
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MASKCO: MASKED GENERATION DRIVES EFFECTIVE
REPRESENTATION LEARNING AND EXPLOITING FOR
COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural combinatorial optimization (NCO) has long been anchored in paradigms
like solution construction or improvement that treat the solution as a monolithic
reference, squandering the rich local decision patterns embedded in high-quality
solutions. Inspired by self-supervised pretraining breakthroughs in language and
vision, where simple yet powerful paradigms like next-token prediction enable
scalable learning, we ask: Can combinatorial optimization adopt such a fundamen-
tal training paradigm to enable effective and scalable representation learning?
We introduce MaskCO, a masked generation approach that reframes learning to
optimize as solution-level self-supervised learning on given reference solutions.
By strategically masking portions of optimal solutions and training models to
recover the missing content, MaskCO turns a single (instance, solution) pair into
hundreds of (instance, partial solution) pairs, encouraging the model to internalize
fine-grained, localized decision patterns. For inference, we propose a mask-and-
reconstruct procedure that naturally leverages the training objective to implement
a local-search-like refinement: each iteration masks certain variables and recon-
structs through masked generation, progressively improving the current solution.
We also find that the learned representations readily transfer to alternative inference
routines and facilitate effective fine-tuning in other models. Experimental results
demonstrate that masked generation serves as a universal learning objective across
multiple CO problems, redefining how solutions are learned, refined, and scaled.
Compared to previous state-of-the-art neural solvers, MaskCO achieves remarkable
performance improvements, exceeding 99% in optimality gap reduction, along
with a 10x speedup on the Travelling Salesman Problem (TSP).

1 INTRODUCTION

Combinatorial Optimization (CO), which seeks optimal solutions in discrete spaces under com-
plex constraints, underpins numerous critical applications (Korte et al., 2011; Cook et al., 1994).
These problems, often NP-hard, pose significant challenges due to their inherent computational diffi-
culty, requiring effective and efficient approximation methods. Neural Combinatorial Optimization
(NCO) (Bengio et al., 2021; Cappart et al., 2021), a rapidly growing area at the intersection of machine
learning and operational research, has emerged as a powerful framework to address these challenges
by automating heuristic design in a data-driven manner. Unlike traditional heuristic-based solvers,
learning-based methods leverage structured distributions of problem instances to extract patterns
directly from data or learn from objective feedback via customized algorithms, reducing reliance
on manual intervention while achieving competitive or superior solution quality and computational
efficiency (Kool et al., 2018; Kwon et al., 2020; Sun & Yang, 2023; Li et al., 2023b).

Many CO tasks can be cast as variable-decision problems on graphs, where the model seeks to
identify a set of target variables that constitute a high-quality solution. Building upon this basic
formulation, advanced methods often relax the discrete variables into a continuous space and integrate
objective-driven strategies to solve these problems. Representative approaches include unsupervised
learning (Sanokowski et al., 2024), objective-based fine-tuning (Sanokowski et al., 2023), and
inference-time guidance (Li et al., 2023b; 2024), largely grounded in diffusion models (Ho et al.,
2020; Sun & Yang, 2023) or tree-based search algorithms (Fu et al., 2021). These approaches

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Instance 𝐺 𝝆 =
𝟔
𝟕

𝝆 =
𝟒
𝟕 𝝆 =

𝟐
𝟕

Optimal
Solution

Random Mask

Recovery with Transformer 𝑝𝜽

Figure 1: Overview of the training process, where MaskCO masks portions of optimal solutions and
learns to recover the missing content. The masking ratio ρ is uniformly sampled from [0,1].

utilize easy-to-optimize soft-constrained forms and show promise in solving problems with relatively
simple constraints, such as general node-decision problems on graphs like Maximum Independent
Set (MIS) and edge-decision problems like Traveling Salesman Problem (TSP). However, they often
encounter challenges when addressing problems with more complex constraints, such as Capacitated
Vehicle Routing Problem (CVRP). Specifically for VRPs, approaches resort to sequential decision
processes that enforce constraints at every step, either via autoregressive construction (Kool et al.,
2018; Kwon et al., 2020; Kim et al., 2022; Luo et al., 2024; Zhou et al., 2024) or via local-search
actions formulated in a Markov Decision Process (MDP) and trained with reinforcement learning
(RL) (da Costa et al., 2020; Sui et al., 2021; Ma et al., 2021; 2023).

As learning-based CO advances, model and training complexity have grown in tandem, with increas-
ing reliance on problem-specific designs. Fundamentally, most existing approaches are anchored
in solution construction or improvement paradigms that treat a solution as a monolithic object,
operating at the instancesolution level and overlooking the rich, localized decision patterns embedded
in high-quality solutions. This leads to inefficient data utilization and limited scalabilityparticularly
problematic in CO, where obtaining reliable supervisory signals can be costly. This inefficiency
mirrors challenges once pervasive in natural language processing (NLP) and computer vision (CV),
where early supervised methods relied heavily on labeled datasets. The advent of self-supervised
pretraining (Liu et al., 2021), driven by paradigms like next-token prediction in GPT (Radford et al.,
2018; 2019; Brown et al., 2020) and masked auto-encoding in BERT (Devlin et al., 2019) and (He
et al., 2022), revolutionized these fields by enabling models to learn from raw data through simple yet
universal objectives. These methods demonstrated that removing and reconstructing content could
unlock latent patterns at scale, achieving unprecedented generalization with minimal task-specific
engineering. These successes invite a central question for CO: Can we adopt a similarly foundational
training paradigm that enables effective and scalable representation learning?

In this paper, we propose a masked generation paradigm that redefines learning to optimize as solution-
level self-supervised learning. Our key insight is that optimal solutions, like sentences or images,
encode hierarchical decision patterns, with local substructures that recur across problem instances
(e.g., efficient subroutes in routing, coherent node clusters in graph problems). By strategically
masking portions of optimal solutions and training models to reconstruct the missing content, MaskCO
compels the learning of fine-grained, localized decision logic while turning each (instance, solution)
pair into many (instance, partial-solution) training examples, as shown in Fig. 1. At inference, we
introduce a mask-and-reconstruct procedure that naturally exploits the training objective to implement
a local-search-like refinement process: within each regeneration phase, the model predicts all variables
in one shot and selectively commits the highest-confidence components, progressively improving
the current solution over a few iterations. This paradigm treats solutions not as indivisible targets
but as collections of local decisions, where each optimal solution serves as a curriculum for learning
reusable optimization strategies. Moreover, the flexible masking mechanism affords fine-grained
control over constraint satisfaction, bridging the gap between efficient heatmap-based inference and
the handling of complex constraints. We find that the learned representations transfer readily to
alternative inference pipelines and enable effective fine-tuning of other models.

Our contributions are threefold: (1) We propose masked generation as a novel foundational paradigm
for NCO, transforming solving into a solution-level self-supervised process. By training models to
recover strategically masked components of optimal solutions, the framework forces the learning

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

of fine-grained local decision patterns embedded in solution structures, achieving powerful repre-
sentation learning while maintaining simplicity. (2) To fully exploit the learned representations, we
design a direct inference algorithm that dynamically activates the models knowledge through iterative
masking and regeneration, which mimics a computationally efficient search behavior. (3) Extensive
experiments demonstrate the state-of-the-art performance of MaskCO on TSP, CVRP, and MIS.

2 RELATED WORKS

Neural Combinatorial Optimization. Learning-based combinatorial optimization (CO) solvers
often utilize neural networks to either construct solutions or enhance existing ones, with the aim
of directly minimizing objective scores (Bengio et al., 2021). This is typically achieved through
reinforcement learning (Kool et al., 2018; Kwon et al., 2020; Kim et al., 2022; Qiu et al., 2022; Min
et al., 2024) or by aligning predictions with reference solutions using supervised learning (Vinyals
et al., 2015; Joshi et al., 2019; Hudson et al., 2022; Fu et al., 2021; Luo et al., 2024).

The solution construction process can be categorized into autoregressive and non-autoregressive
methods. Autoregressive methods (Khalil et al., 2017; Kool et al., 2018; Kwon et al., 2020; Hottung
et al., 2021; Kim et al., 2022) sequentially determine decision variables until a complete solution is
constructed, while non-autoregressive methods (Joshi et al., 2019; Fu et al., 2021; Geisler et al., 2022;
Qiu et al., 2022; Sun & Yang, 2023; Zheng et al., 2024) predict soft-constrained solutions in one step,
followed by post-processing to ensure feasibility. In recent years, generative models (Hottung et al.,
2021; Cheng et al., 2022; Sun & Yang, 2023; Du et al., 2023; Zhang et al., 2023; Li et al., 2023b),
particularly diffusion models, have shown promise in CO due to their strong representational power
and the ability to model informative distributions, which can be viewed as a type of non-autoregressive
method with a higher model expressiveness. Typically, the solutions are only considered feasible
once they are complete. Consequently, models operate at the instance-solution pair level, where
optimization objectives are enforced based on the final output of the solution construction. This
approach overlooks the rich, localized decision-making patterns embedded within optimal solutions.

In contrast, improvement-based solvers (d O Costa et al., 2020; Wu et al., 2021; Chen & Tian, 2019;
Li et al., 2021; Hou et al., 2023) focus on iteratively refining a solution through local search operators
guided by neural networks while ensuring or restoring feasibility. This design enables feedback
during the local optimization process, but due to the absence of global guidance, such feedback is
often less reliable. These methods still predominantly rely on reinforcement learning to optimize the
use of improvement operators, with the focus on the final outcome.

More recently, some approaches (Luo et al., 2024; Drakulic et al., 2023; Ye et al., 2024) have explored
decomposing large problems into smaller subproblems that can be locally solved and then integrated
to achieve a global solution. While these strategies capture local solution patterns, they typically
require specific pipeline designs tailored to particular problems.

Pre-training and Masked Generation. Self-supervised learning techniques, which include pre-
training on different types of corrupted inputs or missing information, have gained considerable
attention in computer vision for their ability to learn useful representations without labeled data.
Masked generation (autoencoding), first introduced by BERT (Devlin et al., 2019) for natural language
understanding, is a key concept in self-supervised pre-training. This method involves masking parts
of the input and training models to predict the missing content, an approach that has proven highly
effective across various domains. In the context of vision representation learning, this idea has been
extended through the use of discrete tokenizers (Bao et al., 2022; He et al., 2021), demonstrating its
ability to work effectively with non-sequentially structured data. Recent works (Chang et al., 2022; Li
et al., 2023a) further demonstrate that masked generation can efficiently perform image synthesis in a
fixed number of steps using non-autoregressive decoding, showcasing its remarkable scalability and
potential for broader applications, especially for the domain of CO, where problems are characterized
by discrete decision spaces, exhibit a non-sequential nature, and require highly scalable methods.

3 PRELIMINARIES AND NOTATIONS

Combinatorial Optimization on Graphs. Following standard practice Karalias & Loukas (2020);
Wang et al. (2022), we consider a family of graph instances G. Each instance is a graph G = (V,E)
with vertex set V and edge set E. Many CO tasks can be framed as selecting a subset of a ground

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

set U(G): edge-decision problems (e.g., TSP) select edges, so U(G) = E; node-decision problems
(e.g., MIS) select vertices, so U(G) = V .

We represent a selection by a binary indicator x ∈ {0, 1}|U(G)|, where xu = 1 means u ∈ U(G)
is selected. The feasible set Ω(G) ⊆ {0, 1}|U(G)| contains selections that satisfy the problems
constraints. The goal is to find a feasible selection that minimizes a given objective l(·;G) :
{0, 1}|U(G)| → R≥0:

min
x∈Ω(G)

l(x;G). (1)

Constraints can be enforced either as hard feasibility (encoded in Ω(G)) or as soft penalties within
l(·;G), depending on the problem. Let supp(x) = {u ∈ U(G) : xu = 1} denote the support of x.
Then the selection problem can be defined below.

Definition 3.1 (Selection Problem). A binary vector x̂ ∈ {0, 1}|U(G)| is a partial solution for G if it
can be extended to some feasible solution, i.e.,

∃x⋆ ∈ Ω(G) s.t. supp(x̂) ⊆ supp(x⋆). (2)

We denote the set of all partial solutions by Ω̂(G).

Intuitively, a partial solution selects a subset of variables that is consistent with at least one feasible
full solution.
Definition 3.2 (Selection Function). A selection operator for instance G is a function

fG : Ω̂(G)× [0, 1]|U(G)| × N → Ω̂(G), (3)

which takes a partial solution x̂, a vector of selection scores p, and a target size k, and returns an
extended partial solution. The operator must satisfy:

• Monotone extension: supp(x̂) ⊆ supp
(
fG(x̂,p, k)

)
.

• Size or maximality: either |supp
(
fG(x̂,p, k)

)
| ≥ k, or fG(x̂,p, k) is maximal i.e. no

single element u ∈ U(G) \ supp
(
fG(x̂,p, k)

)
can be added while remaining in Ω̂(G).

A typical instantiation is a greedy operator: sort u ∈ U(G) by pu and add elements one by one to
x̂ when the partial solution remains extendable; stop when the target size k is reached or no further
valid additions exist. With a fixed solution size, setting k to that size yields a complete solution.

Examples. TSP is defined on a complete undirected graph where vertices are cities and edges carry
non-negative weights (e.g., distances). The solution selects exactly |V | edges forming a Hamiltonian
cycle and minimizes the tour length. MIS is defined on an undirected graph G = (V,E); the solution
selects a maximum-cardinality subset of vertices with no adjacent pairs. For routing problems such
as CVRP, capacity constraints can be treated as hard feasibility in Ω(G) or relaxed and embedded as
penalties in l(·;G), depending on the solver design.

4 METHODOLOGY

We propose a general and principled paradigm for combinatorial optimization based on mask genera-
tion, a framework designed to be both flexible, accommodating diverse problem formulations, and
minimalist in its reliance on problem-specific components.

4.1 SOLUTION-LEVEL SELF-SUPERVISED LEARNING IN TRAINING

Drawing inspiration from the success of masked auto-encoders in language and vision pre-training (He
et al., 2022), where models learn robust representations by reconstructing corrupted inputs, we propose
a similar foundational paradigm for CO that enables scalable, efficient learning of decision patterns
within optimal solutions. In CO, optimal solutions inherently encode recurring local substructures.
By treating these solutions as composite graphs of substructures, we design a training task that
requires the model to infer missing components based on partial contexts. This approach leverages
the compositional nature of CO solutions, encouraging the model to learn reusable decision patterns
rather than memorizing monolithic solutions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Specifically, given a complete solution x⋆ ∈ Ω(G), we construct a partial solution x̂ ∈ Ω̂(G) by
sampling a subset of elements from x. This subset sampling is governed by a distribution Dt over the
interval [0, 1], which controls the proportion of elements retained. In each training iteration, we first
sample a ratio t ∼ Dt, and then uniformly retain ⌈t · |supp(x⋆)|⌉ elements from x to form the partial
solution x̂. By default, we use a uniform distribution for Dt, which is a straightforward strategy that
masks an equal number of variables each time. From a single solution x⋆, the sampling process
generates exponentially many partial solutions, significantly improving data efficiency.

Let pθ(G, x̂) ∈ [0, 1]|U(G)| denote the models predicted selection probabilities conditioned on the
instance G and the partial solution x̂. Using the ground-truth indicator x⋆ as the target, we define the
training loss as a variable-wise binary cross-entropy:

L(θ;G, x̂,x⋆) = BCE
(
pθ(G, x̂),x⋆

)
= −

∑
u∈U(G)

[
x⋆
u logpθ,u + (1− x⋆

u) log(1− pθ,u)
]
. (4)

This formulation treats each masked position as an independent binary classification task, where
the model learns to predict whether a variable belongs to the optimal solution based on the current
context. Importantly, by iteratively masking different subsets of the solution during training, the
model is exposed to diverse reasoning paths and learns a contextualized confidence estimator that
generalizes well on diverse partial states.

4.2 MULTI-STEP DECODING FOR MASKED GENERATION

Our multi-step decoding framework progressively constructs solutions through an iterative refinement
process that dynamically balances exploration and exploitation. The method leverages a schedule
function γ : [0, 1] → [0, 1] to control the solution growth rate, which is monotonically increasing
with γ(0) = 0 and γ(1) = 1. This function orchestrates a gradual transition from broad exploration
of potential solution components to precise exploitation of the most promising elements. In practice,
we adopt a linear implementation γ(t) = t, which provides uniform growth throughout the process.

For CO problems where all feasible solutions share a fixed cardinality m (such as TSP tours with ex-
actly m edges), the decoding process proceeds through a predetermined sequence of K deterministic
steps. Beginning with an empty partial solution x̂(0) = 0, in each step i ∈ [K] we adopt the greedy
selection function that expands the solution by selecting the candidate variable with the highest
predicted confidence according to the model’s output heatmap pθ(G, x̂(i−1)) ∈ [0, 1]|U(G)|, among
those not yet included. With selection function f , the incremental construction is well governed that
the total number of selected elements reaches ⌈γ(i/K) ·m⌉ at each step. Formally, we have:

x̂(i) ← fG

(
x̂(i−1),pθ(G, x̂(i−1)),

⌈
γ(i/K) ·m

⌉)
, i ∈ [K]. (5)

By construction, the final partial solution satisfies |supp(x̂(K))| = m and is feasible.

When dealing with problems exhibiting variable solution cardinality (such as MIS), an estimate
mθ(x̂) of the solution size is first obtained by summing the model’s predictions:

mθ(G, x̂) :=
∑

u∈U(G)

pθ,u(G, x̂). (6)

Base on this estimate, accordingly, the iterative correction process becomes:

x̂(i) ← fG

(
x̂(i−1),pθ(G, x̂(i−1)),

⌈
γ(i/K) ·mθ(G, x̂(i−1))

⌉)
, i ∈ [K]. (7)

Since the final iterate may not be feasible, if x̂(K) /∈ Ω(G) we apply a completion step:

x̂ ← fG

(
x̂(K),pθ(G, x̂(K−1)), |U(G)|

)
, (8)

reusing the previous scores to avoid recomputation and maintain consistency. Alternative completion
strategies are discussed in Appendix E.

4.3 THE HIGH-LEVEL CORRECTION FRAMEWORK: MASK AND RECONSTRUCT

The deterministic decoding process, while efficient, inherently limits exploration once an initial
solution is formed, as it sequentially commits to irreversible decisions that may trap the construction

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

in suboptimal configurations. To this end, we introduce a mask-and-reconstruct mechanism that
enables iterative solution correction. Specifically, in each iteration, given a solution x, a subset of its
elements is randomly masked according to a predefined keeping rate p, resulting in a partial solution
x̂. During reconstruction, the model regenerates the masked regions through an adapted multi-step
decoding process governed by a shifted schedule function γp(r) = p+ (1− p) · γ(r), which adjusts
the decoding trajectory to focus on reconstructing the missing 1− p fraction of the solution.

Algorithm 1 Inference Algorithm
1: Input: instance G, model parameters θ, selection opera-

tor fG, iterations per decode K, schedules γ(·) and γp(·),
total budget T , masking rate p ∈ [0, 1], objective l(·;G)

2: x← MultiStepDecoding(G, θ, fG,0,K, γ)
3: xbest ← x
4: for i = 1 to ⌊T/K⌋ − 1 do
5: x̂← RandomlyMask(x, p)
6: x← MultiStepDecoding(G, θ, fG, x̂,K, γp)
7: if l(x;G) < l(xbest;G) then
8: xbest ← x
9: end if

10: end for
11: return xbest

By anchoring the early steps of reconstruc-
tion to the retained elements in x̂, the
model leverages the unmasked portions as
contextual anchors while probabilistically
exploring alternative configurations for the
masked regions. The shifted schedule γp
ensures that the decoding process begins
from the partial solutions existing com-
pleteness level p and gradually progresses
toward full reconstruction over K steps.
Crucially, the masking rate p controls the
trade-off between exploration and exploita-
tion: lower p values lead to aggressive re-
optimization of larger solution segments,
while higher values of p enable more local-
ized, fine-grained improvements.

The full solving pipeline consists of two phases: construction and correction. In the construction
phase, an initial solution is generated from scratch using the base decoding method. This is followed
by multiple rounds of the correction phase, in which the mask-and-reconstruct mechanism iteratively
refines the solution, progressively enhancing its quality. This approach transforms static solution
generation into an dynamic, memory-enhanced search process. Previously identified high-quality
substructures serve as guides for subsequent refinements, while the controlled application of masking
preserves the flexibility to explore novel regions of the solution space. Consequently, the model trained
with the mask loss exhibits strong performance as an efficient combinatorial solver, demonstrating
the effectiveness of transferring representation learning into practical problem-solving capabilities.

4.4 MODEL ARCHITECTURE

We adopt an encoder-decoder Transformer architecture (Vaswani, 2017), chosen for its capacity to
model complex dependencies in combinatorial structures through self-attention mechanisms. Node
features are linearly projected into the embedding space. Edge connections, represented by a 0-1
adjacency matrix, are incorporated into the attention mechanism through an additive bias. Formally,
the attention logits are computed as Z = Q⊤K+A, where Q and K denote query and key matrices,
respectively; A is the adjacency matrix encoding the presence or absence of edges between nodes,
directly added to Q⊤K without any scaling; and Z represents the resulting attention logits before
applying the softmax function.

Output Layer. For node-selection problems, node features are projected onto a one-dimensional
space to obtain the logits. For edge-selection problems, pairwise compatibility is evaluated using the
dot product of source and target node embeddings.

5 EXPERIMENTS

Problem Settings. We follow the standard data generation procedure to generate TSP, CVRP, and
MIS datasets. For TSP, the n node locations are sampled uniformly at random in the unit square (Kool
et al., 2018; Kwon et al., 2020; Li et al., 2024; Zhou et al., 2024; Ma et al., 2021; 2023). For
CVRP, the depot location as well as n customer locations are sampled uniformly at random in the
unit square (Kool et al., 2018). The customer demands are sampled uniformly from {1, · · · , 9}
and the vehicle capacity D is set to 50 across problem sizes. For MIS, two datasets are tested,
including RB graphs (Zhang et al., 2023) and ErdsRnyi (ER) graphs (Erdős et al., 1960). For RB
graphs, we randomly sample 200 to 300 vertices uniformly and generate the graph instances. ER
graphs are randomly generated with each edge maintaining a fixed probability of being present or

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results on TSP across various sizes.
METHOD

TSP-100 TSP-500 TSP-1000

OBJ. GAP TIME OBJ. GAP TIME OBJ. GAP TIME

Concorde (Applegate et al., 2006) 7.756 0.00% 12m∗ 16.55 0.00% 37.66m∗ 23.12 0.00% 6.65h∗
LKH-3 (Helsgaun, 2017) 7.756 0.00% 33m∗ 16.55 0.00% 46.28m∗ 23.12 0.00% 2.57h∗

BQ-NCO (bs16) (Drakulic et al., 2023) 7.757 0.016% 1m41s 16.637 0.551% 5m50s 23.436 1.374% 14m30s
LEHD (RRC 1000) (Luo et al., 2024) 7.756 0.0019% 7.87m 16.575 0.175% 37.54m 23.286 0.726% 3.35h
SIT (RRC 1000) (Luo et al., 2025) – – – – – – 23.206 0.381% 1.59h

DIFUSCO (Ts=100) (Sun & Yang, 2023) 7.76 0.06% 30m 16.69 0.87% 19.1m 23.42 1.31% 51.9m
Fast T2T (Ts=5,Tg=5) (Li et al., 2024) 7.76 0.01% 8.3m 16.58 0.21% 6.9m 23.22 0.42% 18.3m

MaskCO (T=320) 7.756 0.0000% 8s 16.546 0.0020% 6s 23.120 0.0071% 18s
MaskCO (T=640) 7.756 0.0000% 15s 16.546 0.0014% 12s 23.119 0.0051% 33s
MaskCO (T=1280) 7.756 0.0000% 30s 16.546 0.0012% 23s 23.119 0.0038% 1m6s
MaskCO (T=2560) 7.756 0.0000% 1m0s 16.546 0.0007% 43s 23.119 0.0027% 2m8s

Table 2: Results on CVRP across various sizes.
METHOD

CVRP-100 CVRP-500 CVRP-1000

OBJ. GAP TIME OBJ. GAP TIME OBJ. GAP TIME

HGS (Vidal et al., 2012) 15.550 0.000% 13h 62.15 0.000% 55h 121.07 0.000% 197h

POMO (Kwon et al., 2020) 15.750 1.287% 8s – – – – – –
ICAM (Zhou et al., 2024) 15.859 1.985% 5s 63.28 1.813% 28s 123.02 1.610% 1m56s
UDC (Zheng et al., 2025) – – – 65.43 5.278% 5m56s 127.07 4.954% 4m25s

BQ-NCO (bs16) (Drakulic et al., 2023) 15.794 1.572% 2.74m 63.53 2.219% 5.86m 123.56 2.059% 7.73m
LEHD (RRC 1000) (Luo et al., 2024) 15.617 0.433% 9.53m 62.94 1.275% 38.27m 123.33 1.859% 1.83h
ReLD (augx8) (Huang et al., 2025) 15.785 1.509% 0.12m 64.16 3.241% 0.17m 125.06 3.297% 0.34m
SIT (RRC 1000) (Luo et al., 2025) – – – – – – 126.55 4.528% 1.23h

NeuOpt (Ma et al., 2023) 15.566 0.103% 4h49m – – – – – –

MaskCO (T=640) 15.586 0.232% 32s 62.66 0.813% 21s 122.03 0.798% 44s
MaskCO (T=1280) 15.577 0.176% 1m3s 62.59 0.714% 40s 121.85 0.644% 1m7s
MaskCO (T=2560) 15.571 0.135% 2m5s 62.53 0.608% 1m18s 121.69 0.514% 2m2s
MaskCO (T=5120) 15.567 0.111% 4m9s 62.47 0.514% 2m35s 121.63 0.460% 3m51s
MaskCO (T=10240) 15.563 0.086% 8m17s 62.43 0.448% 5m8s 121.60 0.438% 7m33s

absent, independently of the other edges. We adopt ER graphs of 700 to 800 nodes with the pairwise
connection probability set as 0.15. Dataset configurations are provided in Appendix I.

Solving Settings. 1) Forward Passes T , i.e. the total number of model forward passes executed
during the solving process for each instance. 2) Sampling Steps K, which parametrizes the multi-
step decoding. 3) Keeping Rate p, i.e. the proportion of variables retained at each correction step.
Consequently, the solving process consists of one initial construction phase followed by T/K − 1
correction iterations. The value of T is reported in each table as the computational budget, while
detailed configurations for K and p are provided in Appendix H. For VRPs, 2-opt heuristic with
penalty terms is applied between correction steps to enforce constraints and enhance solution quality.

5.1 MAIN RESULTS

TSP Results. Table 1 presents the results of solvers on the TSP across different problem sizes. The
performance of classical solvers is taken from Li et al. (2024). Traditional solvers like Concorde and
LKH-3 achieve a 0.00% gap across all sizes, but their computation times are significantly longer, es-
pecially for larger problem sizes. In contrast, generative-based methods like DIFUSCO and Fast T2T
show slightly higher gaps (0.06% and 0.01% for TSP-100), but they drastically reduce computation
time, with Fast T2T completing TSP-100 in just 8.3 minutes. Notably, MaskCO outperforms all other
methods, achieving near-zero gaps across all sizes while significantly reducing computation times.
Compared to previous state-of-the-art neural solvers, MaskCO achieves remarkable performance
improvements exceeding 99% in optimality gap reduction, along with a 10x speedup.

Table 4 presents generalization performance on the real-world TSPLIB dataset. We evaluate our model
trained with 100-node problems on TSPLIB instances with 50-200 nodes and evaluate the 500-node
model on TSPLIB with 200-1000 nodes using T = 25600. Compared to previous SOTAs, MaskCO
achieves significant improvements from the 0.28% to 0.033% (88.2% improvement) on TSPLIB
50-200, and from 0.93% to 0.115% (87.6% improvement) on TSPLIB 200-1000, respectively.

CVRP Results. Table 2 highlights clear performance advantages of MaskCO. For CVRP-100,
MaskCO (T=640) requires more time compared to constructive solvers (from 8s to 32s), but achieves
a substantial improvement in solution quality (from 1.287% to 0.232%). Compared to search-based
baselines like NeuOpt (Ma et al., 2023), although it achieves around 0.1% gap, it requires much more
time (4h49m), whereas MaskCO can achieve 0.086% in just 8m17s, providing a 34.9x speedup. On
larger instances, many baselines become infeasible. Compared to the SOTAs, MaskCO with 640
forward passes already outperforms previous methods in solution quality and solving speed, achieving
an average performance gain of 53% along with a 64% speedup. By utilizing more computation,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Results on MIS across various sizes.
METHOD

RB-[200-300] ER-[700-800]

OBJ. GAP TIME OBJ. GAP TIME

KaMIS (Lamm et al., 2016) 20.10∗ – 1.4h 44.87∗ – 52.1m
Gurobi (Gurobi Optimization, 2020) 19.98 0.01% 47.6m 41.28 7.78% 50.0m

Intel (Li et al., 2018) 18.47 8.11% 13.1m 38.80 13.43% 20.0m
DGL (Böther et al., 2022) 17.36 13.61% 12.8m 37.26 16.96% 22.7m
GFlowNets (Zhang et al., 2023) 19.18 4.57% 32s 41.14 8.53% 2.9m

DIFUSCO (Sun & Yang, 2023) 19.13 4.79% 20.5m 39.12 12.81% 21.7m
T2T (Li et al., 2023b) 19.38 3.53% 30.3m 41.41 7.72% 27.8m
Fast T2T (Li et al., 2024) 19.49 2.89% 4.7m 40.68 9.34% 1.5m

MaskCO (T=1k) 20.00 0.49% 44s 43.20 3.73% 1m21s
MaskCO (T=2k) 20.03 0.37% 1m27s 43.59 2.84% 2m42s
MaskCO (T=4k) 20.06 0.21% 2m54s 43.86 2.25% 5m24s
MaskCO (T=8k) 20.07 0.15% 5m48s 44.12 1.68% 10m48s
MaskCO (T=16k) 20.08 0.12% 11m36s 44.38 1.09% 21m36s
MaskCO (T=32k) 20.08 0.10% 23m12s 44.59 0.62% 43m12s

Table 4: Generalization on TSPLIB.
ICAM Fast T2T NeuOpt MaskCO

TSPLIB50-200 2.38% 0.28% 0.35% 0.033%
TSPLIB201-1000 6.49% 0.93% – 0.115%

Table 5: Ablation studies on the cor-
rection mechanism.

CONFIG. TSP-500

OBJ. GAP TIME

w/o corr. (T=K=1) 16.689 0.8656% <1s
w/o corr. (T=K=8) 16.563 0.1015% <1s
w/o corr. (T=K=64) 16.556 0.0606% 1s
w/o corr. (T=K=320) 16.554 0.0520% 6s
w/ corr. (T=320, K=1) 16.546 0.0020% 6s

Table 6: Results of fine-tuning and alternative decoding. S: number of samples; Ts: sampling steps.
DECODING METHOD

TSP-100 TSP-500 TSP-1000

OBJ. GAP TIME OBJ. GAP TIME OBJ. GAP TIME

Direct Evaluation

AR (aug×8) 7.756 0.0004% 19s 16.549 0.018% 1m42s 23.136 0.078% 10m4s
AR (2Opt, aug×8) 7.756 0.0004% 19s 16.548 0.012% 1m42s 23.125 0.030% 10m4s
Bidirectional AR (aug×8) 7.756 0.0007% 19s 16.549 0.021% 1m42s 23.215 0.419% 10m4s
Bidirectional AR (2Opt, aug×8) 7.756 0.0006% 19s 16.549 0.019% 1m42s 23.141 0.098% 10m4s
Relaxed AR (aug×8) 7.756 0.0016% 19s 16.549 0.019% 1m41s 23.128 0.043% 10m4s
Relaxed AR (2Opt, aug×8) 7.756 0.0016% 19s 16.548 0.014% 1m41s 23.125 0.028% 10m4s

1-Epoch Finetuning

Consistency (S=8, Ts=64) (Li et al., 2024) 7.756 0.0008% 15s 16.552 0.040% 29s 23.148 0.131% 2m13s
Consistency (S=8, Ts=256) (Li et al., 2024) 7.756 0.0004% 1m0s 16.550 0.025% 1m47s 23.143 0.107% 8m54s

MaskCO can achieve remarkable optimality gaps of 0.448% and 0.438% on CVRP-500 and 1000,
respectively. Moreover, MaskCO continues to improve with an increasing number of forward passes.

MIS Results. Table 3 shows that MaskCO with only 1,000 forward passes already outperforms
previous state-of-the-art methods, achieving a 0.49% gap in 44 seconds on the RB dataset and a 3.73%
gap in 1.3 minutes on the ER dataset. This results in an average 72% improvement in optimality gap
and a 3x speedup in runtime compared to prior methods. As the number of forward passes increases,
MaskCO continues to improve solution quality, consistently reducing the gap. With 32k forward
passes, MaskCO achieves gaps of just 0.10% and 0.62% on the RB and ER datasets, respectively,
setting new benchmarks by outperforming the best generative state-of-the-art methods by 94%.

5.2 ADAPTATIONS FOR ALTERNATIVE TRAINING AND DECODING METHODS

We demonstrate that models trained with masked signal modeling can be directly adapted to alter-
native decoding routines or through few-shot fine-tuning. Specifically, we assess the model using
auto-regressive (AR) decoding, bidirectional AR decoding, relaxed AR decoding, and finetuning
with consistency (Li et al., 2024). The bidirectional AR is specified for TSP, allowing the current
tour segment to be extended on both ends. AR and bidirectional AR are implemented by applying an
auto-regressive masking scheme on the output heatmap, ensuring that only edges associated with the
end nodes of the partial tour can be selected at each step. For relaxed AR decoding, the requirement of
maintaining a contiguous tour segment is relaxed; instead, it globally inserts one edge per step. This
can be implemented by simply setting T and K equal to the problem size. We also consider MaskCO
as a pre-trained model and fine-tune it with one of the SOTAs, i.e., the optimization consistency
model (Li et al., 2024). Since the input requirement is different and thus direct evaluation is not fea-
sible, we inherit the model weight and perform 1-epoch finetuning using its original training method.

Experimental Results. Notably, models trained with MaskCO can directly perform AR decoding and
achieves superior performance compared to previous SOTA supervised AR methods like Drakulic et al.
(2023); Luo et al. (2024), even though the latter employ additional boosting search techniques like
beam search. This highlights the effectiveness of masked learning in acquiring richer representations
for combinatorial optimization. Experiments on consistency presents that 1-epoch finetuning unlocks
decoding with distinct formulations, verifying the generality of the learned representations.

5.3 ABLATION STUDIES

Ablation on Correction Mechanism. As shown in Table 5, on TSP-500 we observe an over 20
reduction in gap with the introduction of the correction mechanism. Similar to prior diffusion solvers,
merely increasing the number of model inferences within a single constructive pass can deliver
notable gains, but the efficiency of these gains is limited. In contrast, increasing the number of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 7: Ablation studies on architecture.
T BACKBONE TSP-500 TSP-1000

320 Transformer 0.0020%, 6s 0.0071%, 18s
GCN 0.0212%, 40s 0.0457%, 2m24s

640 Transformer 0.0014%, 12s 0.0051%, 33s
GCN 0.0141%, 1m15s 0.0324%, 4m39s

1280 Transformer 0.0012%, 23s 0.0038%, 1m6s
GCN 0.0107%, 2m26s 0.0229%, 9m19s

Table 8: Ablation studies on mask modeling.
METHOD TSP-500 TSP-1000

DIFUSCO 0.87%, 19.1m 1.31%, 51.9m
Fast T2T 0.21%, 6.9m 0.42%, 18.3m
MaskCO-GCN (T=320) 0.0212%, 40s 0.046%, 2m24s
MaskCO-GCN (T=640) 0.0141%, 1m15s 0.032%, 4m39s
MaskCO-GCN (T=1280) 0.0107%, 2m26s 0.023%, 9m19s

Table 9: Optimal-solution-free training on TSP-100 and 500
(T=2560). D0 denotes training on 2-opt labels; Dx (x ≥ 1)
denotes self-training using pseudo-labels from D(x− 1).

METHOD
TSP-100 TSP-500

OBJ. GAP OBJ. GAP

2Opt (128 runs) 7.905 1.920% 17.703 6.994%
MaskCO (D0) 7.756 0.001% 16.606 0.362%
MaskCO (D1) 7.756 0.000% 16.561 0.089%
MaskCO (D2) 7.756 0.000% 16.556 0.059%

Table 10: Optimal-solution-free
training on TSP-1000 with T=2560.
”Gen.” indicates training on TSP-500
and testing on TSP-1000.

METHOD
TSP-1000

OBJ. GAP

2Opt (128 runs) 25.052 8.366%
MaskCO (Gen. as D0) 23.288 0.733%
MaskCO (D1) 23.197 0.342%
MaskCO (D2) 23.186 0.295%

corrections via a mask-and-reconstruct procedure better leverages the training objective and the
models capabilities, yielding a markedly superior cost-benefit ratio.

Ablation on Architecture and Mask Modeling. To isolate architectural effects, we replace our
transformer with a Graph Convolution Network (GCN) that incorporates edge features (Joshi et al.,
2019), keeping their settings except the network depth match our Transformer’s configurations.
Table 7 shows significant improvement from transformer architecture. Note that transformer models
require only about 1/5 of the training time on TSP-500 compared to GCN. This efficiency enables
extensive training and contributes to the superior performance of transformers, making them better
suited for challenging representation learning tasks. More comparison of training resources is
available in Appendix M. To isolate the impact of masked modeling, we compare MaskCO with
a GCN backbone (MaskCO-GCN) against other GCN-based methods, where masked modeling is
the sole difference. Table 8 demonstrates that MaskCO-GCN achieves a 9x reduction in optimality
gap along with an 8x speedup compared to Fast T2T, or alternatively, a 18x reduction in gap with
approximately a 2x speedup. This highlights the strength of the masked modeling.

5.4 EXPERIMENTS ON OPTIMAL-SOLUTION-FREE TRAINING PARADIGM

Inspired by distillation techniques for diffusion models (Luhman & Luhman, 2021; Liu et al., 2022)
and SIT (Luo et al., 2025), we present a two-stage training variant that requires no optimal solutions
yet surpasses SOTAs. Stage 1 initializes the model from low-quality heuristic labels (2-opt with 128
restarts); if a pretrained model is available, this stage can be skipped. Stage 2 performs self-training:
the model alternates between pseudo-labeling unlabeled instances and lightweight fine-tuning on
these labels, progressively improving without ground-truth optima. This paradigm trades labeled
optimal solutions for compute: Stage 1 is standard supervised learning on heuristic labels; Stage 2 is
unsupervised self-training that leverages the models ability to improve upon its own pseudo-labels.

As shown in Table 9, MaskCO trained solely on 2-opt outputs distills useful signal and outperforms
its teacher. On TSP-100, although 2-opt exhibits a 1.9% optimality gap, MaskCO reaches a 0.001%
gap to optimal. This stage mirrors the main training setup, differing only in the data source. In
each iteration, we pseudo-label 65,536 TSP-50, 4,096 TSP-500, and 2,048 TSP-1000 instances, and
fine-tune with roughly 1/60 the gradient steps of a full run. With just one iteration, MaskCO exceeds
Fast T2T across all scales, as shown in Tables 9 and 10).

6 CONCLUSION

This paper presents MaskCO, a masked generation paradigm that defines the learning process of
neural combinatorial optimization as a solution-level self-supervised learning process to enable
effective and scalable representation learning. The dynamic inference algorithm through iterative
masking and regeneration further unlocks the learned representations to simulate an efficient search
process for problem solving. Experimental results demonstrate significant improvements over
existing state-of-the-art neural solvers, with remarkable reductions in optimality gaps and substantial
speedups in solving problems like TSP, CVRP and MIS. MaskCO shows potential to pave the way
for performance advances and pre-trained models in combinatorial optimization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics and has been conducted with a commitment to
responsible research practices. The study does not involve human subjects, sensitive personal data,
or potentially harmful applications. We have made efforts to ensure transparency, reproducibility,
and scientific integrity throughout our research process, including accurate reporting of methods and
results. No conflicts of interest exist regarding funding sources or affiliations that could influence
the work. We aim for our research to contribute positively to the machine learning community and
society at large, promoting fairness, accessibility, and open scientific inquiry. Should any unforeseen
broader impacts arise, we remain committed to addressing them responsibly.

REPRODUCIBILITY STATEMENT

We are committed to upholding high standards of scientific excellence and transparency in accordance
with the ICLR Code of Ethics. To ensure the reproducibility of our results, we have included a detailed
description of our methodology (Section 4), model architectures (Subsection 4.4), hyperparameters
(Appendix H), inference algorithm (Algorithm 1), and dataset configuration (Appendix I) in the
main text and appendices. Code will be made publicly available upon acceptance.

REFERENCES

David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde tsp solver, 2006.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers,
2022. URL https://arxiv.org/abs/2106.08254.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour dhorizon. European Journal of Operational Research, 2021.

Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich.
What’s wrong with deep learning in tree search for combinatorial optimization. arXiv preprint
arXiv:2201.10494, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. arXiv preprint
arXiv:2102.09544, 2021.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
image transformer, 2022. URL https://arxiv.org/abs/2202.04200.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization.
Advances in Neural Information Processing Systems, 32, 2019.

Ruoyu Cheng, Xianglong Lyu, Yang Li, Junjie Ye, Jianye Hao, and Junchi Yan. The policy-gradient
placement and generative routing neural networks for chip design. Advances in Neural Information
Processing Systems, 35:26350–26362, 2022.

William J Cook, William H Cunningham, William R Pulleyblank, and Alexander Schrijver. Combi-
natorial optimization. Unpublished manuscript, 10:75–93, 1994.

Paulo R d O Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt heuristics
for the traveling salesman problem via deep reinforcement learning. In Asian Conference on
Machine Learning, pp. 465–480, 2020.

Paulo R de O da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt
heuristics for the traveling salesman problem via deep reinforcement learning. arXiv preprint
arXiv:2004.01608, 2020.

10

https://arxiv.org/abs/2106.08254
https://arxiv.org/abs/2202.04200

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisimu-
lation quotienting for efficient neural combinatorial optimization. Advances in Neural Information
Processing Systems, 36:77416–77429, 2023.

Xingbo Du, Chonghua Wang, Ruizhe Zhong, and Junchi Yan. Hubrouter: Learning global routing via
hub generation and pin-hub connection. In Advances in Neural Information Processing Systems,
2023.

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17–60, 1960.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 7474–7482, 2021.

Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günnemann.
Generalization of neural combinatorial solvers through the lens of adversarial robustness. In
International Conference on Learning Representations, 2022.

Gurobi Optimization. Gurobi optimizer reference manual. http://www.gurobi.com, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollr, and Ross Girshick. Masked
autoencoders are scalable vision learners, 2021. URL https://arxiv.org/abs/2111.
06377.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, pp. 24–50, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing
problems using variational autoencoders. In International Conference on Learning Representations,
2021.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International
Conference on Learning Representations, 2023.

Ziwei Huang, Jianan Zhou, Zhiguang Cao, and Yixin Xu. Rethinking light decoder-based solvers for
vehicle routing problems, 2025. URL https://arxiv.org/abs/2503.00753.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=ar92oEosBIg.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:
6659–6672, 2020.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

11

http://www.gurobi.com
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2503.00753
https://openreview.net/forum?id=ar92oEosBIg

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural
combinatorial optimization. arXiv preprint arXiv:2205.13209, 2022.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial optimization, volume 1.
Springer, 2011.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F Werneck. Finding
near-optimal independent sets at scale. In 2016 Proceedings of the Eighteenth Workshop on
Algorithm Engineering and Experiments (ALENEX), pp. 138–150. SIAM, 2016.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Advances
in Neural Information Processing Systems, 34:26198–26211, 2021.

Tianhong Li, Huiwen Chang, Shlok Kumar Mishra, Han Zhang, Dina Katabi, and Dilip Krishnan.
Mage: Masked generative encoder to unify representation learning and image synthesis, 2023a.
URL https://arxiv.org/abs/2211.09117.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training
to gradient search in testing for combinatorial optimization. In Advances in Neural Information
Processing Systems, 2023b.

Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast t2t: Optimization
consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. Advances in neural information processing systems, 31, 2018.

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-
supervised learning: Generative or contrastive. IEEE transactions on knowledge and data engi-
neering, 35(1):857–876, 2021.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow, 2022. URL https://arxiv.org/abs/2209.03003.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed, 2021. URL https://arxiv.org/abs/2101.02388.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. Advances in Neural Information Processing
Systems, 36, 2024.

Fu Luo, Xi Lin, Yaoxin Wu, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu
Zhang. Boosting neural combinatorial optimization for large-scale vehicle routing problems.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=TbTJJNjumY.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 11096–11107. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/5c53292c032b6cb8510041c54274e65f-Paper.pdf.

12

https://arxiv.org/abs/2211.09117
https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2101.02388
https://openreview.net/forum?id=TbTJJNjumY
https://openreview.net/forum?id=TbTJJNjumY
https://proceedings.neurips.cc/paper_files/paper/2021/file/5c53292c032b6cb8510041c54274e65f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/5c53292c032b6cb8510041c54274e65f-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and in-
feasible regions of routing problems with flexible neural k-opt. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 49555–49578. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/9bae70d354793a95fa18751888cea07d-Paper-Conference.pdf.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. Advances in Neural Information Processing Systems, 36, 2024.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
optimization problems. arXiv preprint arXiv:2210.04123, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Sebastian Sanokowski, Wilhelm Berghammer, Sepp Hochreiter, and Sebastian Lehner. Variational
annealing on graphs for combinatorial optimization, 2023. URL https://arxiv.org/abs/
2311.14156.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for
unsupervised neural combinatorial optimization, 2024. URL https://arxiv.org/abs/
2406.01661.

Alberto Santini, Michael Schneider, Thibaut Vidal, and Daniele Vigo. Decomposition strategies
for vehicle routing heuristics. INFORMS Journal on Computing, 35(3):543–559, 2023. doi:
10.1287/ijoc.2023.1288.

Jingyan Sui, Shizhe Ding, Ruizhi Liu, Liming Xu, and Dongbo Bu. Learning 3-opt heuristics for
traveling salesman problem via deep reinforcement learning. In Asian Conference on Machine
Learning, pp. 1301–1316. PMLR, 2021.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=JV8Ff0lgVV.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A hybrid
genetic algorithm for multidepot and periodic vehicle routing problems. Operations Research, 60
(3):611–624, 2012.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural information
processing systems, 28, 2015.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for
combinatorial optimization with principled objective relaxation. In Advances in Neural Information
Processing Systems, 2022.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics
for solving routing problems. IEEE transactions on neural networks and learning systems, 33(9):
5057–5069, 2021.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
global partition and local construction for solving large-scale routing problems in real-time. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 20284–20292, 2024.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let
the flows tell: Solving graph combinatorial optimization problems with gflownets. arXiv preprint
arXiv:2305.17010, 2023.

13

https://proceedings.neurips.cc/paper_files/paper/2023/file/9bae70d354793a95fa18751888cea07d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9bae70d354793a95fa18751888cea07d-Paper-Conference.pdf
https://arxiv.org/abs/2311.14156
https://arxiv.org/abs/2311.14156
https://arxiv.org/abs/2406.01661
https://arxiv.org/abs/2406.01661
https://openreview.net/forum?id=JV8Ff0lgVV

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xinhao Zheng, Yang Li, Cunxin Fan, Huaijin Wu, Xinhao Song, and Junchi Yan. Learning plaintext-
ciphertext cryptographic problems via anf-based sat instance representation. Advances in Neural
Information Processing Systems, 2024.

Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. Udc: A unified
neural divide-and-conquer framework for large-scale combinatorial optimization problems, 2025.
URL https://arxiv.org/abs/2407.00312.

Changliang Zhou, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang.
Instance-conditioned adaptation for large-scale generalization of neural combinatorial optimization,
2024. URL https://arxiv.org/abs/2405.01906.

14

https://arxiv.org/abs/2407.00312
https://arxiv.org/abs/2405.01906

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed large language models strictly as copy-editing assistants to improve clarity, readability,
and style across the manuscript. The models were used for tasks such as rephrasing sentences,
checking grammar, harmonizing terminology, and smoothing the flow of prose. They did not generate
technical content, analyses, results, or conclusions, and they did not modify the substance of our
claims. All AI-assisted edits were reviewed and approved by the authors, and no confidential data
were provided to the models.

B DISCUSSION ON [MASK]

In most previous works on mask generation (or prediction) (Devlin et al., 2019; Li et al., 2023a;
Chang et al., 2022), a special token [MASK] is introduced. Formally, let the original vocabulary be
denoted as V , and define the extended vocabulary as Vmask = V ∪ {[MASK]}, which includes the
masking token. Trainable embeddings are associated with each token in the extended vocabulary,
including [MASK], to represent a much larger effective vocabulary within a limited embedding
dimensionality (e.g., modeling a 100k-token vocabulary using 1k-dimensional embeddings). However,
in the context of combinatorial optimization (CO) problems where V = {0, 1}, assigning dedicated
embeddings is often unnecessary. This is because binary variables are already real-valued and
correspond to a minimal vocabulary size (|V| = 2). For example, in vehicle routing problems
(VRPs) with n nodes and embedding dimension d, there are approximately n2/2 binary variables.
In such cases, the advantage of using scalar representations becomes evident: these 0-1 values
can be directly incorporated into the attention mechanism as additive bias, thereby avoiding the
need for d-dimensional embeddings for each of the n2/2 binary variables. If the [MASK] token is
introduced in this setting, the scalar representation becomes insufficient for the expanded vocabulary
Vmask = {0, 1,[MASK]}. This necessitates additional mechanisms to represent the masked positions,
which introduces architectural complexity and may undermine the simplicity and efficiency of the
original design. Thus we decide not to introduce [MASK] in this work.

C SELECTION OR DECISION

A decision problem, in brief, involves assigning N binary variables in order to minimize an objective
function under certain constraints. Although it is theoretically equivalent to the selection problem
formulation, we find that using the selection formulation offers several practical advantages:

• It avoids the need for the [MASK] token, which is required in decision problem formulations.
As a result, the selection formulation benefits from the properties discussed in Appendix B.

• The selection paradigm provides a more natural way to model many CO problems. For
instance, in VRPs, the solution is naturally expressed as selecting edges to form a route,
while in the MIS problem, the goal is to select a subset of nodes. Moreover, many existing
methods that decode a heatmap into a solution essentially solve a selection problem. This
approach, often referred to as greedy insertion in prior works (Sun & Yang, 2023; Li et al.,
2023b; 2024), corresponds directly to the selection function formulation adopted in this
paper.

D DISCUSSION ON SELECTION FUNCTION

In this work, we employ the greedy selection function, the most straightforward strategy in which the
most confident variable is iteratively selected. This choice is made to emphasize the effectiveness of
the neural architecture itself, rather than relying on a sophisticated selection function. But generally,
there can be improvements on selection function. However, in general, there is room for improvement
in the design of the selection function. For instance, the selection strategy could be modified to
maximize the average score of newly selected variables, which can be implemented using dynamic

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

programming or bounded-width tree search. This strategy might be useful under more complex CO
problems.

E ALTERNATIVE STRATEGIES FOR THE COMPLETE SOLUTION ENFORCEMENT

Recall that in multi-step decoding for problems with variable solution cardinality, if x̂(K) /∈ Ω(G)
we apply a completion step:

x̂ ← fG

(
x̂(K),pθ(G, x̂(K−1)), |U(G)|

)
, (9)

reusing the previous scores to avoid recomputation and maintain consistency. This strategy selects
as many elements as possible, making it particularly suitable for problems that favor large solution
cardinality, such as MIS. An alternative approach is to select only the minimal number of elements
required to form a valid solution. This can be achieved by iteratively applying

x̂ ← fG

(
x̂,pθ(G, x̂(K−1)), |supp(x̂)|+ 1

)
, (10)

until x̂ becomes a complete solution.

F COMPARISON WITH AUTO-REGRESSIVE MODELING

The basic decoding of MaskCO can be viewed as a 2-step extension of the auto-regressive modeling
for VRPs:

1. Select an edge for the current node → Select an edge for any node. While autoregressive
modeling traditionally selects an edge for the current nodethe end node of the partial routebased
on local edge confidence, we extend this approach to allow selecting an edge for any node, guided
by global edge confidence. The flexibility of non-sequential selection strategy ensures that globally
confident edges are not overlooked simply because they conflict with previously selected edgesedges
that may have been chosen due to high local confidence but lower global relevance. Thus, this
extension mitigates the risk of suboptimal decisions caused by early, locally favorable choices that
may hinder globally optimal solutions. Using only this extension corresponds to MaskCO with K set
equal to the number of nodes.

2. Single-step prediction→Multi-step prediction. While autoregressive modeling traditionally
selects one edge from single prediction, we extend it to select multiple edges from one prediction,
where the number of edges is decoupled with training and can be adjusted in the inference stage. This
extension provide flexibility of speed-quality trade-off and often leads to better scalability. Using
only this extension resembles multi-token prediction in NLP.

During training, the partial solutions sampled in MaskCO are significantly richer than those used in
traditional auto-regressive methods. While conventional auto-regressive approaches train only on
contiguous segments of the solution, MaskCO trains on arbitrary subsets of the optimal solution,
regardless of order or continuity. This exposes the model to a more diverse set of problem instances
and partial solution structures, encouraging a deeper understanding of the underlying combinatorial
problem. As a result, the model learns more robust and generalizable representations (especially
when training data is limited), which translates into improved performance, even when using standard
auto-regressive decoding at inference time.

For node-selection problems such as MIS, standard auto-regressive models already perform global
node selection. In this case, for inference, MaskCO primarily introduces the second extension—
multi-step prediction—which enhances efficiency and solution refinement without altering the global
selection mechanism. In terms of training, conventional auto-regressive approaches require the model
to predict nodes sequentially, one at a time. However, since solutions to node-selection problems are
typically unordered, such sequential modeling imposes an artificial ordering that leads to ambiguous
training signals. In contrast, MaskCO trains the model to predict the complete solution in a set-based
manner, providing a more consistent and unambiguous training signal that aligns better with the
non-sequential nature of the problem.

As a generalized framework built upon auto-regressive modeling with these complementary exten-
sions, MaskCO achieves improved performance, robustness, and flexibility across diverse CO tasks,
with its extremely fast inference enabling thousands of rounds of efficient iterative correction.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 11: The impact of incorporating 2-opt heuristics in solving the TSP and CVRP. ”− 2Opt”
indicates that 2-opt is disabled between correction steps. ”+ PostProcess.” denotes that 2-opt is
applied as a post-processing step after the final correction.

METHOD
TSP-100 TSP-500 TSP-1000

OBJ. GAP OBJ. GAP OBJ. GAP

MaskCO (T=320) 7.756 0.0000% 16.546 0.0020% 23.120 0.0071%
− 2Opt 7.756 0.0000% 16.546 0.0029% 23.121 0.0110%
+ PostProcess. 7.756 0.0000% 16.546 0.0029% 23.120 0.0100%

MaskCO (T=640) 7.756 0.0000% 16.546 0.0014% 23.119 0.0051%
− 2Opt 7.756 0.0000% 16.546 0.0017% 23.120 0.0079%
+ PostProcess. 7.756 0.0000% 16.546 0.0017% 23.120 0.0075%

MaskCO (T=1280) 7.756 0.0000% 16.546 0.0012% 23.119 0.0038%
− 2Opt 7.756 0.0000% 16.546 0.0013% 23.119 0.0054%
+ PostProcess. 7.756 0.0000% 16.546 0.0013% 23.119 0.0054%

MaskCO (T=2560) 7.756 0.0000% 16.546 0.0007% 23.119 0.0027%
− 2Opt 7.756 0.0000% 16.546 0.0008% 23.119 0.0044%
+ PostProcess. 7.756 0.0000% 16.546 0.0008% 23.119 0.0044%

METHOD
CVRP-100 CVRP-500 CVRP-1000

OBJ. GAP OBJ. GAP OBJ. GAP

MaskCO (T=640) 15.586 0.232% 62.66 0.813% 122.03 0.798%
− 2Opt 15.675 0.808% Inf Inf% Inf Inf%
+ PostProcess. 15.610 0.384% 62.698 0.882% 122.16 0.898%

MaskCO (T=1280) 15.577 0.176% 62.59 0.714% 121.85 0.644%
− 2Opt 15.630 0.514% Inf Inf% Inf Inf%
+ PostProcess. 15.601 0.329% 62.664 0.826% 121.98 0.750%

MaskCO (T=2560) 15.571 0.135% 62.53 0.608% 121.69 0.514%
− 2Opt 15.606 0.360% Inf Inf% Inf Inf%
+ PostProcess. 15.593 0.277% 62.642 0.791% 121.81 0.615%

MaskCO (T=5120) 15.567 0.111% 62.47 0.514% 121.63 0.460%
− 2Opt 15.592 0.270% Inf Inf% Inf Inf%
+ PostProcess. 15.584 0.223% 62.621 0.758% 121.69 0.516%

MaskCO (T=10240) 15.563 0.086% 62.43 0.448% 121.60 0.438%
− 2Opt 15.582 0.205% Inf Inf% Inf Inf%
+ PostProcess. 15.579 0.186% 62.620 0.756% 121.72 0.537%

G INFLUENCE ON 2-OPT FOR SOLVING VRPS

For the CVRP, we follow the practice of advanced traditional solvers such as HGS and LKH-3, which
relax the capacity constraints to enable a larger search space and incorporate them into the cost
function as penalty terms. Table 11 shows the effectiveness of the 2-opt heuristic (with penalty terms)
in solving VRPs, particularly for CVRP under capacity relaxation, where it contributes significantly
to effective constraint handling. In practice, full convergence of 2-opt is not required in every iteration.
We find that n/100 and n/25 steps are typically sufficient for TSP and CVRP, respectively, where n
denotes the number of nodes.

H HYPERPARAMETERS

H.1 NEURAL NETWORKS

The hyperparameters for the neural networks are detailed in Table 12. The encoder refers to the
component that processes only the problem instance (i.e., the generation condition), while the decoder
additionally processes the partial solution.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 12: Neural network configurations.

TSP CVRP MIS-RB-[200-300] MIS-ER-[700-800]

embedding dimension 256 512 256 256

head dimension 32 64 64 64

encoder layers 16 16 0 0

decoder layers 6 6 12 24

Table 13: Inference configurations for TSP.

TSP-100 TSP-500 TSP-1000

Sampling Steps K 1 1 2

Keeping Rate p 0.2 0.2 0.1

H.2 INFERENCE CONFIGURATION

The inference hyperparameters are specified in Tables 13, 14, and 15 for TSP, CVRP, and MIS,
respectively.

Regarding the two key hyperparameters, p and K, each plays a distinct role in guiding the inference
process. The parameter p explicitly controls the trade-off between exploitation and exploration: if
p is too large, the reconstructed solution remains overly close to the original, potentially causing
the correction process to stagnate; if p is too small, the reconstruction may fallback to generating
solutions from scratch. Meanwhile, K governs how forward passes are distributed—favoring either
more sampling steps per iteration or more iterations with fewer steps. For simpler tasks, smaller
values of K are preferable, promoting more iterative refinement. In contrast, for harder tasks where
predictions exhibit higher uncertainty (can be measured by entropy after normalizing prediction into
probabilities), larger K values are beneficial to gather more informative samples.

Beyond their semantic interpretations, several practical factors influence hyperparameter selection.
Noisy data, for instance, increases prediction uncertainty and thus favors larger K. We verify this
phenomenon by comparing the optimal hyperparameters for models trained on clean (optimal) data
versus highly noisy data—generated using 128 runs of 2-opt—as shown in Table 19. The results
show that noise shifts the optimal value of K from 1 to 8. For large-scale CVRP, this phenomenon
may also arise due to the stringent time limits imposed during data generation (4 minutes per
instance for CVRP-500 and 8 minutes for CVRP-1000), resulting in noisy training data. Additionally,
imbalanced learning across different values of p can occur—even though p is uniformly sampled
during training, models often perform worse on medium-range p values, as these correspond to
more challenging reconstruction scenarios and may be underrepresented in effective learning. These
compounding factors make identifying optimal hyperparameters non-trivial, even when their roles
are well understood.

Fortunately, in our case, the extremely fast evaluation time of MaskCO enables efficient hyperparam-
eter tuning via grid search. For example, full hyperparameter selection for TSP-500 takes only 3.6
minutes. Additional details and empirical analysis can be found in Appendix K. In the future works,
p may not be fixed as a constant; instead, it could be sampled from a distribution, set periodically, or
even dynamically controlled by an auxiliary neural network.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 14: Inference configurations for CVRP.

CVRP-100 CVRP-500 CVRP-1000

Sampling Steps K 2 16 128

Keeping Rate p 0.3 0.3 0.6

Table 15: Inference configurations for MIS.

RB-[200-300] ER-[700-800]

Sampling Steps K 1 1

Keeping Rate p 0.6 0.5

Table 16: Dataset Configurations for TSP.

TSP-100 TSP-500 TSP-1000

Training Dataset Size 1,280K 128K

Training Dataset Solver Concorde (Applegate et al., 2006) LKH-3 (Helsgaun, 2017)

Test Dataset Size 1,280 128

Test Dataset Solver Concorde (Applegate et al., 2006)

Table 17: Dataset Configurations for CVRP.

CVRP-100 CVRP-500 CVRP-1000

Training Dataset Size 1,536K 200K 100K

Training Dataset Solver HGS (Vidal et al., 2012) HGS with Decomposition (Santini et al., 2023)

Test Dataset Size 1,280 128 64

Test Dataset Solver HGS (Vidal et al., 2012)

Table 18: Dataset Configurations for MIS.

RB-[200-300] ER-[700-800]

Training Dataset Size 90,000 163,840

Training Dataset Solver KaMIS (Lamm et al., 2016)

Test Dataset Size 500 128

Test Dataset Solver KaMIS (Lamm et al., 2016)

I DATASETS

The dataset configurations for TSP, CVRP, and MIS are summarized in Tables 16, 17, and 18,
respectively.

J GENERALIZATION STUDIES

J.1 TSP

TSPLIB results have been demonstrated in 4. Cross-scale generation results is shown in Table 20.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 19: Comparison of optimal hyperparameters for models trained on clean (optimal) data versus
highly noisy data generated by 128-run 2-opt. For the model trained on clean data, the optimal
configuration is (K, p) = (1, 0.2), whereas for noisy data it is (K, p) = (8, 0.2). Furthermore, for
a fixed K, the optimal p varies depending on data quality, indicating that prediction uncertainty
influences hyperparameter selection in multiple dimensions.

TSP-500

K p CLEAN DATA NOISY DATA

1

0.1 0.0041% 1.9819%
0.2 0.0020% 1.2726%
0.3 0.0051% 0.9309%
0.4 0.0073% 0.8800%
0.5 0.0115% 0.9427%
0.6 0.0179% 1.2118%
0.7 0.0257% 1.5670%
0.8 0.0443% 1.9170%
0.9 0.0917% 2.1689%

8

0.1 0.0048% 0.6528%
0.2 0.0070% 0.6371%
0.3 0.0075% 0.6710%
0.4 0.0093% 0.7144%
0.5 0.0095% 0.7767%
0.6 0.0107% 0.8466%
0.7 0.0111% 0.8978%
0.8 0.0112% 0.9291%
0.9 0.0113% 0.9393%

Table 20: Cross-scale generalization results for TSP.

Testing
Training TSP-100 TSP-500 TSP-1000

T
SP

10
0 Fast T2T (Ts=20, Tg=20) 7.76, 0.01% 7.77, 0.23% 7.78, 0.34%

MaskCO (T=2560) 7.756, 0.0000% 7.796, 0.521% 7.790, 0.437%
MaskCO (T=10240) 7.756, 0.0000% 7.773, 0.227% 7.770, 0.179%

T
SP

50
0 Fast T2T (Ts=20, Tg=20) 16.97, 2.54% 16.58, 0.20% 16.60, 0.33%

MaskCO (T=2560) 16.957, 2.485% 16.546, 0.0007% 16.546, 0.0005%
MaskCO (T=10240) 16.903, 2.156% 16.546, 0.0007% 16.546, 0.0001%

T
SP

1K Fast T2T (Ts=20, Tg=20) 24.01, 3.87% 23.25, 0.58% 23.20, 0.36%
MaskCO (T=2560) 24.206, 4.707% 23.134, 0.0702% 23.119, 0.0027%

MaskCO (T=10240) 24.136, 4.404% 23.129, 0.0456% 23.118, 0.0012%

Table 21: Generalization Results on VRPLIB (T=40960).

ICAM NeuOpt MaskCO

VRPLIB50-200 4.41% 2.62% 2.15%
VRPLIB201-500 3.92% – 3.87%

J.2 CVRP

Results on the VRPLIB benchmark are summarized in Table 21. The mixed-scale and mixed-capacity
training strategy proposed by ICAM (Zhou et al., 2024) can be further incorporated into our method
to enhance its generalization performance.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 22: Generalization results for MIS. (T=32k)

Testing
Training RB-[200-300] ER-[700-800]

RB-[200-300] 20.08, 0.10% 19.96, 0.72%

ER-[700-800] 38.57, 14.04% 44.59, 0.62%

Table 23: Comparison of training resource usage for TSP using a single A100 GPU.

TSP-100 TSP-500 TSP-1000

T2T 8.6Day 2.7Day 5.1Day

Fast T2T 20.3Day 5.9Day 13.5Day

MaskCO ≤2Day ≤1Day ≤1Day

J.3 MIS

The model is trained on RB-[200-300] and evaluated on ER-[700-800], and vice versa, as shown in
Table 22.

K HYPERPARAMETER STUDIES

For the inference hyperparameters, we conduct a grid search over the number of sampling steps K
and the keeping rate p, while keeping the total number of forward passes fixed. The results are shown
in Figures 2, 3, 4, 5, 6, 7, 8, and 9.

L HARDWARE AND BASELINE SETTINGS

All experiments were conducted on a computing platform equipped with an NVIDIA A100 GPU and
a 32-core Intel Xeon Platinum 8352S CPU. Traditional solver baselines (Concorde, LKH-3, HGS,
KaMIS) were evaluated in single-threaded mode, following Ma et al. (2023); Sun & Yang (2023);
Zhou et al. (2024). For baselines without specified hyperparameters, we use the configuration yielding
the best solution quality in their original papers. Regarding SIT (Luo et al., 2025) on CVRP-1000,
since the publicly released checkpoint was not trained under the capacity setting C = 50, direct
evaluation on our test set is not feasible. To ensure a fair comparison, we retrain their model from
scratch on CVRP-1000 with C = 50, which requires approximately 10.7 days on a single A100 GPU.

M TRAINING RESOURCE COMPARISON

The default training duration was set to 600 epochs for all models, with the exception of models
trained on CVRP-500 and CVRP-1000, which were trained for 768 epochs, and those on TSP-1000,
which were trained for 300 epochs. We present a direct comparison of training time on TSP with T2T
and Fast T2T (Li et al., 2024) in Table 23. Notably, MaskCO requires less than 1/13 of the training
time needed by Fast T2T on TSP-1000. T2T and Fast T2T train a 12-layer GCN (for 50 epochs),
whereas we train a 22-layer transformer. This comparison also reflects that the computational cost of
GCN is much expensive than transformer.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 2: Grid search result of sampling steps K and keeping rate p on TSP-100. (T=320)

Figure 3: Grid search result of sampling steps K and keeping rate p on TSP-500. (T=320)

N DATA SCALING

We observe the evidence of continued improvement with larger datasets, which indicates MaskCO is
suitable for pretraining with more data in the future. Experimental results on TSP-500 and CVRP-500
are listed in Table 24 and Table 25.

O TRAINING TIME FOR THE SELF-TRAINING SCHEME

For TSP-100 and TSP-500, the self-training scheme takes about 1/2 time of standard training time.
The initial training uses the same setup as standard training but converges in just 150 epochs, only
about a quarter of the 600 epochs required in the standard approach. An additional 1/4 of the time
is spent on labeling (i.e., solving unlabeled instances with the model), while each fine-tuning step
takes less than 10 minutes, as overfitting occurs within 15 epochs. For TSP-1000, no initial training
is needed, reducing total time to approximately 1/4 of the standard training cost.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 4: Grid search result of sampling steps K and keeping rate p on TSP-1000. (T=320)

Figure 5: Grid search result of sampling steps K and keeping rate p on CVRP-100. (T=640)

Table 24: Effect of data scaling on TSP-500.

DATASET SIZE T
TSP-500

OBJ. GAP

32k 320 16.547 0.0053%
640 16.546 0.0035%

64k 320 16.546 0.0032%
640 16.546 0.0027%

128k 320 16.546 0.0020%
640 16.546 0.0014%

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 6: Grid search result of sampling steps K and keeping rate p on CVRP-500. (T=2560)

Figure 7: Grid search result of sampling steps K and keeping rate p on CVRP-1000. (T=5120)

Table 25: Effect of data scaling on CVRP-500.

DATASET SIZE T
CVRP-500

OBJ. GAP

50k 640 63.30 1.854%
1280 63.21 1.697%

100k 640 62.89 1.190%
1280 62.81 1.057%

200k 640 62.66 0.813%
1280 62.59 0.714%

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 8: Grid search result of sampling steps K and keeping rate p on MIS-RB-[200-300]. (T=1k)

Figure 9: Grid search result of sampling steps K and keeping rate p on MIS-ER-[700-800]. (T=1k)

25

	Introduction
	Related Works
	Preliminaries and Notations
	Methodology
	Solution-Level Self-Supervised Learning in Training
	Multi-Step Decoding for Masked Generation
	The High-level Correction Framework: Mask and Reconstruct
	Model Architecture

	Experiments
	Main Results
	Adaptations for Alternative Training and Decoding Methods
	Ablation Studies
	Experiments on Optimal-Solution-Free Training Paradigm

	Conclusion
	The Use of Large Language Models (LLMs)
	Discussion on [MASK]
	Selection or Decision
	Discussion on Selection Function
	Alternative Strategies for the Complete Solution Enforcement
	Comparison with Auto-regressive Modeling
	Influence on 2-opt for solving VRPs
	Hyperparameters
	Neural Networks
	Inference Configuration

	Datasets
	Generalization Studies
	TSP
	CVRP
	MIS

	Hyperparameter Studies
	Hardware and Baseline Settings
	Training Resource Comparison
	Data Scaling
	Training Time for the Self-Training Scheme

