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Abstract

Demand forecasting faces challenges induced by Peak Events (PEs) corresponding
to special periods such as promotions and holidays. Peak events create signifi-
cant spikes in demand followed by demand ramp down periods. Neural networks
like MQCNN [12, 6] and MQT [1] overreact to demand peaks by carrying over the
elevated PE demand into subsequent Post-Peak-Event (PPE) periods, resulting in
significantly over-biased forecasts. To tackle this challenge, we introduce a neural
forecasting model called Split Peak Attention DEcomposition, SPADE. This model
reduces the impact of PEs on subsequent forecasts by modeling forecasting as con-
sisting of two separate tasks: one for PEs; and the other for the rest. Its architecture
then uses masked convolution filters and a specialized Peak Attention module. We
show SPADE’s performance on a worldwide retail dataset with hundreds of millions
of products. Our results reveal a reduction in PPE degradation by 4.5% and an
improvement in PE accuracy by 3.9%, relative to current production models.

1 Introduction

Forecasting methods based on neural networks have produced accuracy improvements across multiple
forecasting application domains such as large e-commerce retail [12, 1, 6, 8], financial trading [9],
planning and transportation [5], and forecasting competitions [10, 7]. For large e-commerce, neural
networks such as MQCNN [12, 6] and MQT [1] forecast product demand, based on product demand
history, product attributes and known future information (e.g., promotions, planned sales, holidays),
etc. Product demand frequently exhibits peaks caused by the impact of Peak Events (PEs) such as
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Figure 1: Illustration of “carry-over” degradation, visible in MQT’s forecast downward trend. Peak
values carry-over, degrading MQT’s forecast accuracy, whereas SPADE does not exhibit such an effect.

promotions, deals, or holiday sales; forecast is particularly important during and after these peaks
since we are more likely to run into inventory constraints.

The carry-over effect manifests itself as significant over-bias in the forecasts following demand
spikes characteristic of PEs. Forecasting errors during and after PEs lead to logistical challenges:
increased storage and operational costs, and often necessitate manual interventions to adjust forecasts,
compromising the link between our provided forecast and downstream decisions. To handle this
effect, filtering techniques such as [4, 2] have been used in traditional time series analysis. In this
paper, we close the gap between such techniques and neural network based forecasts by developing a
new forecasting architecture called SPADE capable of maintaining accuracy in the presence of PEs.

Our key contributions are summarized below:

(i) Masked Convolutions. We decompose the historical time series features into peak and non-
peak components, based on a priori causal indicators. The convolutional encoder experiences
only the historical demand without peaks.

(ii) Peak Attention. The peaks are encoded by a specialized attention mechanism we call Peak
Attention. This module leverages a priori causal information, allowing the forecast to react
quickly during and after PEs.

(iii) Accuracy Improvements. We expand upon the experiments’ dataset size of MQCNN and MQT in
[12, 1] from millions to hundreds of millions of series, and show post PE accuracy improvements
of 4.5%, and PE accuracy improvements of 3.9% over MQCNN and MQT respectively.

We organize the rest of the paper as follows. We introduce our proposed SPADE method in Section 2.
Section 3 contains main experiments and ablation studies. We summarize the results and mention
future research directions in Section 4.

2 SPADE

Accurate forecasting requires integrating multiple inputs from other time series and data modalities,
such as static information or exogenous factors, rather than relying solely on historical patterns.
Additionally, effective models must jointly optimize across multiple tasks, considering not just
standard metrics like MAE (Mean Absolute Error), but also the broader distribution of forecasts, or
across different time granularities. Finally, robust forecasting must reliably capture both long-term
trends and sharp peak events to be effective in practical settings.

SPADE is a Sequence to Sequence forecasting architecture [11] initially built for the purpose of
product demand forecasting which integrates past time series data x

(p)
[t] , static information x(s) (e.g.,

product text features), and known future information x
(f)
[t][h] (e.g., world event indicators, countries

and seller promotions). The model simultaneously predicts outcomes across multiple quantiles and
levels of aggregation—each with unique patterns and noise characteristics—and leverages a priori
event information to split Peak Events (PEs) from the remainder of the time series, eliminating
“carry-over” effects many current time series forecasting models suffer from (see Figure 1).

Figure 2 displays the architecture. The PeakMask generates PE indicators from known future informa-
tion, creating a mask to decompose the time series into PEs and non-PEs. The RobustConvolution
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Figure 2: SPADE decomposes its temporal features to distinguish usual behavior from peaks.

Table 1: Empirical evaluation of the weighted quantile loss (WQL). We evaluate P50 and P90 WQL
overall, during and after PEs. The best result is shown in bold, lower is better.

Metric SPADE MQCNN MQT

P50 WQL 0.9912 1.1842 1.0000
P90 WQL 0.9935 1.1990 1.0000
P50 WQLPE 0.9672 0.9740 1.0000
P90 WQLPE 0.9557 1.0068 1.0000
P50 WQLPPE 0.9576 0.9386 1.0000
P90 WQLPPE 0.9520 0.9380 1.0000

block filters PEs from the historic inputs with a forward-fill operation and encodes the result with a
series of dilated convolutions. The PeakAttention block forecasts PE magnitudes using past PE
information and known future information, and the PE and non-PE partial predictions are summed to
produce the final forecast. Architecture details are provided in Appendix A.

Forecast accuracy is evaluated with the weighted quantile loss (WQL)

WQL(y, ŷ(q); q, I,H) =

∑
i

∑
t

∑
h QL

(
yi,t,h, ŷ

(q)
i,t,h(θ); q

)
∑

i

∑
t

∑
h yi,t,h

, (1)

where QL
(
y, ŷ(q); q

)
= q(y− ŷ)+ + (1− q)(ŷ− y)+ is the quantile loss function, ŷ(q) denotes the

estimated quantile, θ denotes a model in the class of models Θ defined by the model architecture.
We optimize θ by minimizing the numerator of equation (1) summed across the quantiles of interest.
See Appendix B for details. In addition to WQL, we evaluate the WQL during PEs and Post-
PE (denoted PPE) to capture accuracy at PEs and the “carry-over” effect, respectively; letting
IPE ≡ {i ∈ I | di,t = 1} where di,t represents time series deal information, we have

WQLPE = WQL(y, ŷ(q); q, IPE,HPE) and WQLPPE = WQL(y, ŷ(q); q, I,HPPE) (2)

where HPE are the horizons including a PE occur, and HPPE are the horizons after. A typical demand
pattern indicating seasonality, PE demand peak and PPE carry-over effect is shown in Figure 1.

3 Experiments

The dataset consists of hundreds of millions of series across several countries covering three years
training data (2019-2022) and one year for evaluation (2023). Table 1 displays results of empirical
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Figure 3: SPADE shows evidence of forecast accuracy scaling with training time series.

evaluation for SPADE, MQCNN and MQT across countries. MQCNN and MQT show a distinct trade-off
surrounding PEs. For each country, the carry-over behavior of MQCNN’s encoder under-biases PE
forecasts, resulting in an inflated WQL during these events, but low PPE error. This results in a 0.6%
degradation in P50 WQL and 5% degradation in P90 WQL relative to SPADE during PEs. We note,
however, that due to MQCNN’s inability to capture peaks, the post-peak accuracy remains high. We find
a 2% improvement in P50 PE WQL and 2% improvement in P90 WQL relative to SPADE post peak.

On the other hand, MQT’s attention mechanisms do lift demand forecasts during PEs to improve
accuracy during events, but due to the carry-over of the time series embeddings, results in PPE
degradation. This results in a 4% degradation in P50 WQL and 5% degradation in P90 WQL in
relative to SPADE post-peak. Moreover, while MQT does exhibit higher accuracy during PEs than
MQCNN, SPADE’s explicit attention to these events result in large improvement. SPADE outperforms
MQT by 3% on P50 WQL and 4% on P90 WQL during peaks.

To further clarify and analyze the source of improvements we performed an ablation study on variants
of the MQCNN and MQT, for a smaller dataset in Appendix C.

Finally, we study the scaling properties of our model. Our results, represented by Figure 3, show that
forecast accuracy scales with the number of series during training, with P90 WQL improving more
substantially than P50 WQL.

4 Conclusions

We introduced a novel forecasting method, SPADE, that combines two complementary techniques
(splitting temporal features into peak and non-peak components before encoding them, and a special-
ized peak attention module to enhance forecast sharpness) to identify and deal with spikes in realistic
forecasting systems. SPADE alleviates the peak carry-over effect, showing higher accuracy during
and after the peaks events. In our retail demand forecasting experiments, we observe a PE accuracy
improvement of 3.9%, and a reduction of the post peak degradation of 4.5%, when compared to
MQCNN and MQT production models.

In our empirical evaluations, we applied peak masking convolutions to variants of MQCNN and MQT,
but our SPADE method is not restricted to convolutional encoders. Exploring its application to other
recurrent encoders such as LSTMs, attention mechanisms, or MLPs presents a promising avenue for
future research. Moreover, the current implementation of SPADE relies on pre-existing causal and PE
indicators, but there is potential to enhance the methodology by incorporating unsupervised detection
techniques to identify PEs autonomously.
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Figure 4: Masked convolutions enhance neural forecasting architectures by filtering peaks before
inputting temporal features to the encoder, thus mitigating the peak carry-over effect.

a) Full Attention b) Peak Attention

Figure 5: The Peak Attention module regularizes the classic attention mechanism by sparsifying its
weights using future covariate information.

Masked Convolution. We use the causal indicators from the known future information x
(f)
[t][h], to

create a mask that identifies peak temporal observations m[t][h]. The peak mask m[t][h] is then used to
decompose the time series into peak and non-peak observations. The x(p)

[t] inputs of the convolutional
encoder are thus filtered of their peak observations following:

x̃
(p)
t =

{
x
(p)
t if mt = 0

x
(p)
t∗ if mt = 1, t∗ = minτ≤t mτ = 0

(3)

e
(p)
[t] = Convolution(x̃(p)

[t] ). (4)

Peak Attention. This module computes a forecast update ∆[t][h] using the peak mask m[t][h], the
past information x

(p)
[t] and known future information x

(f)
[t][h] to compute the following operations:

q[t][h] = MLP(e
(p)
[t] ,x

(f)
[t][h]) k[t][h] = MLP(e

(p)
[t] ,x

(f)
[t][h]) v[t][h] = MLP(e

(p)
[t] ,x

(f)
[t][h]) (5)

H[t][h] = SoftMax
(
q[t][h] × k⊺

[t][h] ×m[t][h]

)
× v[t][h], (6)

∆[t][h] = MLP(H[t])×m[t][h], (7)

where q[t][h], k[t][h], and v[t][h] are horizon-specific query, key, and value tensors.

The attention weights are masked to only use PEs from the past; in contrast to a complete horizon-time
attention module, PeakAttention requires only a fraction of the computation, as it only searches
historical PEs instead of the full history to induce the forecasts’ sharpness.

ŷ[t][h] = ∆[t][h] +MLPDecoder
(
e
(p)
[t] , e

(s)
)
, (8)

where e(p)[t] are the encoded masked historic temporal features and e(s) are the encoded static features.
We incorporate a global skip connection to adjust the predictions of the multi-horizon MLP decoder,
effectively decomposing the forecasts into PEs and a baseline.
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B Training Methodology and Hyperparameter Selection

Table 2: The SPADE architecture parameters configured once. The second panel controls the optimized
parameters, we only considered learning rates and training epochs. (*The effective SGD batch is
multiplied by the number of GPUs in the execution cluster.)

PARAMETER Notation Considered Values
SPADE MQT MQCNN

Single GPU SGD Batch Size* - 32 (10,240) 32 (10,240) 32 (10,240)
Main Activation Function - ReLU ReLU ReLU
Max Temporal Convolution Kernel Size - 32 32 32
Temporal Convolution Layers - 6 6 6
Temporal Convolution Filters - 30 30 30
Static Encoder D.Multip. (α × |

√
x(s)|) - 30 30 30

Future Encoder Dimension (hf1) - 50 50 50
Horizon Agnostic Decoder Dimensions - 100 100 100
Horizon Specific Decoder Dimensions - 20 20 20
PeakAttention Number of Heads - 4 4 4

Learning Rates - {0.001, 0.0001} {0.001, 0.0001} {0.001, 0.0001}
Number of Epochs - {10, 20, 30} {10, 20, 30} {10, 20, 30}

Training Methodology. Let θ be a model that resides in the class of models Θ defined by the
model architecture. Let A the dataset’s products, and H the horizon defined by lead times and spans.
We train a quantile regression model by minimizing the following multi-quantile loss:

min
θ

∑
q

∑
i

∑
t

∑
h

QL
(
yi,t,h, ŷ

(q)

i,t,h
(θ); q

)
, (9)

for products a ∈ A, time t and horizon h ∈ H, and ŷ(q) denotes the estimated quantile1. We
optimize SPADE using stochastic gradient descent with Adaptive Moments (ADAM; [3]). Details on the
implementation and optimization methodology and variants are available in Appendix B.

Hyperparameter Selection. The cornerstone of the training methodology for SPADE and the MQT
and MQCNN baseline models is the definition of the training, validation and test sets. For the worlwide
retail dataset the training set consists of the first four years of observations before a year of validation
data. Since SPADE is a production model the test set is incrementally updated as new data becomes
available, the model selection is performed using an online learning approach.

For the hyperparameter selection, we only consider the exploration learning rates and then number of
SGD. See Table 2 the configuration space along with particular hyperparameters for each dataset.

1During training, demand and forecasts are normalized by the length of the horizon h.
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C SPADE Architecture Ablation Study
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Figure 6: Peak Attention and Masked Convolutions enhance both MQCNN and MQT architectures by
filtering peaks before inputting temporal features to the encoder, thus mitigating the peak carry-over
effect. This approach significantly reduces training variance and enhances the forecast accuracy.

Table 3: Evaluation of P50 and P90 probabilistic forecasts averaged over 10 random seeds along their
95 percent confidence interval (±), lower is better. All hyperparameters were kept constant across all
architecture variants. Average percentage difference relative to control in the first column.

MQT MQCNN
Diff Peak Attention Masked Conv Original Diff Masked Conv Original

Overall P50 WQL -1.237 0.0918±0.0041 0.0946±0.0107 0.0930±0.0068 2.333 0.0939±0.0034 0.0918±0.0057
P90 WQL -5.786 0.0629±0.0007 0.0646±0.0029 0.0668±0.0020 -1.757 0.0642±0.0005 0.0653±0.0007

Peak P50 WQL -0.197 0.2813±0.0024 0.2803±0.0027 0.2818±0.0049 -1.342 0.2869±0.0031 0.2908±0.0129
P90 WQL -4.193 0.3483±0.0064 0.3422±0.0096 0.3636±0.0200 -3.736 0.3545±0.0104 0.3683±0.0323

PostPeak P50 WQL -9.966 0.1217±0.0137 0.1274±0.0033 0.1351±0.0086 -17.121 0.1266±0.0101 0.1527±0.0364
P90 WQL -16.151 0.0762±0.0038 0.0777±0.0017 0.0909±0.0051 -17.834 0.0775±0.0036 0.0944±0.0111

We performed ablation studies on variants of the MQCNN and MQT. We attribute the effectiveness of
SPADE in mitigating the peak carry-over effect to the incorporation of masked convolutions and
temporal feature splitting. We simplified the experimental setup in this ablation study, using the
Tourism-Ldataset, a detailed Australian Tourism Dataset comes from the National Visitor Survey,
managed by the Tourism Research Australia agency, it is composed of 555 monthly series from 1998
to 2016 organized geographically [13]. We introduce peaks in the time series, simulating a 3% data
contamination using normal noise with the variance of each series to achieve better control in the
experiments, making it easier to evaluate the accuracy of around PEs.

We consider the forecasting task, where we produce P50 and P90 quantile forecasts for the last
twelve months of all Tourism-Lseries, that we evaluate using the Weighted Quantile Loss (WQL)
defined in Equation 1, but in contrast to the main experiment we only consider weekly forecasts. We
differentiate between overall and post PEs (PPEs), to focus on the carry-over effect. As shown in
Table 3, the masked convolution filters predictions and consistently improves its original counterpart.
Relative post PEs P50 improvements of 9.96% for MQT and 17.12% for MQCNN. Figure 6 and Table 3,
comparing MQCNN/MQT with and without masked convolution reveal a notable enhancement in PPE
accuracy when the convolution is included. In addition combining the masked convolutions with the
PeakAttention module produces the best results, as components appear to complement each other.
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