
Proceedings of Machine Learning Research vol 284:1–38, 2025 19th Conference on Neurosymbolic Learning and Reasoning

A Comparative Analysis of NeSy Frameworks and What’s
Next?

Sania Sinha sinhasa3@msu.edu

Tanawan Premsri premsrit@msu.edu

Parisa Kordjamshidi kordjams@msu.edu

Department of Computer Science and Engineering, Michigan State University

Editors: Leilani H. Gilpin, Eleonora Giunchiglia, Pascal Hitzler, and Emile van Krieken

Abstract

Neurosymbolic (NeSy) frameworks combine neural representations and learning with sym-
bolic representations and reasoning. Combining the reasoning capacities, explainability,
and interpretability of symbolic processing with the flexibility and power of neural com-
puting allows us to solve complex problems with more reliability while being data-efficient.
However, this recently growing topic poses a challenge to developers with its learning curve,
lack of user-friendly tools, libraries, and unifying frameworks. In this paper, we character-
ize the technical facets of existing NeSy frameworks, such as the symbolic representation
language, integration with neural models, and the underlying algorithms. A majority of the
NeSy research focuses on algorithms instead of providing generic frameworks for declarative
problem specification to leverage problem solving. To highlight the key aspects of Neu-
rosymbolic modeling, we showcase three generic NeSy frameworks - DeepProbLog, Scallop,
and DomiKnowS. We identify the challenges within each facet that lay the foundation for
identifying the expressivity of each framework in solving a variety of problems. Building
on this foundation, we aim to spark transformative action and encourage the community
to rethink this problem in novel ways.

Keywords: Neurosymbolic, Comparing NeSy frameworks, DomiKnowS, DeepProbLog,
Scallop, Combining learning and reasoning

1. Introduction

Symbolic or good old-fashioned AI focused on creating rule-based reasoning sys-
tems (Hayes-Roth, 1985) exemplified with early works such as the Physical Symbol Sys-
tem (Augusto, 2021; Newell, 1980) and ELIZA (Weizenbaum, 1966). However, drawbacks
such as limited scalability due to the need to explicitly define rules for each task, lack of
robustness in handling messy real-world data, and low computational efficiency led to a
decline in the popularity of this paradigm, shifting the focus toward neural computing and
deep learning. Deep Learning (LeCun et al., 2015; Ahmad et al., 2019) revolutionized
AI as nuanced relationships in data could be learned by backpropagation through multiple
layers of processing and creating abstract representations of data. However, it led to a
loss of explainability (Li et al., 2023a), dependence on large amounts of data, and rising
concerns about its environmental sustainability (Bender et al., 2021). Neurosymbolic
AI (Hitzler and Sarker, 2022; Bhuyan et al., 2024), a combination of symbolic AI and rea-
soning with neural networks, attempts to incorporate the capabilities of both worlds and
create systems that are data and time efficient, generalizable, and explainable. Neurosym-
bolic models have been applied to several real-world applications (Bouneffouf and Aggarwal,

© 2025 S. Sinha, T. Premsri & P. Kordjamshidi.

Sinha Premsri Kordjamshidi

2022) in safety-critical areas (Lu et al., 2024) such as healthcare (Hossain and Chen, 2025)
and autonomous driving (Sun et al., 2021). Several techniques have been proposed for this
integration (Kautz, 2022; Jayasingha et al., 2025), trying to combine pros and mitigate cons
from both symbolic and neural methods. However, due to differences in approach and focus
on specific algorithms rather than generic frameworks, the research becomes less impactful.
Moreover, the few generic frameworks tend to vary in problem formulation, implementa-
tion, algorithms, and flexibility of use. This poses a challenge in being able to compare their
performance uniformly or identify a research direction that improves on previous work. To
alleviate this issue, we provide a comparative study with the following key contributions.

a) Identifying the main components of existing NeSy frameworks. b) Comparison of
frameworks across the identified facets. c) Highlighting the requirements for the next gen-
eration of NeSy frameworks, building upon the drawbacks of the current systems and the
possible interplays between the neural and symbolic components. We plan to expand this
study to cover more frameworks while the three selected ones are used to explain the aspects
of our characterization. These frameworks are demonstrated with an example task detailed
in Appendix A, tying the comparative facets concretely with a technical implementation.1

The MNIST Sum is a modified version of the classic MNIST digit recognition task (Lecun
et al., 1998), where a model is given images of two digits and asked to predict their sum.

NeuroSymbolic AI

Neural

Representation

Data Supervision Formal

Semantics

Types 1-6
Symbolic

Representation

neural learning symbolic reasoning

 Symbolic

Knowledge Source

Interplay

symbolic Neuro symbolic

Symbolic[Neuro]

Neuro: Symbolic → Neuro

Neuro | Symbolic

Neuro_{Symbolic}

Neuro[Symbolic]

Figure 1: An overview of the main components of a neurosymbolic framework.

2. Neurosymbolic Frameworks

A NeSy framework should provide flexibility for modeling both neural and symbolic compo-
nents and their interplay in a unified declarative framework, going beyond specific underly-
ing algorithms and techniques. On the symbolic side, a generic framework should support
a symbolic representation language that can be seamlessly connected to neural components
and covers different symbolic reasoning mechanisms. On the neural side, we need to have the
flexibility of connecting to various architectures including various loss functions, sources of
supervision, and training paradigms. More importantly, a NeSy framework should provide
a modeling language for specification and seamless integration of the two components in
building pipelines or arbitrary composition of models. Such a NeSy framework will should

1. https://github.com/Sanya1001/nesy-examples

2

https://github.com/Sanya1001/nesy-examples

NeSy Frameworks

neuro-symbolic training and inference beyond specific integration algorithms. We distin-
guish between NeSy techniques and NeSy frameworks. Some techniques offer task-specific
solutions (Lample and Charton, 2020; Burattini et al., 2002) such as: AlphaGo. (Silver
et al., 2016) is a reinforcement learning solution to Go, using Monte Carlo Tree Search
as a symbolic component inside a neural network. NS-CL. (Mao et al., 2019) (Neuro-
Symbolic Concept Learner) integrates neural perception with symbolic reasoning to learn
visual concepts and compositional language grounding for VQA tasks. Other techniques
propose a specific algorithm (Badreddine et al., 2022; Cohen et al., 2017; Smolensky et al.,
2016; Lima et al., 2005; Sathasivam, 2011; Serafini and d’Avila Garcez, 2016; Lamb et al.,
2021) such as Inference Masked Loss (Guo et al., 2020), Semantic Loss (Xu et al., 2018),
Primal-Dual (Nandwani et al., 2019), etc., later discussed in Section 6. NeSy techniques
often lack the generality of frameworks, which are designed as broader tools intended for
practical use and extensibility with new integration algorithms.

In this work, we focus on a selection of generic NeSy frameworks. The following are
examples of research efforts that advance the development of such general-purpose frame-
works: DeepProbLog. (Manhaeve et al., 2018, 2021) is a probabilistic logic programming
language, incorporating neural predicates in logic programming with an underlying differ-
entiable translation of logical reasoning. The probabilistic logic programming component is
built on top of ProbLog (De Raedt et al., 2007). DomiKnowS. (Rajaby Faghihi et al., 2021;
Faghihi et al., 2023, 2024) is a declarative learning-based programming framework (Kord-
jamshidi et al., 2019) that integrates symbolic domain knowledge into deep learning. It
is a Python framework, facilitating the incorporation of logical constraints that represent
domain knowledge with neural learning in PyTorch. Scallop. (Huang et al., 2021; Li et al.,
2023b, 2024) is a framework that includes flexible symbolic representation based on rela-
tional data modeling, using a declarative logic programming built on top of Datalog (Abite-
boul et al., 1995) with a framework for automatic differentiable reasoning. LEFT. (Hsu
et al., 2023) is a less generic framework designed for grounding language in visual modality
and compositional reasoning over concepts. The framework consists of an LLM interpreter
that converts natural language to logical programs. The generated programs are directed
to a differentiable, domain-independent, and soft first-order logic-based executor. LEFT
is limited to tasks requiring grounding language in vision such as visual question answer-
ing (Johnson et al., 2017; Yi et al., 2018; Liu et al., 2019). PyReason. (Aditya et al., 2023)
is a software built to support reasoning on top of outputs from neural networks. The neural
component produces outputs such as labels or concept scores. While the symbolic compo-
nent does reasoning using those values using logic rules declared over a graph structure. It
can produce an explanation trace for inference and has a memory-efficient implementation.
PLoT. (Wong et al., 2023) (Probabilistic Language of Thought) is a proposed framework
leveraging neural and probabilistic modeling for generative world modeling. It models think-
ing with probabilistic programs and meaning construction with neural programs. The goal
is to provide a language-driven unified thinking interface. CCN+. (Giunchiglia et al., 2024)
is a framework that modifies the output layer of a neural network to make results compliant
with requirements that can be expressed in propositional logic. A requirement layer, ReqL,
is built on top of the neural network. The standard cross-entropy loss is adapted into a
ReqLoss to learn from the constraints in the ReqL layer.

3

Sinha Premsri Kordjamshidi

Framework
Symbolic

Neu
Model
Dec

Interplay
LLM

Lang Knowledge Rep Algorithm Eff
CCN+ None Propositional

Logic Clauses
✓ ✗ ReqL &

ReqLoss
✗ ✗

DomiKnowS None Concepts,
Constraints

✓ ✓ Primal-Dual,
Sampling Loss

✗ Faghihi
et al. (2024)

DeepProbLog ProbLog Facts, Rules,
Predicates

✗ ✗ Entailment ✗ ✗

LEFT None First Order Logic ✗ ✗ Differentiable
Reasoning

✗ Hsu et al.
(2023)

PyReason None Constants,
Relations, Facts,
Rules

✓ ✗ Reasoning
over graph

✓ ✗

Scallop DataLog Rules, Relations ✓ ✗ Differentiable
Reasoning

✓ Li et al.
(2024)

Table 1: Frameworks with their comparative factors. Lang: External language required,
Knowledge Rep: Knowledge Representation, Neu: Neural Modeling flexibility such
as custom loss for each neural component, Model Dec: Model Declaration flexibil-
ity, Algorithm: Supported algorithm(s) for learning and inference, Eff: Computa-
tional efficiency considerations, LLM: Use of Large Language Models.

We characterize frameworks based on: a) Symbolic knowledge representation language,
b) Representation and flexibility of Neural Modeling, c) Model Composition, d) Interplay
between symbolic and sub-symbolic systems, and e) The usage of LLMs. Figure 1 shows the
relationship between these different aspects. The neural representations and the symbolic
representations are the two main components of a neurosymbolic framework. The neural
representation guides learning and obtaining supervision from the data, while the symbolic
representations leverage symbolic reasoning, where the symbolic knowledge can be exploited
during training or inference. Table 1 shows an overview of the frameworks across chosen
features. For future sections, we focus on DomiKnowS, DeepProbLog, and Scallop to
provide a deeper investigation of the challenges in each component. Due to differences in
implementation, each framework allows for easy implementation of different types of tasks.
The chosen frameworks enable us to solve the same task in multiple frameworks.

3. Symbolic Knowledge Representation

Generic Neuro-Symbolic (NeSy) systems and frameworks use symbolic knowledge represen-
tation languages to encode constraints, facts, probabilities, and rules. Frameworks vary
in how they represent and integrate this symbolic knowledge. Many begin with classical
formal logic-grounded in well-defined syntax and semantics—and adapt these representa-
tions and reasoning mechanisms within a unified integration framework. Some frameworks
build on established formalisms such as first-order logic or constraint satisfaction. In con-
trast, others take an entirely new hybrid semantics, while preserving conventional symbolic
syntax. Figure 2 compares the implementation of symbolic knowledge (concepts or facts)
for the MNIST Sum task. In general, the domain knowledge consists of the digits and

4

NeSy Frameworks

the sum. As can be seen, Domiknows represents a part of symbolic domain knowledge
as a graph G(V,E), where the nodes are the concepts in the domain and the edges are
the relationships between them. Each node can have properties. More complex knowl-
edge beyond entities and relations is expressed with a pseudo first-order logical language
with quantifiers designed in Python. DomiKnowS mostly interprets the symbolic knowl-
edge as logical constraints, such as the implementation of sum combinations in the given
example. Unlike the other frameworks, DomiKnowS does not build on predefined formal
semantics. It follows a FOL-like syntax for symbolic logical representations, making it
independent of the formal semantics of an underlying formal language and allows more
flexibility of representations and adaptation to underlying algorithms in the framework.

....

....

DomiKnowS DeepProbLog

Scallop

Figure 2: Comparison of Symbolic Represen-
tation across frameworks.

DeepProbLog, on the other hand, uti-
lizes logical predicates that are originally
a part of the probabilistic logic pro-
grams (Ng and Subrahmanian, 1992) of
ProbLog (De Raedt et al., 2007), for its
symbolic representation. These neural
predicates obtain their probability distribu-
tions from the underlying neural models.
Probabilistic facts, neural facts, and neural
annotated disjunctions (nAD) whose prob-
abilities are supplied by the neural compo-
nent of the program can be added. Here,
digit is a neural predicate as indicated by
the use of nn(...). DeepProbLog follows
the formal semantics of Prolog (Clocksin
and Mellish, 2003), followed by ProbLog,
its probabilistic extension. Finally, Scallop
adopts a relational data model for symbolic
knowledge representation, where the sym-
bols are represented as relations. It allows for the expression of common reasoning, such as
aggregation, negation, and recursion. The logical predicates of the relational model are part
of DataLog (Kolaitis and Vardi, 1990). Similar to DeepProbLog, some of these predicates in
the symbolic part obtain their probability distribution from neural models, such as digit 1

and digit 2. Scallop is built on top of the syntax and formal semantics of Datalog and
its probabilistic extensions, relaxing the exact semantics of ProbLog. Additionally, while
ProbLog requires exhaustive search for computations, DataLog can use top-k results and
exploit database optimizations, making Scallop more time-efficient than DeepProbLog.

4. Neural Models Representations

The other core component of a NeSy system is the neural modeling that is integrated with
the symbolic knowledge discussed above. The neural models are mostly wrapped up under
the logical predicate names in most of the frameworks that have an explicit logical knowledge
representation language. To best leverage the reasoning capabilities of the symbolic system
available and the ability of neural models to learn abstract representations from data, the
neural models are used as abstract concept learners for the concepts defined as logical

5

Sinha Premsri Kordjamshidi

predicates in the symbolic representation. The neural model representation is often used
to predict probability distributions for the symbolic concepts based on raw sensory inputs.

... ...

...

...

DomiKnowS DeepProbLog

Scallop

Figure 3: All frameworks have a standard
neural network. DomiKnowS uti-
lizes sensors and readers for read-
ing in data, while a learner con-
nects to the network. DeepProbLog
connects the neural network to the
ProbLog file, requiring data han-
dling to construct the terms and
queries from the raw data. Scal-
lop has an additional layer on top
of the standard network that adds
the symbolic context, utilizing se-
lected provenance method.

The neural modeling is often written using
standard deep learning libraries, such as Py-
Torch (Paszke et al., 2019). Figure 3 shows
snippets of neural modeling across frame-
works, highlighting differences in implemen-
tation. Scallop utilizes relatively standard
neural modeling using PyTorch, while need-
ing an added context of symbolic rules. Al-
though integrated into Python, the context
relation and rule setup is verbatim from
DataLog and only passed as a parameter to
a function, which requires familiarity with
DataLog and its semantics. DeepProbLog,
on the other hand, needs manual configu-
ration of the raw data and processing into
queries built for ProbLog, on top of other
standard neural components. This pro-
cessed data is passed into the neural net-
work which is then connected to a ProbLog
program, such as addition.pl in the fig-
ure. DomiKnowS’s neural modeling com-
ponent is built in PyTorch. Unlike other
frameworks, DomiKnowS has built-in com-
ponents called Readers, Sensors and Mod-
ule learners that make the connection to
neural components explicit in the program.
This provides more flexibility in connect-
ing the concepts to deterministic or prob-
abilistic functions that can interact with
other symbolic concepts in the graph. The
module learner can also use custom models.
This makes the interaction with raw data
structured, transparent, and controllable.

5. Model Composition

Most frameworks utilize neural components as abstract concept learners and use a symbolic
component to reason over the learned concepts. Each learner is a model and model composi-
tion refers to the flexibility of modularizing and connecting different learners. Each learner
can receive supervision independently. In most neurosymbolic frameworks, the supervision
from data is usually provided based on the final output of the end-to-end model. For ex-
ample, in an MNIST Sum task used throughout and detailed in Appendix A, the neural
and symbolic components are trained based on the final output of the sum, without access

6

NeSy Frameworks

to individual digit labels in a semi-supervised setting. The task loss, e.g., a Cross-Entropy
Loss, is computed, and errors are backpropagated through the differentiable operations that
led to the output generation. For example, in DeepProbLog, we can declare a single loss
function associated with the entire neural component. Gradient computations differ across
frameworks depending on whether losses are defined individually for each neural output or
specified as a single global loss function. However, there remains a need for models capable
of incorporating supervision at multiple levels of their symbolic representations. In Domi-
KnowS, loss computation can be defined for each individual symbol. Since each concept
is linked to both learning modules and ground-truth labels, their losses can be integrated
seamlessly. This enables joint training of all concepts alongside the target task, allowing
each concept to be optimized more effectively—leveraging available data without relying
solely on the target task’s output.

6. Interplay between Symbolic and Sub-symbolic

Kautz (2022) provides a characterization of the possible interplays between symbolic and
sub-symbolic that helps categorize neurosymbolic frameworks and systems. This interplay
of neurosymbolic is supported by the concept of System 1 and System 2 thinking described
in Kahneman (2011). Research in this field aims to create an ideal integration that seam-
lessly supports ”thinking fast and slow” (Booch et al., 2021; Fabiano et al., 2023). Here,
System 1 refers to the fast neural processing while System 2 corresponds to the slower,
more deliberate symbolic reasoning. Different methods for the integration of sym-
bolic reasoning and neural programming have been explored such as employing
logical constraint satisfaction, integer linear programming, differentiable reason-
ing, probabilistic logic programming. In this section, we will discuss a system-level
algorithmic comparison of the different frameworks.

DomiKnowS models the inference as an integer linear programming problem to enforce
the model to follow constraints expressed in first order logical form (Van Hentenryck et al.,
1992). The objective of the program is guided by the neural components. The framework
support multiple training algorithms for learning from constraints. Primal-Dual formula-
tion (Nandwani et al., 2019) converts the constrained optimization problem into a min-max
optimization with Lagrangian multipliers for each constraint and augments the original loss
of the neural side with a soft logic surrogate based on the constraint violation. Sampling-
Loss (Ahmed et al., 2022) is inspired by semantic loss (Xu et al., 2018) and samples a set
of assignments for each variable based on the probability distribution of the neural side’s
output. The training goal is to adjust the neural models accordingly to provide legitimate
outputs. For prediction, Integer Linear Programming (Cropper and Dumančić, 2022) is used
to incorporate the constraints and formulate an optimization objective based on Inference-
Masked Loss (Guo et al., 2020), utilizing ILP (Roth and Yih, 2005) solvers during prediction
time. DomiKnowS relies on off-the-shelf optimization solver, Gurobi (Gurobi Optimization,
LLC, 2024). Additionally, beam search and dynamic programming can also be used at in-
ference time on top of the probability distribution of the trained network to choose the best
possible output. DeepProbLog models each problem as a program that consists of neural
facts, probabilistic facts, neural annotated disjunctions, and a set of logical rules. A joint
optimization of the parameters of the logic program is done alongside the parameters of the
neural component. Neural network training is done using learning from entailment (Frazier

7

Sinha Premsri Kordjamshidi

and Pitt, 1993) while in ProbLog, gradient-based optimization is performed on the gen-
erated Arithmetic Circuits (Shpilka et al., 2010), which is a differentiable structure. The
Arithmetic Circuits are transformed from a Sentential Decision Diagram (Darwiche, 2011)
generated by ProbLog. Algebraic ProbLog (Kimmig et al., 2011) is used to compute the
gradient alongside probabilities using semirings (Eisner, 2002). Scallop is similar in its
setup to DeepProbLog where it creates an end-to-end differentiable framework combining
a symbolic reasoning component with a neural modeling component. They aim to relax
the formal semantics required by the use of ProbLog in DeepProbLog and instead rely
on a symbolic reasoning language extending DataLog, built into their framework. They
have a customizable provenance semiring framework (Green et al., 2007), where different
provenance semirings, such as extended max-min semiring and top-k proofs semiring, allow
learning using different types of heuristics for gradient calculations. Table 2 compares the
computational efficiency of these models at training and inference time on a single train-
ing/testing example. As theoretically suggested, Scallop is expected to outperform other
frameworks in inference and training speed, owing to its memory and time-efficient imple-
mentation in Rust. The results in Table 2 support this expectation, with Scallop achieving
the fastest inference time, on par with DomiKnowS. In practice, DeepProbLog achieves
slightly faster training performance than Scallop. This discrepancy may be due to addi-
tional overhead, unrelated to the core framework. DomiKnowS exhibits slower training,
likely due to the overhead of uploading the entire graph of training data into memory.

7. Role of Large Language Models

Framework Training
Time(ms)

Inference
Time(ms)

DomiKnowS 37.72 2.34
DeepProbLog 5.84 3.24
Scallop 6.50 2.35

Table 2: Comparison of computation effi-
ciency in milliseconds (ms) dur-
ing training and inference across
frameworks based on a single train-
ing/testing example.

Large foundation models hold significant
promise for overcoming the bottleneck of
acquiring symbolic representations, which
are essential for symbolic reasoning and
consequently in neurosymbolic frameworks.
Source of Symbolic Knowledge: The
symbolic knowledge in neuro-symbolic sys-
tems, which is integrated with the neu-
ral component, can originate from several
distinct sources. While some systems re-
quire explicit, hand-crafted symbolic knowl-
edge, others rely on automatically learning
rules or facts from data by using inductive
logic programming (Nienhuys-Cheng and
de Wolf, 1997; Bratko and Muggleton, 1995) for rule mining/constraint mining, or even
utilize LLMs to generate symbolic knowledge. Several neurosymbolic frameworks and sys-
tems have tried utilizing large foundation models to generate the symbolic knowledge, based
on the task or query, to overcome the labor-intensive nature of hand-crafting rules for every
single task and the time required in the automatic learning of symbolic knowledge from
data. Extraction of symbolic representations from Foundation Models has become possible
given the vast implicit knowledge stored within these models, such as LLMs and multimodal
models, which are trained on massive and diverse corpora (Li et al., 2024; Petroni et al.,
2019). These models can generate symbolic content (e.g., candidate rules, knowledge graph

8

NeSy Frameworks

triples, or logic statements), perform reasoning that mimics symbolic inference, or act as
components alongside symbolic modules (Fang and Yu, 2024). For example, LLMs can be
prompted to extract facts from unstructured text, effectively populating a symbolic knowl-
edge graph (Yao et al., 2025). Techniques like Symbolic Chain-of-Thought inject formal
logic into the LLM’s reasoning process, improving accuracy and explainability on logical
reasoning tasks (Xu et al., 2024). However, foundation models are prone to hallucinations
and lack the strict logical guarantees of traditional symbolic systems (Zheng et al., 2024).
Therefore, integrating foundation models often requires careful prompting, verification steps
to ensure reliability (Xu et al., 2024). Generation of inputs to symbolic engines: LLMs
have also been used to generate translations to symbolic language in systems requiring a
conversion to programs in a symbolic language to be fed into a symbolic reasoner. In
examples such as Logic-LM (Pan et al., 2023), LLMs are leveraged to convert a natural
language query into symbolic language that is then solved by a symbolic reasoner. This
method improves the performance of unfinetuned LLMs on logical reasoning-based tasks.
DomiKnowS (Faghihi et al., 2024) takes this a step further by enabling users to describe
problems in natural language, which LLMs then use to generate relevant concepts and rela-
tionships. Through a user-interactive process, these concepts and relationships are refined
iteratively. Finally, the LLM translates the user-defined constraints from natural language
into first-order logic representations before converting them into DomiKnowS syntax.

Some systems use LLMs in multiple capacitites. In VIERA (Li et al., 2024), which is
built on top of Scallop, 12 foundation models can be used as plugins. These models are
treated as stateless functions with relational inputs and outputs. These foundation models
can be either language models like GPT (OpenAI et al., 2024) and LLaMA (Touvron et al.,
2023), vision models such as OWL-ViT (Minderer et al., 2022) and SAM (Kirillov et al.,
2023), or multimodal models such as CLIP (Radford et al., 2021). These models can be
used to extract facts, assign probabilities, or for classification, and are treated as ”foreign
predicates” in their interface. An older version, DSR-LM (Zhang et al., 2023) of this
utilized BERT-based language models for perception and relation extraction, combined
with a symbolic reasoner for question answering. LEFT, on the other hand, uses LLMs
both for the generation of the concepts that are used for grounding and as an interpreter
to generate the first-order logic program corresponding to a natural language query, that is
solved by the symbolic executor.

8. Discussion and Future Direction

Table 1 summarizes the comparative aspects of existing frameworks and outlines future
directions for optimizing these dimensions. As indicated by the columns marked with ’✗’,
most frameworks present challenges that hinder ease of learning and usability for devel-
opers. While current frameworks are functional, future developments should take a more
holistic approach that considers all aspects from an end-user perspective, aiming to improve
usability as general-purpose libraries and foster wider adoption of neurosymbolic methods.

Symbolic Representation. The generic neurosymbolic frameworks provide a formal
knowledge representation language of their choice. The selected languages often are based on
pure logical formalisms with established formal semantics, for example, Datalog or Prolog.
However, we argue that knowledge representation for neurosymbolic frameworks needs to be
an innovative language designed for this integration purpose with adaptable semantics with

9

Sinha Premsri Kordjamshidi

learning as the pivotal concept Kordjamshidi et al. (2019). Restricting these frameworks to
classical AI formalisms and formal semantics limits the level of extension that can be made
and restricts the support of various algorithms and types of integration.

Neural Modeling. Most of the examined frameworks leave the neural modeling and
the task of connecting between the symbolic and sub-symbolic components, up to the user.
This connection usually requires low-level data preprocessing, which is time consuming
time to implement. A lack of user-friendly libraries discourages developers from using
neurosymbolic methods to solve downstream tasks. As such, there is a need for abstractions
in these frameworks that improve user experience and remove the need for the user to
implement such data processing from scratch.

Model Composition. There is a need to be explicit about the low-level components
of the neural architecture, enabling us to design interactions between neural and symbolic
components and connect them as intended. The goal is to provide flexibility in designing
arbitrary loss functions and connecting them to data for supervising concepts at various
neural layers, which will allow any symbol to be learnable.

Types of Interplay. Considering Kautz (2022)’s classification, current frameworks are
limited in supporting one or two ways of interactions. The ”Algo” column in Table 1 shows
that DeepProbLog and Scallop utilize one form of implementation, while DomiKnowS has
two settings. One of the key challengesis determining the appropriate level of abstraction
in a neural model after which reasoning should occur. The classification types demon-
strate how a neural model can identify the relevant symbolic representations and suggest
that neurosymbolic frameworks could leverage these models to learn and route inputs to
the corresponding symbolic reasoning system. However, it remains unclear what level of
abstraction is most effective for solving the end task in practice.

LLM. Drawbacks often associated with incorporating symbolic AI into neural comput-
ing, such as creation of the required symbolic knowledge or programs for integration, can
be mediated with the use of LLMs and foundation models. LLMs have the potential to al-
leviate the classical issues in symbolic processing. Their vast knowledge can also be utilized
to reduce the need to rebuild several neural components, allowing flexible connections with
different symbolic components.

9. Conclusion

Neurosymbolic AI presents a promising path forward in addressing the limitations of purely
symbolic or neural approaches to AI. By integrating symbolic reasoning with neural learn-
ing, NeSy frameworks offer a balance between interpretability, data and time efficiency, and
generalization. In this paper, we identify core components of NeSy frameworks and provide
an in-depth analysis of some existing ones- DeepProbLog, Scallop, and DomiKnowS, illus-
trating the comparative facets. We identified some facets as symbolic knowledge and data
representation, neural modeling, model composition, method of integrating the symbolic
and sub-symbolic systems, and role of LLMs. We identify key challenges in each facet that
can guide us toward building the next generation of neurosymbolic frameworks. Unifying
ideas in the field and building flexible frameworks by incorporating strengths in every facet
will ease the learning curve associated with NeSy systems and improve standardization.
Future NeSy frameworks should aim to provide flexible implementation, a user-friendly
interface, improve scalability, and develop seamless integrations with foundation models.

10

NeSy Frameworks

Acknowledgments

This project is partially supported by the Office of Naval Research (ONR) grant N00014-23-
1-2417. Any opinions, findings, conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the Office of Naval
Research. We thank Danial Kamali for his help in early stages of drafting and Uzair
Mohammad for his editing and suggestions for Figure 1.

References

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical
Level. Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1995. ISBN
0201537710.

Dyuman Aditya, Kaustuv Mukherji, Srikar Balasubramanian, Abhiraj Chaudhary, and
Paulo Shakarian. Pyreason: Software for open world temporal logic, 2023. URL https:

//arxiv.org/abs/2302.13482.

Jamil Ahmad, Haleem Farman, and Zahoor Jan. Deep Learning Methods and Applications,
pages 31–42. Springer Singapore, Singapore, 2019. ISBN 978-981-13-3459-7. doi: 10.
1007/978-981-13-3459-7 3. URL https://doi.org/10.1007/978-981-13-3459-7_3.

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek
Srikumar, Guy Van den Broeck, and Sameer Singh. Pylon: A pytorch framework for
learning with constraints. In Douwe Kiela, Marco Ciccone, and Barbara Caputo, editors,
Proceedings of the NeurIPS 2021 Competitions and Demonstrations Track, volume 176
of Proceedings of Machine Learning Research, pages 319–324. PMLR, 06–14 Dec 2022.
URL https://proceedings.mlr.press/v176/ahmed22a.html.

Luis M. Augusto. From symbols to knowledge systems: A. newell and h. a. Simon’s con-
tribution to symbolic AI. Journal of Knowledge Structures and Systems, 2(1):29–62,
2021.

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic
tensor networks. Artificial Intelligence, 303:103649, 2022. ISSN 0004-3702. doi:
https://doi.org/10.1016/j.artint.2021.103649. URL https://www.sciencedirect.com/

science/article/pii/S0004370221002009.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell.
On the dangers of stochastic parrots: Can language models be too big? In Proceed-
ings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT
’21, page 610–623, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383097. doi: 10.1145/3442188.3445922. URL https://doi.org/10.1145/

3442188.3445922.

Bikram Pratim Bhuyan, Amar Ramdane-Cherif, Ravi Tomar, and T. P. Singh. Neuro-
symbolic artificial intelligence: a survey. Neural Computing and Applications, 36(21):
12809–12844, July 2024. ISSN 1433-3058. doi: 10.1007/s00521-024-09960-z. URL https:

//doi.org/10.1007/s00521-024-09960-z.

11

https://arxiv.org/abs/2302.13482
https://arxiv.org/abs/2302.13482
https://doi.org/10.1007/978-981-13-3459-7_3
https://proceedings.mlr.press/v176/ahmed22a.html
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1007/s00521-024-09960-z
https://doi.org/10.1007/s00521-024-09960-z

Sinha Premsri Kordjamshidi

Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jonathan Lenchner, Nick Linck,
Andreas Loreggia, Keerthiram Murgesan, Nicholas Mattei, Francesca Rossi, and Biplav
Srivastava. Thinking fast and slow in ai. Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 35(17):15042–15046, May 2021. doi: 10.1609/aaai.v35i17.17765. URL
https://ojs.aaai.org/index.php/AAAI/article/view/17765.

Djallel Bouneffouf and Charu C. Aggarwal. Survey on applications of neurosymbolic arti-
ficial intelligence, 2022. URL https://arxiv.org/abs/2209.12618.

Ivan Bratko and Stephen Muggleton. Applications of inductive logic programming. Com-
mun. ACM, 38(11):65–70, November 1995. ISSN 0001-0782. doi: 10.1145/219717.219771.
URL https://doi.org/10.1145/219717.219771.

E. Burattini, A. de Francesco, and M. De Gregorio. Nsl: a neuro-symbolic language for
monotonic and non-monotonic logical inferences. In VII Brazilian Symposium on Neural
Networks, 2002. SBRN 2002. Proceedings., pages 256–261, 2002. doi: 10.1109/SBRN.
2002.1181487.

William F Clocksin and Christopher S Mellish. Programming in PROLOG. Springer Science
& Business Media, 2003.

William W Cohen, Fan Yang, and Kathryn Rivard Mazaitis. Tensorlog: Deep learning
meets probabilistic dbs. arXiv preprint arXiv:1707.05390, 2017.

Andrew Cropper and Sebastijan Dumančić. Inductive logic programming at 30: A new
introduction. J. Artif. Int. Res., 74, September 2022. ISSN 1076-9757. doi: 10.1613/jair.
1.13507. URL https://doi.org/10.1613/jair.1.13507.

Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge bases. In
IJCAI Proceedings-International Joint Conference on Artificial Intelligence, volume 22,
page 819, 2011.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: a probabilistic prolog and
its application in link discovery. In Proceedings of the 20th International Joint Confer-
ence on Artifical Intelligence, IJCAI’07, page 2468–2473, San Francisco, CA, USA, 2007.
Morgan Kaufmann Publishers Inc.

Jason Eisner. Parameter estimation for probabilistic finite-state transducers. In Proceedings
of the 40th Annual Meeting of the Association for Computational Linguistics, pages 1–8,
2002.

Francesco Fabiano, Vishal Pallagani, Marianna Bergamaschi Ganapini, Lior Horesh, Andrea
Loreggia, Keerthiram Murugesan, Francesca Rossi, and Biplav Srivastava. Plan-SOFAI:
A neuro-symbolic planning architecture. In Neuro-Symbolic Learning and Reasoning in
the era of Large Language Models, 2023. URL https://openreview.net/forum?id=

ORAhay0H4x.

Hossein Rajaby Faghihi, Aliakbar Nafar, Chen Zheng, Roshanak Mirzaee, Yue Zhang, An-
drzej Uszok, Alexander Wan, Tanawan Premsri, Dan Roth, and Parisa Kordjamshidi.

12

https://ojs.aaai.org/index.php/AAAI/article/view/17765
https://arxiv.org/abs/2209.12618
https://doi.org/10.1145/219717.219771
https://doi.org/10.1613/jair.1.13507
https://openreview.net/forum?id=ORAhay0H4x
https://openreview.net/forum?id=ORAhay0H4x

NeSy Frameworks

Gluecons: A generic benchmark for learning under constraints, 2023. URL https:

//arxiv.org/abs/2302.10914.

Hossein Rajaby Faghihi, Aliakbar Nafar, Andrzej Uszok, Hamid Karimian, and Parisa Kord-
jamshidi. Prompt2demodel: Declarative neuro-symbolic modeling with natural language,
2024. URL https://arxiv.org/abs/2407.20513.

Chuyu Fang and Song-Chun Yu. Large language models are neurosymbolic reasoners. arXiv
preprint arXiv:2401.09334, 2024. URL https://arxiv.org/html/2401.09334v1.

Michael Frazier and Leonard Pitt. Learning from entailment: An application to proposi-
tional horn sentences. In Proceedings of the Tenth International Conference on Interna-
tional Conference on Machine Learning, pages 120–127, 1993.

Eleonora Giunchiglia, Alex Tatomir, Mihaela Cătălina Stoian, and Thomas Lukasiewicz.
Ccn+: A neuro-symbolic framework for deep learning with requirements. International
Journal of Approximate Reasoning, 171:109124, 2024. ISSN 0888-613X. doi: https://
doi.org/10.1016/j.ijar.2024.109124. URL https://www.sciencedirect.com/science/

article/pii/S0888613X24000112. Synergies between Machine Learning and Reasoning.

Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In Pro-
ceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, PODS ’07, page 31–40, New York, NY, USA, 2007. Association
for Computing Machinery. ISBN 9781595936851. doi: 10.1145/1265530.1265535. URL
https://doi.org/10.1145/1265530.1265535.

Quan Guo, Hossein Rajaby Faghihi, Yue Zhang, Andrzej Uszok, and Parisa Kordjamshidi.
Inference-masked loss for deep structured output learning. In Christian Bessiere, editor,
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20, pages 2754–2761. International Joint Conferences on Artificial Intelligence Or-
ganization, 7 2020. doi: 10.24963/ijcai.2020/382. URL https://doi.org/10.24963/

ijcai.2020/382. Main track.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https:

//www.gurobi.com.

Frederick Hayes-Roth. Rule-based systems. Communications of the ACM, 28(9):921–932,
1985.

Pascal Hitzler and Md Kamruzzaman Sarker. Neuro-symbolic artificial intelligence: The
state of the art. 2022.

Delower Hossain and Jake Y Chen. A study on neuro-symbolic artificial intelligence: Health-
care perspectives, 2025. URL https://arxiv.org/abs/2503.18213.

Joy Hsu, Jiayuan Mao, Joshua B. Tenenbaum, and Jiajun Wu. What’s left? concept
grounding with logic-enhanced foundation models, 2023. URL https://arxiv.org/abs/

2310.16035.

13

https://arxiv.org/abs/2302.10914
https://arxiv.org/abs/2302.10914
https://arxiv.org/abs/2407.20513
https://arxiv.org/html/2401.09334v1
https://www.sciencedirect.com/science/article/pii/S0888613X24000112
https://www.sciencedirect.com/science/article/pii/S0888613X24000112
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.24963/ijcai.2020/382
https://doi.org/10.24963/ijcai.2020/382
https://www.gurobi.com
https://www.gurobi.com
https://arxiv.org/abs/2503.18213
https://arxiv.org/abs/2310.16035
https://arxiv.org/abs/2310.16035

Sinha Premsri Kordjamshidi

Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie
Si. Scallop: From probabilistic deductive databases to scalable differentiable reasoning.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 25134–
25145. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_

files/paper/2021/file/d367eef13f90793bd8121e2f675f0dc2-Paper.pdf.

Prashani Jayasingha, Bogdan Iancu, and Johan Lilius. Neurosymbolic approaches in ai
design – an overview. In 2025 IEEE Symposium on Trustworthy, Explainable and
Responsible Computational Intelligence (CITREx Companion), pages 1–5, 2025. doi:
10.1109/CITRExCompanion65208.2025.10981497.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zit-
nick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language and
elementary visual reasoning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Henry Kautz. The third ai summer: Aaai robert s. engelmore memorial lecture. AI Maga-
zine, 43(1):105–125, Mar. 2022. doi: 10.1002/aaai.12036. URL https://ojs.aaai.org/

aimagazine/index.php/aimagazine/article/view/19122.

Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. An algebraic prolog for
reasoning about possible worlds. Proceedings of the AAAI Conference on Artificial
Intelligence, 25(1):209–214, Aug. 2011. doi: 10.1609/aaai.v25i1.7852. URL https:

//ojs.aaai.org/index.php/AAAI/article/view/7852.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross
Girshick. Segment anything, 2023. URL https://arxiv.org/abs/2304.02643.

Phokion G. Kolaitis and Moshe Y. Vardi. On the expressive power of datalog: tools and
a case study. In Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, PODS ’90, page 61–71, New York, NY, USA, 1990.
Association for Computing Machinery. ISBN 0897913523. doi: 10.1145/298514.298542.
URL https://doi.org/10.1145/298514.298542.

Parisa Kordjamshidi, Dan Roth, and Kristian Kersting. Declarative learning-based pro-
gramming as an interface to ai systems. Frontiers in Artificial Intelligence, 5, 2019. URL
https://api.semanticscholar.org/CorpusID:195069123.

Luis C. Lamb, Artur Garcez, Marco Gori, Marcelo Prates, Pedro Avelar, and Moshe Vardi.
Graph neural networks meet neural-symbolic computing: A survey and perspective, 2021.
URL https://arxiv.org/abs/2003.00330.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In In-
ternational Conference on Learning Representations, 2020. URL https://openreview.

net/forum?id=S1eZYeHFDS.

14

https://proceedings.neurips.cc/paper_files/paper/2021/file/d367eef13f90793bd8121e2f675f0dc2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d367eef13f90793bd8121e2f675f0dc2-Paper.pdf
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/19122
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/19122
https://ojs.aaai.org/index.php/AAAI/article/view/7852
https://ojs.aaai.org/index.php/AAAI/article/view/7852
https://arxiv.org/abs/2304.02643
https://doi.org/10.1145/298514.298542
https://api.semanticscholar.org/CorpusID:195069123
https://arxiv.org/abs/2003.00330
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS

NeSy Frameworks

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.
726791.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–
444, 2015. doi: 10.1038/nature14539. URL https://doi.org/10.1038/nature14539.

Bo Li, Peng Qi, Bo Liu, Shuai Di, Jingen Liu, Jiquan Pei, Jinfeng Yi, and Bowen Zhou.
Trustworthy ai: From principles to practices. ACM Comput. Surv., 55(9), January 2023a.
ISSN 0360-0300. doi: 10.1145/3555803. URL https://doi.org/10.1145/3555803.

Ziyang Li, Jiani Huang, and Mayur Naik. Scallop: A language for neurosymbolic program-
ming. Proc. ACM Program. Lang., 7(PLDI), June 2023b. doi: 10.1145/3591280. URL
https://doi.org/10.1145/3591280.

Ziyang Li, Jiani Huang, Jason Liu, Felix Zhu, Eric Zhao, William Dodds, Neelay Velingker,
Rajeev Alur, and Mayur Naik. Relational programming with foundational models. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 38(9):10635–10644, March
2024. ISSN 2159-5399. doi: 10.1609/aaai.v38i9.28934. URL http://dx.doi.org/10.

1609/aaai.v38i9.28934.

Priscila Lima, Mariela Morveli-Espinoza, Glaucia K E Pereira, and Felipe França. Satyrus:
A sat-based neuro-symbolic architecture for constraint processing. pages 137–142, 01
2005. doi: 10.1109/ICHIS.2005.97.

Runtao Liu, Chenxi Liu, Yutong Bai, and Alan L. Yuille. Clevr-ref+: Diagnosing visual
reasoning with referring expressions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

Zhen Lu, Imran Afridi, Hong Jin Kang, Ivan Ruchkin, and Xi Zheng. Surveying neuro-
symbolic approaches for reliable artificial intelligence of things. Journal of Reliable In-
telligent Environments, 10(3):257–279, 2024. doi: 10.1007/s40860-024-00231-1. URL
https://doi.org/10.1007/s40860-024-00231-1.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic programming. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/

dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf.

Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Neural probabilistic logic programming in deepproblog. Artificial Intelligence,
298:103504, 2021. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2021.103504.
URL https://www.sciencedirect.com/science/article/pii/S0004370221000552.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The
neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural
supervision, 2019. URL https://arxiv.org/abs/1904.12584.

15

https://doi.org/10.1038/nature14539
https://doi.org/10.1145/3555803
https://doi.org/10.1145/3591280
http://dx.doi.org/10.1609/aaai.v38i9.28934
http://dx.doi.org/10.1609/aaai.v38i9.28934
https://doi.org/10.1007/s40860-024-00231-1
https://proceedings.neurips.cc/paper_files/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0004370221000552
https://arxiv.org/abs/1904.12584

Sinha Premsri Kordjamshidi

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn,
Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran
Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. Simple open-vocabulary
object detection with vision transformers, 2022. URL https://arxiv.org/abs/2205.

06230.

Yatin Nandwani, Abhishek Pathak, Mausam, and Parag Singla. A primal dual
formulation for deep learning with constraints. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/

cf708fc1decf0337aded484f8f4519ae-Paper.pdf.

Allen Newell. Physical symbol systems. Cognitive Science, 4(2):135–183, 1980. ISSN
0364-0213. doi: https://doi.org/10.1016/S0364-0213(80)80015-2. URL https://www.

sciencedirect.com/science/article/pii/S0364021380800152.

Raymond Ng and V.S. Subrahmanian. Probabilistic logic programming. Informa-
tion and Computation, 101(2):150–201, 1992. ISSN 0890-5401. doi: https://doi.
org/10.1016/0890-5401(92)90061-J. URL https://www.sciencedirect.com/science/

article/pii/089054019290061J.

Shan-Hwei Nienhuys-Cheng and Roland de Wolf. What is inductive logic programming?
Springer, 1997.

OpenAI, Josh Achiam, and Steven Adler et al. Gpt-4 technical report, 2024. URL https:

//arxiv.org/abs/2303.08774.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empower-
ing large language models with symbolic solvers for faithful logical reasoning, 2023. URL
https://arxiv.org/abs/2305.12295.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library, 2019. URL
https://arxiv.org/abs/1912.01703.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H.
Miller, and Sebastian Riedel. Language models as knowledge bases?, 2019. URL https:

//arxiv.org/abs/1909.01066.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and
Ilya Sutskever. Learning transferable visual models from natural language supervision,
2021. URL https://arxiv.org/abs/2103.00020.

16

https://arxiv.org/abs/2205.06230
https://arxiv.org/abs/2205.06230
https://proceedings.neurips.cc/paper_files/paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0364021380800152
https://www.sciencedirect.com/science/article/pii/S0364021380800152
https://www.sciencedirect.com/science/article/pii/089054019290061J
https://www.sciencedirect.com/science/article/pii/089054019290061J
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/2103.00020

NeSy Frameworks

Hossein Rajaby Faghihi, Quan Guo, Andrzej Uszok, Aliakbar Nafar, and Parisa Kord-
jamshidi. DomiKnowS: A library for integration of symbolic domain knowledge in deep
learning. In Heike Adel and Shuming Shi, editors, Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations,
pages 231–241, Online and Punta Cana, Dominican Republic, November 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-demo.27. URL
https://aclanthology.org/2021.emnlp-demo.27/.

Dan Roth and Wen-tau Yih. Integer linear programming inference for conditional random
fields. In Proceedings of the 22nd International Conference on Machine Learning, ICML
’05, page 736–743, New York, NY, USA, 2005. Association for Computing Machinery.
ISBN 1595931805. doi: 10.1145/1102351.1102444. URL https://doi.org/10.1145/

1102351.1102444.

Saratha Sathasivam. Learning rules comparison in neuro-symbolicintegration. International
Journal of Applied Physics and Mathematics, 1(2):129, 2011.

Luciano Serafini and Artur S d’Avila Garcez. Learning and reasoning with logic tensor
networks. In Conference of the italian association for artificial intelligence, pages 334–
348. Springer, 2016.

Amir Shpilka, Amir Yehudayoff, et al. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends® in Theoretical Computer Science, 5(3–4):
207–388, 2010.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis
Hassabis. Mastering the game of go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016. doi: 10.1038/nature16961. URL https://doi.org/10.1038/

nature16961.

Paul Smolensky, Moontae Lee, Xiaodong He, Wen-tau Yih, Jianfeng Gao, and li Deng. Basic
reasoning with tensor product representations. 01 2016. doi: 10.48550/arXiv.1601.02745.

Jiankai Sun, Hao Sun, Tian Han, and Bolei Zhou. Neuro-symbolic program search for
autonomous driving decision module design. In Jens Kober, Fabio Ramos, and Claire
Tomlin, editors, Proceedings of the 2020 Conference on Robot Learning, volume 155 of
Proceedings of Machine Learning Research, pages 21–30. PMLR, 16–18 Nov 2021. URL
https://proceedings.mlr.press/v155/sun21a.html.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan,
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev,

17

https://aclanthology.org/2021.emnlp-demo.27/
https://doi.org/10.1145/1102351.1102444
https://doi.org/10.1145/1102351.1102444
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://proceedings.mlr.press/v155/sun21a.html

Sinha Premsri Kordjamshidi

Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich,
Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan,
Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foun-
dation and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Pascal Van Hentenryck, Helmut Simonis, and Mehmet Dincbas. Constraint satisfac-
tion using constraint logic programming. Artificial Intelligence, 58(1):113–159, 1992.
ISSN 0004-3702. doi: https://doi.org/10.1016/0004-3702(92)90006-J. URL https:

//www.sciencedirect.com/science/article/pii/000437029290006J.

Joseph Weizenbaum. Eliza—a computer program for the study of natural language com-
munication between man and machine. Commun. ACM, 9(1):36–45, January 1966.
ISSN 0001-0782. doi: 10.1145/365153.365168. URL https://doi.org/10.1145/365153.

365168.

Lionel Wong, Gabriel Grand, Alexander K. Lew, Noah D. Goodman, Vikash K. Mans-
inghka, Jacob Andreas, and Joshua B. Tenenbaum. From word models to world models:
Translating from natural language to the probabilistic language of thought, 2023. URL
https://arxiv.org/abs/2306.12672.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic
loss function for deep learning with symbolic knowledge. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 5502–5511. PMLR, 10–15
Jul 2018. URL https://proceedings.mlr.press/v80/xu18h.html.

Xinyu Xu, Pan Wang, Shusen Dong, Ningyu Wu, Yue Zhang, and Baobao Chang. Faithful
logical reasoning via symbolic chain-of-thought. arXiv preprint arXiv:2405.18357, 2024.
URL https://arxiv.org/abs/2405.18357.

Liang Yao, Jiazhen Peng, Chengsheng Mao, and Yuan Luo. Exploring large language models
for knowledge graph completion, 2025. URL https://arxiv.org/abs/2308.13916.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Joshua B.
Tenenbaum. Neural-symbolic vqa: Disentangling reasoning from vision and language
understanding. In Advances in Neural Information Processing Systems, pages 1039–1050,
2018.

Hanlin Zhang, Jiani Huang, Ziyang Li, Mayur Naik, and Eric Xing. Improved logical
reasoning of language models via differentiable symbolic programming, 2023. URL https:

//arxiv.org/abs/2305.03742.

Danna Zheng, Mirella Lapata, and Jeff Z. Pan. How reliable are llms as knowledge bases?
re-thinking facutality and consistency, 2024. URL https://arxiv.org/abs/2407.13578.

18

https://arxiv.org/abs/2307.09288
https://www.sciencedirect.com/science/article/pii/000437029290006J
https://www.sciencedirect.com/science/article/pii/000437029290006J
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://arxiv.org/abs/2306.12672
https://proceedings.mlr.press/v80/xu18h.html
https://arxiv.org/abs/2405.18357
https://arxiv.org/abs/2308.13916
https://arxiv.org/abs/2305.03742
https://arxiv.org/abs/2305.03742
https://arxiv.org/abs/2407.13578

NeSy Frameworks

Appendix A. Example Task

NeSy frameworks formulate problems differently based on their implementation and setup.
In DomiKnowS, the problem is reformulated as a logical constraint solving problem. This
is done by representing the domain as a graph G(V,E), where the nodes are the concepts
in the domain and the edges are the relationships between them. Each node can have
properties. The final logical constraint formulation is done using the defined concepts. In
DeepProbLog, the problem is viewed as a combination of perception and reasoning, where
the perception is the neural component that is fed as neural predicates into the reasoning
component made of probabilistic logic programming with ProbLog. To solve a problem in
DeepProbLog, the problem needs to be conceptualized as a separation of the neural and
logical reasoning components. In Scallop, similar to DeepProbLog, the problem is viewed
as a combination of the neural and the symbolic component. In LEFT, the problem is
limited to the visual question answering domain. Here, the neural model is composed of
feature extractors, a classifier for objects and relations into concepts, and a first-order logic
program generator when given the question. In this section, we will take a look at how the
problem formulation looks like in each of these frameworks for a common task. Note that
we exclude LEFT for this due to the domain-specific nature of the framework.

A.1. MNIST Sum

The MNIST Sum task is an extension of the classic MNIST handwritten digit recognition
task (Lecun et al., 1998) where on being given two images of digits, the task is to output
their sum that is a whole number. The training example consists of the two images of the
digits and the ground-truth label of their sum. The individual labels of the digits are not
available for training.

A.1.1. DomiKnowS

Problem Specification. DomiKnowS formulates the problem using graph representations
of concepts, relations, and logic. For performing the MNIST Sum task in DomiKnowS, the
first concept defined is image concept representing visual information. The digit concept,
a subclass of image, is introduced to represent the output class, ranging from 0 to 9. To
establish relationships between digit images, the image pair concept is defined as an edge
connecting two digit concepts. The sum concept is then introduced under image pair to
represent the summation of the two digit concepts and the ground-truth output of the
program. For this task, three constraints are defined. The first two constraints utilize
exactL to ensure that the predicted digit and sum values belong to only one valid class.
Another constraint enforces that the expected sum value matches the sum of the two digit
predictions. This is implemented using ifL constraints, which verify whether the predicted
digits form one of the possible solutions for a valid sum. If multiple solutions exist, the
orL constraint ensures that at least one of the answers corresponds to the predicted digits.
Code for defining the graph concept and constraints can be found in Listing 1.

with Graph (name= ' g l o b a l ') as graph :
image batch = Concept (name= ' image batch ')
image = Concept (name= ' image ')

19

Sinha Premsri Kordjamshidi

image conta ins , = image batch . conta in s (image)

d i g i t c l a s s e s 0−9
d i g i t = image (name= ' d i g i t s ' ,

ConceptClass=EnumConcept ,
va lue s=d i g i t s)

image pa i r = Concept (name= ' pa i r ')
pa i r d0 , pa i r d1 = image pa i r . has a (d i g i t 0=image , d i g i t 1=

image)

sum va lue c l a s s e s 0−18
s = image pa i r (name= ' summations ' ,

ConceptClass=EnumConcept ,
va lue s=summations)

exactL (∗ [d i g i t . g e t a t t r (d) for d in d i g i t s])
exactL (∗ [s . g e t a t t r (d) for d in summations])

#f ixedL (s)
FIXED = True
f ixedL (s (”x” , eqL (image pair , ” summationEquality ” , {True })

) , a c t i v e = FIXED)

for sum val in range (c o n f i g . summationRange) :
sum combinations = []

sum nm = summations [sum val]

for d0 va l in range (sum val + 1) :
d1 va l = sum val − d0 va l

i f d0 va l >= len (d i g i t s) or d1 va l >= len (d i g i t s) :
continue

d0 nm = d i g i t s [d0 va l]
d1 nm = d i g i t s [d1 va l]

for each combination o f d i g i t s t h a t sum to
sum val add con s t r a i n t to l i s t

sum combinations . append (andL(getattr (d i g i t , d0 nm)
(path=('x ' , pa i r d0)) ,

20

NeSy Frameworks

getattr (d i g i t , d1 nm)
(path=('x ' ,
pa i r d1))

))

print (sum val , '− ' , sum combinations)

i f the g iven summation va lue i s some value , then the
d i g i t s must be one o f a s e t o f

d i g i t pa i r s t h a t add to t ha t va lue
i . e . i f sum va l = s , d0 = 0 and d1 = s or d0 = 1 and

d1 = s−1 . . .
e . g . i f sum va l = 1 , d0 = 0 and d1 = 1 or d0 = 1 and

d0 = 0
i f len (sum combinations) == 1 :

i f L (
getattr (s , sum nm) ('x ') ,
sum combinations [0]

)
else :

i f L (
getattr (s , sum nm) ('x ') ,
orL (∗ sum combinations)

)

Listing 1: Python Code for full graph of MNIST sum implemented in DomiKnowS including
logical constraints

Neural Modeling. The model declaration comprises standard neural modeling compo-
nents, including data loading, pre-processing, neural network definition, and loss function
specification. The process begins with the ReaderSensor, which reads the input image.
Next, a relation concept is defined using another sensor, JointSensor, to establish connec-
tions between images. The module learner is then employed to generate an initial prediction
for the digit concept, which is subsequently passed to another sensor, FunctionalSensor, to
compute the sum of two images. The associated code is provided in Listing 2.

class Net (torch . nn . Module) :
def i n i t (s e l f) :

super () . i n i t ()

s e l f . conv1 = nn . Conv2d (1 , 6 , 5)
s e l f . conv2 = nn . Conv2d (6 , 16 , 5)

s e l f . pool = nn . MaxPool2d (2 , 2)

21

Sinha Premsri Kordjamshidi

s e l f . l i n 1 = nn . Linear (256 , 128)
s e l f . l i n 2 = nn . Linear (128 , 10)

s e l f . r e l u = nn .ReLU()

s e l f . drop = nn . Dropout (p=0.2)

s e l f . norm = nn . LayerNorm (256)

def forward (s e l f , x) :
x = torch . squeeze (x , dim=0)

x = x . reshape (2 , 1 , 28 , 28)

x = s e l f . conv1 (x)
x = s e l f . r e l u (x)
x = s e l f . pool (x)

x = s e l f . conv2 (x)
x = s e l f . r e l u (x)
x = s e l f . pool (x)

x = x . reshape (2 , −1)

x = s e l f . norm(x)

x = s e l f . l i n 1 (x)
x = s e l f . r e l u (x)

x = s e l f . drop (x)

y d i g i t = s e l f . l i n 2 (x)

return y d i g i t

class SumLayer (torch . nn . Module) :
def i n i t (s e l f) :

super () . i n i t ()

s e l f . l i n 1 = nn . Linear (20 , 64)
s e l f . l i n 2 = nn . Linear (64 , 19)

s e l f . r e l u = nn .ReLU()

22

NeSy Frameworks

def forward (s e l f , d i g i t s , do time=True) :
d i g i t 0 = torch . unsqueeze (d i g i t s [0 , :] , dim=0)
d i g i t 1 = torch . unsqueeze (d i g i t s [1 , :] , dim=0)

x = torch . cat ((d i g i t 0 , d i g i t 1) , dim=1)

x = s e l f . l i n 1 (x)
x = s e l f . r e l u (x)

y sum = s e l f . l i n 2 (x)

#return torch . z e ro s ((1 , 19) , r e qu i r e s g r ad=True)
return y sum

class SumLayerExplic it (torch . nn . Module) :
def i n i t (s e l f , dev i c e= ' cpu ') :

super () . i n i t ()
s e l f . dev i c e = dev i c e

def forward (s e l f , d i g i t s , do time=True) :
d i g i t 0 = torch . unsqueeze (d i g i t s [0 , :] , dim=0)
d i g i t 1 = torch . unsqueeze (d i g i t s [1 , :] , dim=0)

d i g i t 0 = F. softmax (d i g i t 0 , dim=1)
d i g i t 1 = F. softmax (d i g i t 1 , dim=1)

d i g i t 0 = torch . reshape (d i g i t 0 , (10 , 1))
d i g i t 1 = torch . reshape (d i g i t 1 , (1 , 10))
d = torch . matmul (d i g i t 0 , d i g i t 1)
d = d . repeat (1 , 1 , 1 , 1)
f = torch . f l i p (torch . eye (10) , dims =(0 ,)) . r epeat (1 , 1 ,

1 , 1)
conv diag sums = F. conv2d (d , f . to (s e l f . dev i c e) ,

padding =(9 , 0) , groups=1) [. . . , 0]

out = torch . squeeze (conv diag sums , dim=0)
return out

class NBSoftCrossEntropyLoss (NBCrossEntropyLoss) :
def i n i t (s e l f , p r i o r w e i g h t =1.0 , ∗ args , ∗∗kwargs) :

super () . i n i t (∗ args , ∗∗kwargs)

s e l f . p r i o r w e i g h t = p r i o r w e i g h t

23

Sinha Premsri Kordjamshidi

def forward (s e l f , input , ta rget , ∗ args , ∗∗kwargs) :
i f t a r g e t . dim () == 1 :

return super () . forward (input , ta rget , ∗ args , ∗∗
kwargs)

e p s i l o n = 1e−5
input = input . view (−1 , input . shape [−1])
input = input . clamp (min=eps i l on , max=1−e p s i l o n)

logprobs = F. log so f tmax (input , dim=1)
return s e l f . p r i o r w e i g h t ∗ −(t a r g e t ∗ l ogprobs) .sum()

/ input . shape [0]

class NBSoftCrossEntropyIMLoss (BCEWithLogitsIMLoss) :
def i n i t (s e l f , p r i o r w e i g h t =1.0 , ∗ args , ∗∗kwargs) :

super () . i n i t (∗ args , ∗∗kwargs)

s e l f . p r i o r w e i g h t = p r i o r w e i g h t

def forward (s e l f , input , i n f e r e n c e , target , weight=None) :
i f t a r g e t . dim () == 1 :

num classes = input . shape [−1]
t a r g e t = t a r g e t . to (dtype=torch . long)
t a r g e t = F. one hot (target , num classes=num classes

)

return super () . forward (input , i n f e r e n c e , target ,
weight=weight)

return super () . forward (input , i n f e r e n c e , target ,
weight=weight) ∗ s e l f . p r i o r w e i g h t

def pr int and output (x , f=lambda x : x . shape , do pr in t=False) :
i f do pr in t :

print (p r e f i x + str (f (x)))
return x

def bui ld program (sum set t ing=None , d i g i t l a b e l s=False , dev i c e
= ' cpu ' , u s e f i x edL=True , t e s t=False) :

image [' p i x e l s '] = ReaderSensor (keyword= ' p i x e l s ')

24

NeSy Frameworks

def make batch (p i x e l) :
return p i x e l . f l a t t e n () . unsqueeze (0) , torch . ones ((1 ,

len (p i x e l)))
image batch [' p i x e l s ' , image conta ins . reversed] =

Jo intSensor (image [' p i x e l s '] , forward=make batch)

image [' l o g i t s '] = ModuleLearner (' p i x e l s ' , module=Net ())

def make pairs (∗ inputs) :
return torch . t enso r ([[True , Fa l se]]) , torch . t en so r ([[

False , True]])

image pa i r [pa i r d0 . reversed , pa i r d1 . reversed] =
Jo intSensor (image [' p i x e l s '] , forward=make pairs)

image pa i r [' summation label '] = ReaderSensor (keyword= '
summation ')

image [' d i g i t l a b e l '] = ReaderSensor (keyword= ' d i g i t ')

image [d i g i t] = Funct iona lSensor (' l o g i t s ' , forward=lambda x
: x)

i f d i g i t l a b e l s :
image [d i g i t] = Funct iona lSensor (' d i g i t l a b e l ' , forward

=lambda x : x , l a b e l=True)

i f use f i x edL and t e s t :
during t e s t time , s e t model output to be the

summation l a b e l
def manual f ixedL (s) :

r e s = torch . z e r o s ((1 , 19))
r e s [0 , s] = 1
return r e s

image pa i r [s] = Funct iona lSensor (' summation label ' ,
forward=manual f ixedL)

else :
i f sum set t ing == ' e x p l i c i t ' :

image pa i r [s] = ModuleLearner (image [' l o g i t s '] ,
module=SumLayerExplic it (dev i c e=dev i c e))

e l i f sum set t ing == ' b a s e l i n e ' :
image pa i r [s] = ModuleLearner (image [' l o g i t s '] ,

module=SumLayer ())
else :

25

Sinha Premsri Kordjamshidi

image pa i r [s] = Funct iona lSensor (forward=lambda :
torch . ones (1 , c o n f i g . summationRange)) # dummy
va lue s to popu la t e

i f use f i x edL :
image pa i r [s] = ReaderSensor (keyword= ' summation ' ,

l a b e l=True)
image pa i r [' summationEquality '] = Funct iona lSensor (

forward=lambda : torch . ones (1 , 1))

return graph , image , image pair , image batch

Listing 2: MNIST Sum code for DomiKnowS framework to run this task

A.1.2. DeepProbLog

Problem Specification. DeepProbLog formulates a problem regarding probabilistic facts,
neural facts, and neural annotated disjunctions (nAD). In the MNIST Sum task, the fact
X is defined to represent the input image. A neural network function is then introduced
to map X to its corresponding digit, denoted as digit(X,Y). To enforce constraints about
the summation and the ground-truth sum, a function is defined to compute the sum of two
digits. Code for this part is shown in Listing 3.

nn(m digit , [X] , Y, [0 9]) : : d i g i t (X,Y) .
add i t i on (X,Y, Z) :− d i g i t (X, X2) , d i g i t (Y, Y2) , Z i s X2+Y2 .

Listing 3: Facts and Rules in DeepProbLog

Neural Modeling. The neural modeling follows a standard neural network setup, such
as a CNN-based classifier. It is preceded by data loading and pre-processing, which are
performed separately from the ProbLog program. Thus, the neural model used in Deep-
ProbLog can be initialized independently of the DeepProbLog model. Once the neural
model is initialized, the framework passes it along with a probabilistic program as input.
The probabilistic program consists of facts and rules, similar to the code in Listing 3. Details
of the DeepProbLog modeling code can be found in Listing 4.

class Model (object) :
def i n i t (

s e l f ,
p rogram str ing : Union [str , os . PathLike] ,
networks : C o l l e c t i o n [Network] ,
embeddings : Optional [TermEmbedder] = None ,
load : bool = True ,

) :
”””

26

NeSy Frameworks

: param program str ing : A s t r i n g r ep r e s en t i n g a
DeepProbLog program or the path to a f i l e
con ta in ing a program .

: param networks : A c o l l e c t i o n o f networks t ha t w i l l be
used to e va l ua t e the neura l p r e d i c a t e s .

: param embeddings : A TermEmbedder used to embed Terms
in the program .

: param load : I f true , then i t w i l l a t tempt to load the
program from ' program str ing ' ,

e l s e , i t w i l l cons ider program str ing to be the
program i t s e l f .

”””
s e l f . networks = dict ()
i f load :

s e l f . program : LogicProgram = Pro l ogF i l e (str (
program str ing))

else :
s e l f . program : LogicProgram = Pro logSt r ing (

program str ing)
s e l f . parameters = []
s e l f . parameter groups = []
s e l f . e x t r a c t pa ramet e r s ()
for network in networks :

s e l f . networks [network . name] = network
network . model = s e l f

s e l f . s o l v e r : Optional [So lve r] = None
s e l f . eval mode = False
s e l f . embeddings = embeddings
s e l f . t e n s o r s o u r c e s = dict ()
s e l f . opt imize r = Optimizer (s e l f)

def get embedding (s e l f , term : Term) :
return s e l f . embeddings . get embedding (term)

def eva luate nn (s e l f , t o e v a l u a t e : L i s t [Tuple [Term , Term
]]) :
”””
: param t o e v a l u a t e : L i s t o f neura l p r e d i c a t e s to

e va l ua t e
: re turn : A d i c t i ona r y wi th the e lements o f t o e v a l u a t e

as keys , and the output o f the NN as va l u e s .
”””
r e s u l t = dict ()
e v a l u a t i o n s = d e f a u l t d i c t (l i s t)
Group inpu t s per net to send in batch

27

Sinha Premsri Kordjamshidi

for net name , inputs in t o e v a l u a t e :
net = s e l f . networks [str (net name)]
i f net . det :

tensor name = Term(”nn” , net name , inputs)
i f tensor name not in s e l f . s o l v e r . eng ine .

t e n s o r s t o r e :
e v a l u a t i o n s [net name] . append (inputs)

else :
i f inputs in net . cache :

r e s u l t [(net name , inputs)] = net . cache [
inputs]

del net . cache [inputs]
else :

e v a l u a t i o n s [net name] . append (inputs)
for net in e v a l u a t i o n s :

network = s e l f . networks [str (net)]
out = network ([t e r m 2 l i s t (x , Fa l se) for x in

e v a l u a t i o n s [net]])
for i , k in enumerate(e v a l u a t i o n s [net]) :

i f network . det :
tensor name = Term(”nn” , net , k)
s e l f . s o l v e r . eng ine . t e n s o r s t o r e . s t o r e (out [

i] , tensor name)
else :

r e s u l t [(net , k)] = out [i]
return r e s u l t

def s e t e n g i n e (s e l f , eng ine : Engine , ∗∗kwargs) :
”””
I n i t i a l i z e s the s o l v e r o f t h i s model wi th the g iven

engine and add i t i o n a l arguments .
: param engine : The engine t ha t w i l l be used to ground

que r i e s in t h i s model .
: param kwargs : Add i t i ona l arguments passed to the

s o l v e r .
: re turn :
”””
s e l f . s o l v e r = So lve r (s e l f , engine , ∗∗kwargs)
r e g i s t e r t e n s o r p r e d i c a t e s (eng ine)

def s o l v e (s e l f , batch : Sequence [Query]) −> L i s t [Result] :
return s e l f . s o l v e r . s o l v e (batch)

def ground dataset (s e l f , datase t : Dataset) :
t o t a l t i m e = 0

28

NeSy Frameworks

compi l e t imes = []
ground times = []
for q in datase t . t o q u e r i e s () :

s t a r t = time . time ()
r e s u l t = s e l f . s o l v e r . cache . get (q)
t o t a l t i m e += time . time () − s t a r t
i f not r e s u l t . f rom cache :

compi l e t imes . append (r e s u l t . compi le t ime)
ground times . append (r e s u l t . ground time)

return {
” t o t a l t i m e ” : t o ta l t ime ,
” ground times ” : ground times ,
” compi l e t imes ” : compi le t imes ,

}

def s a v e s t a t e (s e l f , f i l ename : Union [str , PathLike , IO [
bytes]] , complete=False) :
”””
Saves the s t a t e o f t h i s model to a z i p f i l e wi th the

g iven f i l ename . This on ly i n c l u d e s the
p r o b a b i l i s t i c
parameters and a l l parameters o f the neura l

networks , but not the model a r c h i t e c t u r e or
neura l a r c h i t e c t u r e s

: param f i l ename : The f i l ename to save the model to .
: param complete : I f true , save neura l networks wi th

in format ion needed to resume t r a i n i n g .
: re turn :
”””
check path (f i l ename)
with Z ipF i l e (f i l ename , ”w”) as z i p f :

with z i p f .open(” parameters ” , ”w”) as f :
p i c k l e . dump(s e l f . parameters , f)

for n in s e l f . networks :
with z i p f .open(n , ”w”) as f :

s e l f . networks [n] . save (f , complete=complete
)

def l o a d s t a t e (s e l f , f i l ename : Union [str , PathLike , IO [
bytes]]) :
”””
Restore the s t a t e o f t h i s model from the g iven

f i l ename . This on ly i n c l u d e s the p r o b a b i l i s t i c
parameters

29

Sinha Premsri Kordjamshidi

and a l l parameters o f the neura l networks , but not
the model a r c h i t e c t u r e or neura l a r c h i t e c t u r e s

.
: param f i l ename : The f i l ename to r e s t o r e the model

from .
: re turn :
”””
with Z ipF i l e (f i l ename) as z i p f :

with z i p f .open(” parameters ”) as f :
s e l f . parameters = p i c k l e . load (f)

for n in s e l f . networks :
with z i p f .open(n) as f :

s e l f . networks [n] . load (BytesIO (f . read ()))

def eval (s e l f) :
”””
Set the mode o f a l l networks in the model to e va l .
”””
s e l f . eval mode = True
for n in s e l f . networks :

s e l f . networks [n] . eval ()
s e l f . s o l v e r . eng ine . eval ()

def t r a i n (s e l f) :
”””
Set the mode o f a l l networks in the model to t r a i n .
: re turn :
”””
s e l f . eval mode = False
for n in s e l f . networks :

s e l f . networks [n] . t r a i n ()
s e l f . s o l v e r . eng ine . t r a i n ()

def r e g i s t e r f o r e i g n (
s e l f , func : Ca l lab l e , funct ion name : str , a r i t y i n :

int , a r i t y o u t : int
) :

s e l f . s o l v e r . eng ine . r e g i s t e r f o r e i g n (func ,
function name , a r i t y i n , a r i t y o u t)

def s t r (s e l f) :
return ”\n” . j o i n (str (l i n e) for l i n e in s e l f . program)

def g e t t e n s o r (s e l f , term : Term) −> torch . Tensor :
”””

30

NeSy Frameworks

: param term : A term of the form tensor () .
I f the t ensor i s o f the form tensor (a (∗ args)) , then i t

w e l l l ook in t o t ensor source a .
: re turn : Returns the s t o r ed t ensor i d e n t i f i e r by the

term .
”””
i f len (term . args) > 0 and term . args [0] . f unc to r in s e l f

. t e n s o r s o u r c e s :
return s e l f . t e n s o r s o u r c e s [term . args [0] . f unc to r] [

term . args [0] . a rgs]
return s e l f . s o l v e r . g e t t e n s o r (term)

def s t o r e t e n s o r (s e l f , t en so r : torch . Tensor) −> Term :
”””
Stores a tensor in the t ensor s t o r e and re turns and

i d e n t i f i e r .
: param tensor : The tensor to s t o r e .
: re turn : The Term tha t i s the i d e n t i f i e r by which t h i s

t ensor can be un i que l y i d e n t i f i e d in the l o g i c .
”””
return Term(” tenso r ” , Constant (s e l f . s o l v e r . eng ine .

t e n s o r s t o r e . s t o r e (t enso r)))

def add t en so r sou r c e (
s e l f , name : str , source : Union [ImageDataset , Mapping [

Any , torch . Tensor]]
) :

”””
Adds a named tensor source to the model .
: param name : The name o f the added tensor source .
: param source : The tensor source to add
: re turn :
”””
s e l f . t e n s o r s o u r c e s [name] = source

def get hyperparameters (s e l f) −> dict :
”””
Recur s i v e l y b u i l d a d i c t i ona r y con ta in ing the most

important hyperparameters in the model .
: re turn : A d i c t i ona r y t ha t con ta ins the va l u e s o f the

most important hyperparameters o f the model .
”””
parameters = dict ()
parameters [” s o l v e r ”] = (

31

Sinha Premsri Kordjamshidi

None i f s e l f . s o l v e r i s None else s e l f . s o l v e r .
get hyperparameters ()

)
parameters [” networks ”] = [

s e l f . networks [network] . get hyperparameters () for
network in s e l f . networks

]
parameters [”program”] = s e l f . program . t o p r o l o g ()
return parameters

def h y p e r p a r a m e t e r s t o f i l e (s e l f , f i l ename) :
”””
Write the output o f the ge t hyperparameter () method in

JSON format to a f i l e .
: param f i l ename : The path to wr i t e the hyperparameters

to .
: re turn :
”””
with open(f i l ename , ”w”) as f :

f . wr i t e (j son . dumps(s e l f . get hyperparameters ()))

def ex t r a c t pa ramet e r s (s e l f) :
t r a n s l a t e d = SimpleProgram ()
for n in s e l f . program :

i f type (n) i s Term :
i f (

n . p r o b a b i l i t y i s not None
and type (n . p r o b a b i l i t y) i s Term
and n . p r o b a b i l i t y . func to r == ” t ”

) :
i = s e l f . add parameter (n . p r o b a b i l i t y . args

[0])
p = n . p r o b a b i l i t y . w i th arg s (Constant (i))
n = n . w i t h p r o b a b i l i t y (p)

t r a n s l a t e d . add statement (n)
e l i f type (n) i s Clause :

i f (
n . head . p r o b a b i l i t y i s not None
and type (n . head . p r o b a b i l i t y) i s Term
and n . head . p r o b a b i l i t y . func to r == ” t ”

) :
i = s e l f . add parameter (n . head . p r o b a b i l i t y

. args [0])
p = n . head . p r o b a b i l i t y . w i th arg s (Constant (

i))

32

NeSy Frameworks

head = n . head . w i t h p r o b a b i l i t y (p)
n = Clause (head , n . body)

t r a n s l a t e d . add statement (n)
e l i f type (n) i s Or :

n e w l i s t = []
new group = []
for x in n . t o l i s t () :

i f (
x . p r o b a b i l i t y i s not None
and type (x . p r o b a b i l i t y) i s Term
and x . p r o b a b i l i t y . func to r == ” t ”

) :
i = s e l f . add parameter (x . p r o b a b i l i t y .

args [0])
new group . append (i)
p = x . p r o b a b i l i t y . w i th arg s (Constant (i

))
n e w l i s t . append (x . w i t h p r o b a b i l i t y (p))

else :
n e w l i s t . append (x)

i f len (new group) > 0 :
s e l f . parameter groups . append (new group)

n = Or . f r o m l i s t (n e w l i s t)
t r a n s l a t e d . add statement (n)

else :
t r a n s l a t e d . add statement (n)

s e l f . program = t r a n s l a t e d

def add parameter (s e l f , va l : Constant) :
i = len (s e l f . parameters)
try :

va l = f loat (va l)
except I n s t a n t i a t i o n E r r o r :

va l = random ()
s e l f . parameters . append (va l)
return i

Listing 4: Example of code for neural model in DeepProbLog for MNIST Sum task.

A.1.3. Scallop

Problem Specification. Scallop formulates the problem in terms of relations, values, and
(Horn) rules derived from Datalog. As discussed earlier, the concepts and constraints defined
in this framework are similar to those in DeepProbLog. However, these rules can be directly
embedded into a Scallop program through its API. The process begins by establishing the
concepts digit1 and digit2 to represent the digit values of two given images. Constraints

33

Sinha Premsri Kordjamshidi

are then defined based on the summation of these two values, which must be equal to the
sum 2 concept, serving as the ground truth for this task. The code in Listing 5 provides a
portion of the implementation for defining these concepts and constraints.

s e l f . s c l c t x . a d d r e l a t i o n (`` d i g i t 1 ' ' , int , input mapping=l i s t
(range (10)))

s e l f . s c l c t x . a d d r e l a t i o n (`` d i g i t 2 ' ' , int , input mapping=l i s t
(range (10)))

s e l f . s c l c t x . add ru l e (`` sum 2 (a + b) :− d i g i t 1 (a) , d i g i t 2 (b)
' ')

s e l f . sum 2 = s e l f . s c l c t x . f o rward func t i on (`` sum 2 ' ' ,
output mapping =[(i ,) for i in range (19)])

Listing 5: Code for defining the concept and constraints in Scallop framework for MNIST
sum task

Neural Modeling. Unlike DeepProbLog, the neural modeling is integrated with Scallop’s
relation and rule declaration. The neural modeling remains a standard neural network.
Details of the modeling code can be found in Listing 6.

mnist img trans form = t o r c h v i s i o n . t rans forms . Compose ([
t o r c h v i s i o n . t rans forms . ToTensor () ,
t o r c h v i s i o n . t rans forms . Normalize (

(0 . 1 3 0 7 ,) , (0 . 3 0 8 1 ,)
)

])

class MNISTSum2Dataset (torch . u t i l s . data . Dataset) :
def i n i t (

s e l f ,
root : str ,
t r a i n : bool = True ,
trans form : Optional [Ca l l a b l e] = None ,
t a r g e t t r a n s f o r m : Optional [C a l l a b l e] = None ,
download : bool = False ,

) :
Contains a MNIST da ta s e t
s e l f . mn i s t data se t = t o r c h v i s i o n . da ta s e t s .MNIST(

root ,
t r a i n=tra in ,
trans form=transform ,
t a r g e t t r a n s f o r m=targe t t rans fo rm ,
download=download ,

)
s e l f . index map = l i s t (range (len (s e l f . mn i s t data se t)))
random . s h u f f l e (s e l f . index map)

34

NeSy Frameworks

def l e n (s e l f) :
return int (len (s e l f . mn i s t data se t) / 2)

def g e t i t e m (s e l f , idx) :
Get two data po in t s
(a img , a d i g i t) = s e l f . mn i s t data se t [s e l f . index map [idx ∗

2]]
(b img , b d i g i t) = s e l f . mn i s t data se t [s e l f . index map [idx ∗

2 + 1]]

Each data has two images and the GT i s the sum of two
d i g i t s

return (a img , b img , a d i g i t + b d i g i t)

@staticmethod
def c o l l a t e f n (batch) :

a imgs = torch . s tack ([item [0] for item in batch])
b imgs = torch . s tack ([item [1] for item in batch])
d i g i t s = torch . s tack ([torch . t enso r (item [2]) . long () for

item in batch])
return ((a imgs , b imgs) , d i g i t s)

def mnist sum 2 loader (data d i r , b a t c h s i z e t r a i n ,
b a t c h s i z e t e s t) :

t r a i n l o a d e r = torch . u t i l s . data . DataLoader (
MNISTSum2Dataset (

data d i r ,
t r a i n=True ,
download=True ,
trans form=mnist img transform ,

) ,
c o l l a t e f n=MNISTSum2Dataset . c o l l a t e f n ,
b a t c h s i z e=b a t c h s i z e t r a i n ,
s h u f f l e=True

)

t e s t l o a d e r = torch . u t i l s . data . DataLoader (
MNISTSum2Dataset (

data d i r ,
t r a i n=False ,
download=True ,
trans form=mnist img transform ,

) ,

35

Sinha Premsri Kordjamshidi

c o l l a t e f n=MNISTSum2Dataset . c o l l a t e f n ,
b a t c h s i z e=b a t c h s i z e t e s t ,
s h u f f l e=True

)

return t r a i n l o a d e r , t e s t l o a d e r

class MNISTNet(nn . Module) :
def i n i t (s e l f) :

super (MNISTNet , s e l f) . i n i t ()
s e l f . conv1 = nn . Conv2d (1 , 32 , k e r n e l s i z e =5)
s e l f . conv2 = nn . Conv2d (32 , 64 , k e r n e l s i z e =5)
s e l f . f c 1 = nn . Linear (1024 , 1024)
s e l f . f c 2 = nn . Linear (1024 , 10)

def forward (s e l f , x) :
x = F. max pool2d (s e l f . conv1 (x) , 2)
x = F. max pool2d (s e l f . conv2 (x) , 2)
x = x . view (−1 , 1024)
x = F. r e l u (s e l f . f c 1 (x))
x = F. dropout (x , p = 0 . 5 , t r a i n i n g=s e l f . t r a i n i n g)
x = s e l f . f c 2 (x)
return F. softmax (x , dim=1)

class MNISTSum2Net(nn . Module) :
def i n i t (s e l f , provenance , k) :

super (MNISTSum2Net , s e l f) . i n i t ()

MNIST Dig i t Recogni t ion Network
s e l f . mnis t net = MNISTNet()

Sca l l o p Context
s e l f . s c l c t x = s c a l l o p y . Sca l lopContext (provenance=

provenance , k=k)
s e l f . s c l c t x . a d d r e l a t i o n (” d i g i t 1 ” , int , input mapping=

l i s t (range (10)))
s e l f . s c l c t x . a d d r e l a t i o n (” d i g i t 2 ” , int , input mapping=

l i s t (range (10)))
s e l f . s c l c t x . add ru l e (”sum 2 (a + b) :− d i g i t 1 (a) , d i g i t 2

(b) ”)

The `sum 2` l o g i c a l reasoning module

36

NeSy Frameworks

s e l f . sum 2 = s e l f . s c l c t x . f o rward func t i on (”sum 2” ,
output mapping =[(i ,) for i in range (19)] , j i t=args . j i t ,

d i spatch=args . d i spatch)

def forward (s e l f , x : Tuple [torch . Tensor , torch . Tensor]) :
(a imgs , b imgs) = x

Fi r s t r e cogn i z e the two d i g i t s
a d i s t r s = s e l f . mnis t net (a imgs) # Tensor 64 x 10
b d i s t r s = s e l f . mnis t net (b imgs) # Tensor 64 x 10

Then execu te the reasoning module ; the r e s u l t i s a s i z e
19 tensor

return s e l f . sum 2 (d i g i t 1=a d i s t r s , d i g i t 2=b d i s t r s) #
Tensor 64 x 19

def b c e l o s s (output , ground truth) :
(, dim) = output . shape
gt = torch . s tack ([torch . t enso r ([1 . 0 i f i == t else 0 .0 for i

in range (dim)]) for t in ground truth])
return F. b i n a r y c r o s s e n t r o p y (output , gt)

def n l l l o s s (output , ground truth) :
return F. n l l l o s s (output , ground truth)

class Trainer () :
def i n i t (s e l f , t r a i n l o a d e r , t e s t l o a d e r , model dir ,

l e a r n i n g r a t e , l o s s , k , provenance) :
s e l f . mode l d i r = mode l d i r
s e l f . network = MNISTSum2Net(provenance , k)
s e l f . opt imize r = optim .Adam(s e l f . network . parameters () , l r=

l e a r n i n g r a t e)
s e l f . t r a i n l o a d e r = t r a i n l o a d e r
s e l f . t e s t l o a d e r = t e s t l o a d e r
s e l f . b e s t l o s s = 10000000000
i f l o s s == ” n l l ” :

s e l f . l o s s = n l l l o s s
e l i f l o s s == ” bce ” :

s e l f . l o s s = b c e l o s s
else :

raise Exception (f ”Unknown l o s s f unc t i on `{ l o s s }`”)

37

Sinha Premsri Kordjamshidi

def t r a in epoch (s e l f , epoch) :
s e l f . network . t r a i n ()
i ter = tqdm(s e l f . t r a i n l o a d e r , t o t a l=len (s e l f . t r a i n l o a d e r

))
for (data , t a r g e t) in iter :

s e l f . opt imize r . z e ro g rad ()
output = s e l f . network (data)
l o s s = s e l f . l o s s (output , t a r g e t)
l o s s . backward ()
s e l f . opt imize r . s tep ()
i ter . s e t d e s c r i p t i o n (f ” [Train Epoch { epoch }] Loss : { l o s s

. item () : . 4 f }”)

def t e s t ep oc h (s e l f , epoch) :
s e l f . network . eval ()
num items = len (s e l f . t e s t l o a d e r . datase t)
t e s t l o s s = 0
c o r r e c t = 0
with torch . no grad () :

i ter = tqdm(s e l f . t e s t l o a d e r , t o t a l=len (s e l f . t e s t l o a d e r
))

for (data , t a r g e t) in iter :
output = s e l f . network (data)
t e s t l o s s += s e l f . l o s s (output , t a r g e t) . item ()
pred = output . data .max(1 , keepdim=True) [1]
c o r r e c t += pred . eq (t a r g e t . data . v i ew as (pred)) .sum()
perc = 100 . ∗ c o r r e c t / num items
i ter . s e t d e s c r i p t i o n (f ” [Test Epoch { epoch }] Total l o s s

: { t e s t l o s s : . 4 f } , Accuracy : { c o r r e c t }/{num items}
({ perc : . 2 f }%)”)

i f t e s t l o s s < s e l f . b e s t l o s s :
s e l f . b e s t l o s s = t e s t l o s s
torch . save (s e l f . network , os . path . j o i n (model dir , ”

sum 2 best . pt”))

def t r a i n (s e l f , n epochs) :
s e l f . t e s t e poc h (0)
for epoch in range (1 , n epochs + 1) :

s e l f . t r a in epoch (epoch)
s e l f . t e s t e poc h (epoch)

Listing 6: Example of code for neural model in Scallop for MNIST Sum task.

38

	Introduction
	Neurosymbolic Frameworks
	Symbolic Knowledge Representation
	Neural Models Representations
	Model Composition
	Interplay between Symbolic and Sub-symbolic
	Role of Large Language Models
	Discussion and Future Direction
	Conclusion
	Example Task
	MNIST Sum
	DomiKnowS
	DeepProbLog
	Scallop

