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Abstract

Electronic health records (EHR) contain a wealth of biomedical information, serving as
valuable resources for the development of precision medicine systems. However, privacy
concerns have resulted in limited access to high-quality and large-scale EHR data for
researchers, impeding progress in methodological development. Recent research has delved
into synthesizing realistic EHR data through generative modeling techniques, where a majority
of proposed methods relied on generative adversarial networks (GAN) and their variants
for EHR synthesis. Despite GAN-based methods attaining state-of-the-art performance in
generating EHR data, these approaches are difficult to train and prone to mode collapse.
Recently introduced in generative modeling, diffusion models have established cutting-edge
performance in image generation, but their efficacy in EHR data synthesis remains largely
unexplored. In this study, we investigate the potential of diffusion models for EHR data
synthesis and introduce a novel method, EHRDiff . Through extensive experiments,
EHRDiff establishes new state-of-the-art quality for synthetic EHR data, protecting private
information in the meanwhile.

1 Introduction

Electronic health records (EHR) contain vast biomedical knowledge. EHR data may enable the development
of state-of-the-art computational biomedical methods for dynamical treatment (Sonabend et al., 2020),
differentiable diagnosis (Yuan & Yu, 2021), rare genetic disease identification (Alsentzer et al., 2022),
etc. However, EHRs contain sensitive patients’ private health information. The real-world EHRs need
de-identification before publicly accessible (Johnson et al., 2016; 2023). The de-identification process uses
automatic algorithms and requires tedious thorough human reviewing. Pending releasing approval can take
months out of legal or ethical concerns (Hodge et al., 1999). Such circumstances limit the open-resourcing
of rich EHR data, hence impeding the advancement of precision medicine methodologies. To mitigate the
issue of limited publicly available EHR data, researchers alternatively explored generating synthetic EHR
data (Choi et al., 2017; Walonoski et al., 2017). Realistic synthetic EHR generation has recently become a
research field of medical informatics.

A line of works approached EHR data synthesis through generative modeling techniques, where they trained
generative models on limited real EHR data to generate synthetic EHR data. Recent research developed
variants of auto-encoders (Vincent et al., 2008; Biswal et al., 2020) or generative adversarial networks (GAN)
(Goodfellow et al., 2014; Choi et al., 2017). The majority of EHR data synthesis methodologies have relied
on GAN (Choi et al., 2017; Baowaly et al., 2018; Zhang et al., 2019; Yan et al., 2020). Although GAN-based
methods achieved state-of-the-art performance with respect to synthetic EHR quality and privacy preservation,
they suffer from training instability and mode collapse (Che et al., 2017). Previous research proposed different
techniques to mitigate the problem, while as shown in our experiments, GAN-based methods still are prone
to such problems, resulting in unsatisfactory synthetic data quality. This may raise concerns when developing
real-world systems using synthetic EHR data from GAN-based methods.

Most recently, novel diffusion models (Sohl-Dickstein et al., 2015) in generative modeling have been proposed
and have achieved cutting-edge generation performance in the field of vision (Ho et al., 2020; Song et al.,
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2021), audio (Kong et al., 2021), or texts (Li et al., 2022; Gong et al., 2023; Yuan et al., 2022). Many variants
of diffusion models have surpassed the generation performance of GANs in sample quality and diversity.
In general, starting from random noise features, diffusion models use a trained denoising distribution to
gradually remove noise from the features and ultimately generate realistic synthetic features. The efficacy
of diffusion models on realistic EHR synthesis is rarely studied. Considering the superior performance of
diffusion models in other domains, our work explores the synthesizing performance of such techniques on
EHR data. We design and introduce EHRDiff , a diffusion-based EHR synthesizing model.

Our work conducts comprehensive experiments using publicly available real EHR data and compares the
effectiveness of EHRDiff against several other GAN-based EHR data synthesizing methods. We provide
empirical evidence that EHRDiff is capable of generating synthetic EHR data with a high degree of quality.
Additionally, our findings reveal that the synthetic EHR data produced by EHRDiff is of superior quality
compared to those generated by GAN-based models, and it is more consistent with the distribution of
real-world EHR data.

Our research has two primary contributions: firstly, we introduce the use of diffusion models to the realm of
realistic EHR synthesis and propose a diffusion-based method called EHRDiff . Secondly, through extensive
experimentation on publicly available EHR data, we demonstrate the superior quality of synthetic EHR data
generated by EHRDiff in comparison to GAN-based EHR synthesizing methods. Furthermore, the synthetic
EHR data generated by EHRDiff exhibits excellent correlation with real-world EHR data.

Our work is summarized as two following contributions:

1. We introduce diffusion models to the fields of EHR data synthesis and propose a diffusion-based
method called EHRDiff .

2. Through extensive experiments on publicly available real EHR data, we empirically demonstrate the
superior generation quality of EHRDiff over GAN-based EHR synthesis methods. EHRDiff can
safeguard private information in real EHR for training.

3. Compared to existing GAN-based methods, EHRDiff also shows superior efficacy for synthesizing
various EHR feature formats, including categorical, continuous, and time-series features.

2 Related Works

2.1 EHR data synthesis

In the literature on EHR synthesis, researchers are usually concerned with the generation of discrete code
features such as ICD codes rather than clinical narratives. Researchers have developed various methods
to generate synthetic EHR data. Early works were usually disease-specific or covered a limited number of
diseases. Buczak et al. (2010) developed a method that generates EHR related to tularemia and the features
in synthetic EHR data are generated based on similar real-world EHR which is inflexible and prone to privacy
leakage. Walonoski et al. (2017) developed a software named Synthea which generates synthetic EHR based
on publicly available data. They build generation workflows based on biomedical knowledge and real-world
feature statistics. Synthea only covered the 20 most common conditions.

Recently, researchers mainly applied generative modeling methods for EHR synthesis (Ghosheh et al., 2022).
Medical GAN (medGAN) (Choi et al., 2017) introduced GAN to EHR synthesis. medGAN can generate
synthetic EHR data with good quality and is free of tedious feature engineering. Following medGAN, various
GAN-based methods are proposed, such as medBGAN (Baowaly et al., 2018), EHRWGAN (Zhang et al.,
2019), CorGAN (Torfi & Fox, 2020a), etc. These GAN-based methods advance synthetic EHR to higher
quality. However, a common drawback of GAN-based methods is that these methods suffer from the mode
collapse phenomenon which results in a circumstance where a GAN-based model is only capable to generate
only a few modes of real data distribution (Thanh-Tung et al., 2018). To mitigate the problem, GAN methods
for EHR generation rely on pre-trained auto-encoders to reduce the feature dimensions for training stability.
However, inappropriate hyper-parameter choices and autoencoder pre-training will lead to sharp degradation
of synthetic EHR quality or even failure to generate realistic data. There is also research that uses GAN-based

2



Under review as submission to TMLR

Figure 1: An overview of proposed EHRDiff .

models for conditional synthetic EHR generation to model the temporal structure of real EHR data (Zhang
et al., 2020a). Since diffusion models are less studied in EHR synthesis, we focus on the unconditional
generation of EHR and leave modeling conditional temporal structure with diffusion models to future works.

Besides GAN-based methods, there also exists research that explores generating synthetic EHR data through
variational auto-encoders (Biswal et al., 2020) or language models (Wang & Sun, 2022). Concurrently,
MedDiff (He et al., 2023) is proposed and explores diffusion models for synthetic EHR generation, and they
propose a new sampling technique without which the diffusion model fails to generate high-quality EHRs. In
our work, we explore the direct implementation of diffusion models to generate synthetic EHR data.

2.2 Diffusion Models

Diffusion models are formulated with forward and reverse processes. The forward process corrupts real-
world data by gradually injecting noise, and harvesting training data with different noise levels for a
denoising distribution, while the reverse process generates realistic data by removing noise using the denoising
distribution. Diffusion models are first proposed and theoretically supported (Sohl-Dickstein et al., 2015).
DDPM (Ho et al., 2020) and NCSN (Song et al., 2021) discover the superior capability in image generation,
and diffusion models become a focused research direction since then. Recent research generalizes diffusion
models to the synthesis of other data modalities and achieves excellent performance (Li et al., 2022; Kong
et al., 2021). Our work for the first time introduces diffusion models to realistic EHR synthesis.

3 Method

In this section, we give an introduction to the problem formulation of realistic EHR synthesis and the technical
details of our proposed EHRDiff . An overview of EHRDiff is depicted in Figure 1.

3.1 Problem Formulation

Following previous research (Choi et al., 2017; Baowaly et al., 2018), we focus on the synthesis of code features
in EHR data. We assume a set of codes C of interest, and one EHR sample is encoded as a fixed-size feature
vector x0 ∈ {0, 1}|C|. The i-th dimension represents the occurrence of the corresponding code feature, where
1 stands for occurrence and 0 otherwise. In EHRDiff , we treat the binaries as real numbers and directly
apply forward and backward diffusion processed upon x0.
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3.2 EHRDiff

Generally, diffusion models are characterized by forward and reverse Markov processes with latent variables.
As demonstrated by Song et al. (2021), the forward and reverse processes can be described by stochastic
differential equations (SDE). In EHRDiff , we use differential equations to describe the processes. The
general SDE form for modeling the forward process follows:

dx = f(x, t)dt + g(t)dw, (1)

where x represents data points, w represents standard Wiener process, t is diffusion time and ranges from
0 to T . At t = 0, x follows real data distribution while at t = T , x asymptotically follows a random
Gaussian distribution. Functions f and g define the sample corruption pattern and the level of injected noises,
respectively. f and g together corrupt real-world data to random noise, following the SDE above. Based on
the forward SDE, we can derive the SDE for the reverse process as:

dx =
(
f(x, t) − g2(t)∇x log pt(x)

)
dt + g(t)dw, (2)

where pt(x) is the marginal density of x at time t. Therefore, to generate data from random noise, we need
to learn the score function ∇x log pt(x) with score matching. The score function indicates a vector field in
which the direction is pointed to the high-density data area. The objective is to estimate the score function
and is formulated as:

min
θ

Ep(x0)pσt (x|x0)
[
∥sθ(x) − ∇x log pσt

(x|x0)∥2
2
]

, (3)

where p(x0) is the density for real data, sθ is the score function parameterized by θ, ∇x is the operator of
derivation with respect to x, pσt(x|x0) is named the perturbation kernel corresponding to the SDE. The
kernel represents the conditional density of noisy sample x at noise level σt and is formulated as:

pσt
(x|x0) = N (h(t)x0, h(t)2σ2

t I), (4)

where h(t) and σt are reformulated from f and g for concise notations:

h(t) = exp
(∫ t

0
f(ξ)dξ

)
,

σt = σ(t) =

√∫ t

0

g(ξ)2

h(ξ)2 dξ.

Note that we change the subscript of pt to pσt
in Equation 3, since t controls the noisy sample distribution

through the noise level σt. In EHRDiff , we follow the perturbation kernel design from previous research
(Karras et al., 2022) in which h(t) = 1 and σt = t. Therefore ∇x log pσt(x|x0) = − x−x0

σ2
t

and we reparameterize
sθ(x) = − x−Dθ(x,σt)

σ2
t

, then the objective can be derived as:

min
θ

Ep(x0)pσt (x|x0)

[∥∥∥∥−x − Dθ(x, σt)
σ2

t

+ x − x0

σ2
t

∥∥∥∥2

2

]
, (5)

min
θ

Ep(x0)pσt (x|x0)

[∥∥∥∥Dθ(x, σt) − x0

σ2
t

∥∥∥∥2

2

]
, (6)

and with further simplification, the final objective becomes:

min
θ

Ep(x0)pσt (x|x0)
[
∥Dθ(x, σt) − x0∥2

2
]

, (7)

where D(x, σt) is the denoising function that predicts the denoised samples based on noisy ones. With such
parameterization, the score function ∇x log pσt

(x) can be recovered by:

∇x log pσt(x) = −x − Dθ(x, σt)
σ2

t

. (8)
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Algorithm 1 Heun’s 2nd Method for Sampling
Input: Time Step ti and noise level σti

1: Using Equation 8 and 10, calculate the derivative gti
= dx/dt:

gti
= t−1

i xti
− t−1

i D(xti
; σti

),
2: Get intermediate x̃ti+1 by taking Euler step:

x̃ti+1 = gti
(ti+1 − ti) + xti

,
3: Calculate the gradient correction g̃ti :

g̃ti = t−1
i+1x̃ti+1 − t−1

i+1D(x̃ti+1 ; σti+1),
4: Get next time step sample xti+1 :

xi+1 = xi + (ti+1 − ti)( 1
2 gi + 1

2 g̃i+1)
5: return xti+1

3.3 Deterministic Reverse Process

Diffusion models generate synthetic samples following the reverse process. Generally, the reverse processes
are described by SDEs, and noise is injected in each step when solving the reverse SDE numerically. We can
equivalently describe the reverse generation process with ordinary differential equations (ODE) instead of
SDEs (Song et al., 2021):

dx =
(

f(x, t) − 1
2g(t)2∇x log pt(x)

)
dt. (9)

The corresponding ODE is called the probability flow ODE which indicates a deterministic generation process
(i.e., a deterministic numerical solution trajectory). With the aforementioned formalization of h(t) and σt,
the probability flow ODE can be rewritten as:

dx = −t∇x log pσt
(x)dt. (10)

With the learned denoising function Dθ(x, σt) and Equation 8, we can solve the ODE in Equation 10 and
generate realistic synthetic EHRs from random noise.

Solving the ODE numerically requires discretization of the time step t and a proper design of noise level σt

along the solution trajectory. As suggested in previous works, using a fixed discretization of t may result in
sub-optimal performance and the noise level should decrease during generation. Therefore, following previous
research (Karras et al., 2022), we set the maximum and minimum of noise level as σmax and σmin respectively,
and according to our design of σt, we use the following form of discretization:

ti = σti
=
(

(σmax)
1
ρ + i

N − 1

(
(σmin)

1
ρ − (σmax)

1
ρ

))ρ

, (11)

where i’s are integers and range from 0 to N , σtN
= 0, σtN−1 = σmin, and ρ controls the schedules of discretized

time step ti and trades off the discretized strides ti − ti−1 the larger value of which indicates a larger stride
near t0. Numerically solving the probability flow ODE with the above-mentioned discretized time schedule
leads to an approximate solution and the precision is hampered by truncation errors. In order to solve the
ODE more precisely and generate synthetic EHR with higher quality, we use Heun’s 2nd order method, which
adds a correction updating step for each ti and alleviates the truncation errors compared to the 1st order
Euler method.

We brief our 2nd order sampling method in Algorithm 1 for each time step ti.

3.4 Design of Denoising Function

In this section, we further discuss the parameterization of the denoising function Dθ(x, σt). The denoising
function Dθ(x, σt) takes the noisy sample x and current noisy level σt as inputs to cancel out the noise in x
at time step t. It is natural to direct model D(x, σt) with neural networks, while such direct modeling may
set obstacles for the training of neural networks, because, at different time steps t, the variance of x and
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scale of σt are diverse. Another common practice of diffusion models is to decouple noise from input noisy
sample x hence Dθ(x; σ) = x − σFθ(x; σ) (Ho et al., 2020). Fθ(x; σ) is modeled with neural networks and
predicts the noise in x. Under this design, the prediction error of Fθ(x; σ) may be amplified by the noise
scale σ, especially when σ is large.

Emphasizing the above problems, we use a recently proposed adaptive parameterization of Dθ(x; σ) (Karras
et al., 2022), where

Dθ(x; σ) = cskip(σ)x + cout(σ)Fθ(cin(σ)x; cnoise(σ)). (12)

Specifically, cin(σ) = 1/
√

σ2 + σ2
data and it regulate the input to be unit variance across different noise

levels. cout and cskip together set the neural model prediction to be unit variance with minimized scale
cout. Therefore, cout = σσdata/

√
σ2 + σ2

data and cskip(σ) = σ2
data/(σ2 + σ2

data). cnoise(σ) = 0.25 ln σ which is
designed empirically and the principal is to constrain the input noise scale from varying immensely.

By substituting Dθ(x; σ) in the objective Equation 7 with Equation 12, the loss function for neural model
training is:

Eσ,x,x0 [cout(σ)2||Fθ(cin(σ) · (x); cnoise(σ)) − 1
cout(σ) (x0 − cskip(σ) · (x))||22]. (13)

To balance the loss at different noise levels σ, the weight c2
out(σ) is omitted in the final loss function.

During training, the noise distribution is assumed to be ln(σ) ∼ N (Pmean, P 2
std), where Pmean and Pstd are

hyperparameters to be set.

4 Experiments

To demonstrate the effectiveness of our proposed EHRDiff , we conduct extensive experiments evaluating
the quality of synthetic EHRs and the privacy concerns of the method. We also compare EHRDiff the
several GAN-based realistic EHR synthesis methods to illustrate the performance of EHRDiff .

4.1 Dataset

Many previous works use in-house EHR data which is not publicly available for method evaluation (Zhang
et al., 2019; Yan et al., 2020). Such experiment designs set obstacles for later research to reproduce experiments.
In this work, we use a publicly available EHR database, MIMIC-III, to evaluate EHRDiff .

Deidentified and comprehensive clinical EHR data is integrated into MIMIC-III (Johnson et al., 2016). The
patients are admitted to the intensive care units of the Beth Israel Deaconess Medical Center in Boston. For
each patient’s EHR, we extract the diagnosis and procedure ICD-9 code and truncate the ICD-9 code to the
first three digits. This preprocessing can reduce the long-tailed distribution of the ICD-9 code distribution
and results in a 1,782 code set. Therefore, the EHR for each patient is formulated as a binary vector of 1,782
dimensions. The final extracted number of EHRs is 46,520 and we randomly select 41,868 for model training
while the rest are held out for evaluation.

4.2 Baselines

To better demonstrate EHR synthesis performance, we compare EHRDiff to several strong baseline models
as follows.

medGAN (Choi et al., 2017) is the first work that introduces GAN to generating realistic synthetic
EHR data. Considering the obstacle of directly using GAN on generating high-dimensional binary EHR
vectors, medGAN alters to a low-dimensional dense space for generation by taking advantage of pre-trained
auto-encoders. The model generates a dense EHR vector and then recovers a synthetic EHR with decoders.
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medBGAN and medWGAN (Baowaly et al., 2018) are two improved GAN models for realistic EHR
synthesis. medGAN is based on the conventional GAN model for EHR synthesis, and such a model is prone
to mode collapse where GAN models may fail to learn the distribution of real-world data. medBGAN and
medWGAN integrate Boundary-seeking GAN (BGAN) (Hjelm et al., 2018) and Wasserstein GAN (WGAN)
(Adler & Lunz, 2018) respectively to improve the performance of medGAN and stabilize model training.

CorGAN (Torfi & Fox, 2020b) is a novel work that utilizes convolutional neural networks (CNN) instead
of multilayer perceptrons (MLP) to model EHR data. Specifically, they use CNN to model the autoencoder
and the generative network. They empirically elucidate through experiments that CNN can perform better
than the MLP in this task.

EMR-WGAN (Zhang et al., 2020b) is proposed to further refine the GAN models from several perspectives.
To avoid model collapse, the authors take advantage of WGAN. The most prominent feature of EMR-WGAN
is that it is directly trained on the discrete EHR data, while the previous works universally use an autoencoder
to first transform the raw EHR data into low-dimensional dense space. They utilize BatchNorm (Ioffe &
Szegedy, 2015) for the generator and LayerNorm (Ba et al., 2016) for the discriminator to improve performance.
As is shown in their experiments, these modifications significantly improve the performance of GAN.

4.3 Evaluation Metric

In our experiments, we evaluate the generative models’ performance from two perspectives: utility and privacy
(Yan et al., 2022). Utility metrics evaluate the quality of synthetic EHRs and privacy metrics assess the
risk of privacy breaches. In the following metrics, we generate and use the same number of synthetic EHR
samples as the number of real training EHR samples.

4.3.1 Utility Metrics

We follow previous works for a set of utility metrics. The following metrics evaluate synthetic EHR quality
from diverse perspectives.

Dimension-wise distribution describes the feature-level resemblance between the synthetic data and
the real data. The metric is widely used in previous works to investigate whether the generative model is
capable to learn the high-dimensional distribution of real EHR data. For each code dimension, we calculate
the empirical mean estimation for synthetic and real EHR data respectively. The mean estimation indicates
the prevalence of the code. We visualize the dimension-wise distribution using scatter plots where both axes
represent the prevalence of synthetic and real EHR respectively. Many codes have very low prevalence in
real EHR data. The generation model may prone to mode collapse and fails to generate the codes with low
prevalence. Therefore, we count the number of codes that exist in the synthetic EHR samples and dub the
quantity non-zero code columns.

Dimension-wise correlation measures the difference between the feature correlation matrices of real and
synthetic EHR data. The i, j entry of correlation matrices calculates the Pearson correlation between the ith
and jth features. For both the synthetic and real EHR data, we calculate first the correlation matrices, and
then the averaged absolute differences between the correlation matrices. We name this metric the correlation
matrix distance (CMD).

Dimension-wise prediction evaluates whether generative models capture the inherent code feature
relation by designing classification tasks. Specifically, we select one of the code features to be the classification
target and use the rest of the features as predictors. To harvest a balanced target distribution, we sort the
code features according to the entropy H(p) of code prevalence p, where H(p) = −p log(p) − (1 − p) log(1 − p).
We select the top 30 code features according to entropies and form 30 individual classification tasks. For each
task, we fit a classification model with logistic regression using real training and synthetic EHR data and
assess the F1 score on the preset evaluation real EHR data.
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Table 1: NZC represents Non-Zero code Columns, CMD represents Correlation Matrix Distance. ↓ and ↑
indicate the respectively lower and higher numbers for better results.

NZC (↑) CMD (↓)
medGAN 560 29.302

medBGAN 848 54.833
medWGAN 420 8.395

CorGAN 799 11.439
EMR-WGAN 1092 8.089

EHRDiff 1742 7.790

4.3.2 Privacy Metrics

Generative modeling methods need real EHR data for training which raises privacy concerns among practi-
tioners. Attackers may infer sensitive private information from trained models. Besides the utility of synthetic
EHR data, we also evaluate existing models from a privacy protection perspective (Choi et al., 2017; Zhang
et al., 2019; Yan et al., 2022).

Attribute inference risk describes the risk that sensitive private information of real EHR training data
may be exposed based on the synthetic EHR data It assumes a situation where the attackers already have
several real EHR training samples with partially known features and try to infer the rest features through
generated synthetic data. Specifically, we assume that attackers first use the k-nearest neighbors method to
find the top k most similar synthetic EHRs to each real EHRs based on the known code features, and then
recover the rest of unknown code features by majority voting of k similar synthetic EHRs. We set k to 1
and use the most frequent 256 codes as the features known by the attackers. The metric is quantified by the
prediction F1-score of the unknown code features.

Membership inference risk evaluates the risk that given a set of real EHR samples, attackers may infer
the samples used for training based on synthetic EHR data. We mix a subset of training real EHR data and
held-out testing real EHR data to form an EHR set. For each EHR in this set, we calculate the minimum L2
distance with respect to the synthetic EHR data. The EHR whose distance is smaller than a preset threshold
is predicted as the training EHR. We report the prediction F1 score to demonstrate the performance of each
model under membership inference risk.

4.4 Implementation Detail

In our experiments on MIMIC-III, for the diffusion noise schedule, we set σmin and σmax to be 0.02 and
80. ρ is set to 7 and the time step is discretized to N = 32. Pmean is set to −1.2 and Pstd is set to 1.2
for noise distribution in the training process. For Fθ in Equation 12, it is parameterized by an MLP with
ReLU (Agarap, 2018) activations and the hidden states are set to [1024, 384, 384, 384, 1024]. For the baseline
methods, we follow the settings reported in their papers.

4.5 Results

4.5.1 Utility Results

Figure 2 depicts the dimension-wise prevalence distribution of synthetic EHR data against real data. The
scatters from EHRDiff are distributed more closely to the diagonal dashed line compared to other baseline
models, and EHRDiff and EMR-WGAN achieve near-perfect correlation. As shown in Table 1, EHRDiff
outperforms all baseline methods in non-zero code column number (NZC) by large margins. This shows
that GAN-based baselines all suffer from model collapse to different extents. The GAN-based method of
best performance, EMR-WGAN, still fails to generate 690 code features with the same number of synthetic
EHR samples as the real data. Although EMR-WGAN achieves a near-perfect correlation between real and

8



Under review as submission to TMLR

Figure 2: The dimension-wise probability scatter plot of synthetic EHR data from different generative models
against real EHR data. The diagonal lines represent the perfect match of code prevalence between synthetic
and real EHR data.

Table 2: The privacy assessment for each model. ↓ indicates the lower numbers for better results.

Attribute Inference Risk (↓) Membership Inference Risk (↓)
medGAN 0.0010 0.3037

medBGAN 0.0057 0.3036
medWGAN 0.0072 0.2967

CorGAN 0.0023 0.2393
EMR-WGAN 0.0257 0.2941

EHRDiff 0.0177 0.2964

synthetic code prevalence and is slightly better than EHRDiff , NZC demonstrates that the correlation can
be biased by high prevalence features and overshadow the evaluation of low prevalence features. The results
above demonstrate that EHRDiff can better capture the code feature prevalence of the real data than the
GAN-based baselines, and is free from mode collapse. The synthetic EHR data by EHRDiff has better
diversity than that by GAN-based methods.

From CMD results in Table 1, EHRDiff surpasses all baseline models. As shown in Figure 3, the F1 score
scatters of EHRDiff are closer to the diagonal lines and achieve the highest correlation value. This means
that training on synthetic EHR data by EHRDiff can lead to more similar performance to training on real
data. CMD results demonstrate that EHRDiff can better capture the inherent pair-wise relations between
code features than GAN-based methods, and Figure 3 also illustrates EHRDiff can better model complex
interactions between code features than baselines. It is also indicated that synthetic EHR data by EHRDiff
may have superior utility for developing downstream biomedical methodologies. We present more results on
other utility metrics in A.
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Figure 3: The dimension-wise prediction scatter plot of synthetic EHR data from different generative models
against real EHR data. The diagonal lines represent the perfect match of code prediction between synthetic
and real EHR data. Each scatter represents a task.

4.5.2 Privacy Results

In Table 2, we list the results against privacy attacks. In terms of attribute inference risk and membership
inference risk, EHRDiff achieves middling results, while medGAN and CorGAN respectively achieve the
best results on attribute inference risk and membership inference risk. However, as shown in utility results,
the quality of synthetic EHR data by both models is far worse than EHRDiff . In an extreme circumstance
where a generative model fails to fit the real EHR data distribution, the model may achieve perfect results on
both privacy metrics, since attackers can not infer private information through synthetic data of bad quality.
Therefore, there exists an implicit trade-off between utility and privacy. We suspect that medGAN and
CorGAN can better safeguard privacy due to mediocre synthesis quality. When compared to EMR-WGAN
which achieves the best synthesis quality among baselines, EHRDiff surpasses EMR-WGAN on attribute
inference risk and achieves on-par results in terms of membership inference risk. To conclude, EHRDiff can
well protect the sensitive private information of real EHR training data.

5 Discussion

5.1 Beyond Binary Code Features

Although most of the existing works focused on synthesizing discrete code features, real-world EHR data
contains various data formats such as continuous test results values or time series of electrocardiograms
(ECG). In this section, we explore extending EHRDiff to the synthesis of EHR data other than binary
codes. We use the following two datasets: CinC2012 Data and PTB-ECG Data. CinC2012 Data is a dataset
for predicting the mortality of ICU patients and contains various feature formate such as categorical age,
or continuous serum glucose values. PTB-ECG Data contains ECG signal data for heart disease diagnosis.
Detailed introductions of both datasets are left in B. All the categorical features are converted into binary
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Table 3: The AUC values on Cinc2012 Data and PTB-ECG Data.

Cinc2012 Data PTB-ECG Data
Real 0.8479 0.9963

medGAN 0.6427 0.7488
medBGAN 0.6550 0.7496
medWGAN 0.6991 0.7923

CorGAN 0.7659 0.5126
EMR-WGAN 0.7963 0.7843

EHRDiff 0.8375 0.9814

columns by one-hot encoding, and continuous features are normalized to values in the range of [0.0, 1.0]. We
use set A and B in CinC2023 Data as training and held-out testing sets respectively. The PTB-ECG Data is
split with a ratio of 8:2 for training and held-out testing.

5.2 Results

Since both datasets are designed for classification, we inspect the utilities of synthesized data by evaluating
Area Under receiver operating characteristic Curve (AUC) of classifiers trained with synthetic data. We use
LightGBM (Ke et al., 2017) as classifiers and train on synthetic data of the same size as real training data.

The results shown in Table 3 that classifiers trained by synthetic data from EHRDiff achieve the highest
AUC values and are consistently better than GAN-based methods, reaching 0.8375 and 0.9814 on CinC2012
Data and PTB-ECG Data respectively. They also have on-par performance with classifiers trained by real
data. The results show the great utility of EHRDiff generated EHR data, and the efficacy is consistently
good across different EHR data feature formats. This demonstrates EHRDiff is practical in real-world
scenarios and can approach EHR synthesis of diverse formats. The development of downstream biomedical
methodologies can benefit from synthetic EHR data by EHRDiff , overcoming the obstacles of limited
publicly available real EHR data.

6 Conclusion

In this work, we explore EHR data synthesis with diffusion models. We proposed EHRDiff , a diffusion-based
model, for EHR data synthesis. Through comprehensive experiments on binary code EHR data, we empirically
demonstrate the superior performance in generating high-quality synthetic EHR data from multiple evaluation
perspectives, setting new state-of-the-art EHR synthesis methods. In the meanwhile, we also show EHRDiff
can safeguard sensitive private information in real EHR training data. Furthermore, beyond binary code
features in EHR data, the efficacy of EHRDiff consistently excels in continuous and time-series features.
EHRDiff can help downstream biomedical methodology research overcome the obstacles of limited publicly
available real EHR data.
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Table 4: MCAD represents Medical Concept Abundance Distance. ↓ and ↑ indicate the respectively lower
and higher numbers for better results.

Latent Distance (↓) MCAD (↓)
medGAN -4.307 0.250

medBGAN -4.320 0.112
medWGAN -14.771 0.071

CorGAN -7.660 0.145
EMR-WGAN -13.727 0.104

EHRDiff -13.849 0.069

Figure 4: The histograms plot the empirical distributions of the unique code counts on the sample level. The
solid lines are the kernel density estimations of the distribution.

A Additional Results

The quality of synthetic EHR data can be evaluated from a multifaceted perspective (Yan et al., 2022). We
use additional metrics to further evaluate the synthetic EHR data on MIMIC-III.

A.1 Latent cluster analysis

The metric evaluates the distributional difference between the synthetic and real EHR data in the latent space.
The metric first use principle component analysis to reduce the sample dimension for both data and then
cluster the samples in the latent space. Ideally, if synthetic and real EHR data are identically distributed, the
synthetic and real EHR samples should respectively comprise half of the samples in one cluster. Therefore,
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the metric is calculated as:

log
(

1
K

K∑
i=1

[n
real
i

ni
− 0.5]2

)
, (14)

where K is the number of resulted clusters, ni and nreal
i are the sample number and the real sample number

in ith cluster, respectively. The lower the value, the less synthetic data distribution deviates from the real
data distribution. In our experiments, K is decided by the elbow method (Yuan & Yang, 2019) for each
synthetic data and in this work is 4 or 5 according to different methods.

A.2 Medical concept abundance

The metric assesses the synthetic EHR data distribution on the record level. The metric calculates the
empirical distribution of the unique positive (occurred) code number within each sample. The empirical
distributions are calculated by histograms. The discrepancy between synthetic and real EHR data is calculated
as follows:

M∑
i=1

1
2N

|hr(i) − hs(i)|, (15)

where M is the number of bins in histograms, N denotes the number of samples for real (or synthetic) data,
and hr(i) and hs(i) respectively represent the ith bin in the histograms of real and synthetic EHR data. In
this work, M is set to 20.

A.3 Results

From Table 4, it is shown that EHRDiff performs better than most baselines and only marginally falls
behind medWGAN by 0.922 on the latent distance metric. In terms of MCAD, EHRDiff consistently
outperforms all baselines, and as depicted in Figure 4, we can see that the histogram of unique code count
distribution of synthetic EHR data by EHRDiff achieves the best fit to that of real EHR data. From a
sample-level perspective, latent distance results illustrate that synthetic EHR data by EHRDiff is closely
distributed to real EHR data. The MCAD results show that synthetic data by EHRDiff resembles the real
EHR most in terms of unique positive code counts. This result is in line with the findings of the non-zero
code column metric.

B Data Materials

B.1 CinC2012 Data

CinC2012 Data (Silva et al., 2012) is a dataset proposed to predict the mortality of ICU patients in the
CinC2012. It contains both general descriptors such as age, gender, and ICU type and time series records like
heart rate, respiration rate, and serum glucose. In our experiments, we use the preprocessed version of this
dataset from (Johnson et al., 2012), which is derived by applying simple extraction on the time-series features
and excluding abnormal outliers in the physiological measurements. We then add the label of in-hospital
mortality to the records, making 115 features in total. There are 4000 records for model training and another
4000 records for model testing, as split by the CinC authority. We use this dataset to evaluate the models’
performance on mixed-type EHR data.

B.2 PTB-ECG Data

PTB-ECG Data (Bousseljot et al., 1995) is a collection of ECG signals for heart disease diagnosis. We
utilize a preprocessed version from (Kachuee et al., 2018) to carry on our experiments, which is segmented
and preprocessed from the original PTB Diagnostic ECG Database. The dataset contains 4046 normal
patients and 10506 records with heartbeat classified as abnormal. Specifically, all the signals are cropped,
downsampled, or padded to make each sample into a fixed dimension of 188. We use this dataset to explore
models’ ability to generate continuous medical time series data.
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