Under review as a conference paper at ICLR 2026

MASKCQO: MASKED GENERATION DRIVES EFFECTIVE
REPRESENTATION LEARNING AND EXPLOITING FOR
COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural combinatorial optimization (NCO) has long been anchored in paradigms
like solution construction or improvement that treat the solution as a monolithic
reference, squandering the rich local decision patterns embedded in high-quality
solutions. Inspired by self-supervised pretraining breakthroughs in language and
vision, where simple yet powerful paradigms like next-token prediction enable
scalable learning, we ask: Can combinatorial optimization adopt such a fundamen-
tal training paradigm to enable effective and scalable representation learning?
We introduce MaskCO, a masked generation approach that reframes learning to
optimize as solution-level self-supervised learning on given reference solutions.
By strategically masking portions of optimal solutions and training models to
recover the missing content, MaskCO turns a single (instance, solution) pair into
hundreds of (instance, partial solution) pairs, encouraging the model to internalize
fine-grained, localized decision patterns. For inference, we propose a mask-and-
reconstruct procedure that naturally leverages the training objective to implement
a local-search-like refinement: each iteration masks certain variables and recon-
structs through masked generation, progressively improving the current solution.
We also find that the learned representations readily transfer to alternative inference
routines and facilitate effective fine-tuning in other models. Experimental results
demonstrate that masked generation serves as a universal learning objective across
multiple CO problems, redefining how solutions are learned, refined, and scaled.
Compared to previous state-of-the-art neural solvers, MaskCO achieves remarkable
performance improvements, exceeding 99% in optimality gap reduction, along
with a 10x speedup on the Travelling Salesman Problem (TSP).

1 INTRODUCTION

Combinatorial Optimization (CO), which seeks optimal solutions in discrete spaces under com-
plex constraints, underpins numerous critical applications (Korte et al., 2011; Cook et al., 1994).
These problems, often NP-hard, pose significant challenges due to their inherent computational diffi-
culty, requiring effective and efficient approximation methods. Neural Combinatorial Optimization
(NCO) (Bengio et al., 2021; Cappart et al., 2021), a rapidly growing area at the intersection of machine
learning and operational research, has emerged as a powerful framework to address these challenges
by automating heuristic design in a data-driven manner. Unlike traditional heuristic-based solvers,
learning-based methods leverage structured distributions of problem instances to extract patterns
directly from data or learn from objective feedback via customized algorithms, reducing reliance
on manual intervention while achieving competitive or superior solution quality and computational
efficiency (Kool et al., 2018; Kwon et al., 2020; Sun & Yang, 2023; Li et al., 2023b).

Many CO tasks can be cast as variable-decision problems on graphs, where the model seeks to
identify a set of target variables that constitute a high-quality solution. Building upon this basic
formulation, advanced methods often relax the discrete variables into a continuous space and integrate
objective-driven strategies to solve these problems. Representative approaches include unsupervised
learning (Sanokowski et al., 2024), objective-based fine-tuning (Sanokowski et al., 2023), and
inference-time guidance (Li et al., 2023b; 2024), largely grounded in diffusion models (Ho et al.,
2020; Sun & Yang, 2023) or tree-based search algorithms (Fu et al., 2021). These approaches
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Figure 1: Overview of the training process, where MaskCO masks portions of optimal solutions and
learns to recover the missing content. The masking ratio p is uniformly sampled from [0,1].

utilize easy-to-optimize soft-constrained forms and show promise in solving problems with relatively
simple constraints, such as general node-decision problems on graphs like Maximum Independent
Set (MIS) and edge-decision problems like Traveling Salesman Problem (TSP). However, they often
encounter challenges when addressing problems with more complex constraints, such as Capacitated
Vehicle Routing Problem (CVRP). Specifically for VRPs, approaches resort to sequential decision
processes that enforce constraints at every step, either via autoregressive construction (Kool et al.,
2018; Kwon et al., 2020; Kim et al., 2022; Luo et al., 2024; Zhou et al., 2024) or via local-search
actions formulated in a Markov Decision Process (MDP) and trained with reinforcement learning
(RL) (da Costa et al., 2020; Sui et al., 2021; Ma et al., 2021; 2023).

As learning-based CO advances, model and training complexity have grown in tandem, with increas-
ing reliance on problem-specific designs. Fundamentally, most existing approaches are anchored
in solution construction or improvement paradigms that treat a solution as a monolithic object,
operating at the instancesolution level and overlooking the rich, localized decision patterns embedded
in high-quality solutions. This leads to inefficient data utilization and limited scalabilityparticularly
problematic in CO, where obtaining reliable supervisory signals can be costly. This inefficiency
mirrors challenges once pervasive in natural language processing (NLP) and computer vision (CV),
where early supervised methods relied heavily on labeled datasets. The advent of self-supervised
pretraining (Liu et al., 2021), driven by paradigms like next-token prediction in GPT (Radford et al.,
2018; 2019; Brown et al., 2020) and masked auto-encoding in BERT (Devlin et al., 2019) and (He
et al., 2022), revolutionized these fields by enabling models to learn from raw data through simple yet
universal objectives. These methods demonstrated that removing and reconstructing content could
unlock latent patterns at scale, achieving unprecedented generalization with minimal task-specific
engineering. These successes invite a central question for CO: Can we adopt a similarly foundational
training paradigm that enables effective and scalable representation learning?

In this paper, we propose a masked generation paradigm that redefines learning to optimize as solution-
level self-supervised learning. Our key insight is that optimal solutions, like sentences or images,
encode hierarchical decision patterns, with local substructures that recur across problem instances
(e.g., efficient subroutes in routing, coherent node clusters in graph problems). By strategically
masking portions of optimal solutions and training models to reconstruct the missing content, MaskCO
compels the learning of fine-grained, localized decision logic while turning each (instance, solution)
pair into many (instance, partial-solution) training examples, as shown in Fig. 1. At inference, we
introduce a mask-and-reconstruct procedure that naturally exploits the training objective to implement
a local-search-like refinement process: within each regeneration phase, the model predicts all variables
in one shot and selectively commits the highest-confidence components, progressively improving
the current solution over a few iterations. This paradigm treats solutions not as indivisible targets
but as collections of local decisions, where each optimal solution serves as a curriculum for learning
reusable optimization strategies. Moreover, the flexible masking mechanism affords fine-grained
control over constraint satisfaction, bridging the gap between efficient heatmap-based inference and
the handling of complex constraints. We find that the learned representations transfer readily to
alternative inference pipelines and enable effective fine-tuning of other models.

Our contributions are threefold: (1) We propose masked generation as a novel foundational paradigm
for NCO, transforming solving into a solution-level self-supervised process. By training models to
recover strategically masked components of optimal solutions, the framework forces the learning
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of fine-grained local decision patterns embedded in solution structures, achieving powerful repre-
sentation learning while maintaining simplicity. (2) To fully exploit the learned representations, we
design a direct inference algorithm that dynamically activates the models knowledge through iterative
masking and regeneration, which mimics a computationally efficient search behavior. (3) Extensive
experiments demonstrate the state-of-the-art performance of MaskCO on TSP, CVRP, and MIS.

2 RELATED WORKS

Neural Combinatorial Optimization. Learning-based combinatorial optimization (CO) solvers
often utilize neural networks to either construct solutions or enhance existing ones, with the aim
of directly minimizing objective scores (Bengio et al., 2021). This is typically achieved through
reinforcement learning (Kool et al., 2018; Kwon et al., 2020; Kim et al., 2022; Qiu et al., 2022; Min
et al., 2024) or by aligning predictions with reference solutions using supervised learning (Vinyals
et al., 2015; Joshi et al., 2019; Hudson et al., 2022; Fu et al., 2021; Luo et al., 2024).

The solution construction process can be categorized into autoregressive and non-autoregressive
methods. Autoregressive methods (Khalil et al., 2017; Kool et al., 2018; Kwon et al., 2020; Hottung
etal., 2021; Kim et al., 2022) sequentially determine decision variables until a complete solution is
constructed, while non-autoregressive methods (Joshi et al., 2019; Fu et al., 2021; Geisler et al., 2022;
Qiu et al., 2022; Sun & Yang, 2023; Zheng et al., 2024) predict soft-constrained solutions in one step,
followed by post-processing to ensure feasibility. In recent years, generative models (Hottung et al.,
2021; Cheng et al., 2022; Sun & Yang, 2023; Du et al., 2023; Zhang et al., 2023; Li et al., 2023b),
particularly diffusion models, have shown promise in CO due to their strong representational power
and the ability to model informative distributions, which can be viewed as a type of non-autoregressive
method with a higher model expressiveness. Typically, the solutions are only considered feasible
once they are complete. Consequently, models operate at the instance-solution pair level, where
optimization objectives are enforced based on the final output of the solution construction. This
approach overlooks the rich, localized decision-making patterns embedded within optimal solutions.

In contrast, improvement-based solvers (d O Costa et al., 2020; Wu et al., 2021; Chen & Tian, 2019;
Lietal., 2021; Hou et al., 2023) focus on iteratively refining a solution through local search operators
guided by neural networks while ensuring or restoring feasibility. This design enables feedback
during the local optimization process, but due to the absence of global guidance, such feedback is
often less reliable. These methods still predominantly rely on reinforcement learning to optimize the
use of improvement operators, with the focus on the final outcome.

More recently, some approaches (Luo et al., 2024; Drakulic et al., 2023; Ye et al., 2024) have explored
decomposing large problems into smaller subproblems that can be locally solved and then integrated
to achieve a global solution. While these strategies capture local solution patterns, they typically
require specific pipeline designs tailored to particular problems.

Pre-training and Masked Generation. Self-supervised learning techniques, which include pre-
training on different types of corrupted inputs or missing information, have gained considerable
attention in computer vision for their ability to learn useful representations without labeled data.
Masked generation (autoencoding), first introduced by BERT (Devlin et al., 2019) for natural language
understanding, is a key concept in self-supervised pre-training. This method involves masking parts
of the input and training models to predict the missing content, an approach that has proven highly
effective across various domains. In the context of vision representation learning, this idea has been
extended through the use of discrete tokenizers (Bao et al., 2022; He et al., 2021), demonstrating its
ability to work effectively with non-sequentially structured data. Recent works (Chang et al., 2022; Li
et al., 2023a) further demonstrate that masked generation can efficiently perform image synthesis in a
fixed number of steps using non-autoregressive decoding, showcasing its remarkable scalability and
potential for broader applications, especially for the domain of CO, where problems are characterized
by discrete decision spaces, exhibit a non-sequential nature, and require highly scalable methods.

3 PRELIMINARIES AND NOTATIONS

Combinatorial Optimization on Graphs. Following standard practice Karalias & Loukas (2020);
Wang et al. (2022), we consider a family of graph instances G. Each instance is a graph G = (V, E)
with vertex set V' and edge set . Many CO tasks can be framed as selecting a subset of a ground
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set U(G): edge-decision problems (e.g., TSP) select edges, so U(G) = E; node-decision problems
(e.g., MIS) select vertices, so U(G) = V.

We represent a selection by a binary indicator x € {0, 1}Y() where x,, = 1 means u € U(G)
is selected. The feasible set Q(G) C {0, 1}V(@) contains selections that satisfy the problems
constraints. The goal is to find a feasible selection that minimizes a given objective I(+; G) :
{0, 1}VOI — Ry
in I(x;G). 1

uin (x;G) )
Constraints can be enforced either as hard feasibility (encoded in Q(G)) or as soft penalties within
I(-; G), depending on the problem. Let supp(x) = {u € U(G) : x,, = 1} denote the support of x.
Then the selection problem can be defined below.

Definition 3.1 (Selection Problem). A binary vector X € {0, 1}/V(%) is a partial solution for G if it
can be extended to some feasible solution, i.e.,

Ix* € Q(G) s.t. supp(X) C supp(x*). 2)
We denote the set of all partial solutions by Q(G).

Intuitively, a partial solution selects a subset of variables that is consistent with at least one feasible
full solution.

Definition 3.2 (Selection Function). A selection operator for instance G is a function
fo: QUG) x 0,1V« N = QG), 3)

which takes a partial solution X, a vector of selection scores p, and a target size k, and returns an
extended partial solution. The operator must satisfy:

* Monotone extension: supp(X) C supp(fa(X, p,k)).

* Size or maximality: either |supp(fc (X, p,k))| > k, or fo(X,p, k) is maximal i.e. no
single element u € U(G) \ supp(f¢ (X, p,k)) can be added while remaining in Q(G).

A typical instantiation is a greedy operator: sort u € U(G) by p,, and add elements one by one to
X when the partial solution remains extendable; stop when the target size k is reached or no further
valid additions exist. With a fixed solution size, setting & to that size yields a complete solution.

Examples. TSP is defined on a complete undirected graph where vertices are cities and edges carry
non-negative weights (e.g., distances). The solution selects exactly |V'| edges forming a Hamiltonian
cycle and minimizes the tour length. MIS is defined on an undirected graph G = (V, E); the solution
selects a maximum-cardinality subset of vertices with no adjacent pairs. For routing problems such
as CVRP, capacity constraints can be treated as hard feasibility in Q(G) or relaxed and embedded as
penalties in I(+; G), depending on the solver design.

4 METHODOLOGY

We propose a general and principled paradigm for combinatorial optimization based on mask genera-
tion, a framework designed to be both flexible, accommodating diverse problem formulations, and
minimalist in its reliance on problem-specific components.

4.1 SOLUTION-LEVEL SELF-SUPERVISED LEARNING IN TRAINING

Drawing inspiration from the success of masked auto-encoders in language and vision pre-training (He
et al., 2022), where models learn robust representations by reconstructing corrupted inputs, we propose
a similar foundational paradigm for CO that enables scalable, efficient learning of decision patterns
within optimal solutions. In CO, optimal solutions inherently encode recurring local substructures.
By treating these solutions as composite graphs of substructures, we design a training task that
requires the model to infer missing components based on partial contexts. This approach leverages
the compositional nature of CO solutions, encouraging the model to learn reusable decision patterns
rather than memorizing monolithic solutions.
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Specifically, given a complete solution x* € Q(G), we construct a partial solution X € (AZ(G) by
sampling a subset of elements from x. This subset sampling is governed by a distribution D; over the
interval [0, 1], which controls the proportion of elements retained. In each training iteration, we first
sample a ratio ¢ ~ Dy, and then uniformly retain [t - |supp(x*)|] elements from x to form the partial
solution X. By default, we use a uniform distribution for D;, which is a straightforward strategy that
masks an equal number of variables each time. From a single solution x*, the sampling process
generates exponentially many partial solutions, significantly improving data efficiency.

Let pg(G,X) € [0, 1]1Y(%)] denote the models predicted selection probabilities conditioned on the
instance G and the partial solution X. Using the ground-truth indicator x* as the target, we define the
training loss as a variable-wise binary cross-entropy:

L(0:G.%,x*) = BCE(py(G,%),x*) = — > [x4logpo. + (1 - x5)log(l — ps.)]. @)
uweU(G)
This formulation treats each masked position as an independent binary classification task, where
the model learns to predict whether a variable belongs to the optimal solution based on the current
context. Importantly, by iteratively masking different subsets of the solution during training, the
model is exposed to diverse reasoning paths and learns a contextualized confidence estimator that
generalizes well on diverse partial states.

4.2 MULTI-STEP DECODING FOR MASKED GENERATION

Our multi-step decoding framework progressively constructs solutions through an iterative refinement
process that dynamically balances exploration and exploitation. The method leverages a schedule
function v : [0,1] — [0, 1] to control the solution growth rate, which is monotonically increasing
with v(0) = 0 and (1) = 1. This function orchestrates a gradual transition from broad exploration
of potential solution components to precise exploitation of the most promising elements. In practice,
we adopt a linear implementation (¢) = ¢, which provides uniform growth throughout the process.

For CO problems where all feasible solutions share a fixed cardinality m (such as TSP tours with ex-
actly m edges), the decoding process proceeds through a predetermined sequence of K deterministic
steps. Beginning with an empty partial solution X(?) = 0, in each step i € [K] we adopt the greedy
selection function that expands the solution by selecting the candidate variable with the highest
predicted confidence according to the model’s output heatmap pg (G, X)) € [0, 1]IY()I among
those not yet included. With selection function f, the incremental construction is well governed that
the total number of selected elements reaches [y(i/K) - m] at each step. Formally, we have:

RO fa(R0D . palG RV, [4(i/K) -m] ). i e K] ®

By construction, the final partial solution satisfies [supp(X(*))| = m and is feasible.

When dealing with problems exhibiting variable solution cardinality (such as MIS), an estimate
mg(X) of the solution size is first obtained by summing the model’s predictions:

my(G,%) = Y pou(G,X). (6)

uweU(G)

Base on this estimate, accordingly, the iterative correction process becomes:
X0 (R0, pg(GROTD), [1(i/K) - mg (G, ROV, i€ (K], ™
Since the final iterate may not be feasible, if X(*) ¢ Q(G') we apply a completion step:
% fo(X5),py(G.REV), (@), ®)

reusing the previous scores to avoid recomputation and maintain consistency. Alternative completion
strategies are discussed in Appendix E.

4.3 THE HIGH-LEVEL CORRECTION FRAMEWORK: MASK AND RECONSTRUCT

The deterministic decoding process, while efficient, inherently limits exploration once an initial
solution is formed, as it sequentially commits to irreversible decisions that may trap the construction
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in suboptimal configurations. To this end, we introduce a mask-and-reconstruct mechanism that
enables iterative solution correction. Specifically, in each iteration, given a solution x, a subset of its
elements is randomly masked according to a predefined keeping rate p, resulting in a partial solution
X. During reconstruction, the model regenerates the masked regions through an adapted multi-step
decoding process governed by a shifted schedule function 7, (r) = p + (1 — p) - y(r), which adjusts
the decoding trajectory to focus on reconstructing the missing 1 — p fraction of the solution.

By anchoring the early steps of reconstruc-
tion to the retained elements in X, the
model leverages the unmasked portions as  1: Imput: instance G, model parameters 6, selection opera-

Algorithm 1 Inference Algorithm

contextual anchors while probabilistically tor fg, iterations per decode K, schedules (-) and 7y, (-).
exploring alternative configurations for the total budget T, masking rate p € [0, 1], objective I(-; &)
masked regions. The shifted schedule -, ? X = MultiStepDecoding (G, 0, f, 0, K, )
ensures that the decoding process begins ~ 7 Xbest < X
U . INg process beg 4: fori=1to |T/K|—1do

from the partial solutions existing com- =~

) level d eraduall 5: X <+ RandomlyMask(x, p)
p etenc‘fsfs I?Ve pand gracually Pr?(gfesses 6:  x + MultiStepDecoding(G, 0, fa, %, K, )
toward full reconstruction over K" Steps. 7. if|(x: () < I(Xpes; &) then
Crucially, the masking rate p controls the g. Xpest < X
trade-off between exploration and exploita- 9: end if
tion: lower p values lead to aggressive re- 10: end for
optimization of larger solution segments, 11: return Xpest

while higher values of p enable more local-
ized, fine-grained improvements.

The full solving pipeline consists of two phases: construction and correction. In the construction
phase, an initial solution is generated from scratch using the base decoding method. This is followed
by multiple rounds of the correction phase, in which the mask-and-reconstruct mechanism iteratively
refines the solution, progressively enhancing its quality. This approach transforms static solution
generation into an dynamic, memory-enhanced search process. Previously identified high-quality
substructures serve as guides for subsequent refinements, while the controlled application of masking
preserves the flexibility to explore novel regions of the solution space. Consequently, the model trained
with the mask loss exhibits strong performance as an efficient combinatorial solver, demonstrating
the effectiveness of transferring representation learning into practical problem-solving capabilities.

4.4 MODEL ARCHITECTURE

We adopt an encoder-decoder Transformer architecture (Vaswani, 2017), chosen for its capacity to
model complex dependencies in combinatorial structures through self-attention mechanisms. Node
features are linearly projected into the embedding space. Edge connections, represented by a 0-1
adjacency matrix, are incorporated into the attention mechanism through an additive bias. Formally,
the attention logits are computed as Z = QK + A, where Q and K denote query and key matrices,
respectively; A is the adjacency matrix encoding the presence or absence of edges between nodes,
directly added to Q" K without any scaling; and Z represents the resulting attention logits before
applying the softmax function.

Output Layer. For node-selection problems, node features are projected onto a one-dimensional
space to obtain the logits. For edge-selection problems, pairwise compatibility is evaluated using the
dot product of source and target node embeddings.

5 EXPERIMENTS

Problem Settings. We follow the standard data generation procedure to generate TSP, CVRP, and
MIS datasets. For TSP, the n node locations are sampled uniformly at random in the unit square (Kool
et al., 2018; Kwon et al., 2020; Li et al., 2024; Zhou et al., 2024; Ma et al., 2021; 2023). For
CVREP, the depot location as well as n customer locations are sampled uniformly at random in the
unit square (Kool et al., 2018). The customer demands are sampled uniformly from {1,---,9}
and the vehicle capacity D is set to 50 across problem sizes. For MIS, two datasets are tested,
including RB graphs (Zhang et al., 2023) and ErdsRnyi (ER) graphs (Erdds et al., 1960). For RB
graphs, we randomly sample 200 to 300 vertices uniformly and generate the graph instances. ER
graphs are randomly generated with each edge maintaining a fixed probability of being present or
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Table 1: Results on TSP across various sizes.

METHOD TSP-100 TSP-500 TSP-1000

OBJ. Gap TIME OBJ. GAP TIME OBJ. GAP TIME
Concorde (Applegate et al., 2006) 7.756  0.00% 12m* 16.55 0.00% 37.66m* 23.12 0.00% 6.65h*
LKH-3 (Helsgaun, 2017) 7.756  0.00% 33m* 16.55 0.00%  46.28m* 23.12 0.00% 2.57h*
BQ-NCO (bs16) (Drakulic et al., 2023) 7757 0.016%  1m4ls 16.637  0.551% 5m50s 23436 1.374%  14m30s
LEHD (RRC 1000) (Luo et al., 2024) 7.756  0.0019% 7.87m 16.575  0.175% 37.54m 23.286  0.726% 3.35h
SIT (RRC 1000) (Luo et al., 2025) - - - - - 23206 0.381% 1.5%h
DIFUSCO (T;=100) (Sun & 2023) 7.76 0.06% 30m 16.69 0.87% 19.1m 23.42 1.31% 51.9m
Fast T2T (T=5,T=5) (Li et al., 2024) 7.76 0.01% 8.3m 16.58 0.21% 6.9m 23.22 0.42% 18.3m
MaskCO (T=320) 7.756  0.0000% 8s 16.546  0.0020% 6s 23.120 0.0071% 18s
MaskCO (T=640) 7.756  0.0000% 15s 16.546  0.0014% 12s 23.119  0.0051% 33s
MaskCO (T=1280) 7.756  0.0000% 30s 16.546  0.0012% 23s 23.119  0.0038% 1m6s
MaskCO (T=2560) 7.756  0.0000% 1mOs 16.546  0.0007% 43s 23.119  0.0027% 2m8s

Table 2: Results on CVRP across various sizes.
METHOD CVRP-100 CVRP-500 CVRP-1000
OBJ. GAP TIME OBJ. GaP TIME OBJ. GAP TIME

HGS (Vidal et al., 2012) 15.550  0.000% 13h 62.15  0.000% 55h 121.07 0.000%  197h
POMO (Kwon et al., 2020) 15750 1.287% 8s - - - - - -
ICAM (Zhou et al., 2024) 15.859 1.985% 5s 63.28 1.813% 28s 123.02 1.610% 1m56s
UDC (Zheng et al., 2025) - - - 6543 5278%  5m56s 127.07 4.954% 4m25s
BQ-NCO (bs16) (Drakulic et al., 2023) 15794 1.572% 2.74m 63.53 2219% 5.86m 12356 2.059% 7.73m
LEHD (RRC 1000) (Luo et a : 15.617 0433% 9.53m 6294 1.275% 38.27m 12333 1.859% 1.83h
ReLD (augx8) (Huang et al., 2025 15.785 1.509% 0.12m 64.16 3.241% 0.17m 125.06 3.297% 0.34m
SIT (RRC 1000) (Luo et al., 2025) - - - - - - 126.55 4.528%  1.23h
NeuOpt (Ma et al., 2023) 15.566 0.103%  4h49m - - - - - -
MaskCO (T=640) 15.586 0.232% 32s 62.66 0.813% 21s 122.03  0.798% 44s
MaskCO (T=1280) 15.577  0.176% 1m3s 62.59 0.714% 40s 121.85 0.644% 1m7s
MaskCO (T=2560) 15571 0.135%  2m5s 62.53 0.608% 1ml8s 121.69 0.514% 2m2s
MaskCO (T=5120) 15567 0.111%  4m9s 6247 0.514% 2m35s 121.63  0.460% 3m5ls
MaskCO (T=10240) 15.563  0.086% 8ml7s 6243 0.448%  5m8s 121.60  0.438% 7m33s

absent, independently of the other edges. We adopt ER graphs of 700 to 800 nodes with the pairwise
connection probability set as 0.15. Dataset configurations are provided in Appendix I.

Solving Settings. 1) Forward Passes 7, i.e. the total number of model forward passes executed
during the solving process for each instance. 2) Sampling Steps K, which parametrizes the multi-
step decoding. 3) Keeping Rate p, i.e. the proportion of variables retained at each correction step.
Consequently, the solving process consists of one initial construction phase followed by T/K — 1
correction iterations. The value of T is reported in each table as the computational budget, while
detailed configurations for K and p are provided in Appendix H. For VRPs, 2-opt heuristic with
penalty terms is applied between correction steps to enforce constraints and enhance solution quality.

5.1 MAIN RESULTS

TSP Results. Table | presents the results of solvers on the TSP across different problem sizes. The
performance of classical solvers is taken from Li et al. (2024). Traditional solvers like Concorde and
LKH-3 achieve a 0.00% gap across all sizes, but their computation times are significantly longer, es-
pecially for larger problem sizes. In contrast, generative-based methods like DIFUSCO and Fast T2T
show slightly higher gaps (0.06% and 0.01% for TSP-100), but they drastically reduce computation
time, with Fast T2T completing TSP-100 in just 8.3 minutes. Notably, MaskCO outperforms all other
methods, achieving near-zero gaps across all sizes while significantly reducing computation times.
Compared to previous state-of-the-art neural solvers, MaskCO achieves remarkable performance
improvements exceeding 99% in optimality gap reduction, along with a 10x speedup.

Table 4 presents generalization performance on the real-world TSPLIB dataset. We evaluate our model
trained with 100-node problems on TSPLIB instances with 50-200 nodes and evaluate the 500-node
model on TSPLIB with 200-1000 nodes using 7" = 25600. Compared to previous SOTAs, MaskCO
achieves significant improvements from the 0.28% to 0.033% (88.2% improvement) on TSPLIB
50-200, and from 0.93% to 0.115% (87.6% improvement) on TSPLIB 200-1000, respectively.

CVRP Results. Table 2 highlights clear performance advantages of MaskCO. For CVRP-100,
MaskCO (T=640) requires more time compared to constructive solvers (from 8s to 32s), but achieves
a substantial improvement in solution quality (from 1.287% to 0.232%). Compared to search-based
baselines like NeuOpt (Ma et al., 2023), although it achieves around 0.1% gap, it requires much more
time (4h49m), whereas MaskCO can achieve 0.086% in just 8m17s, providing a 34.9x speedup. On
larger instances, many baselines become infeasible. Compared to the SOTAs, MaskCO with 640
forward passes already outperforms previous methods in solution quality and solving speed, achieving
an average performance gain of 53% along with a 64% speedup. By utilizing more computation,
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Table 3: Results on MIS across various sizes. Table 4: Generalization on TSPLIB.

METHOD RB-[200-300] ER-[700-800] ICAM  Fast T2T NeuOpt MaskCO
0B). GAP  TIME 0B). GAP  TIME TSPLIB50-200  2.38%  028%  0.35%  0.033%

KaMIS (Lamm et al., 2016) 20.10* - 1.4h 44.87* - 52.1m TSPLIB201-1000  6.49% 0.93% — 0.115%
Gurobi (Gurobi Optimization, 2020) 19.98 0.01% 47.6m 41.28 7.78% 50.0m . .
Intel (Li et al., 2018) 1847 811% 13.Im 3880 1343%  20.0m Table 5: Ablation studies on the cor-
DGL (Béther et al., 2022) 1736 13.61%  12.8m 3726 1696% 22.7m ; ;
GFlowNets (Zhang et al., 2023) 1918 457%  32s 4114 853%  29m rection mechanism.
DIFUSCO (Sun & Yang, 2023) 1913 479%  20.5m 3902 1281% 21.7m CONFIG. TSP-500
T2T (Li et al., 2023b) 1938 353%  30.3m 4141 772%  27.8m OBy, GaP TIME
Fast T2T (Li et al., 2024) 1949  289%  47m 4068  934%  15m
MaskCO (T=1k) 2000  049%  dds $320 373% Im2ls wio corr. (T=K=1) 16.689  0.8656%  <Is
MaskCO (T=2k) 20.03  037%  1m27s 4359  2.84%  2m42s w/o corr. (T=K=8) 16.563 0.1015%  <lIs
MaskCO (T=4k) 2006 021% 2msds 4386 225%  Smds wlo corr. (T=K=64) 16.556  0.0606% s
MaskCO (T=8k) 2007 0.15%  Sm4ss 4412 168%  10m4Ss e X
MaskCO (T=16k) 2008 0.02% 1lm36s 4438  1.09% 21m36s wio comr. (T=K=320) = 16554 0.0520%  6s
MaskCO (T=32k) 2008 0.10% 23ml2s 4459 0.62% 43ml2s w/ corr. (T=320,K=1) 16.546 0.0020%  6s

Table 6: Results of fine-tuning and alternative decoding. S: number of samples; T: sampling steps.

DECODING METHOD TSP-100 TSP-500 TSP-1000
OBJ. GAP TIME OBJ. GAP TIME OBJ. GaP TIME
Direct Evaluation
AR (augx8) 7756 0.0004%  19s 16.549  0.018%  1m42s 23.136  0.078%  10mds
AR (20pt, augx8) 7.756  0.0004% 19s 16.548 0.012%  1m42s 23.125 0.030%  10m4s
Bidirectional AR (augx8) 7.756  0.0007% 19s 16.549  0.021% 1m42s 23215 0419% 10mds
Bidirectional AR (20pt, augx8) 7.756  0.0006% 19s 16.549  0.019% 1m42s 23.141 0.098% 10mds
Relaxed AR (augx8) 7.756  0.0016% 19s 16.549 0.019% 1m4ls 23.128 0.043% 10mds
Relaxed AR (20pt, augx 8) 7756  0.0016%  19s 16.548  0.014% 1m4ls 23.125 0.028%  10md4s
1-Epoch Finetuning
Consistency (S=8, T,=64) (Li et al., 2024) 7756  0.0008%  15s 16,552 0.040%  29s 23.148 0.131% 2ml3s
Consistency (S=8, T,=256) (Li et al., 2024) 7756 0.0004%  1mOs 16.550  0.025%  1m47s 23.143  0.107% 8m54s

MaskCO can achieve remarkable optimality gaps of 0.448% and 0.438% on CVRP-500 and 1000,
respectively. Moreover, MaskCO continues to improve with an increasing number of forward passes.

MIS Results. Table 3 shows that MaskCO with only 1,000 forward passes already outperforms
previous state-of-the-art methods, achieving a 0.49% gap in 44 seconds on the RB dataset and a 3.73%
gap in 1.3 minutes on the ER dataset. This results in an average 72% improvement in optimality gap
and a 3x speedup in runtime compared to prior methods. As the number of forward passes increases,
MaskCO continues to improve solution quality, consistently reducing the gap. With 32k forward
passes, MaskCO achieves gaps of just 0.10% and 0.62% on the RB and ER datasets, respectively,
setting new benchmarks by outperforming the best generative state-of-the-art methods by 94%.

5.2 ADAPTATIONS FOR ALTERNATIVE TRAINING AND DECODING METHODS

We demonstrate that models trained with masked signal modeling can be directly adapted to alter-
native decoding routines or through few-shot fine-tuning. Specifically, we assess the model using
auto-regressive (AR) decoding, bidirectional AR decoding, relaxed AR decoding, and finetuning
with consistency (Li et al., 2024). The bidirectional AR is specified for TSP, allowing the current
tour segment to be extended on both ends. AR and bidirectional AR are implemented by applying an
auto-regressive masking scheme on the output heatmap, ensuring that only edges associated with the
end nodes of the partial tour can be selected at each step. For relaxed AR decoding, the requirement of
maintaining a contiguous tour segment is relaxed; instead, it globally inserts one edge per step. This
can be implemented by simply setting 7" and K equal to the problem size. We also consider MaskCO
as a pre-trained model and fine-tune it with one of the SOTAs, i.e., the optimization consistency
model (Li et al., 2024). Since the input requirement is different and thus direct evaluation is not fea-
sible, we inherit the model weight and perform 1-epoch finetuning using its original training method.

Experimental Results. Notably, models trained with MaskCO can directly perform AR decoding and
achieves superior performance compared to previous SOTA supervised AR methods like Drakulic et al.
(2023); Luo et al. (2024), even though the latter employ additional boosting search techniques like
beam search. This highlights the effectiveness of masked learning in acquiring richer representations
for combinatorial optimization. Experiments on consistency presents that 1-epoch finetuning unlocks
decoding with distinct formulations, verifying the generality of the learned representations.

5.3 ABLATION STUDIES

Ablation on Correction Mechanism. As shown in Table 5, on TSP-500 we observe an over 20
reduction in gap with the introduction of the correction mechanism. Similar to prior diffusion solvers,
merely increasing the number of model inferences within a single constructive pass can deliver
notable gains, but the efficiency of these gains is limited. In contrast, increasing the number of
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Table 7: Ablation studies on architecture. Table 8: Ablation studies on mask modeling.
T BACKBONE TSP-500 TSP-1000 METHOD TSP-500 TSP-1000
E A NI AL Sy DIFUSCO 087%, 19.1m _ 1.31%, 51.9m
— : Fast T2T 021%,69m  0.42%, 18.3m
640 T e tmiss  00391% ina0s MaskCO-GCN (T=320)  0.0212%,40s  0.046%, 2m24s
MaskCO-GCN (T=640)  0.0141%, Iml5s  0.032%, 4m39s

Transformer  0.0012%, 23s 0.0038%, 1m6s

1280 GCN 0.0107%, 2m26s ~ 0.0229%, 9m19s MaskCO-GCN (T=1280)  0.0107%, 2m26s  0.023%, 9m19s

Table 9: Optimal-solution-free training on TSP-100 and 500 Table 10: Optimal-solution-free
(T=2560). DO denotes training on 2-opt labels; Dz (z > 1) training on TSP-1000 with T=2560.

denotes self-training using pseudo-labels from D(z — 1). ”Gen.” indicates training on TSP-500
M TSP-100 TSP-500 and testing on TSP-1000.
ETHOD
OBJ. GAP OBJ. GAP METHOD _ TSP1000
OBJ. GAP

20pt (128 runs)  7.905  1.920% 17.703  6.994%

MaskCO (D0) 7756 0.001%  16.606 0.362% Mo o) Doy 2aom 6
MaskCO (D1)  7.756  0.000% 16.561  0.089% MaskCO (D1) 23197  0342%

MaskCO (D2) 7.756  0.000% 16.556  0.059% MaskCO (D2) 23.186  0.295%

corrections via a mask-and-reconstruct procedure better leverages the training objective and the
models capabilities, yielding a markedly superior cost-benefit ratio.

Ablation on Architecture and Mask Modeling. To isolate architectural effects, we replace our
transformer with a Graph Convolution Network (GCN) that incorporates edge features (Joshi et al.,
2019), keeping their settings except the network depth match our Transformer’s configurations.
Table 7 shows significant improvement from transformer architecture. Note that transformer models
require only about 1/5 of the training time on TSP-500 compared to GCN. This efficiency enables
extensive training and contributes to the superior performance of transformers, making them better
suited for challenging representation learning tasks. More comparison of training resources is
available in Appendix M. To isolate the impact of masked modeling, we compare MaskCO with
a GCN backbone (MaskCO-GCN) against other GCN-based methods, where masked modeling is
the sole difference. Table 8 demonstrates that MaskCO-GCN achieves a 9x reduction in optimality
gap along with an 8x speedup compared to Fast T2T, or alternatively, a 18x reduction in gap with
approximately a 2x speedup. This highlights the strength of the masked modeling.

5.4 EXPERIMENTS ON OPTIMAL-SOLUTION-FREE TRAINING PARADIGM

Inspired by distillation techniques for diffusion models (Luhman & Luhman, 2021; Liu et al., 2022)
and SIT (Luo et al., 2025), we present a two-stage training variant that requires no optimal solutions
yet surpasses SOTAs. Stage 1 initializes the model from low-quality heuristic labels (2-opt with 128
restarts); if a pretrained model is available, this stage can be skipped. Stage 2 performs self-training:
the model alternates between pseudo-labeling unlabeled instances and lightweight fine-tuning on
these labels, progressively improving without ground-truth optima. This paradigm trades labeled
optimal solutions for compute: Stage 1 is standard supervised learning on heuristic labels; Stage 2 is
unsupervised self-training that leverages the models ability to improve upon its own pseudo-labels.

As shown in Table 9, MaskCO trained solely on 2-opt outputs distills useful signal and outperforms
its teacher. On TSP-100, although 2-opt exhibits a 1.9% optimality gap, MaskCO reaches a 0.001%
gap to optimal. This stage mirrors the main training setup, differing only in the data source. In
each iteration, we pseudo-label 65,536 TSP-50, 4,096 TSP-500, and 2,048 TSP-1000 instances, and
fine-tune with roughly 1/60 the gradient steps of a full run. With just one iteration, MaskCO exceeds
Fast T2T across all scales, as shown in Tables 9 and 10).

6 CONCLUSION

This paper presents MaskCO, a masked generation paradigm that defines the learning process of
neural combinatorial optimization as a solution-level self-supervised learning process to enable
effective and scalable representation learning. The dynamic inference algorithm through iterative
masking and regeneration further unlocks the learned representations to simulate an efficient search
process for problem solving. Experimental results demonstrate significant improvements over
existing state-of-the-art neural solvers, with remarkable reductions in optimality gaps and substantial
speedups in solving problems like TSP, CVRP and MIS. MaskCO shows potential to pave the way
for performance advances and pre-trained models in combinatorial optimization.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed large language models strictly as copy-editing assistants to improve clarity, readability,
and style across the manuscript. The models were used for tasks such as rephrasing sentences,
checking grammar, harmonizing terminology, and smoothing the flow of prose. They did not generate
technical content, analyses, results, or conclusions, and they did not modify the substance of our
claims. All Al-assisted edits were reviewed and approved by the authors, and no confidential data
were provided to the models.

B DISCUSSION ON [MASK]

In most previous works on mask generation (or prediction) (Devlin et al., 2019; Li et al., 2023a;
Chang et al., 2022), a special token [MASK] is introduced. Formally, let the original vocabulary be
denoted as V, and define the extended vocabulary as Vi« = V U { [MASK] }, which includes the
masking token. Trainable embeddings are associated with each token in the extended vocabulary,
including [MASK], to represent a much larger effective vocabulary within a limited embedding
dimensionality (e.g., modeling a 100k-token vocabulary using 1k-dimensional embeddings). However,
in the context of combinatorial optimization (CO) problems where V = {0, 1}, assigning dedicated
embeddings is often unnecessary. This is because binary variables are already real-valued and
correspond to a minimal vocabulary size (|V| = 2). For example, in vehicle routing problems
(VRPs) with n nodes and embedding dimension d, there are approximately n?/2 binary variables.
In such cases, the advantage of using scalar representations becomes evident: these 0-1 values
can be directly incorporated into the attention mechanism as additive bias, thereby avoiding the
need for d-dimensional embeddings for each of the n? /2 binary variables. If the [MASK] token is
introduced in this setting, the scalar representation becomes insufficient for the expanded vocabulary
Vimask = {0, 1, [MASK] }. This necessitates additional mechanisms to represent the masked positions,
which introduces architectural complexity and may undermine the simplicity and efficiency of the
original design. Thus we decide not to introduce [MASK] in this work.

C SELECTION OR DECISION

A decision problem, in brief, involves assigning N binary variables in order to minimize an objective
function under certain constraints. Although it is theoretically equivalent to the selection problem
formulation, we find that using the selection formulation offers several practical advantages:

* It avoids the need for the [MASK] token, which is required in decision problem formulations.
As a result, the selection formulation benefits from the properties discussed in Appendix B.

* The selection paradigm provides a more natural way to model many CO problems. For
instance, in VRPs, the solution is naturally expressed as selecting edges to form a route,
while in the MIS problem, the goal is to select a subset of nodes. Moreover, many existing
methods that decode a heatmap into a solution essentially solve a selection problem. This
approach, often referred to as greedy insertion in prior works (Sun & Yang, 2023; Li et al.,
2023b; 2024), corresponds directly to the selection function formulation adopted in this

paper.

D DISCUSSION ON SELECTION FUNCTION

In this work, we employ the greedy selection function, the most straightforward strategy in which the
most confident variable is iteratively selected. This choice is made to emphasize the effectiveness of
the neural architecture itself, rather than relying on a sophisticated selection function. But generally,
there can be improvements on selection function. However, in general, there is room for improvement
in the design of the selection function. For instance, the selection strategy could be modified to
maximize the average score of newly selected variables, which can be implemented using dynamic
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programming or bounded-width tree search. This strategy might be useful under more complex CO
problems.

E ALTERNATIVE STRATEGIES FOR THE COMPLETE SOLUTION ENFORCEMENT

Recall that in multi-step decoding for problems with variable solution cardinality, if X(%) ¢ Q(Q)
we apply a completion step:

% — Jo(X1,po(G. X, U (@), ©)

reusing the previous scores to avoid recomputation and maintain consistency. This strategy selects
as many elements as possible, making it particularly suitable for problems that favor large solution
cardinality, such as MIS. An alternative approach is to select only the minimal number of elements
required to form a valid solution. This can be achieved by iteratively applying

% fo(%po(GREY), supp(R)| + 1), (10)

until X becomes a complete solution.

F COMPARISON WITH AUTO-REGRESSIVE MODELING

The basic decoding of MaskCO can be viewed as a 2-step extension of the auto-regressive modeling
for VRPs:

1. Select an edge for the current node — Select an edge for any node. While autoregressive
modeling traditionally selects an edge for the current nodethe end node of the partial routebased
on local edge confidence, we extend this approach to allow selecting an edge for any node, guided
by global edge confidence. The flexibility of non-sequential selection strategy ensures that globally
confident edges are not overlooked simply because they conflict with previously selected edgesedges
that may have been chosen due to high local confidence but lower global relevance. Thus, this
extension mitigates the risk of suboptimal decisions caused by early, locally favorable choices that
may hinder globally optimal solutions. Using only this extension corresponds to MaskCO with K set
equal to the number of nodes.

2. Single-step prediction — Multi-step prediction. While autoregressive modeling traditionally
selects one edge from single prediction, we extend it to select multiple edges from one prediction,
where the number of edges is decoupled with training and can be adjusted in the inference stage. This
extension provide flexibility of speed-quality trade-off and often leads to better scalability. Using
only this extension resembles multi-token prediction in NLP.

During training, the partial solutions sampled in MaskCO are significantly richer than those used in
traditional auto-regressive methods. While conventional auto-regressive approaches train only on
contiguous segments of the solution, MaskCO trains on arbitrary subsets of the optimal solution,
regardless of order or continuity. This exposes the model to a more diverse set of problem instances
and partial solution structures, encouraging a deeper understanding of the underlying combinatorial
problem. As a result, the model learns more robust and generalizable representations (especially
when training data is limited), which translates into improved performance, even when using standard
auto-regressive decoding at inference time.

For node-selection problems such as MIS, standard auto-regressive models already perform global
node selection. In this case, for inference, MaskCO primarily introduces the second extension—
multi-step prediction—which enhances efficiency and solution refinement without altering the global
selection mechanism. In terms of training, conventional auto-regressive approaches require the model
to predict nodes sequentially, one at a time. However, since solutions to node-selection problems are
typically unordered, such sequential modeling imposes an artificial ordering that leads to ambiguous
training signals. In contrast, MaskCO trains the model to predict the complete solution in a set-based
manner, providing a more consistent and unambiguous training signal that aligns better with the
non-sequential nature of the problem.

As a generalized framework built upon auto-regressive modeling with these complementary exten-
sions, MaskCO achieves improved performance, robustness, and flexibility across diverse CO tasks,
with its extremely fast inference enabling thousands of rounds of efficient iterative correction.
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Table 11: The impact of incorporating 2-opt heuristics in solving the TSP and CVRP. ”— 20pt”
indicates that 2-opt is disabled between correction steps. ’+ PostProcess.” denotes that 2-opt is
applied as a post-processing step after the final correction.

METHOD TSP-100 TSP-500 TSP-1000
OBJ. GAP OBJ. GAP OBJ. GAP
MaskCO (T=320) 7.756  0.0000% 16.546  0.0020% 23.120 0.0071%
— 20pt 7.756  0.0000% 16.546  0.0029% 23.121 0.0110%
+ PostProcess. 7.756  0.0000% 16.546  0.0029% 23.120 0.0100%
MaskCO (T=640) 7.756  0.0000% 16.546  0.0014% 23.119  0.0051%
— 20pt 7.756  0.0000% 16.546  0.0017% 23.120 0.0079%

+ PostProcess. 7.756  0.0000% 16.546  0.0017% 23.120 0.0075%

MaskCO (T=1280) 7.756  0.0000% 16.546  0.0012% 23.119 0.0038%
— 20pt 7.756  0.0000% 16.546  0.0013% 23.119  0.0054%
+ PostProcess. 7.756  0.0000% 16.546  0.0013% 23.119  0.0054%

MaskCO (T=2560) 7.756  0.0000% 16.546  0.0007% 23.119  0.0027%
— 20pt 7.756  0.0000% 16.546  0.0008% 23.119  0.0044%
+ PostProcess. 7.756  0.0000% 16.546  0.0008% 23.119  0.0044%

METHOD CVRP-100 CVRP-500 CVRP-1000
OBJ. GAP OBJ. GAP OBI. GAP
MaskCO (T=640) 15.586  0.232% 62.66  0.813% 122.03  0.798%
— 20pt 15.675 0.808% Inf Inf% Inf Inf%
+ PostProcess. 15.610 0.384% 62.698  0.882% 122.16  0.898%
MaskCO (T=1280)  15.577 0.176% 62.59  0.714% 121.85  0.644%
— 20pt 15.630 0.514% Inf Inf% Inf Inf%
+ PostProcess. 15.601  0.329% 62.664  0.826% 12198  0.750%
MaskCO (T=2560)  15.571 0.135% 62.53  0.608% 121.69  0.514%
— 20pt 15.606  0.360% Inf Inf% Inf Inf%
+ PostProcess. 15593  0.277% 62.642 0.791% 121.81  0.615%
MaskCO (T=5120)  15.567 0.111% 6247  0.514% 121.63  0.460%
— 20pt 15592  0.270% Inf Inf% Inf Inf%
+ PostProcess. 15.584 0.223% 62.621 0.758% 121.69  0.516%
MaskCO (T=10240) 15.563 0.086% 6243  0.448% 121.60  0.438%
— 20pt 15.582  0.205% Inf Inf% Inf Inf%
+ PostProcess. 15579  0.186% 62.620 0.756% 121.72  0.537%

G INFLUENCE ON 2-OPT FOR SOLVING VRPs

For the CVRP, we follow the practice of advanced traditional solvers such as HGS and LKH-3, which
relax the capacity constraints to enable a larger search space and incorporate them into the cost
function as penalty terms. Table 11 shows the effectiveness of the 2-opt heuristic (with penalty terms)
in solving VRPs, particularly for CVRP under capacity relaxation, where it contributes significantly
to effective constraint handling. In practice, full convergence of 2-opt is not required in every iteration.
We find that n/100 and n/25 steps are typically sufficient for TSP and CVRP, respectively, where n
denotes the number of nodes.

H HYPERPARAMETERS

H.1 NEURAL NETWORKS

The hyperparameters for the neural networks are detailed in Table 12. The encoder refers to the
component that processes only the problem instance (i.e., the generation condition), while the decoder
additionally processes the partial solution.
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Table 12: Neural network configurations.

TSP CVRP MIS-RB-[200-300] MIS-ER-[700-800]

embedding dimension 256 512 256 256
head dimension 32 64 64 64
encoder layers 16 16 0 0
decoder layers 6 6 12 24

Table 13: Inference configurations for TSP.

TSP-100 TSP-500 TSP-1000
Sampling Steps K 1 1 2
Keeping Rate p 0.2 0.2 0.1

H.2 INFERENCE CONFIGURATION

The inference hyperparameters are specified in Tables 13, 14, and 15 for TSP, CVRP, and MIS,
respectively.

Regarding the two key hyperparameters, p and K, each plays a distinct role in guiding the inference
process. The parameter p explicitly controls the trade-off between exploitation and exploration: if
p is too large, the reconstructed solution remains overly close to the original, potentially causing
the correction process to stagnate; if p is too small, the reconstruction may fallback to generating
solutions from scratch. Meanwhile, K governs how forward passes are distributed—favoring either
more sampling steps per iteration or more iterations with fewer steps. For simpler tasks, smaller
values of K are preferable, promoting more iterative refinement. In contrast, for harder tasks where
predictions exhibit higher uncertainty (can be measured by entropy after normalizing prediction into
probabilities), larger K values are beneficial to gather more informative samples.

Beyond their semantic interpretations, several practical factors influence hyperparameter selection.
Noisy data, for instance, increases prediction uncertainty and thus favors larger K. We verify this
phenomenon by comparing the optimal hyperparameters for models trained on clean (optimal) data
versus highly noisy data—generated using 128 runs of 2-opt—as shown in Table 19. The results
show that noise shifts the optimal value of K from 1 to 8. For large-scale CVRP, this phenomenon
may also arise due to the stringent time limits imposed during data generation (4 minutes per
instance for CVRP-500 and 8 minutes for CVRP-1000), resulting in noisy training data. Additionally,
imbalanced learning across different values of p can occur—even though p is uniformly sampled
during training, models often perform worse on medium-range p values, as these correspond to
more challenging reconstruction scenarios and may be underrepresented in effective learning. These
compounding factors make identifying optimal hyperparameters non-trivial, even when their roles
are well understood.

Fortunately, in our case, the extremely fast evaluation time of MaskCO enables efficient hyperparam-
eter tuning via grid search. For example, full hyperparameter selection for TSP-500 takes only 3.6
minutes. Additional details and empirical analysis can be found in Appendix K. In the future works,
p may not be fixed as a constant; instead, it could be sampled from a distribution, set periodically, or
even dynamically controlled by an auxiliary neural network.
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Table 14: Inference configurations for CVRP.

CVRP-100 CVRP-500 CVRP-1000
Sampling Steps K 2 16 128
Keeping Rate p 0.3 0.3 0.6

Table 15: Inference configurations for MIS.

RB-[200-300] ER-[700-800]
Sampling Steps K 1 1
Keeping Rate p 0.6 0.5

Table 16: Dataset Configurations for TSP.

TSP-100 TSP-500 TSP-1000
Training Dataset Size 1,280K 128K
Training Dataset Solver Concorde (Applegate et al., 2006) LKH-3 (Helsgaun, 2017)
Test Dataset Size 1,280 128
Test Dataset Solver Concorde (Applegate et al., 20006)

Table 17: Dataset Configurations for CVRP.

CVRP-100 CVRP-500 CVRP-1000
Training Dataset Size 1,536K 200K 100K
Training Dataset Solver HGS (Vidal et al., 2012) HGS with Decomposition (Santini et al., 2023)
Test Dataset Size 1,280 128 64
Test Dataset Solver HGS (Vidal et al., 2012)

Table 18: Dataset Configurations for MIS.

RB-[200-300] ER-[700-800]

Training Dataset Size 90,000 163,840
Training Dataset Solver KaMIS (Lamm et al., 2016)
Test Dataset Size 500 128

Test Dataset Solver KaMIS (Lamm et al., 2016)

I DATASETS

The dataset configurations for TSP, CVRP, and MIS are summarized in Tables 16, 17, and 18,
respectively.

J GENERALIZATION STUDIES

J.1 TSP

TSPLIB results have been demonstrated in 4. Cross-scale generation results is shown in Table 20.
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Table 19: Comparison of optimal hyperparameters for models trained on clean (optimal) data versus
highly noisy data generated by 128-run 2-opt. For the model trained on clean data, the optimal
configuration is (K, p) = (1,0.2), whereas for noisy data it is (¥, p) = (8,0.2). Furthermore, for
a fixed K, the optimal p varies depending on data quality, indicating that prediction uncertainty
influences hyperparameter selection in multiple dimensions.

TSP-500
K p CLEAN DATA NOISY DATA
0.1 0.0041% 1.9819%
0.2 0.0020% 1.2726%
0.3 0.0051% 0.9309%
0.4 0.0073% 0.8800%
1 05 0.0115% 0.9427%
0.6 0.0179% 1.2118%
0.7 0.0257% 1.5670%
0.8 0.0443% 1.9170%
0.9 0.0917% 2.1689%
0.1 0.0048% 0.6528%
0.2 0.0070% 0.6371%
0.3 0.0075% 0.6710%
0.4 0.0093% 0.7144%
8 05 0.0095% 0.7767%
0.6 0.0107% 0.8466%
0.7 0.0111% 0.8978%
0.8 0.0112% 0.9291%
0.9 0.0113% 0.9393%

Table 20: Cross-scale generalization results for TSP.

w TSP-100 TSP-500 TSP-1000
esting
S Fast T2T (T,=20, T,=20) 7.76, 0.01% 7.77,0.23% 7.78, 0.34%
~ MaskCO (T=2560) | 7.756, 0.0000 % 7.796, 0.521% 7.790, 0.437%
% MaskCO (T=10240) | 7.756,0.0000% | 7.773,0.227% | 7.770,0.179%
S Fast T2T (T,=20, T,=20) 16.97, 2.54% 16.58, 0.20% 16.60, 0.33%
& MaskCO (T=2560) | 16.957,2.485% | 16.546,0.0007% | 16.546, 0.0005%
2 MaskCO (T=10240) | 16.903, 2.156% | 16.546, 0.0007% | 16.546, 0.0001 %
E Fast T2T (T,=20, T,=20) 24.01, 3.87 % 23.25, 0.58% 23.20, 0.36%
& MaskCO (T=2560) | 24.206,4.707% | 23.134,0.0702% | 23.119, 0.0027%
& MaskCO (T=10240) | 24.136, 4.404% | 23.129, 0.0456% | 23.118, 0.0012%
Table 21: Generalization Results on VRPLIB (T=40960).
ICAM NeuOpt MaskCO
VRPLIB50-200 4.41% 2.62% 2.15%
VRPLIB201-500 3.92% - 3.87%
J.2 CVRP

Results on the VRPLIB benchmark are summarized in Table 21. The mixed-scale and mixed-capacity
training strategy proposed by ICAM (Zhou et al., 2024) can be further incorporated into our method

to enhance its generalization performance.
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Table 22: Generalization results for MIS. (T=32k)

Training
M RB-[200-300] | ER-[700-800]

RB-[200-300] | 20.08,0.10% | 19.96,0.72%
ER-[700-800] | 38.57, 14.04% | 44.59,0.62%

Table 23: Comparison of training resource usage for TSP using a single A100 GPU.

TSP-100 TSP-500 TSP-1000
T2T 8.6Day 2.7Day 5.1Day
Fast T2T 20.3Day  5.9Day 13.5Day
MaskCO  <2Day <I1Day <IDay

J.3 MIS

The model is trained on RB-[200-300] and evaluated on ER-[700-800], and vice versa, as shown in
Table 22.

K HYPERPARAMETER STUDIES

For the inference hyperparameters, we conduct a grid search over the number of sampling steps K
and the keeping rate p, while keeping the total number of forward passes fixed. The results are shown
in Figures 2, 3,4, 5,6, 7, 8, and 9.

L HARDWARE AND BASELINE SETTINGS

All experiments were conducted on a computing platform equipped with an NVIDIA A100 GPU and
a 32-core Intel Xeon Platinum 8352S CPU. Traditional solver baselines (Concorde, LKH-3, HGS,
KaMIS) were evaluated in single-threaded mode, following Ma et al. (2023); Sun & Yang (2023);
Zhou et al. (2024). For baselines without specified hyperparameters, we use the configuration yielding
the best solution quality in their original papers. Regarding SIT (Luo et al., 2025) on CVRP-1000,
since the publicly released checkpoint was not trained under the capacity setting C' = 50, direct
evaluation on our test set is not feasible. To ensure a fair comparison, we retrain their model from
scratch on CVRP-1000 with C' = 50, which requires approximately 10.7 days on a single A100 GPU.

M TRAINING RESOURCE COMPARISON

The default training duration was set to 600 epochs for all models, with the exception of models
trained on CVRP-500 and CVRP-1000, which were trained for 768 epochs, and those on TSP-1000,
which were trained for 300 epochs. We present a direct comparison of training time on TSP with T2T
and Fast T2T (Li et al., 2024) in Table 23. Notably, MaskCO requires less than 1/13 of the training
time needed by Fast T2T on TSP-1000. T2T and Fast T2T train a 12-layer GCN (for 50 epochs),
whereas we train a 22-layer transformer. This comparison also reflects that the computational cost of
GCN is much expensive than transformer.
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Figure 2: Grid search result of sampling steps K and keeping rate p on TSP-100. (T=320)

TSP-500 (7= 320)

—_K=1
—_—K=2

—_— K=
0.08 —

Gap(%)

0.04 -

0.02

0.00 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Keeping Rate

Figure 3: Grid search result of sampling steps K and keeping rate p on TSP-500. (T=320)

N DATA SCALING

We observe the evidence of continued improvement with larger datasets, which indicates MaskCO is
suitable for pretraining with more data in the future. Experimental results on TSP-500 and CVRP-500
are listed in Table 24 and Table 25.

O TRAINING TIME FOR THE SELE-TRAINING SCHEME

For TSP-100 and TSP-500, the self-training scheme takes about 1/2 time of standard training time.
The initial training uses the same setup as standard training but converges in just 150 epochs, only
about a quarter of the 600 epochs required in the standard approach. An additional 1/4 of the time
is spent on labeling (i.e., solving unlabeled instances with the model), while each fine-tuning step
takes less than 10 minutes, as overfitting occurs within 15 epochs. For TSP-1000, no initial training
is needed, reducing total time to approximately 1/4 of the standard training cost.
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Figure 4: Grid search result of sampling steps K and keeping rate p on TSP-1000. (T=320)

CVRP-100 (T'= 640)

—_—K=1
—_K=2
—_K=1
—_K=8
K=16

0.8

0.6

Gap(%)

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Keeping Rate

Figure 5: Grid search result of sampling steps K and keeping rate p on CVRP-100. (T=640)

Table 24: Effect of data scaling on TSP-500.

DATASET SIZE T TSP-500
OBJ. GAP
30k 320 16.547 0.0053%
640 16.546 0.0035%
64k 320 16.546 0.0032%
640 16.546 0.0027%
128k 320 16.546 0.0020%

640 16.546 0.0014%
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CVRP-500 ( T'=2560)
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Figure 6: Grid search result of sampling steps K and keeping rate p on CVRP-500. (T=2560)

CVRP-1000 (7'=5120)
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Figure 7: Grid search result of sampling steps K and keeping rate p on CVRP-1000. (T=5120)

Table 25: Effect of data scaling on CVRP-500.

DATASET SIZE T CVRP-500
OBJ. GAP
50k 640 6330 1.854%
1280 63.21 1.697%
640 62.89 1.190%
100k 1280 6281 1.057%
200k 640 62.66 0.813%

1280 62.59 0.714%
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MIS-ER-[700-800] (7'=1000)
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Figure 8: Grid search result of sampling steps K and keeping rate p on MIS-RB-[200-300]. (T=1k)
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Figure 9: Grid search result of sampling steps K and keeping rate p on MIS-ER-[700-800]. (T=1k)
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