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Abstract

This study investigates a specific form of posi-001
tional bias—termed the Myopic Trap—where002
retrieval models disproportionately attend to003
the early parts of documents while overlooking004
relevant information that appears later. To sys-005
tematically quantify this phenomenon, we pro-006
pose a semantics-preserving evaluation frame-007
work that repurposes the existing NLP datasets008
into position-aware retrieval benchmarks. By009
evaluating the SOTA models of full retrieval010
pipeline—including BM25, embedding mod-011
els, ColBERT-style late-interaction models, and012
reranker models—we offer a broader empiri-013
cal perspective on positional bias than prior014
work. Experimental results show that embed-015
ding models and ColBERT-style models ex-016
hibit significant performance degradation when017
query-related content is shifted toward later po-018
sitions, indicating a pronounced head bias. No-019
tably, under the same training configuration,020
ColBERT-style approach show greater poten-021
tial for mitigating positional bias compared to022
the traditional single-vector approach. In con-023
trast, BM25 and reranker models remain largely024
unaffected by such perturbations, underscoring025
their robustness to positional bias.1026

1 Introduction027

Information Retrieval (IR) systems serve as the028

foundation for a wide range of applications, in-029

cluding web search engines (Croft et al., 2010;030

Huang et al., 2020), question answering (Tellex031

et al., 2003), and Retrieval-Augmented Generation032

(RAG) (Lewis et al., 2020). A core challenge in033

IR systems lies in accurately evaluating the seman-034

tic relevance between user queries and candidate035

documents. However, biases in retrieval models036

could inadvertently distort this relevance estima-037

tion, impacting the accuracy of IR systems (Lipani,038

2019).039

1To facilitate further research, we release all code and
datasets at: https://github.com/xxx.
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Figure 1: Illustration of the Myopic Trap, where re-
trieval models exhibit a strong positional bias by under-
valuing passages with relevant content in later sections.

This work investigates a specific form of po- 040

sitional bias in IR, which we term the Myopic 041

Trap—the tendency of retrieval models to dispro- 042

portionately favor information near the beginning 043

of documents, while overlooking relevant content 044

that appears later, thus underestimating the overall 045

document relevance (Figure 1). Prior studies have 046

identified early signs of such behavior in a limited 047

number of embedding models (Coelho et al., 2024; 048

Fayyaz et al., 2025). However, it remains unclear 049

whether increasingly powerful open-source embed- 050

ding models exhibit similar tendencies. At the same 051

time, a broader evaluation of positional bias across 052

the full IR pipeline is crucial for understanding and 053

improving end-to-end retrieval systems. 054

Current evaluation paradigms for positional bias 055

often depend on synthetic modifications to doc- 056

uments, such as the insertion of relevant spans 057

at predetermined positions (Coelho et al., 2024; 058

Fayyaz et al., 2025). While such controlled set- 059

tings facilitate analysis, they risk introducing arti- 060

facts that compromise the realism of evaluations. 061

To address this issue, we propose a novel evaluation 062

framework for assessing positional bias that pre- 063

serves the original content of documents, by repur- 064

posing two NLP datasets: SQuAD v2 (Rajpurkar 065

et al., 2018) and FineWeb-edu (Penedo et al., 2024). 066
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From SQuAD v2, we construct a position-aware067

retrieval task by grouping questions based on the lo-068

cation of their corresponding answer spans within069

documents. From FineWeb-edu, we generate fine-070

grained, position-sensitive questions using Large071

Language Models (LLMs) (Zhao et al., 2025; Long072

et al., 2024), with each question targeting a specific073

content segment—beginning, middle, and end.074

We conduct experiments on a range of state-of-075

the-art (SOTA) retrieval models—including BM25,076

embedding models, ColBERT-style late interaction077

models, and reranker models—to ensure that our078

analysis of positional bias is grounded in the best-079

performing systems available today. Experimental080

results show that embedding models and ColBERT-081

style models exhibit significant performance degra-082

dation when relevant content appears later in the083

document. Notably, under the same training con-084

figuration, ColBERT-style approach show greater085

potential for mitigating positional bias compared to086

the traditional single-vector approach. In contrast,087

BM25 and reranker models demonstrate greater088

robustness to positional bias, benefiting from ei-089

ther exact token matching or deep cross-attention090

mechanisms that better localize query-relevant in-091

formation.092

To the best of our knowledge, this is the first093

study to systematically investigate positional bias094

across the full IR pipeline, particularly with state-095

of-the-art retrieval models, thereby shedding light096

on both its associated risks and potential mitigation097

strategies.098

2 Related Work099

Positional bias—where models disproportionately100

focus on specific segments of a document—has101

garnered increasing attention in the IR commu-102

nity. Coelho et al. (2024) first report that embed-103

ding models exhibit a pronounced primacy bias,104

encoding early document content more effectively105

than later parts. They show that this bias origi-106

nates during contrastive pretraining and is further107

amplified through fine-tuning on datasets like MS108

MARCO (Nguyen et al., 2016), using models such109

as T5 (Raffel et al., 2020) and RepLLaMA (Ma110

et al., 2024). They also highlight a structural char-111

acteristic of MS MARCO: an uneven distribution112

of information density, with relevant content dis-113

proportionately concentrated at the beginning of114

documents. Building on this line of work, Fayyaz115

et al. (2025) repurpose a relation extraction dataset116

to study multiple forms of bias in embedding mod- 117

els. In addition to primacy bias, they identify ten- 118

dencies such as a preference for shorter documents, 119

repetition of matching entities, and reliance on lit- 120

eral string matches. Importantly, they demonstrate 121

how these biases can be exploited to manipulate 122

RAG systems, ultimately prompting LLMs to pro- 123

duce harmful or misleading content. 124

3 Experiments 125

3.1 Position-Aware Retrieval Tasks 126

To investigate the Myopic Trap phenomenon, we 127

construct two position-aware retrieval tasks that 128

quantify positional bias across various retrieval 129

models. The corresponding dataset statistics, con- 130

struction processes, and prompt engineering details 131

are presented in Appendix B and C. 132

3.1.1 Repurposing Existing QA Datasets 133

We repurpose the Stanford Question Answering 134

Dataset v2 (SQuAD v2), leveraging its character- 135

level answer span annotations to enable fine- 136

grained positional analysis. After removing unan- 137

swerable questions—originally designed to probe 138

abstention behaviors—we obtain 92,749 exam- 139

ples, each represented as a (question, passage, an- 140

swer_start_position) triple. We denote this dataset 141

as SQuAD-PosQ-Full. To examine positional 142

bias, we bucket the questions into six groups 143

based on the character-level start index of their an- 144

swers: [0–100], [100–200], [200–300], [300–400], 145

[400–500], and [500–3120]2, with all bins inclu- 146

sive. Retrieval is framed as a passage ranking task 147

over the set of all unique passages. A consistent de- 148

cline in performance for questions whose answers 149

appear later in the document would indicate the 150

Myopic Trap. For scalability, we also construct 151

a smaller subset, SQuAD-PosQ-Tiny, containing 152

10,000 triples sampled randomly, while keeping 153

the retrieval corpus unchanged. 154

3.1.2 Synthetic Position-Aware Questions 155

While SQuAD-PosQ serves as a useful benchmark, 156

it has two key limitations: (1) its passages are rel- 157

atively short (averaging 117 words), and (2) it is 158

likely included in the training data of many retrieval 159

models, raising concerns about evaluation leak- 160

age (Chen et al., 2024; Lee et al., 2025). To address 161

these issues, we construct a synthetic dataset using 162

2The maximum observed index is 3120.
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Table 1: NDCG@10 scores of retrieval models on SQuAD-PosQ and FineWeb-PosQ. Models with significant
positional bias are underscored; some model names are abbreviated for display clarity.*

Retrieval Models SQuAD-PosQ FineWeb-PosQ

0+ 100+ 200+ 300+ 400+ 500+ begin middle end

BM25 76.62 79.37 80.61 81.06 81.43 79.49 89.56 89.63 88.80

Embedding Models
bge-m3-dense 84.47 83.03 81.47 79.95 77.98 74.61 88.64 84.75 80.35
stella_en_400M_v5 85.78 83.62 82.24 80.34 78.96 75.69 88.19 83.93 78.96
voyage-3-large 89.93 89.32 89.17 88.70 88.09 86.73 92.65 90.63 87.96
text-embedding-3-large 85.19 82.45 80.32 77.84 75.27 71.10 86.09 83.84 82.09
gte-Qwen2-7B-instruct 85.13 83.85 83.33 81.71 80.13 77.75 87.45 84.92 81.79
NV-embed-v2 93.04 93.55 93.48 93.02 92.48 90.72 87.35 88.39 88.10

ColBERT-style Models
colbertv2.0 91.85 90.27 91.74 89.64 86.71 84.57 88.73 77.78 64.25
bge-m3-colbert 89.88 88.09 88.84 87.68 86.72 86.36 92.08 90.23 86.66

ReRankers
bge-reranker-v2-m3 93.53 93.56 94.69 94.50 94.42 94.52 95.18 95.21 94.66
gte-reranker-base* 90.70 91.10 92.59 91.84 91.57 92.03 95.43 95.74 95.41
bge-reranker-gemma* 94.31 94.01 94.73 94.80 94.55 94.55 95.56 95.73 95.46

passages from the FineWeb-edu, a large-scale, high-163

quality educational web text corpus. We sample164

13,902 passages ranging from 500 to 1,024 words,165

and use gpt-4o-mini (OpenAI, 2024a) to gen-166

erate global summaries and position-aware ques-167

tion–answer pairs grounded in localized chunks of168

each passage. We filtered out responses that did169

not match the expected output format and manually170

reviewed 100 randomly selected ones, finding no171

significant anomalies. Each passage is divided into172

three equal-length segments—beginning, middle,173

and end—and each question is tagged according174

to the location of its supporting chunk. If a chunk175

spans two segments, we assign both tags to reflect176

ambiguity. The resulting dataset, FineWeb-PosQ-177

Full, enables robust evaluations of retrieval models178

in long-form, position-sensitive contexts. We also179

create a smaller version, FineWeb-PosQ-Tiny, by180

sampling approximately 3,300 questions per seg-181

ment category, resulting in 6,620 unique questions182

after deduplication.183

3.2 Experimental Results184

To assess susceptibility to the Myopic Trap, we185

conduct a comprehensive evaluation across the full186

IR pipeline, covering retrieval models from four187

distinct categories.188

• Probabilistic Models: BM25 (Robertson et al.,189

1994) 190

• Embedding Models: bge-m3-dense3 (Chen 191

et al., 2024), stella_en_400M_v5 (Zhang et al., 192

2025), text-embedding-3-large (OpenAI, 2024b), 193

voyage-3-large (VoyageAI, 2025), gte-Qwen2- 194

7B-instruct (Li et al., 2023b), NV-embed-v2 (Lee 195

et al., 2025) 196

• ColBERT-style Models: colbertv2.0 (San- 197

thanam et al., 2022), bge-m3-colbert4 (Chen 198

et al., 2024) 199

• ReRankers: bge-reranker-v2-m3 (Chen et al., 200

2024), gte-multilingual-reranker-base (Zhang 201

et al., 2024), bge-reranker-v2-gemma (Li et al., 202

2023a) 203

We adopt NDCG@10 as our primary evaluation 204

metric, which captures both retrieval accuracy and 205

ranking quality within the top-10 retrieved results. 206

To control computational costs, BM25 and em- 207

bedding models are evaluated on the full datasets, 208

whereas the computation-intensive ColBERT-style 209

and reranker models are assessed on the tiny sub- 210

sets. Experimental results are presented in Table 1, 211

followed by an in-depth analysis. 212

3bge-m3-dense denotes the dense retrieval mode of the
bge-m3 model, where a single vector is generated per query
or document.

4bge-m3-colbert refers to the late interaction mode of
the bge-m3 model, where multiple token-level embeddings are
generated for each input to enable ColBERT-style retrieval.
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3.2.1 BM25: Natural Immunity213

BM25, a classical sparse retrieval method grounded214

in term-matching statistics, exhibits strong robust-215

ness to positional bias across both datasets. Its216

NDCG@10 scores remain stable across different217

answer positions within passages. This behavior is218

expected, as BM25 relies solely on keyword match-219

ing and does not consider term positions within220

documents. While such position-agnostic behav-221

ior may be a limitation in retrieval tasks requiring222

an understanding of discourse structure or seman-223

tic coherence, it proves advantageous in retrieval224

scenarios affected by positional bias.225

3.2.2 Embedding Models: Vulnerability226

Experimental results on a broad range of modern227

embedding models confirm and extend the find-228

ings of Coelho et al. (2024); Fayyaz et al. (2025).229

We observe that the Myopic Trap is a widespread230

issue affecting both open-source and commercial231

embedding models, including large-scale architec-232

tures like gte-Qwen2-7B-instruct. Across both233

datasets, retrieval performance consistently dete-234

riorates as relevant information appears later in235

the passage. Coelho et al. (2024) attribute this236

bias to contrastive pretraining, which is further237

amplified during contrastive fine-tuning. Given238

that contrastive learning remains the predominant239

strategy for training supervised embedding mod-240

els, our findings underscore the urgent need to241

reassess how such training pipelines contribute242

to positional bias. A notable exception in our243

evaluations is NV-embed-v2 and voyage-3-large,244

which demonstrate relatively strong robustness to245

positional variance. We suspect that the latent at-246

tention layer of NV-embed-v2, designed to support247

more expressive sequence pooling, may help pre-248

serve global contextual information and thereby249

partially mitigate the effects of the Myopic Trap.250

3.2.3 ColBERT-style Models: Bias Persistence251

ColBERT (Khattab and Zaharia, 2020) and sim-252

ilar late-interaction models strike a balance be-253

tween retrieval efficiency and effectiveness by inde-254

pendently encoding queries and documents into255

multi-vector representations, performing token-256

level interactions only during final scoring. De-257

spite their advanced interaction design, our re-258

sults show that ColBERT-style models still suf-259

fer from the Myopic Trap across both datasets.260

This suggests that although late-stage token inter-261

actions improve relevance estimation, they are in-262

sufficient to fully mitigate positional bias likely 263

introduced during earlier encoding stages. A partic- 264

ularly intriguing case lies in the contrast between 265

bge-m3-dense and bge-m3-colbert. Although 266

their vector representations are derived from the 267

same base model, bge-m3-colbert demonstrates 268

significantly greater robustness to positional bias. 269

This finding suggests that, under the same train- 270

ing configuration, the ColBERT-style training ap- 271

proach is more effective at mitigating positional 272

bias than the traditional single-vector retrieval ap- 273

proach. 274

3.2.4 Reranker Models: Effective Mitigation 275

Reranker models, which apply full query–passage 276

interaction via deep cross-attention, are typically 277

used only on a small set of first-stage candidates 278

due to their computational cost. Our experiments 279

show that such models consistently mitigate the 280

Myopic Trap across both datasets and model scales. 281

The cross-attention mechanism enables precise 282

identification of relevant content regardless of its 283

position in the passage, effectively neutralizing po- 284

sitional bias when in earlier retrieval stages. This 285

has important implications for IR system design: 286

while embedding-based and ColBERT-style retriev- 287

ers may introduce positional biases—especially 288

when relevant content appears later—a reranking 289

stage can substantially correct for these issues. In 290

position-sensitive applications such as RAG, in- 291

corporating a reranker provides a strong safeguard 292

against relevance degradation caused by positional 293

effects and is thus essential for building a fair and 294

reliable retrieval system. 295

4 Conclusion 296

This study investigates the Myopic Trap bias 297

across the full IR pipeline, including BM25, em- 298

bedding models, ColBERT-style late-interaction 299

models, and reranker models. We heuristically 300

construct semantics-preserving, position-aware re- 301

trieval benchmarks by repurposing existing NLP 302

datasets, enabling a systematic evaluation of this 303

bias. Using these benchmarks, we present the first 304

comprehensive, pipeline-wide analysis of the My- 305

opic Trap, providing an empirical perspective on 306

how such bias emerges across the retrieval stack. 307

Our findings show that while the Myopic Trap 308

originates in embedding-based retrievers, it can be 309

substantially mitigated by downstream interaction- 310

based rerankers. 311
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Limitation312

This work has several limitations that open av-313

enues for future research. First, our study fo-314

cuses exclusively on English-language text re-315

trieval. Positional bias in multilingual and cross-316

lingual retrieval settings remains unexplored and317

warrants further investigation. Second, while we318

use LLMs to generate synthetic question–answer319

pairs grounded in passages and apply manual qual-320

ity control, some degree of noise may still persist.321

In future work, we aim to improve data quality322

through multi-agent collaboration and more robust323

verification pipelines. Third, our analysis does not324

yet offer a theoretical explanation for why embed-325

ding models exhibit uneven information distribu-326

tion in their vector representations. We plan to327

explore embedding theory more deeply in future328

work, with the goal of informing more robust and329

unbiased text representation learning.330
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A Distribution Analysis on SQuAD v2 494

Figure 2 shows the distribution of answer start po- 495

sitions in SQuAD v2, which follows a pronounced 496

long-tail pattern: answers tend to appear near the 497

beginning of passages, though a substantial portion 498

also occurs in later positions. This natural distribu- 499

tion makes SQuAD v2 particularly well-suited for 500

studying positional effects in retrieval models. 501
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Figure 2: Distribution of answer start positions in
SQuAD v2.

B Dataset Cards 502

We detail the construction of the SQuAD-PosQ and 503

FineWeb-PosQ datasets below. Detailed statistics 504

for the two datasets are provided in Table 2. 505

B.1 SQuAD-PosQ 506

Stanford Question Answering Dataset v2 (SQuAD 507

v2) is a reading comprehension dataset where each 508

instance comprises a question, a context passage, 509

and, for answerable questions, the corresponding 510

answer span. Crucially, SQuAD v2 provides the 511

character-level start index of each answer, enabling 512
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Table 2: Statistics of SQuAD-PosQ and FineWeb-PosQ Datasets.

SQuAD-PosQ-Full *-Tiny FineWeb-PosQ-Full *-Tiny

# Query 92,749 10,000 265,865 6,620
Mean Query Length 10.09 10.08 14.06 13.99
Std Query Length 3.56 3.56 4.30 4.23

# Passage 20,233 – 13,902 –
Min Passage Length 20 – 500 –
Mean Passage Length 117.19 – 707.38 –
Max Passage Length 653 – 1,023 –
Std Passage Length 50.22 – 146.47 –

Position Group
0+: [0–100] 21,220 2,252

begin: 103,844 begin: 3,300
100+: [100–200] 16,527 1,813
200+: [200–300] 13,667 1,444

middle: 199,742 middle: 5,098
300+: [300–400] 11,514 1,210
400+: [400–500] 10,089 1,108

end: 160,832 end: 3,300
500+: [500–3120] 20,384 2,237

Table 3: Examples from the FineWeb-PosQ dataset with corresponding position tags.

No. Question Position Tag(s)

1 Where was Lynne Frederick born and raised, and who raised her? [beginning, middle]
2 What is unique about Angkor Wat’s history compared to other Angkor

temples, considering its post-16th century status?
[before, middle]

3 What was Doris Speed known for doing on set to lighten the mood? [after]
4 Why might the competition to determine the county with the longest

coastline be driven more by tourism than by definitive geographical data?
[middle, after]

5 What should be considered important in the delivery of a persuasive
speech?

[after]

fine-grained positional analysis by stratifying ques-513

tions based on the location of the answer within the514

passage. We begin by merging the official training515

and validation sets, excluding all unanswerable (ad-516

versarially constructed) instances, as our focus is517

on contexts where answers are present at varying518

positions. The resulting dataset contains 92,749519

answerable examples, each represented as a (query,520

passage, answer_start_position) triple. We refer521

to this as SQuAD-PosQ-Full. To quantify posi-522

tional bias, we stratify SQuAD-PosQ-Full into six523

bins by character-level answer start index: [0–100],524

[100–200], [200–300], [300–400], [400–500], and525

[500–3120], where 3120 is the maximum observed526

index and bins are inclusive. To facilitate efficient527

evaluation, we construct SQuAD-PosQ-Tiny, ran-528

domly sampled 10,000 triples from SQuAD-PosQ-529

Full, with the retrieval corpus kept fixed.530

B.2 FineWeb-PosQ 531

FineWeb-edu is a large-scale, high-quality educa- 532

tional web text corpus. We begin by selecting 533

13,902 passages from FineWeb-edu, filtering for 534

those with word counts between 500 and 1024 535

to ensure sufficient length. Each passage is sum- 536

marized by gpt-4o-mini to provide global con- 537

text for question generation, and then segmented 538

into 256-word chunks using the RecursiveCharac- 539

terTextSplitter5 to support location-specific ques- 540

tion creation. For each chunk, the LLM generates 541

a (question, answer, question_type) triplet, using 542

both the chunk and its corresponding global sum- 543

mary as input. Our initial approach involved gener- 544

ating questions alone; however, manual inspection 545

revealed that approximately 40% were unanswer- 546

5https://python.langchain.com/docs/how_to/
recursive_text_splitter/
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able or misaligned. To improve answerability and547

relevance, we revised the prompt to require simul-548

taneous generation of both question and answer,549

ensuring extractability from the given chunk. De-550

spite directly prompting the LLM to generate “com-551

plex” questions, we observed a tendency toward552

simpler forms, such as basic entity recognition.553

To encourage greater complexity, we introduced554

a question_type field (either simple or compli-555

cated) in the prompt. While this field helped guide556

generation, we do not use it for filtering or analy-557

sis—all valid questions are retained regardless of558

type. To ensure data quality, we filtered out re-559

sponses that did not match the expected output for-560

mat and manually reviewed 100 randomly selected561

generation traces, finding no significant anomalies.562

To encode positional information, each passage is563

divided into three equally sized segments: begin-564

ning, middle, and end. Each question is tagged ac-565

cording to the segment containing its source chunk566

(Algorithm 1). If a chunk spans multiple segments,567

the corresponding question is tagged with both.568

The resulting dataset, FineWeb-PosQ-Full, sup-569

ports position-sensitive retrieval tasks over longer570

texts. Example questions are shown in Table 3. For571

efficient evaluation, we construct FineWeb-PosQ-572

Tiny by randomly sampling 3,300 questions from573

each positional category. After deduplication, the574

final subset contains 6,620 unique questions.575

Algorithm 1 POSITION TAGGING

Require: Total length z, chunk start index m, end
index n

Ensure: Return tag(s): beginning, middle, end
1: third← ⌊z/3⌋
2: if n < third then
3: return { before }
4: else if m ≥ third and n < 2 · third then
5: return { middle }
6: else if m ≥ 2 · third then
7: return { after }
8: else if n < 2 · third then
9: return { before, middle }

10: else
11: return { middle, after }
12: end if

B.3 Validity of the Sampled Subset576

To empirically verify the validity of the sampled577

dataset (i.e., SQuAD-PosQ-Tiny and FineWeb-578

PosQ-Tiny), we conduct preliminary experiments579
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Figure 3: NDCG@10 scores of bge-m3-dense on Full
vs. Tiny Datasets.

using bge-m3-dense on both the full and tiny 580

versions of each dataset. As shown in Fig- 581

ure 3, bge-m3-dense demonstrates highly consis- 582

tent performance between the full and sampled 583

datasets, particularly on FineWeb-PosQ, under the 584

NDCG@10 metric. These results confirm the fea- 585

sibility of using the sampled subset to accelerate 586

evaluation for computationally intensive models. 587

The results also reveal the pronounced Myopic 588

Trap bias in bge-m3-dense, indicating a tendency 589

to overly prioritize the beginning context during 590

retrieval. 591

B.4 Representation Behavior 592

Following the approach of Coelho et al. (2024), we 593

compute the cosine similarity between the full-text 594

embedding and the embeddings of the beginning, 595

middle, and end segments to examine how embed- 596

ding models represent different parts of the text. 597

We selected a random subset of 10,000 passages 598

from the SQuAD v2 dataset (with lengths rang- 599

ing from 100 to 512 words, average 146 words) 600

and 10,000 passages from the FineWeb-Edu dataset 601

(with lengths ranging from 200 to 500 words, aver- 602

age 339 words). As shown in Table 4, we observe 603

that the similarity between the beginning segment 604

and the full text is consistently the highest across 605

most models. This suggests that although these 606

models are designed to encode the entire input, 607

they tend to overemphasize its initial portion. In 608

contrast, similarity scores for the middle and end 609

segments show a noticeable decline. For instance, 610
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Table 4: Cosine similarity between full-text embeddings and segment-level embeddings (beginning, middle, end)
across models and datasets. Higher values indicate stronger alignment between the segment and the full-text
representation.

Dataset Embedding Model Full & Begin Full & Middle Full & End
SQuAD v2 bge-m3-dense 0.8777 0.7957 0.7727

stella_en_400M_v5 0.8851 0.8188 0.7930
text-embedding-3-large 0.8695 0.7451 0.7251
voyage-3-large 0.8695 0.8446 0.8335
gte-Qwen2-7B-instruct 0.8440 0.7831 0.7456
NV-Embed-v2 0.7760 0.7058 0.6854

FineWeb-Edu bge-m3-dense 0.9201 0.8101 0.7835
stella_en_400M_v5 0.9255 0.8514 0.8280
text-embedding-3-large 0.8977 0.7444 0.7805
voyage-3-large 0.9278 0.8837 0.8712
gte-Qwen2-7B-instruct 0.8683 0.7775 0.7821
NV-Embed-v2 0.8430 0.7402 0.7651

in text-embedding-3-large, the similarity drops611

from 0.8695 (full & beginning) to 0.7451 (full &612

middle), and further to 0.7251 (full & end). This613

tendency is consistent across many models, rein-614

forcing the observation that embedding models ex-615

hibit a strong positional bias—favoring the begin-616

ning of the input while underrepresenting its later617

parts.618
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C Prompts619

C.1 Prompt for Summarization620

<Task>
Given a document, please paraphrase it concisely.
</Task>

<Requirements>
- The paraphrase should be concise but not missing any key information.
- Please decide the number of words for the paraphrase based on the length and content of the
document, but do not exceed 400 words.
- You MUST only output the paraphrase, and do not output anything else.
</Requirements>

<Document> {TEXT} </Document>
621

C.2 Prompt for Question Generation622

<Task>
Given a summary and a chunk of document, please brainstorm some FAQs for this chunk.
</Task>

<Requirements>
- The generated questions should be high-frequency and commonly asked by people.
- Two types of questions should be generated: simple (e.g., factual questions) and complicated
(questions that require reasoning and deep thinking to answer).
- The majority of the questions you generate should be complicated.
- The answers to the questions must be based on the chunk and should not be fabricated.
- You MUST only output the FAQs, and do not output anything else.
Note: The FAQ you generate must be based on this chunk rather than the summary!!! The
summary is only used to assist you in understanding the chunk.
</Requirements>

<summary> {SUMMARY} </summary>

<chunk> {CHUNK} </chunk>

<Output Format>
Your output should be a JSON List:

[
{
"question": "Genrated question",
"answer": "The answer of question",
"type": "simple or complicated"

},
...

]

</Output Format>
623
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