Thinker: Learning to Think Fast and Slow

Stephen Chung* Wenyu Du* Jie Fu
University of Cambridge The University of Hong Kong Shanghai Al Lab
Abstract

Recent studies show that the reasoning capabilities of Large Language Models
(LLMs) can be improved by applying Reinforcement Learning (RL) to question-
answering (QA) tasks in areas such as math and coding. With a long context length,
LLMs may learn to perform search, as indicated by the self-correction behavior
observed in DeepSeek R1. However, this search behavior is often imprecise
and lacks confidence, resulting in long, redundant responses and highlighting
deficiencies in intuition and verification. Inspired by the Dual Process Theory in
psychology, we introduce a simple modification to the QA task that includes four
stages: Fast Thinking, where the LLM must answer within a strict token budget;
Verification, where the model evaluates its initial response; Slow Thinking, where
it refines the initial response with more deliberation; and Summarization, where
it distills the refinement from the previous stage into precise steps. Our proposed
task improves average accuracy from 25.6% to 27.3% for Qwen2.5-1.5B, and from
45.9% to 51.0% for DeepSeek-R1-Qwen-1.5B. Notably, for Qwen2.5-1.5B, the
Fast Thinking mode alone achieves 25.2% accuracy using fewer than 1000 tokens,
demonstrating substantial inference efficiency gains. These findings suggest that
intuition and deliberative reasoning are distinct, complementary systems benefiting
from targeted training. Additionally, we have open-sourced both the trained models
and the source code.

1 Introduction

Multiple studies have shown that the reasoning capabilities of Large Language Models (LLMs) can
be enhanced by applying Reinforcement Learning (RL) to question-answering (QA) tasks [} 12} 3],
demonstrating impressive mathematical and coding performance across benchmarks. With long
context lengths, an interesting emergent behavior is self-correction within the chain-of-thought
(CoT), where the LLM learns to perform search, such as verifying its steps, backtracking, and trying
alternative paths.

However, it has been observed that this emergent search tends to be inefficient—the CoT is often
long and redundant [4} I5]. For example, Deepseek R1’s reasoning typically involves excessive
backtracking and verification [1]]. A likely cause is inefficient temporal credit assignment: for
instance, in the GRPO algorithm used to train Deepseek R1, the entire generation sequence receives
the same scalar advantage. That is, if the final answer is correct, the probability of the whole
sequence is increased—regardless of which parts were actually useful. As a result, futile search
paths and uncertain verifications are also rewarded, as long as the correct solution is eventually
produced. Consequently, intuition—the ability to identify promising search paths rapidly—and
verification—the ability to evaluate a search path confidently—are not explicitly trained and may
therefore be underdeveloped.

A typical RL solution to this issue is to use more precise temporal credit assignment, such as
incorporating a critic to compute a more accurate advantage for each token, as in PPO [6]]. However,

*Equal contribution. Correspondence to: mhc48@cam. ac . uk.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



studies show that PPO performs similarly to GRPO [7, 2]—indicating that the critic may not be
accurate enough for token-level credit assignment. Another approach is to use a lower discount rate or
a shorter context length to encourage more efficient search; however, this may hinder the emergence
of search behavior, as studies show that a long context length is necessary for strong performance
(8, 9].

To address this dilemma, we draw inspiration from how hu-
man decision-making is modeled under Dual Process Theory Propose Initial Solution Rapidly
[LO]. According to this theory, humans possess two distinct
but complementary cognitive systems: System 1, which op-
erates quickly and intuitively based on heuristics but is prone
to biases, and System 2, which is slower, more deliberate, System 1 System 2
and capable of reflective reasoning. Within this framework,
a typical decision-making process unfolds as follows:

Fast Thinking Slow Thinking

1. System 1 rapidly generates a candidate option
based on intuition.

2. System 2 evaluates this option through mental sim- Figure 1: Conceptual model of the in-
ulation. teraction between Fast Thinking and

Slow Thinking modes in the Thinker
task, based on Dual Process Theory.

Verify and Refine Solution Carefully

3. If the option passes verification, it is implemented;
otherwise, System 2 attempts to refine it.

4. If refinement fails, the process returns to System 1 for another option.

Inspired by this decision-making process, we propose the Thinker task as an alternative to the standard
QA task. In a typical QA task, the model receives a question and generates a final answer in a single
pass. A binary reward is given based solely on the correctness of the final answer. In contrast, the
Thinker task decomposes the response into a four-step process:

1. Fast Thinking: The agent generates an initial answer using a small token budget.

2. Verification: The agent evaluates the correctness of the initial answer using a small token
budget. If verified, it is accepted as the final answer.

3. Slow Thinking: If the initial answer fails verification, the agent can produce another final
answer, using a large token budget.

4. Summarization: The agent summarizes the reasoning from the slow thinking step into a
concise summary that leads to the same final answer.

We design distinct reward signals for each step, aiming to enhance different capabilities of the agent:
intuition from Fast Thinking, evaluation from Verification, refinement from Slow Thinking, and
integration from Summarization. Crucially, the reward signal for each task is restricted to that task
alone. This separation allows for more precise temporal credit assignment by isolating learning
signals for each task. For example, in the Fast Thinking task, the agent receives a binary reward
based on the correctness of the initial answer, encouraging it to identify promising search paths under
strict token budgets—thereby strengthening intuition. Meanwhile, the Slow Thinking task preserves
the opportunity for the agent to learn a more general search strategy to refine previously incorrect
answers.

The design facilitates a virtuous loop between intuition and reasoning. Fast Thinking helps Slow
Thinking by providing a promising initial search path, while Slow Thinking helps Fast Thinking by
refining flawed intuition. This bidirectional refinement mirrors how expert human decision-making
evolves through repeated interactions between intuition in System 1 and reasoning in System 2 [11].

Experimental results validate our approach: relative to the QA task, the Thinker task yields consistent
gains across diverse math benchmarks, with average relative performance gains of 6.7% for Qwen2.5-
1.5B models and 11.1% for DeepSeek-R1-Distill-Qwen-1.5B models. Furthermore, our analysis
reveals a notable reduction in reflection patterns, suggesting more direct reasoning. In summary, the
proposed Thinker task offers the following key strengths:

* Specialized Training: Dedicated sub-tasks and rewards are designed to explicitly train
distinct agent capabilities, providing richer and more targeted learning signals.



* General Applicability: The Thinker task can replace standard QA tasks without imposing
constraints on the choice of RL algorithm or model architecture.

* Inference Efficiency: The Fast Thinking mode, requiring minimal token generation, can be
deployed standalone for simpler tasks, offering a flexible trade-off between performance
and computational cost during inference.

¢ Strong Empirical Performance: Our experiments demonstrate that agents trained with
the Thinker task consistently outperform those trained on standard QA tasks across various
benchmarks.

2 Background

In a single-turn QA task, a question is sampled from a dataset, and the LLM generates a response
to the question. Concretely, let the dataset be denoted as D = {(z(;), yz‘i))}ivzl, where z ;) denotes

the i-th question, ya) is its corresponding ground-truth answer, and [V is the size of the dataset. Let

mg(- | ) denote the model’s policy, parameterized by 6. A response a ~ mg(- | x) is sampled for
question x. The objective is to maximize:

J(0) = Eqy-~p[R(a, y7)]; M

where a ~ 7g(- | ), and R is the reward function, such as a binary function that returns 1 if the
extracted answer from a matches the ground-truth answer y*, and 0 otherwise.

In a more general multi-turn task, we allow the dialogue to continue after the first response. Concretely,
we denote z; and a; as the prompt and model response at turn ¢. The initial prompt x is randomly
sampled from the dataset D. To generate the subsequent prompt x4, we define the transition function
2zt = g(xo.4—1, at—1) (with z,.; endpoint-inclusive), which determines the next prompt based on
previous prompts and responses, or whether to terminate the episode. Thus, the objective in the
multi-turn task becomes:

J(@) = ]E-I‘o ,y*~D

T
> Ri(agu, y*)] : )

t=0

where a; ~ (- | Zo.t,a0.1—1), that is, the response is conditioned on all previous prompts and
responses, and 7 is the terminal step.

3 Method

In the proposed Thinker task, we decompose the QA task into four steps. The whole task occurs
within a single dialogue, meaning that the agent receives all prompts and responses from previous
steps in addition to the current prompt. An illustration of the Thinker task is shown in Figure[2]

3.1 Task Description

Step 1 - Fast Thinking. In the first step, the agent is prompted to answer the given question concisely
within a strict token budget. The response in this step is restricted to a relatively short maximum
generation length (e.g., 1000 tokens), meaning that the response will be truncated if it exceeds this
length. The reward Ry, in this step is defined as a binary function based on the correctness of the
extracted answer. Specifically, let ypy denote the extracted answer; then R = 1{ypns = y*}. The
agent always proceeds to the next step after the response.

Motivation. The motivation of this step is to explicitly train the agent’s intuition. As the agent must
generate a response under a strict token budget, it cannot search extensively. It is usually restricted to
a few search paths, which are directly reinforced if one leads to the correct answer.

Step 2 - Verification. In the second step, the agent is prompted to verify whether the fast answer
Yrast 18 correct, and must output either Yes or No. The response in this step is restricted to a relatively
short maximum generation length (e.g., 2000 tokens). The reward Ryify in this step is defined as a
weighted binary function based on the correctness of the verification. Specifically, let 4/yeriry denote
the extracted answer; then:



4 )

Step 1: Fast Thinking
User: Please answer the question concisely. This is the question: <Question>
Response: Step 1...Step 2 ... The answeris!y,., ! _ o Training
L it Rfast - 1{yfast =Y }/ Always proceed
Inference
/ o . \ Always proceed
Step 2: Verification :
Either Yes or No
User: Is your above answer correct?
Response: Let me verify. Step 1... Step 2 ... The verification answer isi
o 2 ok
Rverify _ (1 - pfast—acc) ° 1{yvcnfy - Yes} if Yrast _ v, Training
\_ Dtast-ace * 1{Yverity = No} otherwise, /| If¥iq is incorrect
- ~ Inference
Step 3: Slow Thinking IfYyeriry is NO
User: Your initial answer is verified to be incorrect. Please try again.
Response: Let me correct my mistake. Step 1... Step 2 ... The new answer is}
IRy = 1 =y
\ slow {yslow Yy }/ Trainin
T If y 0w IS COrrect
( Step 4: Summarization ) Inference
User: Your final answer is correct. Please summarize the steps concisely. Never proceed
This is the question: <Question>l_ ________
1
Response: Step 1... Step 2 ... The answer is:ysummaw:

K Rsurnmary = 1{ysummary = yslow} aF ClOg /P (asummary|xfast ) /
Short generation length Long generation length
C] (e.g. 1000 tokens) C] (e.g. 6000 tokens)
Figure 2: The four-step Thinker task. Each stage involves a user prompt, model response, and specific

rewards and transition conditions designed to train distinct agent capabilities (intuition, evaluation,
refinement, and integration). Reward function details are in the main text.

Ruyerity = {(1 - pfast—acc) : 1{yverify = Yes} if Yfast = y*, 3)
ey Pfast-acc * 1{yverify == NO} Otherwise,

where pryacc denotes the trailing accuracy of the fast thinking step (averaged over the batch). This
weighting is used to balance the two classes, so as to discourage the agent from always outputting
Yes or No when the accuracy of the fast thinking step is too high or too low.

The transition function to the next step depends on whether the agent is in training or inference mode.
In inference mode, if the agent answers Yes, then the fast answer is chosen as the final answer, and
the episode terminates; otherwise, the agent proceeds to the next step. In training mode, if the fast
answer is correct, then it is chosen as the final answer; otherwise, the agent proceeds to the next step.
The distinction between training and inference mode aims to ensure that, during training, the Slow
Thinking step primarily focuses on instances where the fast answer was incorrect. This prevents the
agent from needing to re-verify an already correct fast answer in the Slow Thinking stage. However,
during inference, we do not have access to the ground-truth answer, so we must rely on the agent’s
verification.

Motivation. The motivation of the second step is to explicitly train the agent’s evaluation capability.
The agent receives a clear binary reward based on whether its verification result is correct. Verifying
an answer is often easier than generating one. If the fast answer is already verified to be correct, there
is no need to proceed further, thus saving computational cost.

Step 3 - Slow Thinking. In the third step, the agent is prompted that the fast answer has been verified
to be incorrect and is asked to try an alternative answer. The response in this step is restricted to
a relatively long maximum generation length (e.g., 6000 tokens). The reward Ryoy in this step is
defined as a binary function based on the correctness of the extracted answer. Specifically, let ygjow
denote the extracted answer; then Rgow = 1{ysiow = ¥*}-

In both inference and training modes, ysiow is always chosen as the final answer if the Slow Thinking
step is executed. In inference mode, the episode ends here. In training mode, the agent proceeds to



the next step if the slow answer yq,y 1S correct; otherwise, the episode ends. This distinction exists
because the purpose of the next step—summarization—is to distill the long and correct response in
this step to improve intuition, which is not applicable in inference mode.

Motivation. The motivation of this step is to encourage the agent to learn to refine incorrect fast
answers for difficult questions. It should learn to use the reasoning from the verification step and
revise errors to arrive at the correct answer. If such refinement is not possible, it should learn to try an
alternative approach, leveraging the generous token budget for generation.

Step 4 - Summarization. In the fourth step, the agent is prompted that the previous slow answer
is correct and is asked to concisely summarize the steps leading to it. Crucially, the prompt for
the Summarization step includes the original question again, mirroring its presentation in the Fast
Thinking prompt. The response in this step is restricted to a relatively short maximum generation
length (e.g., 1000 tokens). The reward Rgummary in this step is designed based on two criteria:

1. Correctness: The extracted answer from the summary, Ysummary, should be the same as the
previous slow answer, meaning it should not produce a summary that leads to an incorrect
answer.

2. Consistency: The response should be consistent with what the model is expected to produce
in the Fast Thinking mode—that is, its probability conditioned on the Fast Thinking prompt
should not be unduly low. For example, directly outputting the final answer without
intermediate steps is considered inconsistent, as the likelihood of producing the correct
answer directly under Fast Thinking mode is typically very low.

Combined, the reward function in this step is defined as:

Rsummary = 1{ysummary = yslow} + clog P(asummary | xfast)y 4)

where g is the prompt in Fast Thinking step (i.e., the initial prompt), log P(asummary | Zfast) 18
the log probability of the summary response under the Fast Thinking prompt, and c is a scalar
hyperparameter. In experiments, we found that the agent sometimes still degenerates to give a very
short answer despite the log probability term. To mitigate this, we gate the reward to 0 if the length
of the generated response is less than a low threshold (e.g., 300 tokens).

Motivation. The motivation of the final step is to reinforce concise reasoning patterns by rewarding
correct and consistent summaries. A key design element is that the original question is re-presented
in the Summarization prompt, mirroring its appearance in the Fast Thinking step. The agent is trained
to produce a concise reasoning trace that leads to the correct answer for this input. This encourages
the model to form a strong association between the original question and a correct, concise solution
path. We hypothesize that this targeted reinforcement distills the successful but lengthy reasoning
from Slow Thinking into a compact form suited to the Fast Thinking mode—thereby improving the
agent’s intuition. In addition to intuition, this step also trains the agent’s integration ability, as it must
extract and condense key reasoning steps from the longer trace generated in the previous step.

3.2 Training with the Thinker Task

Training LLMs with the Thinker task requires particular considerations regarding reward propagation.
Since the reward at each step is specific to that step alone, it should not be propagated backward to
earlier steps. This implies that the discount factor between steps should be set to 0, while that within
each step should be high (e.g., 1) to enable effective credit assignment over tokens. The Thinker task
defines only the RL environment and imposes no restrictions on the choice of algorithm or model
architecture, allowing compatibility with any standard RL method (e.g., PPO) and LLM.

4 Related Work

Environment Augmentation. Our Thinker task is a form of environment augmentation for QA,
inspired by Dual Process Theory and related to concepts like the Thinker MDP [12} [13]]. While
Thinker MDP provides agents with a simulated world model for interaction before action, our task
structures QA into stages where self-generated intermediate outcomes guide subsequent reasoning.
This contrasts with multi-attempt tasks [[14] that allow iterative revision but require ground-truth
access during inference, a constraint our method avoids.



RL and Reasoning in LLMs. A large number of studies have demonstrated the effectiveness of
applying RL to enhance the reasoning capabilities of LLMs [1} 2} 3, 9]. Our work builds on these
efforts by decomposing the QA task into the four-step Thinker task. It has been observed that LLMs
trained with RL can produce inefficient CoT [4]], leading to overthinking [15]. Our work relates to
strategies for controlling generation length (often termed token budgets). Examples include dynamic
token budgets that scale with problem complexity [5]], or user-defined budgets |16, [17]. For instance,
Muennighoff et al. [18]] utilize token budget controls during the generation of CoT data for supervised
fine-tuning (SFT). Concurrent works such as ThinkPrune [19]], Concise Reasoning [20], SR-Flow
[21]], and AdaptThink [22] modify the reward or RL algorithm to encourage more efficient reasoning.
While these approaches primarily focus on token budget control within a single response generation,
our method introduces a structured, multi-step RL task explicitly designed to train distinct agent
abilities independent of the underlying RL algorithm. In addition, our work is related to methods for
encouraging self-correction in LLMs [23]]. For instance, methods like Self-Refine [24] and Reflexion
[25] primarily use prompt engineering and few-shot examples to enable agents to incorporate internal
or external feedback for refining subsequent responses. However, unlike our work, these methods
typically do not involve RL fine-tuning of the agent for these self-correction behaviors; instead, the
correction capability is elicited at inference time through prompting.

S Experiments

This section details the experiments conducted to assess whether the Thinker task can more effectively
enhance LLM reasoning capabilities compared to a standard QA task. We focus on the mathematical
reasoning domain here.

5.1 Experimental Setup

To evaluate the Thinker task, we fine-tune two publicly available models: Qwen2.5-1.5B (Q1.5B)
[26] and DeepSeek-R1-Distill-Qwen-1.5B (R1.5B) [1]. While sharing a base architecture, R1.5B has
undergone additional distillation using reasoning data from DeepSeek-R1, endowing it with stronger
initial reasoning and search behaviors compared to the base Q1.5B. Training both models allows us
to investigate the Thinker task’s impact on a model with foundational capabilities (Q1.5B) and its
ability to further enhance a model already specialized for reasoning (R1.5B). For the Q1.5B runs, we
use three independent seeds and report the averaged results.

We fine-tune these models using RL on both the Thinker task and a standard QA task (serving as
our baseline). For all experiments, we employ PPO [6]]. Key hyperparameters include a discount
rate v = 1, GAE lambda A = 1, and a sampling temperature of 1. No KL penalty against a
reference policy was applied. The Fast Thinking and Summarization stages use a 1000-token budget,
Verification uses a 2000-token budget, and Slow Thinking uses a 6000-token budget. Most other
hyperparameters and training details mirror those in Open-Reasoner-Zero, with details provided in

Appendix [A]

For the training data, we utilized the 129K math question-answering dataset provided by Open-
Reasoner-Zero. Each training run for both the Thinker task and the baseline required ap-
proximately 7 days on two compute nodes, each equipped with 8 A100 GPUs. Our im-
plementation, adapted from the Open-Reasoner-Zero codebase [3]], is publicly available at
https://github. com/stephen-chung-mh/thinker-task, which also includes the trained mod-
els.

5.2 Training Dynamics and Evaluation Results

The training performance is shown in Figure [3] measured by accuracy on the training data. For the
Thinker task, we plot fast accuracy (from the Fast Thinking stage) and final accuracy (from the Slow
Thinking stage). Note that the final accuracy is not directly comparable to the baseline’s, as the
Thinker agent effectively has two attempts during training (though only one during testing). We
observe that the Thinker agent’s fast and final accuracy improve steadily, while the baseline’s accuracy
plateaus rather quickly. This may suggest that the Thinker agent is learning the underlying intuition of
the task, which requires sustained training, as opposed to merely acquiring a generic search algorithm.
We also observe that the fast accuracy of the Q1.5B model surpasses the baseline’s. Notably, while



0.5 0.8
0.7

0-4 0.6
o »N/\/\/"“’”WAW\\/\/ 205 /\ /\WV\/\/

>
o
e o
=] /\//'V 5 0.4
o 4 3
go02 / <03
| —— Baseline 0.2 —— Baseline
0.1 4 Thinker (Final) 01 Thinker (Final)
-/ Thinker (Fast) . Thinker (Fast)
0'OO 200 400 600 800 1k 1.2k 0'OO 200 400 600 800 1k 1.2k
Training Steps Training Steps
(a) Qwen2.5-1.5B (b) DeepSeek-R1-Distill-Qwen-1.5B

Figure 3: Accuracy on training set. For the Qwen2.5-1.5B model (a), the shaded region represents
the standard deviation across three independent seeds.

2500 6000
—_ — —— Baseline
%] %)
g 2230 < 5000\ Thinker (Final)
S 2000 < L\/Thi\nker(Fast) M
S o y
= = = A\
< 1750 . < 4000 \/\» -
= —— Baseline =]
o N X o
g 1500 Thinker (Final) g
— Thinker (Fast) 5 3000
@ 1250 @
(%} v
S 1000 S 2000
Q Q.
3 750 4
o o 1000

500

0 200 400 600 800 1k 1.2k 0 200 400 600 800 1k 1.2k
Training Steps Training Steps
(a) Qwen2.5-1.5B (b) DeepSeek-R1-Distill-Qwen-1.5B

Figure 4: Average response length on training set. For the Qwen2.5-1.5B model (a), the shaded
region represents the standard deviation across three independent seeds.

both metrics reflect a single attempt, the Fast Thinking mode achieves superior performance with a
significantly smaller token budget (Figure ), underscoring its efficiency.

Figure [] illustrates the average response length during training, plotting both the Fast Thinking
response length and the cumulative length across all four stages of the Thinker task. The two
models exhibit distinct behaviors. For the Q1.5B model, which lacks strong inherent self-correction
capabilities, the Thinker task’s cumulative length is greater than the baseline’s, as its structured stages
introduce verification and refinement steps. Conversely, for the R1.5B model, which already possesses
self-correction abilities, the Thinker agent’s total response length eventually becomes shorter than the
baseline’s. This suggests that rather than simply adding overhead, the Thinker task refines the R1.5B
model’s existing search process, pruning inefficiencies to achieve more token-efficient reasoning.

To evaluate the models, we consider the following common benchmarks: MATH500, AIME2024,
AIME2025, GPQA Diamond, Olympiadbench, AMC23, and Minerva Math. We evaluate agent
Pass@1 accuracy on these benchmarks every 50 training steps. The average performance across the
benchmarks during training is shown in Figure[5] The trend is similar to the training performance,
with the agent trained on the Thinker task surpassing the baseline. Detailed breakdowns for each
benchmark are provided in Appendix [B] Notably, for the R1.5B model, a moderate gap exists between
its final accuracy and fast accuracy. This disparity is likely attributable to R1.5B’s strong inherent
reasoning capabilities, enabling its Slow Thinking mode to effectively utilize the larger token budget
for refining initial answers.

The performance of the final models is detailed in Table[I] These models correspond to the check-
points, saved at 50-step intervals, that achieved the highest accuracy on a validation dataset. We
evaluated these final models on the aforementioned benchmarks and the additional CollegeMath
benchmark; due to its large size, CollegeMath was reserved for this final evaluation and was not



I
N}
o

> _ -
3 0.24 = z Ay /\ \_,-"“
© I 0.45 " W
g /\/ Nty g
g022 -—a ¥ \/ goao
P g
& > 2035
g 0.20 ©
(]
z —&— Baseline z 030 —&— Baseline
0.18 Thinker (Final) 0.25 Thinker (Final)
‘[ Thinker (Fast) Thinker (Fast)
0.16 0.20
0 200 400 600 800 1k 1.2k 0 200 400 600 800 1k 1.2k
Training Steps Training Steps
(a) Qwen2.5-1.5B (b) DeepSeek-R1-Distill-Qwen-1.5B

Figure 5: Evaluation performance across seven common benchmarks. For the Qwen2.5-1.5B model
(a), the shaded region represents the standard deviation across three independent seeds.

Table 1: Performance comparison across various mathematical reasoning benchmarks. Average
(Avg.) scores are presented. All scores are Pass@1 accuracy (%) averaged over 16 samples. Top
score in each benchmark column is bolded. Standard errors and more statistical analysis are provided
in Appendix [B] Results for the Q1.5B Thinker and Baseline are averaged across three independent
seeds.

MATH AIME AIME GPQA Olympiad AMC Minerva College
500 2024 2025 Diamond bench 23 Math Math

Qwen2.5-1.5B (Q1.5B)

Pretrained 9.05 0.00  0.00 4.55 3.09 4.06 230 740  3.81
Baseline 59.82 410 243 2052 26.05 3536 19.25 3742 25.62
Thinker 6445 625 222 19.21 28.21 39.06 20.38 38.82 27.33
Thinker-Fast 59.82 458 1.25 21.28 24.52 3453 17.85 37.58 25.18
ORZ 58.00 350 1.00 16.80 - - -
SimpleRL ~ 59.00  4.20 - - 21.00 35.00 20.20 - -

DeepSeek-R1-Distill-Qwen-1.5B (R1.5B)

Pretrained  76.21 17.50 17.92 13.76 37.46 5594 2482 38.85 3531
Baseline 86.24 3542 2375 25.69 49.22 72.81 32.08 42.02 4590
Thinker 88.51 38.96 26.67 37.41 55.49 83.59 34.77 42.46 50.98
Thinker-Fast 81.35 1833 14.58 28.85 45.68 66.41 31.39 41.74 41.05

Method Avg

used to assess intermediate checkpoints. For a comprehensive comparison, the table includes the
Fast and Final Accuracy of our Thinker agent, the accuracy of the fine-tuned Baseline, and results
for the original Pretrained model. Since evaluation is performed in inference mode, the Thinker
agent does not require external verification, making its Final Accuracy directly comparable to the
single-attempt baselines. Furthermore, we include reported figures from Open-Reasoner-Zero (ORZ)
[3] and SimpleRL [2]], both of which also utilize PPO to train agents on standard QA tasks.

From Table[I] we observe that the Thinker agent consistently performs better than the other methods
across almost all benchmarks. For the Q1.5B model, the Thinker-Fast agent’s performance is already
close to that of the baseline, while the full Thinker agent achieves a 6.7% relative performance
gain on average compared to this baseline. For the R1.5B model, the Thinker-Fast agent performs
slightly worse than the baseline but still significantly outperforms the pretrained model. This result
for Thinker-Fast is notable, suggesting a substantial efficiency gain, as it only requires 1000 token
budget compared to the 8000 token budget of the pretrained model. The full Thinker-task model with
R1.5B surpasses the baseline by an average relative increase of 11.1%. These results collectively
suggest the benefits of decomposing the single-turn QA task into the proposed four-step Thinker
task. To confirm these benefits extend to larger models, additional experiments on 7B models were
conducted, yielding similar results as detailed in Appendix [D]



Table 2: Comparison with concurrent works fine-tuning R1.5B models on token efficiency bench-
marks. Results from concurrent works are extracted from the respective papers.

MATHS500 AIME24 AMC23

Method

Acc. (%) Length Acc. (%) Length Acc. (%) Length
ThinkPrune [19] 83.2 1938 27.1 5631 73.2 3039
Concise Reasoning [20] 81.0 1965 30.0 6752 69.4 2936
SR-FLOW [21]] 85.3 - 36.7 - 77.8 -
AdaptThink [22] 82.0 1782 31.0 6679 - -
Baseline 86.2 2780 354 5778 72.8 3938
Thinker 88.5 2501 39.0 5597 83.6 3517
Thinker-Fast 80.9 600 18.1 853 66.9 751

To evaluate token efficiency, we analyze the Thinker agent on three benchmarks used in concurrent
work on this topic (Table[2). The results show that our agent achieves superior performance across
all three benchmarks with a competitive token count. The Thinker-Fast mode is also effective on
easier datasets like MATH500 and AMC23, using substantially fewer tokens. This highlights a
key advantage for deployment: the flexibility to select the appropriate mode based on the task’s
complexity.

5.3 Analysis and Case Study

Reflection and Response Length. Beyond overall performance, we investigated whether the Thinker
task encourages more direct reasoning with less overt self-reflection or self-doubt. We compiled a
vocabulary list of terms commonly associated with self-reflection in Deepseek R1’s outputs (e.g.,
"wait," "however," "alternatively") and measured the average occurrence of these reflection patterns
during training, with results shown in Figure [6a] We observed that the Thinker agent tends to use
fewer such reflection patterns in its reasoning trace, suggesting it may be learning to reason more
directly.

A detailed breakdown of response length during training is presented in Figure[6b] The trends for the
two agents diverge: after stabilizing, the baseline’s response length steadily increases, likely due to
an increase in learned self-reflection. Conversely, the Thinker agent’s total response length gradually
decreases. This improved efficiency is not due to a reduction in the length of individual stages, which
remain consistent. Rather, it stems directly from the model’s rising Fast Thinking accuracy. As the
agent’s intuition improves, it solves more problems correctly in the Fast Thinking stage, thereby
allowing it to bypass the token-intensive Slow Thinking stage and significantly reduce its average
token length.

5 5000
—— Baseline W W
Thinker VAW»”M\,

g <
34 © 4000
(%] s
c 3
93 c
2
§ % 3000 Baseline
s = Thinker - Total
-S g» 2000 —— Thinker - Fast
§ g —— Thinker - Verify
%L 3 —— Thinker - Slow
o« 1000
0 A\
0 200 400 600 800 1k 1.2k 0 200 400 600 800 1k 1.2k
Training Steps Training Steps
(a) Reflection Pattern (b) Response Length

Figure 6: Average reflection pattern count and response length for DeepSeek-R1-Distill-Qwen-1.5B
(R1.5B) during training.



o
(]
o
o
o
o
o

—— Thinker —— Thinker
Thinker without Summarization 5000 Thinker without Summarization

o o
N N
o i

Reflection Pattern Occurance
w
Average Token Length
]
o
o

2000 ﬁ\l\n
; Y ’,,x/‘/w‘ml\/

Vot a4 v\,lfv-vvn,
1000

0 200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 0 200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k
Training Steps Training Steps

0.10

(a) Reflection Pattern (b) Response Length

Figure 7: Average reflection pattern count and response length for Qwen2.5-1.5B (Q1.5B) during
training, with and without Summarization stage.

Role of SummarizationE] Finally, we investigated the importance of the Summarization step
through an ablation analysis. We trained a Q1.5B model using a modified Thinker task where the
Summarization step was removed. The average reflection pattern count and response length for the
Thinker task, both with and without the Summarization step, are presented in Figure[/| Without the
Summarization step, the model exhibited a more frequent increase in reflection patterns, accompanied
by highly fluctuating response lengths. This indicates that the Summarization step may contribute to
stabilizing the learning process, potentially by discouraging degeneration into excessive reflection,
though we cannot rule out that the observed divergence is due to stochastic variation.

Removing the Summarization step negatively impacted Fast Thinking: average Fast Accuracy
dropped from 26.75% to 24.84%. This suggests summarization, by potentially distilling concise
reasoning, enhances intuition for Fast Thinking. Interestingly, final accuracy remained comparable
(27.85% with vs. 27.84% without summarization), indicating that the Slow Thinking step could often
compensate for the reduced fast accuracy. Detailed ablation results can be found in Appendix

Case Study. We conducted a case study to examine how the agent’s reasoning adapts across the
Thinker task stages. Observations from representative outputs (see Appendix [C]for full examples)
highlight the importance of the Fast Thinking mode. When an initial Fast Thinking output is incorrect,
the agent first engages in a Verification stage to assess its own answer with clear reference to the steps
given in the Fast Thinking mode. If errors are identified, the subsequent Slow Thinking stage involves
a detailed refinement. During Slow Thinking, the agent explicitly scrutinizes the flawed reasoning
from the Fast Thinking attempt and insights from its own Verification, endeavoring to generate a
new, correct solution. Furthermore, after a successful correction, the agent learns to distill the long
reasoning into concise explanations during the last Summarization stage.

6 Future Work and Conclusion

In this paper, we introduced the Thinker task, a novel approach that decomposes the standard single-
turn question-answering process into a structured four-stage task. This decomposition aims to provide
more explicit reward signals for training distinct agent capabilities: intuition via Fast Thinking,
evaluation via Verification, refinement via Slow Thinking, and integration via Summarization.

Beyond the application to question-answering, this work underscores the potential of environment
augmentation in RL. In RL, while significant attention is devoted to algorithm development, the
environment itself is typically treated as a given problem specification. However, as demonstrated by
this paper and prior research such as the Thinker MDP, there is considerable untapped potential in
designing environments that offer richer inputs, more structured interactions, or more nuanced reward
signals. Future research could explore alternative methods for enriching RL environments, perhaps
by developing more dynamic tasks that adapt to an agent’s learning state or that explicitly target the
development of a wider array of cognitive capabilities. Such advancements in environment design
could unlock new levels of performance and emergent abilities in RL agents.

*This ablation study used a 6000-token Verification step. The length was later reduced to 2000 tokens for the
main experiments, as this did not significantly affect performance.

10



Acknowledgment

Jie Fu is supported by Shanghai Artificial Intelligence Laboratory.

References

[1] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
IIms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[2] Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He.
Simplerl-zoo: Investigating and taming zero reinforcement learning for open base models in the
wild. arXiv preprint arXiv:2503.18892, 2025.

[3] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung- Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

[4] Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the
overthinking of ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

[5] Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen.
Token-budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[7] Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models.
arXiv preprint arXiv:2501.03262, 2025.

[8] Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

[9] Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing ol-
preview with a 1.5b model by scaling rl. https://github.com/agentica-project/rllm,
2025. Notion Blog.

[10] Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.
[11] Gary A Klein. Sources of power: How people make decisions. MIT press, 2017.

[12] Stephen Chung, Ivan Anokhin, and David Krueger. Thinker: Learning to plan and act. Advances
in Neural Information Processing Systems, 36:22896-22933, 2023.

[13] Kevin A Wang, Jerry Xia, Stephen Chung, and Amy Greenwald. Dynamic thinker: Optimizing
decision-time planning with costly compute. In The Seventeenth Workshop on Adaptive and
Learning Agents.

[14] Stephen Chung, Wenyu Du, and Jie Fu. Learning from failures in multi-attempt reinforcement
learning. arXiv preprint arXiv:2503.04808, 2025.

[15] Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi
Liu, Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on
efficient reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

[16] Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

[17] Yuhui Xu, Hanze Dong, Lei Wang, Doyen Sahoo, Junnan Li, and Caiming Xiong. Scalable
chain of thoughts via elastic reasoning. arXiv preprint arXiv:2505.05315, 2025.

11


https://github.com/agentica-project/rllm

[18] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple
test-time scaling. arXiv preprint arXiv:2501.19393, 2025.

[19] Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

[20] Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning
via reinforcement learning. arXiv preprint arXiv:2504.05185, 2025.

[21] Yubo Dong and Hehe Fan. Enhancing large language models through structured reasoning.
arXiv preprint arXiv:2506.20241, 2025.

[22] Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models
can learn when to think. arXiv preprint arXiv:2505.13417, 2025.

[23] Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. When can llms actually
correct their own mistakes? a critical survey of self-correction of llms. Transactions of the
Association for Computational Linguistics, 12:1417-1440, 2024.

[24] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534-46594,
2023.

[25] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36:8634-8652, 2023.

[26] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen?2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[27] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 3505-3506, 2020.

[28] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[29] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed
framework for emerging {Al} applications. In 13th USENIX symposium on operating systems
design and implementation (OSDI 18), pages 561-577, 2018.

[30] Evan Miller. Adding error bars to evals: A statistical approach to language model evaluations.
arXiv preprint arXiv:2411.00640, 2024.

12



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract, we clearly list our contributions, and at the end of the introduc-
tion, we further elaborate on our contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section[6} we discuss the limitations of our work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

13



Justification: This paper is an empirical study.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section [5.1]and Appendix [A] we provide detailed evaluation results and
training hyperparameters.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14



Answer: [Yes]

Justification: We have submitted our code and data to OpenReview, and we will open-source
them on GitHub in the final version.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section[5.T]and Appendix [A] we provide all evaluation and training hyper-
parameters.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Standard errors of the main evaluation results are reported in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

15


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Details of the computational resources required are discussed in Section[5.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have read this code.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss it in Appendix [E]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: Our study is an empirical exploration. We use open-source mathematical
problem sets, and the models we release are intended solely for research purposes—not for
direct industrial application.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Please refer to Appendix [A]
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

17


paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All datasets, codes and models will be fully released under the license of
CC-BY 4.0.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

18



* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We use LLMs solely for grammatical checks in this work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19


https://neurips.cc/Conferences/2025/LLM

A Experimental Details

This section describes the details of the experiment in Section [3] Our implemen-
tation, adapted from the Open-Reasoner-Zero codebase [3], is publicly available at
https://github.com/stephen-chung-mh/thinker-task, which also includes the trained mod-
els.

A.1 Hyperparameters

We use the same hyperparameters as those provided in Open-Reasoner-Zero [3]], except that we
reduce the number of samples per prompt from 64 to 32 to save computational resources. One training
step proceeds as follows: we first randomly sample 128 prompts (rollout batch size) from the training
dataset and generate 32 samples per prompt, totaling 128 x 32 = 4,096 samples. We then divide the
generated samples into 1 (12) training batch for the actor (critic), where each training batch is used
for one optimizer update.

We tune the coefficient ¢ in Rgummay by searching over {le-4,1e-3,1e-2}. Other Thinker-task-
specific hyperparameters are selected using heuristics. We use a lower sampling temperature during
summarization, as we observe that higher temperatures tend to produce less concise and consistent
summaries.

For the baseline model, we use similar hyperparameters, except with a generation length of 8,000
tokens. We found that 8,000 tokens yield optimal baseline performance on R1.5B.

Table 3: Hyperparameters used in experiments.

Parameter Value
PPO

Rollout Batch Size 128
Number of Samples Per Prompt 32
Number of Epochs 1
Actor Learning Rate le-6
Number of Actor Update Steps 1
Critic Learning Rate Se-6
Number of Critic Update Steps 12
Discount Rate v 1
GAE Lambda A 1
Clip Ratio € 0.2
KL Loss None
Sampling Temperature 1

Sampling Temperature in Summarization 0.6

Generation Length

Fast Thinking 1,000
Verification 2,000
Slow Thinking 6,000
Summarization 1,000

Reward-specific
Coefficient ¢ in Rsummary le-3
Minimum Length for Summarization 300

A.2 Prompt Templates

The prompt templates used in the four stages of the Thinker task are illustrated in Box [A.T] Note
that not all prompts are necessarily used. For example, in training mode, if the agent’s fast answer is
correct, the Slow Thinking and Summarization prompt will be skipped. Please refer to the main text
for the termination conditions.

20



1. Fast Thinking

User: Answer the below question with concise steps and output the final answer
within \boxed{}. Limit your response below 1000 words.

This is the problem: {question}

Assistant: <Agent Response>

2. Verification

User: Is your answer above correct? Please verify each step and the answer care-
fully. Output \boxed{Yes} if your answer is correct, or \boxed{No} if your answer is
incorrect.

Assistant: <Agent Response>

3. Slow Thinking

User: Your initial answer is incorrect. Now, think about the possible errors and consider
alternative solutions. The reasoning process should be enclosed within <think>...</think>.
This is the problem: {question}

Let’s think step by step and output the final answer within \boxed{}.

Assistant: <think> <Agent Response>

4. Summarization

User: Your final answer is correct. Now summarize the steps leading to your final
answer concisely and precisely, excluding internal reasoning. Limit your response between
300 and 1000 words.

This is the problem: {question}

Assistant: <Agent Response>

A.3 Computational Resources

Each training run for both the Thinker task and the baseline required approximately 7 days on two
compute nodes, each equipped with 8 A100 GPUs. We use the Deepspeed [27], vVLLM [28]], and
Ray [29] library for distributed training.

21



B Result Details

This section describes additional experimental results that were omitted from the main text due to

length constraints.

B.1 Evaluation Results

Figure 8] and Figure [0] show the breakdown of Figure 5| from the main text, corresponding to the
evaluation results of fine-tuning Q1.5B and R1.5B on the QA task or the Thinker task during training.

The detailed evaluation results of the ablated run in which the Summarization step is removed can be
found in Table[d] labeled as SkipSum.

Table 3] and Table [f] present the standard error corresponding to the results reported in Table[T} The
standard errors here are computed using Equation (1) from [30].

o
(=)

Cl
[}

Accuracy
o
=

o
N

0 200 400 600 800 1k

Training Steps

(a) MATH 500

1.2k

I{-..,‘—.- A

-
o

Accuracy
=
o

0 200 400 600 800 1k 1.2k
Training Steps
(d) GPQA Diamond

0 200 400 600 800 1k 1.2k
Training Steps
(b) AIME 24

0.30
0.25

3 0.20

o

3015

v

< o0.10
0.05

0 200 400 600 800 1k 1.2k
Training Steps
(e) Olympiad Bench

Il...-li’

Accuracy

—=— Baseline (Final Acc)
—m— Thinker (Final Acc)
—®=- Thinker (Fast Acc)

0 200 400 600 800 1k 1.2k
Training Steps
(g) Minerva Math

0 200 400 600 800 1k

Training Steps

(c) AIME 25

Accuracy

0 200 400 600 1.2k

800 1k
Training Steps

(f) AMC 23

Figure 8: Detailed evaluation results of Q1.5B fine-tuned using QA task or Thinker task on individual
mathematical reasoning benchmarks. The shaded region represents the standard deviation across

three independent seeds

22



0.8
Y Py
> g aa - >03
9 9
e (] e
506 5 0.2
[v] a o
[} | § v
< " < 0.1 n \l L3
. I
04 " “-‘/ \“F\.A.,Fi.'ll g™
] 0.0f
0 200 400 600 800 1k 1.2k 0 200 400 600 800 1k 1.2k 0 200 400 600 800 1k 1.2k
Training Steps Training Steps Training Steps
(a) MATH 500 (b) AIME 24 (c) AIME 25

05 08
> >0.4 ey g >06 n Ny el
E E - enna’ " ¥ E 'l H.'H " ‘f'.
=1 503 1 2 A =1
5} 3 S04 s
< < <
0.2
s 02 Y
014 "
200 400 600 800 1k 1.2k 0 200 400 600 800 1k 1.2k 0 200 400 600 800 1k 1.2k
Training Steps Training Steps Training Steps
(d) GPQA Diamond (e) Olympiad Bench (f) AMC 23

0.3

i A

."-H'.’{l

Accuracy

—m— Baseline (Final Acc)
—m— Thinker (Final Acc)
/ —m - Thinker (Fast Acc)

0.1

0 200 400 600 800 1k 1.2k
Training Steps

(g) Minerva Math

Figure 9: Detailed evaluation results of R1.5B fine-tuned using QA task or Thinker task on individual
mathematical reasoning benchmarks.

Table 4: Mathematical reasoning performance of the Thinker agent trained without the Summarization
stage. Average (Avg.) scores are presented. All scores are Pass@1 accuracy (%) averaged over 16
samples. All runs used a 6000-token Verification step.

MATH AIME AIME GPQA Olympiad AMC Minerva College
500 2024 2025 Diamond bench 23 Math  Math

Qwen2.5-1.5B (Q1.5B)

Thinker 6425 625 250 23.74 28.11 40.62 19.03 38.33  27.85
Thinker-Fast 61.60 6.25 250 26.39 24.78 3594 18.66 37.85 26.75
SkipSum 6430 917 417 18.62 29.11 37.50 20.82 3942 27.89
SkipSum-Fast 60.30  5.00 125 20.27 24.17 30.00 19.85 38.24 24.88

Method Avg

23



Table 5: Standard error analysis for the Q1.5BB model. All scores are in %. The values are presented
as score (standard error).

Thinker Thinker-Fast Baseline
Benchmark #Qs
Seed1 Seed2 Seed3 Seed1 Seed2 Seed3 Seed1 Seed2 Seed3
MATH 500 500 6325 64.72 6538 5942 59.67 60.38 5798 60.72 60.75
(1.83) (1.79) (1.80) (1.83) (1.85) (1.84) (1.79) (1.80) (1.79)
AIME 2024 30 5.62 5.83 7.29 5.00 4.17  4.58 3.33 4.38 4.58
(2.51) (3.200 (3.39) (2.83) (2.69) (3.16) (1.58) (2.61) (2.49)
AIME 2025 30 3.54 1.88 1.25 1.46 1.04 1.25 3.33 1.46 2.50
(1.84) (1.13) (0.70) (1.26) (0.85) (0.63) (1.79) (1.07) (1.36)
GPQA Diamond 198 19.00 17.99 20.64 23.11 19.85 20.86 21.46 1935 20.74
(1.69) (1.67) (1.78) (1.77) (1.84) (1.81) (1.80) (1.61) (1.74)
Olympiad Bench 675 28.02 27.94 28.67 24.82 2413 24.60 2454 2646 27.16
(1.44) (1.45) @.46) (1.35) (1.37) (1.35) (1.32) (1.39) (1.38)
AMC23 40 3891 4141 36.88 36.09 3484 3266 3438 3641 3531
(6.11) (6.38) (6.18) (6.43) (5.74) (5.78) (5.62) (5.67) (5.46)
Minerva Math 272 1990 21.83 1942 1698 20.06 16.50 17.78 19.88 20.08
(1.92) (2.02) (1.90) (1.75) (1.90) (1.74) (1.85) (1.88) (1.94)
College Math 2818 38.73 39.15 38.58 3749 37.84 3739 3585 3826 38.15
(0.85) (0.86) (0.85) (0.85) (0.84) (0.84) (0.81) (0.84) (0.85)

Table 6: Standard error analysis of R1.5B models on mathematical benchmarks. All scores are in %.
The values are presented as score (standard error).

Benchmark # Questions Thinker Thinker-Fast Baseline
MATH 500 500 88.51 (1.22) 81.35 (1.50) 86.24 (1.25)
AIME 2024 30 38.96 (7.21) 18.33 (5.23) 35.42 (7.09)
AIME 2025 30 26.67 (7.52) 14.58 (5.37) 23.75 (6.74)
GPQA Diamond 198 37.41 (2.24) 28.85 (2.27) 25.69 (2.00)
Olympiad Bench 675 55.49 (1.67) 45.68 (1.66) 49.22 (1.66)
AMC23 40 83.59 (4.70) 66.41 (5.94) 72.81 (5.18)
Minerva Math 272 34.77 (2.57) 31.39 (2.43) 32.08 (2.47)
College Math 2781 42.46 (0.90) 41.74 (0.89) 42.02 (0.89)

24



B.2 Ablation Study on Fast Thinking Mode

To understand the importance of the Fast Thinking mode in the overall Thinker task, we experiment
by using a less-trained agent to generate the Fast Thinking response, while still using the fully trained
agent to generate responses for the remaining stages This allows us to measure the impact of Fast
Thinking quality on overall performance.

Specifically, we use four earlier R1.5B Thinker-agent checkpoints (Step 0, which is the pretrained
model; Step 200; Step 400; and Step 600) to generate the Fast Thinking response, and use the fully
trained R1.5B Thinker-agent for the remaining stages. We evaluate final accuracy across the eight
benchmarks, as in the main evaluation. The results are shown in Figure @}

We observe a general positive correlation between the Fast Thinking accuracy of a checkpoint and the
final accuracy, suggesting that the Fast Thinking response has a substantial influence on subsequent
stages. For instance, when we use the pretrained model (Step 0) to generate the Fast Thinking
response, final accuracy drops significantly from 49.8% to 36.3%. However, we also observe that
this sensitivity diminishes as Fast Thinking performance improves. For example, using the Step
200 model, which has a moderate Fast Thinking accuracy of 28.9%, leads to a final performance of
49.18%—a minor drop from 49.8%.

We conjecture that this is due to the robustness of the Slow Thinking mode: since it is trained
specifically to handle incorrect Fast Thinking answers, it can often recover from slightly flawed
initial intuition. However, if the Fast Thinking intuition is very poor (as in the pretrained model), the
subsequent stages may fail to recover due to the lack of a meaningful starting point. A qualitative
analysis of how the Fast Thinking stage interacts with subsequent stages can be found in the case
study in Appendix [C} which shows that the trained agent is able to correct flawed heuristics from the
Fast Thinking mode during the Verification and Slow Thinking mode.

60

ul
o

e I e —

% N B

H
o

Average Accuracy (%)
N w
o o

=
o

—4— Final Accuracy
Fast Accuracy of Checkpoint

0Step 0 Step 200 Step 400 Step 600 Full Model

Fast Thinking Checkpoint Step

Figure 10: Final accuracy on the evaluation benchmarks of the Thinker agent (R1.5B) when its
Fast Thinking stage is generated by model checkpoints at previous training steps. The original Fast
Thinking accuracy of these respective checkpoints is also shown. All scores are Pass@1 accuracy (%)
averaged over 16 samples. Error bars represent standard error, which are typically minor in this data.

3The section here used a 6000-token Verification step. The length was later reduced to 2000 tokens for the
main experiments, as this did not significantly affect performance.

25



C Case Study

In this section, we present sampled responses from the fine-tuned R1.5B agent on the Thinker task,
aiming to understand the behavior learned by the agent. Only responses with an incorrect fast answer
are selected, so that the interaction between Fast Thinking and Slow Thinking can be observed.

C.1 Case Study I: Identifying Flaws in Fast Thinking (Box[C.1} Box|[C.2)

This example demonstrates the Thinker task’s ability to guide the agent from an uncertain, flawed
initial attempt to a correct, verified solution by structuring its reasoning process.

Fast Thinking. The agent adopts a quick, System-1-like heuristic despite expressed uncertainty
(“the side length of the larger hexagon is a + 2 - 2 = a + 4? Not sure.”) and proceeds with this
flawed assumption (S = a + 4). This leads to an incorrect perimeter, 61/3 — 12, which is physically
implausible as it results in a negative value.

Verification. The agent directly confronts this flawed assumption. It explicitly questions the initial
logic (“The side length of this larger hexagon might be s 4+ 4? Or is it s + 2? Wait, reconsider. <...>
the relationship isn’t straightforward.”). This critical re-evaluation leads to the correct geometric

insight, yielding the relationship S = s + %. Based on this corrected understanding, the agent
identifies the error in its initial reasoning and conclusion, stating, “The previously given answer was
61/3 — 12. But that would not match. <...> Thus our initial approach is wrong.”

Slow Thinking. The agent then leverages the insight from Verification. It explicitly focuses on the

“difference in the apothems” to re-derive S' = s + %. This demonstrates a clear adoption of the
successful reasoning trace from Verification. The agent then systematically solves for the side length
s and calculates the correct perimeter, 18 — 4/3. Notably, it independently performs a numerical
check, showcasing a deeper level of deliberation and confidence in its refined answer.

Summarization. The provided summary effectively distills the core mathematical steps for solving
the problem into a clear, concise, and logically consistent sequence. It accurately establishes the
relationship between the side lengths of the inner and outer hexagons, correctly formulates the
equation for the path’s area, and finds the pool’s perimeter efficiently. Interestingly, it also employs a
thinking block that reflects certain self-correction patterns observed in earlier steps.

This case highlights the agent’s capacity for targeted error identification and conceptual correction.
The progression shows a clear refinement of reasoning, moving from the System-1-like heuristic in
Fast Thinking to a more rigorous, System-2-like approach in Verification and Slow Thinking. The
explicit references between stages— Verification critiquing Fast Thinking’s “initial approach” and
Slow Thinking building directly on Verification’s apothem insight—underscore the efficacy of the
structured task in fostering coherent, self-correcting thought processes.

C.2 Case Study II: Propagation of Error from Verification to Slow Thinking (Box[C.3)

This example provides a counterpoint to the previous successful error-correction cases. It demon-
strates a scenario in which the agent arrives at an incorrect final answer due to error propagation and
insufficient depth in later-stage reasoning.

Fast Thinking. The agent, faced with a complex product of fractional parts, makes a guess. After
calculating the first few terms and noting the initial product starts with 2- % = 1, it states: “Since initial
term is 2 and product involves fractions potentially leading to 1/2.” This leads to the incorrect answer
D (%) driven more by the available options and a superficial pattern than a rigorous derivation.

Verification. This stage correctly identifies Fast Thinking’s answer as likely wrong. However, it

introduces its own flawed heuristic: “Since each term a‘:—"l is less than 1, and multiple such terms

multiplied, so perhaps the total product tends to zero.” While it correctly prompts a re-evaluation by
concluding the original answer was incorrect, its reasoning toward an alternative answer (0) is based
on a wrong heuristics without considering the specific structure of this sequence (which actually
involves a telescoping product that simplifies to ;Tlg’ leading to a final answer of 1).

Slow Thinking. Instead of uncovering the correct algebraic simplification, Slow Thinking explicitly
adopts and reinforces the flawed heuristic from Verification. After refining some calculations, it

26



reasons: “Alternatively, since the product seems to be approaching zero due to the product of many
terms each less than 1. But given the options, perhaps it’s 0.” This echoes Verification’s logic and
leads to the incorrect final answer B (0).

This case demonstrates how flawed reasoning can persist within the Thinker task. While Verification
correctly identified Fast Thinking’s initial guess as wrong, it unfortunately introduced its own plausible
but incorrect heuristic. Subsequently, Slow Thinking, anchored on this flawed premise inherited
from Verification, performing more calculations around it rather than challenging its validity. This
highlights the possibility of an anchoring bias on an incorrect heuristic, and ultimately, superficial
deliberation in the later stages that fails to correct the core flawed assumption.

Problem: A path 2 m wide and with an area of 36 m? has been built around a swimming
pool in the shape of a regular hexagon. What is the perimeter of the pool?

User: <Fast Thinking Prompt: Answer concisely...>

Assistant:

<Initial Reasoning Trace showing uncertainty about side length>

3. <...> the side length of the larger hexagonis a + 2 - 2 = a + 4? Not sure.
<Calculations based on the assumption S = a + 4>

13.S08a =8V3—16 = a =3 -2

14. Perimeter of the hexagon is 6a = 6(\/§ -2)= 6v/3 — 12.

User: <Verification Prompt: Is your answer above correct?>

Assistant:

<Reasoning Trace in Verification, questioning the S = s + 4 assumption (a relabeled as s)>
The side length of this larger hexagon might be s + 4? Or is it s + 2?

Wait, reconsider. <...> the relationship isn’t straightforward.

<Derivation of the correct relationship S = s + % based on apothems>

<Calculations using the corrected S, leading to Perimeter = 18 — 4/3>

The previously given answer was 61/3 — 12.

But that would not match. So our approach seems incorrect.

<...> Thus our initial approach is wrong. Therefore, the original answer is incorrect.

e

User: <Slow Thinking Prompt: Your initial answer is incorrect. Now, think about errors...>
Assistant: <think>

<revisiting the core geometric error from Fast Thinking>

When you add a path around the hexagon, the increase in side length can be found by
considering the distance from the center. <...>

The path is 2m wide, which I think refers to the distance from the pool to the path, that would
mean the difference in the apothems is 2m. So:

S5V3 _ svV3 _ 9
2 2 =

<Re-derivation of S = s + %, consistent with Verification’s insight>
— 4

S =5+ 73

<Systematic algebraic solution using the corrected .S, leading to s = 3 —
<Calculation of perimeter = 18 — 4+/3, followed by numerical verification>
Hence, the perimeter is 6s ~ 18 — 4+/3 meters. <...> Yes, that seems consistent.

Final Answer. The perimeter of the pool is | 18 — 4v/3 | meters.

</think>
<Narrative solution in Slow Thinking, presenting the final corrected steps>

2v/3
2>

27



Problem: A path 2 m wide and with an area of 36 m? has been built around a swimming
pool in the shape of a regular hexagon. What is the perimeter of the pool?

User: <Summarization Prompt: Summarize concisely...>

Assistant:

<think>

1. Let s be the side length of the original hexagonal pool. The path surrounds the pool and
forms a larger hexagon. The width of the path is 2m, so the side length of the larger hexagon

iss+2-(2/ \/3) =s+4/ /3. Wait, actually, the relationship is more complex.

2. The area of the path is the difference between the area of the larger hexagon and the
smaller one. The area of a regular hexagon is (31/3/2) - (side length)?.

3. Let s be the side length of the pool, then the side length of the larger hexagon is
5+2-(2/v/3) = s+4/+/3. Wait, no, the correct relationship is that the side length increases
by 2- (2/v/3) = 4/V3.

4. The area of the path is 36 = (3v/3/2) - [(s + 4//3)? — s2].

5. Simplifying the equation, we find that s = 3 — (2v/3) /3. The perimeteris 6-s = 18 —4+/3.
Thus, the perimeter of the pool is meters.

</think>

Let s be the side length of the original hexagonal pool. The path width is 2m. The side length
of the larger hexagon (pool + path) is S = s + %. The area of the path is 36 m?, which is

the difference between the areas of the larger and smaller hexagons.
The area of a regular hexagon is 37‘/5 x (side length)?. Therefore:

()

Simplifying the term inside the brackets:

<s+4>2—s2—32+88+16—s2—88+16

V3 V3 3 V3 3
Substituting this back into the area equation:

3V3 (85 + 16 _ 56

2 V3 3

Multiplying through by 2¥2:

33 85 33 16 _

2 V3 2 3

125 4+ 8v/3 = 36

36

Solving for s:
125 = 36 — 8V/3

,_36-8V3 . 2V3
12 3

The perimeter of the pool is 6s:

6(3—2\3/§> =18 —4V3

Thus, the perimeter of the pool is | 18 — 41/3 | meters.

28



Problem: Define the sequence {a,} : a1 = 1,a2 = 2,a,42 = ap + ans1,n € Ny, then
find [22] - {@a}.... {22} [=s] Options: A.2,B.0,C.1,D. }

ags az
User: <Fast Thinking Prompt: Answer concisely...>
Assistant:
<Initial computation of sequence terms and first few product terms: [as/a1] = 2, {az/as} =
1/2>
7. Notice that the product of fractional parts potentially telescopes or simplifies. However,
it’s complex.
8. Given the options A to D, and considering the pattern, likely answer is B.0 or C.1, but
need to think carefully. Since initial term is 2 and product involves fractions potentially
leading to 1/2.

User: <Verification Prompt: Is your answer above correct?>

Assistant:

<Re-evaluation of sequence and product structure, calculating [az/a;] = 2 and
[ags/as] ~ 17>

Wait, count the number of fractional parts: <...> 96 terms.

<...> Since each term {ay/ai_1} is less than 1, and multiple such terms multiplied, so
perhaps the total product tends to zero.

Thus, the product is very small, so the overall expression would be close to zero. <...>

Therefore, the original answer was incorrect, so the correct answer should be , as the
initial answer was incorrect.
<...>now I think the final answer might be B.0.

User: <Slow Thinking Prompt: Your initial answer is incorrect. Now, think about errors...>
Assistant: <think>

<Recalculates sequence terms, [az/a;1] = 2. Identifies a,, = F, 1 and that Fyg is even,
refining [agg /as] to Fog/2>

Given that each ratio ay/ax—_1 approaches the golden ratio ¢ = 1.618.

Thus, each {ay/aj_1} approaches ¢ — 1 = ¢) = 0.618.

Thus, if each term {ay /a1 } is about ¢ ~ 0.618.

Thus, product of 96 terms [error in count, should be 97]: 6.

Therefore, product=2 - (1) - floor(Fyg/2).

<...> Alternatively, since the product seems to be approaching zero due to the product of
many terms each less than 1. But given the options, perhaps it’s 0.

Therefore, the answer is B.0O.

</think>
<Narrative solution, reinforcing the (incorrect) conclusion that the product is 0>

D Additional Experiments on Larger Models

To assess the scalability of the Thinker task, we fine-tuned DeepSeek-R1-Distill-Qwen-7B (R7B) [1]],
a larger version of the R1.5B model that has also undergone distillation using reasoning data from
DeepSeek-R1. The same set of hyperparameters and training data from the main experiments were
utilized, with the exception of an increased token budget for the verification stage—from 2,000 to
6,000 tokens—to accommodate the more verbose reasoning of larger models. The baseline for this
experiment corresponds to fine-tuning the R7B model on the standard QA task.

The average evaluation accuracy across the seven benchmarks (excluding CollegeMath) during
training is shown in Figure The detailed performance of the best checkpoints from both runs
can be found in Table[/| Similar to the results observed in smaller models, we found that agents
trained under the Thinker task consistently perform better than those trained on the baseline QA task

29



across all benchmarks. The overall performance improved from 54.41% to 59.09%, representing a
relative improvement of 8.6%. This suggests that larger models also benefit from the Thinker task.
Additionally, we note that Thinker-Fast performance improves from 41.05% in R1.5B to 47.19% in
R7B, demonstrating that the Fast Thinking mode scales well with model size.

0.65
0.60
5 0.55 l""./ Ww
£
3 0.50
Q
< 0.45
>
© 0.40
—
()
52 0.35 —=— Baseline
0.30 Thinker (Final)
’ Thinker (Fast)
0'250 200 400 600 800 1k

Training Steps
Figure 11: Evaluation performance of R7B averaged across seven common benchmarks.
Table 7: Performance comparison across various mathematical reasoning benchmarks. Average

(Avg.) scores are presented. All scores are Pass@1 accuracy (%) averaged over 16 samples. Top
score in each benchmark column is bolded. Standard errors are provided in Table @

MATH AIME AIME GPQA Olympiad AMC Minerva College

Method 500 2024 2025 Diamond bench 23  Math Math Y8
DeepSeek-R1-Distill-Qwen-7B (R7B)

Pretrained  84.05 3750 2854 17.58 3792 3641 3449 4072 39.65
Baseline  91.03 4750 3458 3463 5676 8781 4023 4271 5441
Thinker ~ 93.04 5625 41.46 4151 6212 9109 4439  42.84 59.09
Thinker-Fast 8647 2646 2188 3412  S177 7156 4308 4214 47.19

Table 8: Standard error analysis of R7B models on mathematical benchmarks. All scores are in %.
The values are presented as score (standard error).

Benchmark # Questions Thinker Thinker-Fast Baseline
MATH 500 500 93.04 (0.97) 86.47 (1.30) 91.03 (1.06)
AIME 2024 30 56.25 (7.60) 26.46 (6.50) 47.50 (7.20)
AIME 2025 30 41.46 (7.86) 21.88 (6.83) 34.58 (7.14)
GPQA Diamond 198 41.51 (2.31) 34.12 (2.54) 34.63 (2.43)
Olympiad Bench 675 62.12 (1.64) 51.77 (1.69) 56.76 (1.63)
AMC23 40 91.09 (3.67) 71.56 (6.00) 87.81 (3.96)
Minerva Math 272 44.39 (2.78) 43.08 (2.73) 40.23 (2.71)
College Math 2818 42.84 (0.89) 42.14 (0.89) 42.71 (0.88)

E Societal Impacts

This research contributes to enhancing the reasoning capabilities of LLMs, which could positively
impact areas like scientific advancement and education. By promoting more structured reasoning
through the Thinker task, we aim for Al systems that are not only more performant but also potentially
more understandable. However, as LLMs become more powerful, it remains essential to address
potential risks, including misuse and unintended societal consequences, through continued research
into Al safety, ethics, and governance.

30



	Introduction
	Background
	Method
	Task Description
	Training with the Thinker Task

	Related Work
	Experiments
	Experimental Setup
	Training Dynamics and Evaluation Results
	Analysis and Case Study

	Future Work and Conclusion
	Experimental Details
	Hyperparameters
	Prompt Templates
	Computational Resources

	Result Details
	Evaluation Results
	Ablation Study on Fast Thinking Mode

	Case Study
	Case Study I: Identifying Flaws in Fast Thinking (Box C.1, Box C.2)
	Case Study II: Propagation of Error from Verification to Slow Thinking (Box C.3)

	Additional Experiments on Larger Models
	Societal Impacts

