The bolded results indicate the best results, and the underlined results indicate the
second-best results.

Method EM F1

Original 7.66 32.27
SFT 59.17 76.48
PPO 65.74 81.82

Table 7: Performance of LLAMA2-7B-chat-hf on the
SQuAD dataset. PPO uses Exact Match and F1 as re-
ward signals. Best results are highlighted in bold.

perplexity of 7.384, suggesting a significant reduc-957

tion in generation capabilities due to convergence958

toward task-specific training distributions. We con-959

jecture that PPO’s clipping mechanism effectively960

constrains policy updates, preventing large devia-961

tions from the reference model and thereby preserv-962

ing the original language modeling capabilities of963

LLMs. These findings underscore PPO’s effective-964

ness in maintaining the general language abilities965

of LLMs during fine-tuning.966

E Comparison of RL Algorithms: PPO vs.967

GRPO968

Our objective is to improve the natural language un-969

derstanding capabilities of the base (policy) model970

through RL fine-tuning. In this context, we com-971

pare two approaches: PPO and Group Relative972

Method perplexity

Original 6.939
SFT 7.384
PPO 6.966

Table 8: Perplexity of LLAMA2-7B-chat-hf on the
WikiText-2 test set. Lower perplexity indicates better
language modeling ability.

Policy Optimization (GRPO) (Shao et al., 2024). 973

PPO is highly effective but introduces additional 974

computational overhead. This overhead stems from 975

the need for repeated sampling and from updating 976

a separate critic model to compute value functions. 977

In contrast, GRPO was designed to mitigate these 978

costs by bypassing the critic model entirely. Instead 979

of maintaining a separate value network, GRPO 980

samples multiple trajectories per prompt and com- 981

putes each trajectory’s advantage by comparing its 982

reward to the batch’s average (and standard devia- 983

tion). This method not only simplifies the architec- 984

ture but also reduces memory usage. 985

For our experiments, we utilized the TRL library 986

(von Werra et al., 2020) on a single Nvidia A100 987

GPU, with a batch size of 16 and gradient check- 988

pointing enabled. While SFT involves a simple 989
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Algorithm SST-2 MRPC (F1) RTE CoLA QNLI Avg. Per-Step Runtime (s)

SFT 73.8 85.8 80.4 50.7 93.6 76.9 4.124
PPO 96.4 89.4 84.3 59.9 93.2 84.6 4.299
GRPO 96.7 91.2 88.5 55.2 93.1 84.9 5.155

Table 9: Zero-shot GLUE performance (SST-2, MRPC F1, RTE, CoLA, QNLI) and per-step runtime. Best score in
each column is bolded.

forward pass, loss computation, and backward pass990

per step, both PPO and GRPO add extra steps such991

as LLM sampling, reward calculation, and advan-992

tage estimation.993

As detailed in Table 9, both PPO and GRPO994

deliver notable performance improvements over995

SFT. Notably, PPO only incurs about a 4% increase996

in per-step runtime compared to SFT. However,997

GRPO’s need to generate multiple responses per998

sample results in a higher runtime, despite its mem-999

ory efficiency benefits. Overall, our analysis high-1000

lights the trade-offs between these RL algorithms:1001

PPO offers efficient runtime with the cost of addi-1002

tional overhead from the critic model, while GRPO1003

reduces memory usage at the expense of increased1004

sampling time.1005

F Reward Function Design and1006

Evaluation1007

While our primary reward function is based on1008

matching generated outputs to true labels, we rec-1009

ognize that more sophisticated reward designs may1010

be necessary for complex NLU tasks. To address1011

this, we investigate the effect of integrating a re-1012

ward model into our PPO training, with the aim of1013

enhancing not only classification performance on1014

SST-2 but also the quality of generated analyses.1015

Reward Modeling Setup. For the first 5,0001016

training samples of the SST-2 dataset, LLAMA2-1017

7B-chat-hf generates four responses per data point.1018

Each response includes a sentiment judgment (Pos-1019

itive/Negative) and a supporting analysis. To ro-1020

bustly rank these responses, we use GPT-4o as an1021

evaluator. GPT-4o ranks the responses based on:1022

(i) the correctness of the sentiment judgment (i.e.,1023

matching the ground truth), (ii) the consistency be-1024

tween the judgment and its accompanying analysis,1025

and (iii) the overall factual correctness and helpful-1026

ness of the analysis. To ensure clear differentiation,1027

we include two reference responses—one with only1028

the correct answer and one with only the incorrect1029

answer—and define the ranking order as: correct1030

answer with analysis > only correct answer > incor-1031

rect answer with analysis > only incorrect answer. 1032

Training the Reward Model. A reward model 1033

is then trained on this ranked dataset using a BERT- 1034

based architecture (bert-base-cased). For each in- 1035

put x, we consider pairs of responses (yw, yl), 1036

where yw denotes a response ranked higher by our 1037

evaluator (GPT-4o) due to its correct sentiment and 1038

coherent analysis, and yl denotes a lower-ranked 1039

response. The model learns to assign higher scores 1040

to better responses via a pairwise ranking loss: 1041

L(θ) = −E(x,yw,yl)∼D[
log σ

(
rθ(x, yw)− rθ(x, yl)

)]
,

(3) 1042

where rθ(x, y) is the score assigned to response 1043

y given x, and σ is the sigmoid function convert- 1044

ing the score difference into a probability. This 1045

loss encourages the reward model to output higher 1046

scores for responses with superior judgments and 1047

analyses. 1048

Incorporating the Reward Model into PPO 1049

Training. During PPO training on SST-2, LLM 1050

is tasked with generating both a sentiment judg- 1051

ment and an analysis. The trained reward model 1052

provides the reward signal by scoring these out- 1053

puts. As shown in Table 10a, while the PPO model 1054

trained with reward signals from the reward model 1055

(PPO-RM) produces analyses of higher quality, it 1056

suffers from a significant reduction in classifica- 1057

tion performance, dropping from 96.4% to 89.7%. 1058

We believe this discrepancy might be due to the 1059

limited sample size used for reward model training 1060

and potential reward hacking (Amodei et al., 2016) 1061

during optimization. However, we will explore this 1062

further in our future works. 1063

Evaluation of Generated Analyses. To further 1064

assess the impact of our reward design, we evalu- 1065

ated the quality of generated analyses. We sampled 1066

100 data points from three models: the original 1067

LLAMA2-7B-chat-hf, the PPO model trained us- 1068

ing only correct-answer rewards (PPO), and the 1069

PPO model trained with the reward model (PPO- 1070

RM). GPT-4o then scored each analysis on a scale 1071
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Method Accuracy (%)

PPO 96.4
PPO-RM 89.7

(a) SST-2 performance on GLUE.

Method GPT Eval. Score

PPO 3.479
PPO-RM 4.104

(b) Quality of generated analyses.

Table 10: Comparison of reward function designs for LLAMA2-7B-chat-hf. The model trained with a rule based
reward (PPO) achieves a high SST-2 classification accuracy of 96.4%, while incorporating a sophisticated reward
model (PPO-RM) significantly reduces accuracy (89.7%) but yields substantially improved analysis quality, with a
GPT evaluation score of 4.104 compared to 3.479 for the simple reward. Best results are highlighted in bold.

from 1 to 5 based on answer correctness and logi-1072

cal coherence. As indicated in Table 10b, the PPO1073

model using reward model signals achieved the1074

highest average score, suggesting that a more com-1075

plex reward function can enhance the quality of1076

generated outputs.1077

In summary, while the integration of a reward1078

model in PPO training significantly reduces classifi-1079

cation performance compared to using only correct-1080

answer rewards, it considerably improves the GPT1081

evaluation scores of the analyses produced by the1082

LLM.1083
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