Proceedings of Machine Learning Research vol 284:1-39, 2025 19th Conference on Neurosymbolic Learning and Reasoning

Toward a Clearer Characterization of Neuro-Symbolic
Frameworks: A Brief Comparative Analysis

Sania Sinha SINHASA3@QMSU.EDU
Tanawan Premsri PREMSRITQMSU.EDU
Parisa Kordjamshidi KORDJAMS@MSU.EDU

Department of Computer Science and Engineering, Michigan State University

Editors: Leilani H. Gilpin, Eleonora Giunchiglia, Pascal Hitzler, and Emile van Krieken

Abstract

Neurosymbolic (NeSy) frameworks combine neural representations and learning with sym-
bolic representations and reasoning. Combining the reasoning capacities, explainability,
and interpretability of symbolic processing with the flexibility and power of neural com-
puting allows us to solve complex problems with more reliability while being data-efficient.
However, this recently growing topic poses a challenge to developers with its learning curve,
lack of user-friendly tools, libraries, and unifying frameworks. In this paper, we character-
ize the technical facets of existing NeSy frameworks, such as the symbolic representation
language, integration with neural models, and the underlying algorithms. A majority of the
NeSy research focuses on algorithms instead of providing generic frameworks for declarative
problem specification to leverage problem solving. To highlight the key aspects of Neu-
rosymbolic modeling, we showcase three generic NeSy frameworks - DeepProbLog, Scallop,
and DomiKnowS. We identify the challenges within each facet that lay the foundation for
identifying the expressivity of each framework in solving a variety of problems. Building
on this foundation, we aim to spark transformative action and encourage the community
to rethink this problem in novel ways.

Keywords: Neurosymbolic, Comparing NeSy frameworks, DomiKnowS, DeepProbLog,
Scallop, Combining learning and reasoning

1. Introduction

Symbolic or good old-fashioned Al focused on creating rule-based reasoning sys-
tems (Hayes-Roth, 1985) exemplified with early works such as the Physical Symbol Sys-
tem (Augusto, 2021; Newell, 1980) and ELIZA (Weizenbaum, 1966). However, drawbacks
such as limited scalability due to the need to explicitly define domain predicates and rules
for each task, lack of robustness in handling messy real-world data, and low computational
efficiency led to a decline in the popularity of this paradigm, shifting the focus toward
neural computing and deep learning. Deep Learning (LeCun et al., 2015; Ahmad et al.,
2019) revolutionized AI as nuanced relationships in data could be learned by backpropa-
gation through multiple layers of processing and creating abstract representations of data.
However, it led to a loss of explainability (Li et al., 2023a), dependence on large amounts of
data, and rising concerns about its environmental sustainability (Bender et al., 2021). Neu-
rosymbolic AI (Hitzler and Sarker, 2022; Bhuyan et al., 2024), a combination of symbolic
AT and reasoning with neural networks, attempts to incorporate the capabilities of both
worlds and create systems that are data and time efficient, generalizable, and explainable.

(© 2025 S. Sinha, T. Premsri & P. Kordjamshidi.

SINHA PREMSRI KORDJAMSHIDI

Neurosymbolic models have been applied to several real-world applications (Bouneffouf and
Aggarwal, 2022) in safety-critical areas (Lu et al., 2024) such as healthcare (Hossain and
Chen, 2025) and autonomous driving (Sun et al., 2021). Several techniques have been pro-
posed for this integration (Kautz, 2022; Jayasingha et al., 2025), trying to combine the pros
and mitigate the cons from both symbolic and neural methods. However, due to lack of
unified libraries to facilitate this research and the focus on specific algorithms rather than
generic frameworks, this research becomes less impactful. Moreover, the few generic frame-
works tend to vary in problem formulation, implementation, algorithms, and flexibility of
use. This poses a challenge in being able to compare their performance uniformly or identify
a research direction that improves on previous work. To alleviate this issue, we provide a
comparative study with the following key contributions.

a) Identifying the main components of existing NeSy frameworks, b) Comparison of
frameworks across the identified facets, ¢) Highlighting the requirements for the next gen-
eration of NeSy frameworks, building upon the drawbacks of the current systems and the
possible interplays between the neural and symbolic components. We plan to expand this
study to cover more frameworks while the three selected ones are used to explain the aspects
of our characterization. These frameworks are demonstrated with an example task detailed
in Appendix A, tying the comparative facets concretely with a technical implementation.!
The MNIST Sum is a modified version of the classic MNIST digit recognition task (Lecun
et al., 1998), where a model is given images of two digits and asked to predict their sum.

: ' Interplay
symbolic reasoning - neural learning
NeuroSymbolic Al T
Formal Reasoning o Types 1-6 By Deep Architectures
Models + Symbolic sym:olichﬁu[rNo sym]bolic — + Neural
H . ymbolic|Neuro . .
Representation : Representation

. X Neuro: Symbolic — Neuro
Formal Symbolic : Neuro_ {Symbolic}

/ \ Neuro | Symbolic T

: Semantics :: Knowledge Source | | . Newo[Symbolid] . : Data Supervision:

Figure 1: An overview of the main components of a neurosymbolic framework.

2. Neurosymbolic Frameworks

A NeSy framework should provide flexibility for modeling both neural and symbolic com-
ponents (Kordjamshidi et al., 2016, 2015) and their interplay in a unified declarative frame-
work, going beyond specific underlying algorithms and techniques. On the symbolic side, a
generic framework should support a symbolic representation language that can be seamlessly
connected to neural components and cover different symbolic reasoning mechanisms. On the
neural side, we need to have the flexibility of connecting to various architectures, including
various loss functions, sources of supervision, and training paradigms. More importantly, a

1. https://github.com/HLR/nesy-examples

https://github.com/HLR/nesy-examples

NESY FRAMEWORKS

Symbolic Model Interplay
Framework Lang Knowledge Rep Dec Algorithm Eff LLM
CCON+ None Propositional X ReqL & X X
Logic Clauses ReqLoss
DomiKnowS None Concepts, v Primal-Dual, X Faghihi
Constraints Sampling Loss et al. (2024)
DeepProbLog ProbLog Facts, Rules, X Entailment X X
Predicates
LEFT None First Order Logic X Differentiable X Hsuet al.
Reasoning (2023)
PyReason None Constants, X Reasoning v X
Relations, Facts, over graph
Rules
Scallop Datalog Rules, Relations X Differentiable v’ Liet al
Reasoning (2024)

Table 1: Frameworks with their comparative factors. Lang: External language required,
Knowledge Rep: Knowledge Representation, Model Dec: Model Declaration flex-
ibility, Algorithm: Supported algorithm(s) for learning and inference, Eff: Com-
putational efficiency considerations, LLM: Use of Large Language Models.

NeSy framework should provide a modeling language for specification and seamless integra-
tion of the two components in building pipelines or arbitrary composition of models. Such
a NeSy framework should support neuro-symbolic training and inference beyond specific
integration algorithms. We distinguish between NeSy techniques and NeSy frameworks. By
techniques, we mean when task-specific solutions are provided (Lample and Charton, 2020;
Burattini et al., 2002). For example, AlphaGo (Silver et al., 2016) introduced a reinforce-
ment learning solution to Go, using Monte Carlo Tree Search as a symbolic component
inside a neural network. Another example is NS-CL (Mao et al., 2019) (Neuro-Symbolic
Concept Learner) that integrates neural perception with symbolic reasoning to learn visual
concepts and compositional language grounding for VQA tasks. Many other techniques and
algorithms are proposed for the interplay between the two paradigms (Badreddine et al.,
2022; Cohen et al., 2017; Smolensky et al., 2016; Lima et al., 2005; Sathasivam, 2011; Serafini
and d’Avila Garcez, 2016; Lamb et al., 2021) such as Inference Masked Loss (Guo et al.,
2020), Semantic Loss (Xu et al., 2018), Primal-Dual (Nandwani et al., 2019), etc., later
discussed in Section 6. They often lack the generality of frameworks, which are designed as
broader tools intended for practical use and extensibility with new integration algorithms
and with the capability of programming and configuring the two parts and their interplay.

In this work, we focus on a selection of generic NeSy frameworks. The following are
examples of research efforts towards advancing the development of such general-purpose
frameworks: DeepProbLog (Manhaeve et al., 2021) is a probabilistic logic programming
language, incorporating neural predicates in logic programming with an underlying differ-
entiable translation of logical reasoning. The probabilistic logic programming component is
built on top of ProbLog (De Raedt et al., 2007). DomiKnowS (Rajaby Faghihi et al., 2021;
Faghihi et al., 2023, 2024) is a declarative learning-based programming framework (Kord-

SINHA PREMSRI KORDJAMSHIDI

jamshidi et al., 2019) that integrates symbolic domain knowledge into deep learning. It
is a Python framework, facilitating the incorporation of logical constraints that represent
domain knowledge with neural learning in PyTorch. Scallop (Huang et al., 2021; Li et al.,
2023b, 2024) is a framework that includes flexible symbolic representation based on rela-
tional data modeling, using a declarative logic programming built on top of Datalog (Abite-
boul et al., 1995) with a framework for automatic differentiable reasoning. LEFT (Hsu
et al., 2023) is a less generic framework designed for grounding language in visual modality
and compositional reasoning over concepts. The framework consists of an LLM interpreter
that converts natural language to logical programs. The generated programs are directed
to a differentiable, domain-independent, and soft first-order logic-based executor. LEFT
is limited to tasks requiring grounding language in vision such as visual question answer-
ing (Johnson et al., 2017; Yi et al., 2018; Liu et al., 2019). Building on this foundation,
NeSyCoCo (Kamali et al., 2025) was introduced to address its limitations, particularly its
struggle with lexical variety and handling unseen concepts. NeSyCoCo extends LEFT’s
approach by using distributed word representations to connect a variety of linguistically
motivated predicates to neural modules, to alleviate reliance on a predefined predicate vo-
cabulary. PyReason (Aditya et al., 2023) is a library built to support reasoning on top
of outputs from neural networks. The neural component produces outputs such as labels
or concept scores. While the symbolic component does graph-based reasoning using logic
rules declared over a graph structure. It can produce an explanation trace for inference
and has a memory-efficient implementation. PLoT (Wong et al., 2023) (Probabilistic Lan-
guage of Thought) is a proposed framework leveraging neural and probabilistic modeling
for generative world modeling. It models thinking with probabilistic programs and meaning
construction with neural programs. The goal is to provide a language-driven unified think-
ing interface. CCN+ (Giunchiglia et al., 2024) is a framework that modifies the output
layer of a neural network to make results compliant with requirements that can be expressed
in propositional logic. A requirement layer, Reql, is built on top of the neural network.
The standard cross-entropy loss is adapted into a ReqlLoss to learn from the constraints
in the ReqL layer. We characterize frameworks by: a) Symbolic knowledge representation
language, b) Representation and flexibility of Neural Modeling, ¢) Model Declaration, d)
Interplay between symbolic and sub-symbolic systems, and e) Usage of LLMs. Figure 1
shows the relationship between these aspects. The neural representations and the symbolic
representations are the two main components of a neurosymbolic framework. The neural
representation guides learning and obtaining supervision from the data, while the symbolic
representations leverage symbolic reasoning, where the symbolic knowledge can be exploited
during training or inference. Table 1 shows an overview of the frameworks across chosen
features. For future sections, we focus on DomiKnowS, DeepProbLog, and Scallop to
provide a deeper investigation of the challenges in each component. Due to differences in
implementation, each framework allows for easy implementation of different tasks. With
the chosen frameworks, we can solve the same task across all.

3. Symbolic Knowledge Representation

Generic Neuro-Symbolic (NeSy) systems and frameworks use symbolic knowledge represen-
tation languages to encode constraints, facts, probabilities, and rules. Frameworks vary in
how they represent and integrate this symbolic knowledge. Many employ classical formal

NESY FRAMEWORKS

logic, grounded in well-defined syntax and semantics, and adapt these representations and
reasoning mechanisms within a unified integration framework. Some frameworks build on
established formalisms such as logic programming or constraint satisfaction. In contrast,
others take an entirely new hybrid semantics, while preserving conventional symbolic syntax.
Figure 2 compares the implementation of symbolic knowledge (concepts or facts) for the
MNIST Sum task. In general, the domain knowledge consists of the two concepts of digits
and the sum. As can be seen, Domiknows represents a part of symbolic domain knowledge as
a graph G(V, E'), where the nodes are the concepts in the domain and the edges are the rela-
tionships between them. Each node can have properties. More complex knowledge beyond
entities and relations is expressed with a pseudo first-order logical language with quantifiers
designed in Python. DomiKnowS mostly interprets the symbolic knowledge as logical con-
straints, such as the implementation of sum_combinations in the given example. Unlike the
other frameworks, DomiKnowS does not build on predefined formal semantics. It follows a
FOL-like syntax for symbolic logical representations, making it independent of the formal se-
mantics of an underlying formal language and allows more flexibility of representations and
adaptation to underlying algorithms in the framework. DeepProbLog, on the other hand,
utilizes logical predicates that are originally a part of the probabilistic logic programs (Ng
and Subrahmanian, 1992) of ProbLog (De Raedt et al., 2007), for its symbolic represen-
tation. These neural predicates obtain their probability distributions from the underlying
neural models. Probabilistic facts, neural facts, and neural annotated disjunctions (nAD)
whose probabilities are supplied by the neural component of the program can be added.
Here, digit is a neural predicate as indicated

by the use of nn(...). DeepProbLog follows Domiknows DeepProblog
. . image = Concept () nn(m_digit, [X], Y,
the formal semantics of Prolog (Clocksin and |aisic - isasetconceprciase- |
. . lumericalConcept . .
Mellish, 2003), followed by ProbLog, its prob- mage_pats — Concept e .
o7 . . . i Z is X2+Y2.
abilistic extension. Scallop adopts a relational |%iiriei - image_pair nas.ac ——— Sealop
. digitO=image,
data model for symbolic knowledge representa- aigiti-inags) sel_cox gadrelationC
1 1+1 1 3 3 = image_pair(input_mapping=
tion (Kolaitis and Vardi, 1990). It is built on the |= = smsepmrl @ put_nappi ggm))()
. . =, i 1f.scl_ctx.add_relati
syntax and formal semantics of Datalog and its veluesTsumations) g2 dnts
o1 . . . input_mapping=
probabilistic extensions, relaxing the exact se- List (range (10)))
. ’ . sum_combinations.append(felf .scl_ctx.add_rule(
mantics of ProbLog. It allows for the expression e gt d0.am) e, ot 25
: : ath=('x', pair_ s 1f.sum_2 =
of common reasoning, such as aggregation, nega- gorerartaienr, niam " ||se1t sel-ctx. forvard_sunction
. . . . (path=('x', pair_d1)))) ("sum,2“,‘output,!}\appin?
tion, and recursion. Similar to DeepProbLog, .. [{4,) for i in range(19)])

some of these predicates in the symbolic part

obtain their probability distribution from neu-

ral models, such as digit_1 and digit_2. While Figure 2: Comparison of Symbolic Rep-
ProbLog requires exhaustive search for compu- resentation across frameworks.
tations, Datalog can use top-k results and ex-

ploit database optimizations, making Scallop al-

gorithmically more time-efficient.

4. Neural Models Representations

The other core component of a NeSy system is the neural modeling that is integrated
with the symbolic knowledge discussed above. The neural models are mostly wrapped
up under the logical predicate names in most of the frameworks that have an explicit

SINHA PREMSRI KORDJAMSHIDI

logical knowledge representation language. To leverage the reasoning capabilities of the
symbolic system available and the ability of neural models to learn abstract representa-
tions from data, the neural models are used as abstract concept learners for the concepts
defined as logical predicates in the symbolic representation. The neural model represen-
tation is often used to predict probability distributions for the symbolic concepts based
on raw sensory inputs. The neural modeling is
often written using standard deep learning li-
braries, such as PyTorch (Paszke et al., 2019).
Figure 3 shows snippets of neural modeling ex-
pressions across frameworks, highlighting differ-
ences in implementation. Scallop utilizes rela-
tively standard neural modeling using PyTorch,
while needing an added context of symbolic rules.
Although integrated into Python, the context re-
lation and rule setup are verbatim from Data-
Log and only passed as a parameter to a func-

tion, which requires familiarity with DataLog | ff?i?iffi;:u, o Lo, St Jondor, e,
and its semantics. DeepProbLog, on the other ﬁ:limi‘jsléwppk)
hand, needs manual configuration of the raw selfoptimizer - oprin han(selt neviori paranetersO,
data and processing into queries, on top of other

standard neural components. This processed

data is passed into the neural network which is

then connected to a ProbLog program, such as
addition.pl in the figure. DomiKnowS’s neu-
ral component is built in PyTorch. Unlike other
frameworks, DomiKnowS has built-in compo-
nents called Readers, Sensors and Module learn-
ers that make the connection to neural compo-

DomiKnowS DeepProbLog

class MNIST_Net:
neural network

class Net:
neural network

network = MNIST_Net()
net = Network(network, "mnist_net",
batching=True)
net.optimizer = torch.optim.Adam
(network.parameters(), lr=1e-3)

image['pixels'] = ReaderSensor
(keyword='pixels')
image_batch['pixels’,
image_contains.reversed]=
JointSensor (image ['pixels'],
forvard=make_batch)
image['logits'] = ModuleLearner(
'pixels', module=Net())

model = Model("models/addition.pl",
[net])

Scallop

class MNISTSum2Net (nn.Module):
def __init__(self, provenance, k):
self.mnist_net = MNISTNet()
self.scl_ctx = scallopy.ScallopContext(provenance=provenance, k=k)

neural network

Figure 3: For neural integration, Domi-
KnowS employs sensors and
readers for reading in data,
while a learner connects to a
network. DeepProbLog con-
nects the neural network to
the ProbLog file, requiring

nents and feeding data to them explicit in the pro-
gram. This provides more flexibility in connect-
ing the concepts to deterministic or probabilistic
functions that can interact with other symbolic
concepts. The module learner can also use cus-

data handling to construct the
terms and queries from raw
data. Scallop has an extra
layer on top of the standard
network that adds the sym-

tom models. This makes the interaction with raw
data structured, transparent, and controllable.

bolic context.

5. Model Declaration

Most frameworks utilize neural components as abstract concept learners and use a symbolic
component to reason over the learned concepts. Each learner is a model and model declara-
tion refers to the flexibility of modularizing and connecting different learners. Each learner
can receive supervision independently. In most neurosymbolic frameworks, the supervision
from data is usually provided based on the final output of the end-to-end model. For ex-
ample, in an MNIST Sum task used throughout and detailed in Appendix A, the neural
and symbolic components are trained based on the final output of the sum, without access

NESY FRAMEWORKS

to individual digit labels in a semi-supervised setting. The task loss, e.g., a Cross-Entropy
Loss, is computed, and errors are backpropagated through the differentiable operations that
led to the output generation. For example, in DeepProblog, we can declare a single loss
function associated with the entire neural component. Gradient computations differ across
frameworks depending on whether losses are defined individually for each neural output or
specified as a single global loss function. However, there remains a need for models capable
of incorporating supervision at multiple levels of their symbolic representations. In Domi-
KnowS, loss computation can be defined for each symbol. Since each concept is linked to
both learning modules and ground-truth labels, their losses can be integrated seamlessly.
This enables joint training of all concepts alongside the target task, allowing each concept to
be optimized more effectively—leveraging available data without relying solely on the target
task’s output. In other words, it provides the flexibility of building pipelines of decision
making, obtaining distant supervision in addition to joint training and inference.

6. Interplay between Symbolic and Sub-symbolic

Kautz (2022) provides a characterization of the possible interplays between symbolic and
sub-symbolic components. This interplay of neurosymbolic can be explained by the concept
of System 1 and System 2 thinking described in Kahneman (2011). Research in this field
aims to create an ideal integration that seamlessly supports ”thinking fast and slow” (Booch
et al., 2021; Fabiano et al., 2023). Here, System 1 refers to the fast neural processing,
while System 2 corresponds to the slower, more deliberate symbolic reasoning. Different
methods for the integration of symbolic reasoning and neural programming have been explored
such as employing logical constraint satisfaction, integer linear programming, differentiable
reasoning, probabilistic logic programming. In this section, we will discuss a system-level
algorithmic comparison of the different frameworks.

DomiKnowS models the inference as an integer linear programming problem to en-
force the model to follow constraints expressed in first-order logical form (Van Hentenryck
et al., 1992). The objective of the program is guided by the neural components, and the
framework supports multiple training algorithms for learning from constraints. The Primal-
Dual formulation (Nandwani et al., 2019) converts the constrained optimization problem
into a min-max optimization with Lagrangian multipliers for each constraint, augmenting
the original loss with a soft logic surrogate to minimize constraint violations. Sampling-
Loss (Ahmed et al., 2022), inspired by semantic loss (Xu et al., 2018)and samples a set of
assignments for each variable based on the probability distribution of the neural modules’
output. Integer Linear Programming (ILP)(Cropper and Dumanci¢, 2022) formulates an
optimization objective based on Inference-Masked Loss(Guo et al., 2020) to constrain the
model during training. The training goal is to adjust the neural models to produce legit-
imate outputs that adhere to the given constraints. At prediction time, ILP can also be
applied to enforce final predictions that comply with given constraints. DomiKnowS relies
on the off-the-shelf optimization solver Gurobi (Gurobi Optimization, LLC, 2024) Deep-
ProbLog models each problem as a probabilistic logical program that consists of neural
facts, probabilistic facts, neural predicates, and a set of logical rules. A joint optimiza-
tion of the parameters of the logic program is done alongside the parameters of the neural
component. Neural network training is done using learning from entailment (Frazier and
Pitt, 1993) while in ProbLog, gradient-based optimization is performed on the underlying

SINHA PREMSRI KORDJAMSHIDI

generated Arithmetic Circuits (Shpilka et al., 2010), which is a differentiable structure.
The Arithmetic Circuits are transformed from a Sentential Decision Diagram (Darwiche,
2011) generated by ProbLog. Algebraic ProbLog (Kimmig et al., 2011) is used to compute
the gradient alongside probabilities using semirings (Eisner, 2002). Scallop is similar in
its setup to DeepProbLog where it creates an end-to-end differentiable framework com-
bining a symbolic reasoning component with a neural modeling component. They aim
to relax the formal semantics required by the use of ProbLog in DeepProbLog and in-
stead rely on a symbolic reasoning language extending Datalog, built into their frame-
work. They have a customizable provenance semiring framework (Green et al., 2007),
where different provenance semirings, such as extended max-min semiring and top-k proofs
semiring, allow learning using different types of heuristics for gradient calculations. Ta-
ble 2 compares the computational efficiency of these models at training and inference time
on a single training/testing example. As theoretically suggested, Scallop is expected to
outperform other frameworks in inference
and training speed, owing to its memory

Framework Training Inference
and time-efficient implementation in Rust. Time(ms) Time(ms)
The results in Table 2 support this expec- DomiKnowS 37.72 2.34
tation, with Scallop achieving the fastest DeepProbLog 5.84 3.24
inference time, on par with DomiKnowsS. Scallop 6.50 2.35

In practice, DeepProbLog achieves slightly
faster training performance than Scallop. Table 2: Computation time in milliseconds

This discrepancy may be due to overhead (ms) for training and inference
unrelated to the core algorithmic complex- across frameworks based on one
ity. DomiKnowS exhibits slower training training/testing example.

due to the overhead of uploading the entire
graph of data into memory.

7. Role of Large Language Models

Large foundation models hold significant promise for overcoming the bottleneck of acquir-
ing symbolic representations, which are essential for symbolic reasoning and consequently in
neurosymbolic frameworks. Source of Symbolic Knowledge: The symbolic knowledge in
neuro-symbolic systems, which is integrated with the neural component, can originate from
several distinct sources. While most systems require explicit, hand-crafted symbolic knowl-
edge, earlier classical logic-based learning research can be used for automatically learning
rules from data by using inductive logic programming (Nienhuys-Cheng and de Wolf, 1997;
Bratko and Muggleton, 1995) or mining constraints. Nowadays, even LLMs can be uti-
lized to generate symbolic knowledge (Pan et al., 2023a; Mirzaee and Kordjamshidi, 2023;
Acharya et al., 2024; Xu et al., 2024a). Several neurosymbolic frameworks and systems
have tried utilizing large foundation models to generate the symbolic knowledge, based on
the task or query, to overcome the labor-intensive nature of hand-crafting rules for every
single task and the time required in the automatic learning of symbolic knowledge from
data (Ishay et al., 2023; Xu et al., 2024a; Yang et al., 2024). Extraction of symbolic repre-
sentations from Foundation Models has become possible given the vast implicit knowledge
stored within these models, such as LLMs and multimodal models, which are trained on
massive and diverse corpora (Li et al., 2024; Petroni et al., 2019). These models can gen-

NESY FRAMEWORKS

erate symbolic content (e.g., candidate rules, knowledge graph triples, or logic statements),
perform reasoning that mimics symbolic inference, or act as components alongside sym-
bolic modules (Fang and Yu, 2024). For example, LLMs can be prompted to extract facts
from unstructured text, effectively populating a symbolic knowledge graph (Yao et al.,
2025). Techniques like Symbolic Chain-of-Thought inject formal logic into the LLM’s rea-
soning process, improving accuracy and explainability on logical reasoning tasks (Xu et al.,
2024b). However, foundation models are prone to hallucinations and lack the strict logical
guarantees of traditional symbolic systems (Zheng et al., 2024). Therefore, integrating foun-
dation models often requires careful prompting, verification steps to ensure reliability (Xu
et al., 2024b). Generation of inputs to symbolic engines: LLMs have also been used
to generate translations from raw inputs, specially natural language, to symbolic language
that is then fed into a symbolic reasoner. For example in Logic-LM (Pan et al., 2023b),
LLMs are leveraged to convert a natural language query into symbolic language that is
then solved by a symbolic reasoner. This method improves the performance of unfinetuned
LLMs on logical reasoning-based tasks. DomiKnowS (Faghihi et al., 2024) takes this a
step further by enabling users to describe problems in natural language which LLMs then
use to generate relevant concepts and relationships. Through a user-interactive process,
these concepts and relationships are refined iteratively. Finally, the LLM translates the
user-defined constraints from natural language into first-order logic representations before
converting them into DomiKnowS syntax. Some systems use LLMs in multiple capacities.
In VIERA (Li et al., 2024), which is built on top of Scallop, 12 foundation models can be
used as plugins. These models are treated as stateless functions with relational inputs and
outputs. These foundation models can be either language models like GPT (OpenAl et al.,
2024) and LLaMA (Touvron et al., 2023), vision models such as OWL-ViT (Minderer et al.,
2022) and SAM (Kirillov et al., 2023), or multimodal models such as CLIP (Radford et al.,
2021). These models can be used to extract facts, assign probabilities, or for classification,
and are treated as ”foreign predicates” in their interface. An older version, DSR-LM (Zhang
et al., 2023) utilized BERT-based language models for perception and relation extraction,
combined with a symbolic reasoner for question answering. LEFT uses LLMs both for gen-
eration of the concepts used for grounding and as an interpreter to generate the first-order
logic program for a natural language query, that is solved by the symbolic executor.

8. Discussion and Future Direction

Table 1 summarizes the comparative aspects of existing frameworks and outlines future
directions for optimizing, as we observe many columns marked with ’X’, implying most
frameworks present challenges that hinder the application and flexibility of the frameworks.
While current frameworks are functional, future developments should take a more holis-
tic approach that considers all aspects from an end-user perspective, aiming to improve
usability as general-purpose libraries and foster wider adoption of neurosymbolic methods.
Symbolic Representation. The generic neurosymbolic frameworks provide a formal
knowledge representation language of their choice. The selected languages often are based
on pure logical formalisms with established formal semantics, for example, Datalog or Pro-
log. However, we argue that knowledge representation for neurosymbolic frameworks needs
to be an innovative language designed for this integration purpose with adaptable semantics
with learning as the pivotal concept (Kordjamshidi et al., 2019). Restricting these frame-

SINHA PREMSRI KORDJAMSHIDI

works to classical Al formalisms and formal semantics limits the level of extension that can
be made and restricts the support of various algorithms and types of integration.

Neural Modeling. Most of the examined frameworks leave neural modeling and the task
of connecting the symbolic and sub-symbolic components to the user. This connection
usually requires low-level data preprocessing, that’s time consuming to implement. A lack
of user-friendly libraries discourages developers from using neurosymbolic methods to solve
downstream tasks. These frameworks need abstractions (Kordjamshidi et al., 2022) that
improve user experience and remove the need to implement data processing from scratch.
Model Declaration. There is a need to be explicit about the low-level components of
the neural architecture, enabling us to design interactions between neural and symbolic
components and connect them as intended. The goal is to provide flexibility in designing
arbitrary loss functions and connecting them to data for supervising concepts at various
neural layers, which will allow any symbol to be learnable.

Types of Interplay. Considering Kautz (2022)’s classification, current frameworks are
limited in supporting one or two ways of interactions. The ”Algo” column in Table 1
shows that DeepProbLog and Scallop utilize one form of implementation, while DomiKnowS
has multiple settings. Omne of the key challenges is determining the appropriate level of
abstraction in a neural model after which reasoning should occur. The classification types
demonstrate how a neural model can identify the relevant symbolic representations and
suggest that neurosymbolic frameworks could leverage these models to learn and route
inputs to the corresponding symbolic reasoning system. However, it remains unclear what
level of abstraction is most effective for solving the end task in practice.

LLM. Drawbacks often associated with employing symbolic Al into neural computing, such
as creation of the symbolic knowledge for integration, can be mediated with the use of LLMs
and foundation models. LLMs have the potential to alleviate the classical issues in symbolic
processing. Their vast knowledge can also be utilized to reduce the need for rebuilding neural
components, allowing for flexible connections with different symbolic components.

9. Conclusion

Neurosymbolic Al presents a promising path forward in addressing the limitations of purely
symbolic or neural approaches to Al. By integrating symbolic reasoning with neural learn-
ing, NeSy frameworks offer a balance between interpretability, data and time efficiency, and
generalization. In this paper, we characterize the core components of NeSy frameworks and
provide an analysis of some existing ones - DeepProbLog, Scallop, and DomiKnowS, illus-
trating the comparative facets. We identified some facets as symbolic knowledge and data
representation, neural modeling, model declaration, method of integrating the symbolic and
sub-symbolic systems, and role of LLMs. We identify key challenges in each facet that can
guide us toward building the next generation of neurosymbolic frameworks. Unifying ideas
in the field and building flexible frameworks by incorporating strengths in every facet will
ease the learning curve associated with NeSy systems and improve standardization. Future
NeSy frameworks should aim to provide flexible implementation, a user-friendly interface,
improve scalability, and develop seamless integrations with foundation models. The advent
of next-generation LLMs/VLMs provides promising solutions to longstanding knowledge
engineering challenges, fostering more effective and scalable integration of symbolic repre-
sentations and advancing research in neurosymbolic Al

10

NESY FRAMEWORKS

Acknowledgments

This project is partially supported by the Office of Naval Research (ONR) grant N00014-23-
1-2417. Any opinions, findings, conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the Office of Naval
Research. We thank Danial Kamali for his help in early stages of drafting and Uzair
Mohammad for his editing and suggestions for Figure 1.

References

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical
Level. Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1995. ISBN
0201537710.

Kamal Acharya, Alvaro Velasquez, and Houbing Herbert Song. A survey on symbolic knowl-
edge distillation of large language models. IEEE Transactions on Artificial Intelligence,
5(12):5928-5948, 2024. doi: 10.1109/TAI.2024.3428519.

Dyuman Aditya, Kaustuv Mukherji, Srikar Balasubramanian, Abhiraj Chaudhary, and
Paulo Shakarian. Pyreason: Software for open world temporal logic, 2023. URL https:
//arxiv.org/abs/2302.13482.

Jamil Ahmad, Haleem Farman, and Zahoor Jan. Deep Learning Methods and Applications,
pages 31-42. Springer Singapore, Singapore, 2019. ISBN 978-981-13-3459-7. doi: 10.
1007/978-981-13-3459-7_3. URL https://doi.org/10.1007/978-981-13-3459-7_3.

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek
Srikumar, Guy Van den Broeck, and Sameer Singh. Pylon: A pytorch framework for
learning with constraints. In Douwe Kiela, Marco Ciccone, and Barbara Caputo, editors,
Proceedings of the NeurIPS 2021 Competitions and Demonstrations Track, volume 176
of Proceedings of Machine Learning Research, pages 319-324. PMLR, 06-14 Dec 2022.
URL https://proceedings.mlr.press/v1i76/ahmed22a.html.

Luis M. Augusto. From symbols to knowledge systems: A. newell and h. a. Simon’s con-
tribution to symbolic Al. Journal of Knowledge Structures and Systems, 2(1):29-62,
2021.

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic
tensor networks. Artificial Intelligence, 303:103649, 2022. ISSN 0004-3702. doi:
https://doi.org/10.1016/j.artint.2021.103649. URL https://www.sciencedirect.com/
science/article/pii/S0004370221002009.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell.
On the dangers of stochastic parrots: Can language models be too big? In Proceed-
ings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT
21, page 610-623, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383097. doi: 10.1145/3442188.3445922. URL https://doi.org/10.1145/
3442188.3445922.

11

https://arxiv.org/abs/2302.13482
https://arxiv.org/abs/2302.13482
https://doi.org/10.1007/978-981-13-3459-7_3
https://proceedings.mlr.press/v176/ahmed22a.html
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922

SINHA PREMSRI KORDJAMSHIDI

Bikram Pratim Bhuyan, Amar Ramdane-Cherif, Ravi Tomar, and T. P. Singh. Neuro-
symbolic artificial intelligence: a survey. Neural Computing and Applications, 36(21):
12809-12844, July 2024. ISSN 1433-3058. doi: 10.1007/s00521-024-09960-z. URL https:
//doi .org/10.1007/s00521-024-09960-z.

Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jonathan Lenchner, Nick Linck,
Andreas Loreggia, Keerthiram Murgesan, Nicholas Mattei, Francesca Rossi, and Biplav
Srivastava. Thinking fast and slow in ai. Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 35(17):15042-15046, May 2021. doi: 10.1609/aaai.v35i17.17765. URL
https://ojs.aaai.org/index.php/AAAI/article/view/17765.

Djallel Bouneffouf and Charu C. Aggarwal. Survey on applications of neurosymbolic arti-
ficial intelligence, 2022. URL https://arxiv.org/abs/2209.12618.

Ivan Bratko and Stephen Muggleton. Applications of inductive logic programming. Com-
mun. ACM, 38(11):65-70, November 1995. ISSN 0001-0782. doi: 10.1145/219717.219771.
URL https://doi.org/10.1145/219717.219771.

E. Burattini, A. de Francesco, and M. De Gregorio. Nsl: a neuro-symbolic language for
monotonic and non-monotonic logical inferences. In VII Brazilian Symposium on Neural
Networks, 2002. SBRN 2002. Proceedings., pages 256—261, 2002. doi: 10.1109/SBRN.
2002.1181487.

William F Clocksin and Christopher S Mellish. Programming in PROLOG. Springer Science
& Business Media, 2003.

William W Cohen, Fan Yang, and Kathryn Rivard Magzaitis. Tensorlog: Deep learning
meets probabilistic dbs. arXiv preprint arXiv:1707.05390, 2017.

Andrew Cropper and Sebastijan Dumancié¢. Inductive logic programming at 30: A new
introduction. J. Artif. Int. Res., 74, September 2022. ISSN 1076-9757. doi: 10.1613/jair.
1.13507. URL https://doi.org/10.1613/jair.1.13507.

Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge bases. In
1JCAI Proceedings-International Joint Conference on Artificial Intelligence, volume 22,
page 819, 2011.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: a probabilistic prolog and
its application in link discovery. In Proceedings of the 20th International Joint Confer-
ence on Artifical Intelligence, IJCAT'07, page 2468-2473, San Francisco, CA, USA, 2007.
Morgan Kaufmann Publishers Inc.

Jason Eisner. Parameter estimation for probabilistic finite-state transducers. In Proceedings
of the 40th Annual Meeting of the Association for Computational Linguistics, pages 1-8,
2002.

Francesco Fabiano, Vishal Pallagani, Marianna Bergamaschi Ganapini, Lior Horesh, Andrea
Loreggia, Keerthiram Murugesan, Francesca Rossi, and Biplav Srivastava. Plan-SOFAT:
A neuro-symbolic planning architecture. In Neuro-Symbolic Learning and Reasoning in

12

https://doi.org/10.1007/s00521-024-09960-z
https://doi.org/10.1007/s00521-024-09960-z
https://ojs.aaai.org/index.php/AAAI/article/view/17765
https://arxiv.org/abs/2209.12618
https://doi.org/10.1145/219717.219771
https://doi.org/10.1613/jair.1.13507

NESY FRAMEWORKS

the era of Large Language Models, 2023. URL https://openreview.net/forum?id=
ORAhayOH4x.

Hossein Rajaby Faghihi, Aliakbar Nafar, Chen Zheng, Roshanak Mirzaee, Yue Zhang, An-
drzej Uszok, Alexander Wan, Tanawan Premsri, Dan Roth, and Parisa Kordjamshidi.
Gluecons: A generic benchmark for learning under constraints, 2023. URL https:
//arxiv.org/abs/2302.10914.

Hossein Rajaby Faghihi, Aliakbar Nafar, Andrzej Uszok, Hamid Karimian, and Parisa Kord-
jamshidi. Prompt2demodel: Declarative neuro-symbolic modeling with natural language,
2024. URL https://arxiv.org/abs/2407.20513.

Chuyu Fang and Song-Chun Yu. Large language models are neurosymbolic reasoners. arXiv
preprint arXiw:2401.09334, 2024. URL https://arxiv.org/html/2401.09334v1.

Michael Frazier and Leonard Pitt. Learning from entailment: An application to proposi-
tional horn sentences. In Proceedings of the Tenth International Conference on Interna-
tional Conference on Machine Learning, pages 120-127, 1993.

Eleonora Giunchiglia, Alex Tatomir, Mihaela Catéalina Stoian, and Thomas Lukasiewicz.
Cen+: A neuro-symbolic framework for deep learning with requirements. International
Journal of Approzimate Reasoning, 171:109124, 2024. ISSN 0888-613X. doi: https://
doi.org/10.1016/j.ijjar.2024.109124. URL https://www.sciencedirect.com/science/
article/pii/S0888613X24000112. Synergies between Machine Learning and Reasoning.

Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In Pro-
ceedings of the Twenty-Sizth ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, PODS ’07, page 31-40, New York, NY, USA, 2007. Association
for Computing Machinery. ISBN 9781595936851. doi: 10.1145/1265530.1265535. URL
https://doi.org/10.1145/1265530.1265535.

Quan Guo, Hossein Rajaby Faghihi, Yue Zhang, Andrzej Uszok, and Parisa Kordjamshidi.
Inference-masked loss for deep structured output learning. In Christian Bessiere, editor,
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
1JCAI-20, pages 2754-2761. International Joint Conferences on Artificial Intelligence Or-
ganization, 7 2020. doi: 10.24963/ijcai.2020/382. URL https://doi.org/10.24963/
ijcai.2020/382. Main track.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https:
//www.gurobi. com.

Frederick Hayes-Roth. Rule-based systems. Communications of the ACM, 28(9):921-932,
1985.

Pascal Hitzler and Md Kamruzzaman Sarker. Neuro-symbolic artificial intelligence: The
state of the art. 2022.

Delower Hossain and Jake Y Chen. A study on neuro-symbolic artificial intelligence: Health-
care perspectives, 2025. URL https://arxiv.org/abs/2503.18213.

13

https://openreview.net/forum?id=ORAhay0H4x
https://openreview.net/forum?id=ORAhay0H4x
https://arxiv.org/abs/2302.10914
https://arxiv.org/abs/2302.10914
https://arxiv.org/abs/2407.20513
https://arxiv.org/html/2401.09334v1
https://www.sciencedirect.com/science/article/pii/S0888613X24000112
https://www.sciencedirect.com/science/article/pii/S0888613X24000112
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.24963/ijcai.2020/382
https://doi.org/10.24963/ijcai.2020/382
https://www.gurobi.com
https://www.gurobi.com
https://arxiv.org/abs/2503.18213

SINHA PREMSRI KORDJAMSHIDI

Joy Hsu, Jiayuan Mao, Joshua B. Tenenbaum, and Jiajun Wu. What’s left? concept
grounding with logic-enhanced foundation models, 2023. URL https://arxiv.org/abs/
2310.16035.

Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie
Si. Scallop: From probabilistic deductive databases to scalable differentiable reasoning.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 25134—
25145. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_
files/paper/2021/file/d367eef13£90793bd8121e2f675f0dc2-Paper . pdf.

Adam Ishay, Zhun Yang, and Joohyung Lee. Leveraging large language models to generate
answer set programs. In Pierre Marquis, Tran Cao Son, and Gabriele Kern-Isberner,
editors, Proceedings of the 20th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2023, Proceedings of the International Conference on
Knowledge Representation and Reasoning, pages 374—-383. Association for the Advance-
ment of Artificial Intelligence, 2023. doi: 10.24963/kr.2023/37.

Prashani Jayasingha, Bogdan Iancu, and Johan Lilius. Neurosymbolic approaches in ai
design — an overview. In 2025 IEEE Symposium on Trustworthy, Ezplainable and
Responsible Computational Intelligence (CITREx Companion), pages 1-5, 2025. doi:
10.1109/CITRExCompanion65208.2025.10981497.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zit-
nick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language and
elementary visual reasoning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Danial Kamali, Elham J. Barezi, and Parisa Kordjamshidi. Nesycoco: A neuro-symbolic
concept composer for compositional generalization. Proceedings of the AAAI Conference
on Artificial Intelligence, 39(4):4184-4193, Apr. 2025. doi: 10.1609/aaai.v39i4.32439.
URL https://ojs.aaai.org/index.php/AAAT/article/view/32439.

Henry Kautz. The third ai summer: Aaai robert s. engelmore memorial lecture. AI Maga-
zine, 43(1):105-125, Mar. 2022. doi: 10.1002/aaai.12036. URL https://ojs.aaai.org/

aimagazine/index.php/aimagazine/article/view/19122.

Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. An algebraic prolog for
reasoning about possible worlds. Proceedings of the AAAI Conference on Artificial
Intelligence, 25(1):209-214, Aug. 2011. doi: 10.1609/aaai.v25i1.7852. URL https:
//0js.aaai.org/index.php/AAAT/article/view/7852.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross
Girshick. Segment anything, 2023. URL https://arxiv.org/abs/2304.02643.

14

https://arxiv.org/abs/2310.16035
https://arxiv.org/abs/2310.16035
https://proceedings.neurips.cc/paper_files/paper/2021/file/d367eef13f90793bd8121e2f675f0dc2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d367eef13f90793bd8121e2f675f0dc2-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/32439
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/19122
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/19122
https://ojs.aaai.org/index.php/AAAI/article/view/7852
https://ojs.aaai.org/index.php/AAAI/article/view/7852
https://arxiv.org/abs/2304.02643

NESY FRAMEWORKS

Phokion G. Kolaitis and Moshe Y. Vardi. On the expressive power of datalog: tools and
a case study. In Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, PODS 90, page 61-71, New York, NY, USA, 1990.
Association for Computing Machinery. ISBN 0897913523. doi: 10.1145/298514.298542.
URL https://doi.org/10.1145/298514.298542.

Parisa Kordjamshidi, Dan Roth, and Hao Wu. Saul: Towards declarative learning based
programming. volume 2015, 12 2015.

Parisa Kordjamshidi, Daniel Khashabi, Christos Christodoulopoulos, Bhargav Mangipudi,
Sameer Singh, and Dan Roth. Better call Saul: Flexible programming for learning and
inference in NLP. In Yuji Matsumoto and Rashmi Prasad, editors, Proceedings of COL-
ING 2016, the 26th International Conference on Computational Linguistics: Technical
Papers, pages 3030-3040, Osaka, Japan, December 2016. The COLING 2016 Organizing
Committee. URL https://aclanthology.org/C16-1285/.

Parisa Kordjamshidi, Dan Roth, and Kristian Kersting. Declarative learning-based pro-
gramming as an interface to ai systems. Frontiers in Artificial Intelligence, 5, 2019. URL
https://api.semanticscholar.org/CorpusID:195069123.

Parisa Kordjamshidi, Dan Roth, and Kristian Kersting. Declarative learning-
based programming as an interface to ai systems. Frontiers in Artificial In-
telligence, Volume 5 - 2022, 2022. ISSN 2624-8212. doi: 10.3389/frai.2022.
755361. URL https://www.frontiersin.org/journals/artificial-intelligence/
articles/10.3389/frai.2022.755361.

Luis C. Lamb, Artur Garcez, Marco Gori, Marcelo Prates, Pedro Avelar, and Moshe Vardi.
Graph neural networks meet neural-symbolic computing: A survey and perspective, 2021.
URL https://arxiv.org/abs/2003.00330.

Guillaume Lample and Frangois Charton. Deep learning for symbolic mathematics. In In-
ternational Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=S1eZYeHFDS.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998. doi: 10.1109/5.
726791.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436—
444, 2015. doi: 10.1038 /naturel4539. URL https://doi.org/10.1038/nature14539.

Bo Li, Peng Qi, Bo Liu, Shuai Di, Jingen Liu, Jiquan Pei, Jinfeng Yi, and Bowen Zhou.
Trustworthy ai: From principles to practices. ACM Comput. Surv., 55(9), January 2023a.
ISSN 0360-0300. doi: 10.1145/3555803. URL https://doi.org/10.1145/3555803.

Ziyang Li, Jiani Huang, and Mayur Naik. Scallop: A language for neurosymbolic program-
ming. Proc. ACM Program. Lang., 7(PLDI), June 2023b. doi: 10.1145/3591280. URL
https://doi.org/10.1145/3591280.

15

https://doi.org/10.1145/298514.298542
https://aclanthology.org/C16-1285/
https://api.semanticscholar.org/CorpusID:195069123
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.755361
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.755361
https://arxiv.org/abs/2003.00330
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/3555803
https://doi.org/10.1145/3591280

SINHA PREMSRI KORDJAMSHIDI

Ziyang Li, Jiani Huang, Jason Liu, Felix Zhu, Eric Zhao, William Dodds, Neelay Velingker,
Rajeev Alur, and Mayur Naik. Relational programming with foundational models. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 38(9):10635-10644, March
2024. ISSN 2159-5399. doi: 10.1609/aaai.v38i9.28934. URL http://dx.doi.org/10.
1609/aaai.v3819.28934.

Priscila Lima, Mariela Morveli-Espinoza, Glaucia K E Pereira, and Felipe Francga. Satyrus:
A sat-based neuro-symbolic architecture for constraint processing. pages 137-142, 01
2005. doi: 10.1109/ICHIS.2005.97.

Runtao Liu, Chenxi Liu, Yutong Bai, and Alan L. Yuille. Clevr-ref+: Diagnosing visual
reasoning with referring expressions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

Zhen Lu, Imran Afridi, Hong Jin Kang, Ivan Ruchkin, and Xi Zheng. Surveying neuro-
symbolic approaches for reliable artificial intelligence of things. Journal of Reliable In-
telligent Environments, 10(3):257-279, 2024. doi: 10.1007/s40860-024-00231-1. URL
https://doi.org/10.1007/s40860-024-00231-1.

Robin Manhaeve, Sebastijan Dumanci¢, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Neural probabilistic logic programming in deepproblog. Artificial Intelligence,
298:103504, 2021. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2021.103504.
URL https://www.sciencedirect.com/science/article/pii/S0004370221000552.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The
neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural
supervision, 2019. URL https://arxiv.org/abs/1904.12584.

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn,
Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran
Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. Simple open-vocabulary
object detection with vision transformers, 2022. URL https://arxiv.org/abs/2205.
06230.

Roshanak Mirzaee and Parisa Kordjamshidi. Disentangling extraction and reasoning
in multi-hop spatial reasoning. In Houda Bouamor, Juan Pino, and Kalika Bali,
editors, Findings of the Association for Computational Linguistics: EMNLP 2023,
pages 3379-3397, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-emnlp.221. URL https://aclanthology.org/
2023.findings-emnlp.221/.

Yatin Nandwani, Abhishek Pathak, Mausam, and Parag Singla. A primal dual
formulation for deep learning with constraints. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
cf708fcldecf0337aded484f8f4519ae-Paper.pdf.

16

http://dx.doi.org/10.1609/aaai.v38i9.28934
http://dx.doi.org/10.1609/aaai.v38i9.28934
https://doi.org/10.1007/s40860-024-00231-1
https://www.sciencedirect.com/science/article/pii/S0004370221000552
https://arxiv.org/abs/1904.12584
https://arxiv.org/abs/2205.06230
https://arxiv.org/abs/2205.06230
https://aclanthology.org/2023.findings-emnlp.221/
https://aclanthology.org/2023.findings-emnlp.221/
https://proceedings.neurips.cc/paper_files/paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf

NESY FRAMEWORKS

Allen Newell. Physical symbol systems. Cognitive Science, 4(2):135-183, 1980. ISSN
0364-0213. doi: https://doi.org/10.1016/S0364-0213(80)80015-2. URL https://www.
sciencedirect.com/science/article/pii/S0364021380800152.

Raymond Ng and V.S. Subrahmanian. Probabilistic logic programming. Informa-
tion and Computation, 101(2):150-201, 1992. ISSN 0890-5401. doi: https://doi.
org/10.1016/0890-5401(92)90061-J. URL https://www.sciencedirect.com/science/
article/pii/089054019290061J.

Shan-Hwei Nienhuys-Cheng and Roland de Wolf. What is inductive logic programming?
Springer, 1997.

OpenAl, Josh Achiam, and Steven Adler et al. Gpt-4 technical report, 2024. URL https:
//arxiv.org/abs/2303.08774.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering
large language models with symbolic solvers for faithful logical reasoning. In Houda
Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pages 38063824, Singapore, December 2023a. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.248. URL
https://aclanthology.org/2023.findings-emnlp.248/.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empow-
ering large language models with symbolic solvers for faithful logical reasoning, 2023b.
URL https://arxiv.org/abs/2305.12295.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library, 2019. URL
https://arxiv.org/abs/1912.01703.

Fabio Petroni, Tim Rocktéschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H.
Miller, and Sebastian Riedel. Language models as knowledge bases?, 2019. URL https:
//arxiv.org/abs/1909.01066.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and
Ilya Sutskever. Learning transferable visual models from natural language supervision,
2021. URL https://arxiv.org/abs/2103.00020.

Hossein Rajaby Faghihi, Quan Guo, Andrzej Uszok, Aliakbar Nafar, and Parisa Kord-
jamshidi. DomiKnowS: A library for integration of symbolic domain knowledge in deep
learning. In Heike Adel and Shuming Shi, editors, Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations,
pages 231-241, Online and Punta Cana, Dominican Republic, November 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-demo.27. URL
https://aclanthology.org/2021.emnlp-demo.27/.

17

https://www.sciencedirect.com/science/article/pii/S0364021380800152
https://www.sciencedirect.com/science/article/pii/S0364021380800152
https://www.sciencedirect.com/science/article/pii/089054019290061J
https://www.sciencedirect.com/science/article/pii/089054019290061J
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://aclanthology.org/2023.findings-emnlp.248/
https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/2103.00020
https://aclanthology.org/2021.emnlp-demo.27/

SINHA PREMSRI KORDJAMSHIDI

Saratha Sathasivam. Learning rules comparison in neuro-symbolicintegration. International
Journal of Applied Physics and Mathematics, 1(2):129, 2011.

Luciano Serafini and Artur S d’Avila Garcez. Learning and reasoning with logic tensor
networks. In Conference of the italian association for artificial intelligence, pages 334—
348. Springer, 2016.

Amir Shpilka, Amir Yehudayoff, et al. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends®) in Theoretical Computer Science, 5(3-4):
207-388, 2010.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis
Hassabis. Mastering the game of go with deep neural networks and tree search. Nature,
529(7587):484-489, 2016. doi: 10.1038 /nature16961. URL https://doi.org/10.1038/
naturel6961.

Paul Smolensky, Moontae Lee, Xiaodong He, Wen-tau Yih, Jianfeng Gao, and li Deng. Basic
reasoning with tensor product representations. 01 2016. doi: 10.48550/arXiv.1601.02745.

Jiankai Sun, Hao Sun, Tian Han, and Bolei Zhou. Neuro-symbolic program search for
autonomous driving decision module design. In Jens Kober, Fabio Ramos, and Claire
Tomlin, editors, Proceedings of the 2020 Conference on Robot Learning, volume 155 of
Proceedings of Machine Learning Research, pages 21-30. PMLR, 16-18 Nov 2021. URL
https://proceedings.mlr.press/v1i55/sun2la.html.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan,
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev,
Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich,
Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan,
Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foun-
dation and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Pascal Van Hentenryck, Helmut Simonis, and Mehmet Dincbas. Constraint satisfac-
tion using constraint logic programming. Artificial Intelligence, 58(1):113-159, 1992.
ISSN 0004-3702. doi: https://doi.org/10.1016,/0004-3702(92)90006-J. URL https:
//www.sciencedirect.com/science/article/pii/000437029290006J.

18

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://proceedings.mlr.press/v155/sun21a.html
https://arxiv.org/abs/2307.09288
https://www.sciencedirect.com/science/article/pii/000437029290006J
https://www.sciencedirect.com/science/article/pii/000437029290006J

NESY FRAMEWORKS

Joseph Weizenbaum. Eliza—a computer program for the study of natural language com-
munication between man and machine. Commun. ACM, 9(1):36-45, January 1966.
ISSN 0001-0782. doi: 10.1145/365153.365168. URL https://doi.org/10.1145/365153.
365168.

Lionel Wong, Gabriel Grand, Alexander K. Lew, Noah D. Goodman, Vikash K. Mans-
inghka, Jacob Andreas, and Joshua B. Tenenbaum. From word models to world models:
Translating from natural language to the probabilistic language of thought, 2023. URL
https://arxiv.org/abs/2306.12672.

Fangzhi Xu, Zhiyong Wu, Qiushi Sun, Siyu Ren, Fei Yuan, Shuai Yuan, Qika Lin, Yu Qiao,
and Jun Liu. Symbol-LLM: Towards foundational symbol-centric interface for large
language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 13091-13116, Bangkok, Thailand, August 2024a.
Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.707. URL
https://aclanthology.org/2024.acl-long.707/.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic
loss function for deep learning with symbolic knowledge. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 5502-5511. PMLR, 10-15
Jul 2018. URL https://proceedings.mlr.press/v80/xul8h.html.

Xinyu Xu, Pan Wang, Shusen Dong, Ningyu Wu, Yue Zhang, and Baobao Chang. Faithful
logical reasoning via symbolic chain-of-thought. arXiv preprint arXiv:2405.18357, 2024b.
URL https://arxiv.org/abs/2405.18357.

Xiaocheng Yang, Bingsen Chen, and Yik-Cheung Tam. Arithmetic reasoning with LLM:
Prolog generation & permutation. In Kevin Duh, Helena Gomez, and Steven Bethard,
editors, Proceedings of the 2024 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies (Volume 2: Short
Papers), pages 699-710, Mexico City, Mexico, June 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.naacl-short.61. URL https://aclanthology.org/
2024 .naacl-short.61/.

Liang Yao, Jiazhen Peng, Chengsheng Mao, and Yuan Luo. Exploring large language models
for knowledge graph completion, 2025. URL https://arxiv.org/abs/2308.13916.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Joshua B.
Tenenbaum. Neural-symbolic vqa: Disentangling reasoning from vision and language
understanding. In Advances in Neural Information Processing Systems, pages 1039—-1050,
2018.

Hanlin Zhang, Jiani Huang, Ziyang Li, Mayur Naik, and Eric Xing. Improved logical

reasoning of language models via differentiable symbolic programming, 2023. URL https:
//arxiv.org/abs/2305.03742.

19

https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://arxiv.org/abs/2306.12672
https://aclanthology.org/2024.acl-long.707/
https://proceedings.mlr.press/v80/xu18h.html
https://arxiv.org/abs/2405.18357
https://aclanthology.org/2024.naacl-short.61/
https://aclanthology.org/2024.naacl-short.61/
https://arxiv.org/abs/2308.13916
https://arxiv.org/abs/2305.03742
https://arxiv.org/abs/2305.03742

SINHA PREMSRI KORDJAMSHIDI

Danna Zheng, Mirella Lapata, and Jeff Z. Pan. How reliable are llms as knowledge bases?
re-thinking facutality and consistency, 2024. URL https://arxiv.org/abs/2407.13578.

Appendix A. Example Task

NeSy frameworks formulate problems differently based on their implementation and setup.
In DomiKnows$, the problem is reformulated as a logical constraint solving problem. This
is done by representing the domain as a graph G(V, E), where the nodes are the concepts
in the domain and the edges are the relationships between them. FEach node can have
properties. The final logical constraint formulation is done using the defined concepts. In
DeepProbLog, the problem is viewed as a combination of perception and reasoning, where
the perception is the neural component that is fed as neural predicates into the reasoning
component made of probabilistic logic programming with ProbLog. To solve a problem in
DeepProbLog, the problem needs to be conceptualized as a separation of the neural and
logical reasoning components. In Scallop, similar to DeepProbLog, the problem is viewed
as a combination of the neural and the symbolic component. In LEFT, the problem is
limited to the visual question answering domain. Here, the neural model is composed of
feature extractors, a classifier for objects and relations into concepts, and a first-order logic
program generator when given the question. In this section, we will take a look at how the
problem formulation looks like in each of these frameworks for a common task. Note that
we exclude LEFT for this due to the domain-specific nature of the framework.

A.1. MNIST Sum

The MNIST Sum task is an extension of the classic MNIST handwritten digit recognition
task (Lecun et al., 1998) where on being given two images of digits, the task is to output
their sum that is a whole number. The training example consists of the two images of the
digits and the ground-truth label of their sum. The individual labels of the digits are not
available for training.

A.1.1. DoMIKNOWS

Problem Specification. DomiKnowS formulates the problem using graph representations
of concepts, relations, and logic. For performing the MNIST Sum task in DomiKnowS, the
first concept defined is image concept representing visual information. The digit concept,
a subclass of image, is introduced to represent the output class, ranging from 0 to 9. To
establish relationships between digit images, the image pair concept is defined as an edge
connecting two digit concepts. The sum concept is then introduced under image pair to
represent the summation of the two digit concepts and the ground-truth output of the
program. For this task, three constraints are defined. The first two constraints utilize
exactL to ensure that the predicted digit and sum values belong to only one valid class.
Another constraint enforces that the expected sum value matches the sum of the two digit
predictions. This is implemented using ifL constraints, which verify whether the predicted
digits form one of the possible solutions for a valid sum. If multiple solutions exist, the
orL constraint ensures that at least one of the answers corresponds to the predicted digits.
Code for defining the graph concept and constraints can be found in Listing 1.

20

https://arxiv.org/abs/2407.13578

NESY FRAMEWORKS

with Graph(name='global') as graph:

image_batch = Concept(name="'image_batch")
image = Concept (name="'image ")
image_contains , = image_batch.contains (image)

digit classes 0—9

digit = image(name="'digits "',
ConceptClass=EnumConcept ,
values=digits)

image_pair = Concept (name='pair ")
pair_d0, pair_.dl = image_pair.has_a(digitO=image, digitl=
image)

sum value classes 0—18

s = image_pair (name='summations ',
ConceptClass=EnumConcept ,
values=summations)

exactL (x[digit.__getattr__(d) for d in digits])
exactL (#[s.__getattr__(d) for d in summations])

#fizedL (s)

FIXED = True

fixedL (s(”x”, eqL(image_pair, "summationEquality”, {True})
), active = FIXED)

for sum_val in range(config.summationRange):
sum_combinations = []

sum.nm = summations [sum_val]

for dO_val in range(sum_val + 1):
dl_val = sum_val — dO_val

if dO_val >= len(digits) or dl_val >= len(digits):
continue

d0.nm = digits [d0_val]
dlonm = digits[dl_val]

for each combination of digits that sum to
sum_val add constraint to list

21

SINHA PREMSRI KORDJAMSHIDI

sum_combinations.append (andL (getattr (digit , d0_.nm)
(path=('x"', pair_d0)),
getattr (digit , dl.nm)
(path=('x",
pair_dl))

))

print (sum_val, '-'

, sum_combinations)

if the given summation value is some value, then the
digits must be one of a set of

digit pairs that add to that value

i.e. if sum val = s, d0 = 0 and dI = s or d0 = 1 and

dl = s—1 ...

#e.g. iof sum val = 1, d0 = 0 and dI =1 or d0 = 1 and
o = 0

if len(sum_combinations) = 1:
ifL (

getattr (s, summnm)('x"),
sum_combinations [0]

)

else:
ifL (
getattr (s, sumnm)('x"'),
orL (*sum_combinations)

!

Listing 1: Python Code for full graph of MNIST sum implemented in DomiKnowS including
logical constraints

Neural Modeling. The model declaration comprises standard neural modeling compo-
nents, including data loading, pre-processing, neural network definition, and loss function
specification. The process begins with the ReaderSensor, which reads the input image.
Next, a relation concept is defined using another sensor, JointSensor, to establish connec-
tions between images. The module learner is then employed to generate an initial prediction
for the digit concept, which is subsequently passed to another sensor, FunctionalSensor, to
compute the sum of two images. The associated code is provided in Listing 2.

class Net(torch.nn.Module):
def __init__(self):
super (). __init__ ()

self.convl = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)

22

self.pool

self.linl
self.lin?2

self.relu
self.drop

self .norm

= 1nn

= nn
= nn

= 1nn

= nnn

= nn

NESY FRAMEWORKS

.MaxPool2d (2, 2)

.Linear (256, 128)
.Linear (128, 10)

.ReLU ()
.Dropout (p=0.2)

.LayerNorm (256)

def forward(self , x):
x = torch.squeeze(x, dim=0)

x = x.reshape(2, 1, 28, 28)

x = self.
x = self.
x = self.
x = self.
x = self.
x = self.

x = x.reshape(2, —1)

x = self.norm(x)

x = self.linl (x)
x = self.relu(x)

x = self.drop(x)

y_digit =

return y._

self

digit

.1in2 (x)

class SumLayer(torch.nn.Module):
def __init__(self):
super (). __init__ ()

self.linl
self.lin?2

= nn. Linear (20, 64)
= nn. Linear (64, 19)

23

SINHA PREMSRI KORDJAMSHIDI

self.relu = nn.ReLU()

def forward(self, digits, do_-time=True):
digit0 = torch.unsqueeze(digits[0, :], dim=0)
digitl = torch.unsqueeze(digits[1l, :], dim=0)

x = torch.cat ((digit0, digitl), dim=1)

x = self.linl (x)
x = self.relu(x)

y-sum = self.lin2 (x)

#return torch.zeros((1, 19), requires_grad=True)
return y_sum

class SumLayerExplicit (torch.nn.Module):
def __init__(self, device='cpu'):
super (). __init__ ()
self.device = device

def forward(self, digits, do_time=True):
digit0 = torch.unsqueeze(digits[0, :], dim=0)
digitl = torch.unsqueeze(digits[l, :], dim=0)

digit0 = F.softmax(digit0, dim=1)
digitl = F.softmax(digitl , dim=1)

digit0 = torch.reshape(digit0, (10, 1))

digitl = torch.reshape(digitl, (1, 10))

d = torch.matmul(digit0 , digitl)

d = d.repeat (1, 1, 1, 1)

f = torch. flip (torch.eye(10), dims=(0,)).repeat (1, 1,

1, 1)

conv_diag_sums = F.conv2d(d, f.to(self.device),
padding=(9, 0), groups=1)[..., 0]

out = torch.squeeze (conv_diag_sums, dim=0)

return out

class NBSoftCrossEntropyLoss(NBCrossEntropyLoss) :
def __init__(self, prior_weight=1.0, xargs, sxkwargs):
super (). __init__(xargs, sxkwargs)

24

NESY FRAMEWORKS

self.prior_weight = prior_weight

def forward(self , input, target, xargs, sxkwargs):

if target.dim() = 1:
return super (). forward (input, target, sxargs, xx
kwargs)
epsilon = le—5
input = input.view(—1, input.shape|[—1])
input = input.clamp (min=epsilon , max=1-epsilon)

logprobs = F.log_softmax (input, dim=1)
return self.prior_weight * —(target % logprobs).sum()
/ input.shape [0]

class NBSoftCrossEntropyIMLoss (BCEWithLogitsIMLoss) :
def __init__(self, prior_weight=1.0, xargs, sxkwargs):
super (). __init__(xargs, xxkwargs)

self.prior_weight = prior_weight

def forward(self , input, inference, target, weight=None):

if target.dim() = 1:
num_classes = input.shape|[—1]
target = target.to(dtype=torch.long)
target = F.one_hot(target, num_classes=num_classes

)

return super () .forward (input, inference, target
weight=weight)

return super () .forward (input, inference, target,
weight=weight) % self.prior_weight

def print_and_output(x, f=lambda x: x.shape, do_print=False):
if do_print:
print (prefix + str(f(x)))
return x

def build_program (sum_setting=None, digit_labels=False, device
='cpu', use_fixedL=True, test=False):

25

SINHA PREMSRI KORDJAMSHIDI

image ['pixels'] = ReaderSensor (keyword='pixels ")
def make_batch(pixel):
return pixel.flatten ().unsqueeze(0), torch.omnes((1,
len(pixel)))
image_batch|['pixels', image_contains.reversed]| =

JointSensor (image['pixels '], forward=make _batch)
image['logits '] = ModuleLearner('pixels', module=Net())

def make_pairs(xinputs):
return torch.tensor ([[True, False]]), torch.tensor ([]
False, True]])

image_pair [pair_d0.reversed, pair_dl.reversed]| =
JointSensor (image ['pixels '], forward=make_pairs)

image_pair ['summation_label '] = ReaderSensor (keyword="'
summation ")

image ['digit_label'] = ReaderSensor (keyword="'digit ")

image [digit] = FunctionalSensor('logits', forward=lambda x

X) 7

if digit_labels:
image [digit] = FunctionalSensor('digit_label', forward
=lambda x: x, label=True)

if use_fixedL and test:
during test time, set model output to be the
summation label
def manual_fixedL (s):
res = torch.zeros((1, 19))
res[0, s] =1
return res

image_pair[s] = FunctionalSensor ('summation_label"',
forward=manual_fixedL)
else:
if sum_setting = 'explicit ':
image_pair [s] = ModuleLearner (image['logits '],
module=SumLayerExplicit (device=device))
elif sum _setting = 'baseline ':

26

NESY FRAMEWORKS

image_pair[s]| = ModuleLearner (image| 'logits '],
module=SumLayer ())
else:
image_pair[s] = FunctionalSensor (forward=lambda:
torch.ones (1, config.summationRange)) # dummy
values to populate

if use_fixedL:

image_pair[s| = ReaderSensor (keyword='summation ',
label=True)
image_pair ['summationEquality '] = FunctionalSensor (

forward=lambda: torch.ones(1,1))

return graph, image, image_pair, image_batch

Listing 2: MNIST Sum code for DomiKnowS framework to run this task

A.1.2. DEerProBLOG

Problem Specification. DeepProbLog formulates a problem regarding probabilistic facts,
neural facts, and neural annotated disjunctions (nAD). In the MNIST Sum task, the fact
X is defined to represent the input image. A neural network function is then introduced
to map X to its corresponding digit, denoted as digit(X,Y’). To enforce constraints about
the summation and the ground-truth sum, a function is defined to compute the sum of two
digits. Code for this part is shown in Listing 3.

nn(m_digit, [X], Y, [0..... 9]) :: digit(X,Y).
addition (X,Y,Z) :— digit (X,X2), digit(Y,Y2), Z is X2+Y2.

Listing 3: Facts and Rules in DeepProbLog

Neural Modeling. The neural modeling follows a standard neural network setup, such
as a CNN-based classifier. It is preceded by data loading and pre-processing, which are
performed separately from the ProbLog program. Thus, the neural model used in Deep-
ProbLog can be initialized independently of the DeepProbLog model. Once the neural
model is initialized, the framework passes it along with a probabilistic program as input.
The probabilistic program consists of facts and rules, similar to the code in Listing 3. Details
of the DeepProbLog modeling code can be found in Listing 4.

class Model(object):
def __init__(
self ,
program_string: Union[str, os.PathLike],
networks: Collection [Network],
embeddings: Optional [TermEmbedder] = None,
load: bool = True,

20

27

SINHA PREMSRI KORDJAMSHIDI

:param program_string: A string representing a
DeepProbLog program or the path to a file
containing a program.

:param networks: A collection of networks that will be
used to evaluate the mneural predicates.

:param embeddings: A TermFEmbedder used to embed Terms
in the program.

:param load: If true, then it will attempt to load the
program from 'program_string ',

else, it will comnsider program_string to be the
program itself.

200

self .networks = dict ()

if load:
self .program: LogicProgram = PrologFile (str(

program_string))

else:
self .program: LogicProgram = PrologString(

program _string)

self.parameters = []

self .parameter_groups = []

self. _extract_parameters ()

for network in networks:

self .networks[network.name|] = network
network . model = self

self.solver: Optional[Solver]| = None

self.eval_mode = False

self .embeddings = embeddings

self.tensor_sources = dict ()

self.optimizer = Optimizer(self)

def get_embedding(self , term: Term):
return self.embeddings. get_embedding (term)

def evaluate_nn(self, to_evaluate: List[Tuple|[Term, Term

Dk

200

:param to_evaluate: List of meural predicates to
evaluate

creturn: A dictionary with the elements of to_evaluate
as keys, and the output of the NN as values.

result = dict ()

evaluations = defaultdict (list)

28

def

def

def

NESY FRAMEWORKS

Group inputs per net to send in batch
for net_name, inputs in to_evaluate:

net = self.networks[str(net_.name) |
if net.det:
tensor name = Term(”nn”, net_name, inputs)

if tensor_name not im self.solver.engine.
tensor_store:
evaluations [net_name |.append(inputs)
else:
if inputs in net.cache:
result [(net_name, inputs)] = net.cache]|
inputs |
del net.cache[inputs|
else:
evaluations [net_name |.append(inputs)
for net in evaluations:
network = self.networks|[str(net)]
out = network ([term2list (x, False) for x in
evaluations [net]])
for i, k in enumerate(evaluations [net]):
if network.det:

tensor_name = Term(”nn”, net, k)
self.solver.engine.tensor_store.store(out|
i], tensor_name)
else:
result [(net, k)] = out[i]

return result

set_engine (self , engine: Engine, xxkwargs):

Initializes the solver of this model with the given
engine and additional arguments.

:param engine: The engine that will be used to ground
queries in this model.

cparam kwargs: Additional arguments passed to the
solver.

creturn :

self .solver = Solver(self, engine, *xkwargs)

register_tensor_predicates (engine)

solve (self , batch: Sequence[Query]|) —> List [Result|:
return self.solver.solve (batch)

ground_dataset (self , dataset: Dataset):

29

SINHA PREMSRI KORDJAMSHIDI

total_time = 0
compile_times = []

ground_times = []

for q in dataset.to_queries():
start = time.time ()
result = self.solver.cache.get(q)
total_time += time.time() — start

if not result.from_cache:
compile_times.append(result.compile_time)
ground_times.append(result.ground_time)

return {
"total_time”: total_time,
?ground_times”: ground_times,
7compile_times”: compile_times,

}

def save_state(self, filename: Union[str, PathLike, IO]
bytes]], complete=False):

Saves the state of this model to a zip file with the
given filename. This only includes the
probabilistic
parameters and all parameters of the neural

networks, but not the model architecture or
neural architectures

:param filename: The filename to save the model to.

:param complete: If true, save mneural networks with
information needed to resume training.

sreturn

check_path (filename)

with ZipFile (filename , "w”) as zipf:
with zipf.open(” parameters”, "w”) as f:

pickle .dump(self.parameters, f)
for n in self.networks:
with zipf.open(n, "w”) as
self .networks|[n].s

)

def load_state(self, filename: Union[str, PathLike, I0]
bytes]]) :

2000

f:
ave (f, complete=complete

Restore the state of this model from the given
filename. This only includes the probabilistic
parameters

30

def

def

def

def

def

NESY FRAMEWORKS

and all parameters of the mneural networks, but mnot
the model architecture or meural architectures

:param filename: The filename to restore the model
from.
sreturn :
with ZipFile (filename) as zipf:
with zipf.open(” parameters”) as f:
self .parameters = pickle.load (f)
for n in self.networks:
with zipf.open(n) as f:
self .networks [n].load (BytesIO(f.read()))

eval(self):

2000

Set the mode of all networks in the model to eval.
self.eval_mode = True
for n in self.networks:

self .networks[n].eval()
self.solver.engine.eval()

train (self):
Set the mode of all networks in the model to train.
creturn
20
self.eval _mode = False
for n in self.networks:
self .networks[n]. train ()
self.solver.engine.train ()

register_foreign (
self , func: Callable, function_name: str, arity_in:

int, arity_out: int

self.solver.engine.register _foreign (func,
function_name, arity_in , arity_out)

__str__(self):
return "\n”.join(str(line) for line in self.program)

get_tensor (self |, term: Term) —> torch.Tensor:

200

31

def

def

def

SINHA PREMSRI KORDJAMSHIDI

:param term: A term of the form tensor(-).

If the tensor is of the form tensor(a(*args)), then it
well look into tensor source a.

:return: Returns the stored tensor identifier by the
term.

200

if len(term.args) > 0 and term.args[0]. functor in self
.tensor_sources:
return self.tensor_sources[term.args[0].functor]|

term.args [0]. args|
return self.solver.get_tensor (term)

store_tensor (self , tensor: torch.Tensor) —> Term:

200

Stores a tensor in the tensor store and returns and
identifier.

:param tensor: The tensor to store.

creturn: The Term that is the identifier by which this
tensor can be uniquely identified in the logic.

return Term(” tensor”, Constant(self.solver.engine.
tensor_store.store (tensor)))

add_tensor_source (
self , name: str, source: Union[ImageDataset, Mapping|
Any, torch.Tensor|]

20

Adds a mamed tensor source to the model.

:param name: The name of the added tensor source.
:param source: The tensor source to add

sreturn :

200

self.tensor_sources [name] = source

get_hyperparameters(self) — dict:

Recursively build a dictionary containing the most
important hyperparameters in the model.

creturn: A dictionary that contains the values of the
most important hyperparameters of the model.

parameters = dict ()

parameters [”solver”] = (

32

def

def

NESY FRAMEWORKS

None if self.solver is None else self.solver.
get_hyperparameters ()
)
parameters ["networks”] = |
self .networks[network].get_hyperparameters () for
network in self.networks
]
parameters [”program”] = self.program.to_prolog ()
return parameters

hyperparameters_to_file (self , filename):

Write the output of the get_hyperparameter () method in
JSON format to a file.

:param filename: The path to write the hyperparameters
to.

creturn :

» 0y

with open(filename, "w”) as f:
f.write(json.dumps(self.get_hyperparameters()))

_extract_parameters (self):

translated = SimpleProgram ()

for n in self.program:

if type(n) is Term:
if (

n.probability is not None
and type(n.probability) is Term
and n.probability.functor = 7t”

i = self. _add_parameter(n.probability.args
[0])

p = n.probability . with_args (Constant (1))
n = n.with_probability (p)

translated .add_statement (n)

elif type(n) is Clause:

if (
n.head.probability is not None
and type(n.head.probability) is Term
and n.head.probability . functor = 7t”

i = self._add_parameter(n.head.probability
.args [0])
p = n.head.probability . with_args (Constant (

i)

33

SINHA PREMSRI KORDJAMSHIDI

head = n.head.with_probability (p)
n = Clause (head, n.body)
translated .add_statement (n)
elif type(n) is Or:
new_list = []
new_group = |[]
for x in n.to_list ():
if
x.probability is not None
and type(x.probability) is Term
and x.probability.functor = ”7t”

i = self._add_parameter(x.probability.
args [0])
new_group .append (1)
p = x.probability.with_args (Constant (i
))
new _list .append(x.with_probability (p))
else:
new _list .append(x)
if len(new_group) > 0:
self.parameter_groups.append(new_group)
n = Or.from_list (new_list)
translated .add_statement (n)
else:
translated .add_statement (n)
self .program = translated

def _add_parameter(self, val: Constant):
i = len(self.parameters)
try:
val = float (val)
except InstantiationError:

val = random ()
self .parameters.append(val)
return i

Listing 4: Example of code for neural model in DeepProbLog for MNIST Sum task.

A.1.3. SCALLOP

Problem Specification. Scallop formulates the problem in terms of relations, values, and
(Horn) rules derived from Datalog. As discussed earlier, the concepts and constraints defined
in this framework are similar to those in DeepProbLog. However, these rules can be directly
embedded into a Scallop program through its API. The process begins by establishing the
concepts digit! and digit2 to represent the digit values of two given images. Constraints

34

NESY FRAMEWORKS

are then defined based on the summation of these two values, which must be equal to the
sum_2 concept, serving as the ground truth for this task. The code in Listing 5 provides a
portion of the implementation for defining these concepts and constraints.

self.scl_ctx.add_relation (' digit-1"'"', int, input_-mapping=list
(range(10)))

self.scl_ctx.add_relation (' " digit_-2"'', int, input_-mapping=list
(range(10)))

self.scl_ctx.add_rule(’ “sum-2(a + b) :— digit-1(a), digit_-2(b)
[

)
self.sum_2 = self.scl_ctx.forward_function(’ “sum_-2'",

output_mapping=[(i,) for i in range(19)])

Listing 5: Code for defining the concept and constraints in Scallop framework for MNIST
sum task

Neural Modeling. Unlike DeepProbLog, the neural modeling is integrated with Scallop’s
relation and rule declaration. The neural modeling remains a standard neural network.
Details of the modeling code can be found in Listing 6.

mnist_img_transform = torchvision.transforms.Compose (|
torchvision . transforms.ToTensor (),
torchvision .transforms.Normalize (

(0.1307,), (0.3081,)
)

D)

class MNISTSum2Dataset (torch. utils.data.Dataset):
def __init__(

self |

root: str,

train: bool = True,

transform: Optional[Callable]| = None,
target_transform: Optional[Callable] = None,
download: bool = False,

Contains a MNIST dataset

self . mnist_dataset = torchvision.datasets.MNIST(
root ,
train=train ,
transform=transform ,
target_transform=target_transform ,
download=download ,

)

self.index_ map = list (range(len(self.mnist_dataset)))

random . shuffle (self.index_map)

35

SINHA PREMSRI KORDJAMSHIDI

def __len__(self):
return int(len(self.mnist_dataset) / 2)

def __getitem__(self, idx):
Get two data points

(a.img, a_digit) = self.mnist_dataset[self.index_map[idx x
2]]

(b.img, b_digit) = self.mnist_dataset|[self.index_ map[idx x
2 + 1]]

Fach data has two images and the GT is the sum of two
digits
return (a_img, b_img, a_digit + b_digit)

@staticmethod

def collate_fn (batch):
a_-imgs = torch.stack ([item [0] for item in batch])
b_imgs = torch.stack ([item[1] for item in batch])

digits = torch.stack ([torch.tensor(item[2]) .long() for
item in batch])
return ((a-imgs, b_imgs), digits)

def mnist_sum_2 loader(data_dir, batch_size_train ,
batch_size_test):

train_loader = torch.utils.data.DataLoader (
MNISTSum2Dataset (
data_dir ,

train=True,
download=True,
transform=mnist_img_transform ,
)
collate_fn=MNISTSum2Dataset. collate_fn |,
batch_size=batch_size_train ,
shuffle=True

)

test_loader = torch.utils.data.DataLoader (
MNISTSum2Dataset (
data_dir ,
train=False ,
download=True,
transform=mnist_img_transform ,

)

36

NESY FRAMEWORKS

collate_fn=MNISTSum2Dataset. collate_fn |,
batch_size=batch_size_test ,
shuffle=True

)

return train_loader , test_loader

class MNISTNet (nn.Module) :
def __init__(self):
super (MNISTNet, self).__init__ ()
self.convl = nn.Conv2d(1, 32, kernel_size=5)
self.conv2 = nn.Conv2d (32, 64, kernel_size=5)
self.fcl = nn.Linear (1024, 1024)
self.fc2 = nn.Linear (1024, 10)

def forward(self, x):

= F.max_pool2d(self.convl(x), 2)
= F.max_pool2d(self.conv2(x), 2)
= x.view(—1, 1024)

= F.relu(self.fcl(x))

= F.dropout(x, p = 0.5,
= self.fc2(x)

return F.softmax(x, dim=1)

training=self.training)

T T B

class MNISTSum2Net (nn.Module) :
def __init__(self, provenance, k):
super (MNISTSum2Net, self). __init__ ()

MNIST Digit Recognition Network
self . mnist_net = MNISTNet ()

Scallop Context

self.scl_ctx = scallopy.ScallopContext (provenance=
provenance , k=k)

self.scl_ctx.add_relation(”digit-1”, int, input_-mapping=
list (range(10)))

self.scl_ctx.add_relation(”digit-2”, int, input_-mapping=
list (range(10)))

self.scl_ctx.add_rule(”sum_-2(a-+-b)-:—-digit_-1(a),-digit-2
(b))

The ‘sum_2° logical reasoning module

37

SINHA PREMSRI KORDJAMSHIDI

self .sum_2 = self.scl_ctx.forward_function (”sum_2”,
output_mapping=|[(i,) for i in range(19)], jit=args.jit ,
dispatch=args. dispatch)

def forward(self, x: Tuple[torch.Tensor, torch.Tensor]):
(a_-imgs, b.imgs) = x

First recognize the two digits
a_distrs = self.mnist_net(a_imgs) # Tensor 64 x 10
b_distrs = self.mnist_net(b_imgs) # Tensor 64 z 10

Then execute the reasoning module; the result is a size

19 tensor
return self.sum 2(digit_l=a_distrs, digit_2=b_distrs) #

Tensor 64 x 19

def bce_loss (output, ground_truth):
(-, dim) = output.shape
gt = torch.stack ([torch.tensor ([1.0 if i = t else 0.0 for i
in range(dim)]) for t in ground_truth])
return F.binary_cross_entropy (output, gt)

def nll_loss (output, ground_truth):
return F.nll_loss (output, ground_truth)

class Trainer ():

def __init__(self, train_loader, test_loader , model_dir,
learning rate , loss, k, provenance):
self . model_dir = model_dir
self .network = MNISTSum2Net(provenance, k)
self.optimizer = optim.Adam(self.network.parameters(), lr=
learning_rate)
self.train_loader = train_loader
self.test_loader = test_loader
self.best_loss = 10000000000
if loss = "nll”:
self.loss = nll_loss
elif loss = 7"bce”:
self.loss = bce_loss
else:

raise Exception (f”Unknown-loss-function- {loss} ")

38

NESY FRAMEWORKS

def train_epoch(self, epoch):
self .network. train ()
iter = tqdm(self.train_loader , total=len(self.train_loader
))
for (data, target) in iter:
self.optimizer.zero_grad ()
output = self.network(data)
loss = self.loss (output, target)
loss . backward ()
self .optimizer.step ()
iter.set_description (f” [Train-Epoch-{epoch}]|-Loss:-{loss
Jtem () .4 £}7)

def test_epoch(self, epoch):
self .network.eval()

num_items = len(self.test_loader.dataset)
test_loss = 0
correct = 0

with torch.no_grad():
iter = tqdm(self.test_loader, total=len(self.test_loader
))
for (data, target) in iter:
output = self.network(data)
test_loss += self.loss (output, target).item()
pred = output.data.max(1l, keepdim=True) [1]
correct += pred.eq(target.data.view_as(pred)).sum()
perc = 100. x correct / num_items
iter.set_description ({7 [Test-Epoch-{epoch}]-Total-loss
:-{test_loss:.4f},-Accuracy:-{correct}/{num_items}-
({perc:.21}%)")
if test_loss < self.best_loss:
self . best_loss = test_loss
torch.save(self.network, os.path.join(model_dir,
sum_2_best.pt”))

9

def train(self, n_epochs):
self.test_epoch(0)
for epoch in range(l, n_epochs + 1):
self.train_epoch (epoch)
self.test_epoch (epoch)

Listing 6: Example of code for neural model in Scallop for MNIST Sum task.

39

	Introduction
	Neurosymbolic Frameworks
	Symbolic Knowledge Representation
	Neural Models Representations
	Model Declaration
	Interplay between Symbolic and Sub-symbolic
	Role of Large Language Models
	Discussion and Future Direction
	Conclusion
	Example Task
	MNIST Sum
	DomiKnowS
	DeepProbLog
	Scallop

