Under review as a conference paper at ICLR 2025

BOOSTING PARALLEL ALGORITHMS IN LINEAR
QUERIES FOR NON-MONOTONE SUBMODULAR MAXI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we propose two efficient parallel algorithms, LinAst and LinAtg, that
improve both the approximation ratio and query complexity of existing practi-
cal parallel algorithms for the non-monotone submodular maximization over the
ground set of sized n under a cardinality constraint k. Specifically, our algorithms
keep the best adaptive complexity of O(logn) while significantly improving the
approximation ratio from 1/6 — € to 0.193 — € and reducing the query complexity
from O(n log(k)) to O(n). The key building block of our algorithms is LinAdapt,
a constant approximation ratio within O(log n) sequence rounds and linear queries.
LinAdapt can reduce the query complexity by providing O(1) guesses of the opti-
mal value. We further introduce the BoostAdapt algorithm returning a better ratio
of 1/4 — e within O(log(n) log(k)) adaptive complexity and O(nlog(k)) query
complexity. Our BoostAdapt works in a novel staggered greedy threshold frame-
work that alternately constructs two disjoint sets in O(log k) sequential rounds.
Besides theoretical analysis, the experiment results on validated benchmarks con-
firm the superiority of our algorithms in terms of solution quality, the number of
required queries, and running time over cutting-edge algorithms.

1 INTRODUCTION

Maximizing a non-negative (not necessarily monotone) submodular set function under cardinality
constraint is a fundamental and important problem that has a wide-range of applications in the fields
of artificial intelligence and machine learning, such as data summarization (Kuhnle, 2021b} [Lin
& Bilmes! [2011; |Chen & Kuhnle, 2023} [Fahrbach et al., 2019al; [Han et al., [2021}; [Mirzasoleiman
et al., 2016)), revenue maximization in social networks (Kuhnle, 2021b; |Chen & Kuhnle, 2023)),
recommendation systems (Mirzasoleiman et al.,[2016) and weight cut (Chen & Kuhnle} 2023 Kuhnlel
2021b). Given a finite ground set V sized n, a submodular set function f : 2" +— R™ and a positive
number k& (cardinality constraint), the submodular maximization under cardinality constraint (SMC)
problem asks to find a set S C V with |S| < k so that f(S) is maximized. The problem has received
much attention in finding approximation solutions with theoretical bounds (Buchbinder et al., 2014;
20155 Kuhnle), 2019; |Chen & Kuhnle, 2023} |Gupta et al., [2010).

However, the problem must face exponentially increasing search space due to the explosion of input
data. This motivates much effort to design efficient parallel algorithms that can power the parallel
architectures of computer systems to obtain a good solution promptly (See Table 2] for an overview of
parallelizable algorithms). In this context, the concept of adaptive complexity or adaptivity becomes
an essential measure of the feasibility of any parallel algorithm. This concept is to evaluate the
number of sequential rounds of an algorithm that can execute many independent polynomial oracle
queries in parallel (Balkanski & Singer, 2018]).

It is noted that improving adaptive complexity from O(log?(n)) to O(log n) dramatically reduces
the number of sequential iterations, thereby significantly reducing the running time of the algorithms
in practice (Fahrbach et al.,|2019a; [Ene & Nguyen| 2020; |Amanatidis et al., 2021j |[Fahrbach et al.,
2023; Kuhnle, |2021b; |Chen & Kuhnle, [2024)). Although the recent studies significantly reduce the

adaptive complexity from O(log?(n)) to O(log n), they still face with many challenges, including:

Under review as a conference paper at ICLR 2025

(1) The high query complexity made the parallel algorithm in (Ene & Nguyen, 2020) impractical
for real applications. (Chen & Kuhnle| [2024) demonstrated that (Ene & Nguyen| [2020)’s
algorithm is of mostly theoretical interest because it needs Q(nk? log”(n)) queries to access
the multi-linear extension of a submodular function and its gradient. Experimentally, its
running on tiny instances (e.g., n < 100) is already prohibitive as it requires more than 10°
queries to the set function on an instance with n = 87.

(2) The solution qualities of the existing practical parallel algorithms (Fahrbach et al.,2019aj;
2023}, |Kuhnle} 2021b; (Chen & Kuhnlel 2024} |Cui et al.| 2023)) are still low as they have a
large gap in the approximation ratios compared to the best non-parallel algorithm for SMC
(e.g. the ratio of 0.401 in (Buchbinder & Feldman, [2024])).

This raises two interesting questions for us to solve SMC: Q1: Can we improve the query complex-
ity of a parallel algorithm? Q2: Can we improve the approximation ratio of a practical parallel
algorithm?

Table 1: Comparison of parallel algorithms for SMC, the best result(s) are bold.

Reference Ratio Adaptivity Query Complexity
(Gupta et al.[[2010) 1/6 — ¢ O(nk) O(nk)
(Buchbinder et al.;[2015)) 1/e — e~ 0.367 — € O(k) O(n)
(Balkanski et al.,|2018) 1/(2¢) —e~0.183 — ¢ O(log?(n)) O(optn log?(n) log(k))
(Chekuri & Quanrud, 2019) 3-2vV2—-€ex0.171 —¢ O(log?(n)) O(nk*log?(n))
(Ene & Nguyen, 2020) 1/e — e~ 0.367 — ¢ O(logn) Q(nk?log?(n))
(Fahrbach et al.}|[2023) (ANM) 0.039 — ¢ O(logn) O(nlog(k))
(Amanatidis et al.}[2021) 0.172 — ¢ O(logn) O(nklog(n)log(k))
(Chen & Kuhnlel [2024) (AST) 1/6 — e~ 0.166 — € O(logn) O(nlog(k))
(Chen & Kuhnlel 2024) (ATG) 0.193 — ¢ O(log(n) log(k)) (nlog()

(Cui et al.l[2023)(ParSKP1) 1/8 —¢ O(logn) O(nklog (n))

_ (Cui et al.| [2023)(ParSKP2) 1/4—¢ O(log(n) log(k)) O(nklog?(n))
LinAst (this work) 1/6 — ¢ O(logn) O(n)
LinAtg (this work) 0.193 — € O(logn) O(n)

BoostAdapt (this work) 1/4—¢€ O(log(n) log(k)) O(nlog(k))

Our contributions and techniques. In this work, we tackle the above questions with the following
contributions:

* First, we introduce LinAdapt, the first constant approximation ratio (1/(12 4+ O(e))) within
near-optimal adaptivity O(logn) and linear query complexity O(n), where ¢ > 0 is a
constant parameter. LinAdapt is used as a building block to reduce the query complexity of
our latter algorithms. The key idea to obtain a such improvement lies in: (1) constructing
two sets .5,.5” in O(logn) sequential rounds with an interesting property: f(X U S) <
O(1) - f£(S) with high probability for any set X C V,|X| < k, and S’ with |S’| < k is the
set of last elements added into .S; (2) combining (1) appropriately with the unconstrained
submodular maximization algorithm to get the desired ratio.

* Second, we introduce two algorithms LinAst and LinAtg which run O(logn) adaptivity
and O(n) query complexity and return the approximation ratios to 1/6 — € and 0.193 — e,
respectively. Therefore, our algorithm LinAtg improves the approximation ratio from
1/6 — € to 0.193 — € and significantly reduces the query complexity of the current best
practical algorithm of (Chen & Kuhnlel [2024). Both LinAst and LinAtg use a common
framework: first adapting LinAdapt as a subroutine to get the O(1) number of guesses of the
optimal, then using the adaptive simple threshold (Chen & Kuhnle|[2024) and iterated greedy
framework (Gupta et al., 2010; Chen & Kuhnle, [2024)) to get better theoretical bounds.

* Third, we further introduce BoostAdapt that provides a considerable approximation ratio of
1/4 — e in O(log(n) log(k)) adaptive complexity and O(n log(k)) query complexity. Thus,
BoostAdapt significantly improves the ratio of the ATG (Chen & Kuhnle}, 2024)(the algo-
rithm with same adaptive and query complexity) from 0.193 — e to 1/4 — € and also reduces
the query complexity of ParSKP2 (Cui et al., 2023 (the algorithm with same approximation
ratio and adaptive complexity) by a factor of Q(klog? (n)/log(k)). BoostAdapt follows a
novel staggered threshold framework: updating alternately two disjoint sets X and Y only
in O(log k) iterations by adapting a threshold sampling. It must be noted that the staggered

Under review as a conference paper at ICLR 2025

threshold is different from the Iterated Greedy (Gupta et al.,2010), which uses two threshold
greedy strategies to construct candidate solutions separately. Our algorithm also differs
from the twin greedy strategy of (Han et al.,2020) and Interlaced Greedy of (Kuhnle} 2019),
allowing simultaneously updating two disjoint sets in each iteration of the main loops.

* Finally, to show the consistency between theory and practice, we conducted several extensive
experiments on two applications: Revenue Maximization and Maximum Weighted Cut.
The results show that our algorithms not only produce the better solution quality and query
complexity sharply but also provide comparative adaptivity to state-of-the-art algorithms.

Paper Organization. The rest of this work is structured as follows. Section [2| provides the literature
review on the studied problem. Notations are presented in Section[3] Sections f6] introduce our
algorithms and theoretical analysis. Experimental computation is provided in Section|/} Finally,
Section[8] concludes this work.

2 RELATED WORKS

Non-parallel Approximation Algorithms with Low Query Complexity. The first popular approach
to solving the SMC problem in practice is to design approximation algorithms with low query
complexity. The greedy algorithm was an effective approach for submodular optimization problems.
It sequentially selects elements with the largest marginal gain and explores the diminishing return
property to get performance bounds. (Gupta et al.,2010) first developed an iterated greedy algorithm
with 1/6 ratio in O(nk) queries for SMC. The work of (Lee et al., 2010) latter improve the ratio
to 1/4 — e by developing a local search method but this wasted an expensive query complexity of
O(n*logn). Significantly, the elegant random greedy in (Buchbinder et al.,[2014) could provide the
ratio of 1/e with O(nk) query complexity. Instead of selecting an element with the best marginal gain
as the naive greedy, it chose a uniformly random element from the set of k£ elements with the largest
marginal gain. (Buchbinder et al.,[2015) then improved the query complexity to O(n log(1/¢)/€?)
but still kept the same 1/e ratio. To the best of our knowledge, the best ratio for SMC was 0.385 by
(Buchbinder & Feldman, [2019). However, this work used the multi-linear extensions method and
used a considerably high query complexity of O(n°) (Chen & Kuhnle, 2023). Besides, some efforts
focused on devising deterministic approximations but did not improve the performance ratio or reduce
the query complexity (Chen & Kuhnlel, [2023} |Kuhnlel 2019; |Buchbinder & Feldmanl [2018)). Finally,
it must be emphasized that the above works weren’t well parallelized due to their high adaptive
complexities of 2(n).

Parallel Algorithms with Low adaptive complexity. Research on parallel algorithms was initiated
by (Balkanski & Singer, |2018)). In this seminal work, they introduced the concept of adaptive
complexity or adaptivity that measuring the parallelizable of algorithm, showed a lower bound adaptive
complexity of O(log(n)/log(logn)) to achieve a constant ratio and devised an 1/3-approximation
algorithm in O(logn) adaptive rounds for the monotone SMC problem. Since then, many works
focused on devising algorithms with low adaptivity with tighter ratio for SMC (Balkanski et al., 2019
Fahrbach et al., 2019b; [Ene et al., [2019; |Chen et al., [2021). The best parallel algorithm for monotone
SMC had an optimal ratio of 1 — 1/e — € in O(log n) adaptive complexity and O(n) queries was due
to (Chen et al., 2021)). However, their performance bounds heavily relied on the monotone property
and did not hold for non-monotone.

For the non-monotone SMC, (Chekuri & Quanrud, [2019; [Balkanski et al., 2018) first developed
parallelizable algorithms with 3 — 2v/2 — e and 1/(2e) — € ratios, respectively; both took O(log® n)
adaptivity. (Ene & Nguyen, 2020) improved the ratio to (1/e — ¢€) in nearly optimal adaptive
complexity of O(log n). However, due to the high query complexity of Q(nk? log? n) to access the
multilinear extension of a submodular function and its gradient. Therefore, the (Ene & Nguyen, 2020)’
algorithm and algorithms based on multilinear extension methods in general are still impractical in
some real applications (Kuhnle, 2021b; |[Fahrbach et al.,[2019a; |Chen & Kuhnle, 2024; |Cui et al.}
2023)). To attack the above issue, (Fahrbach et al.| | 2019a) first aimed to reduce the query complexity
to near-linear of O(n log k) and still kept the O(log n) adaptive complexity. However, their algorithm
resulted in a small ratio, 0.039 — e. In subsequent work, (Kuhnlel 2021b) tried to boost the ratio to
1/6 — € in O(log n) adaptive rounds with O(n log k) queries. Their algorithm further improved the
ratio to 0.193 — € in O(log2 n) adaptive rounds by exploring iterated greedy framework in (Gupta
et al., |2010). It must be noted that the ratios of both (Fahrbach et al.,[2019a)) and (Kuhnle, 2021b))

Under review as a conference paper at ICLR 2025

may not hold because they adapt the threshold sampling routine in (Fahrbach et al.,[2019b)), which
was pointed out disable with non-monotone functions (Chen & Kuhnle, 2024)). Recently, (Chen &
Kuhnle, 2024; [Fahrbach et al., [2023)) recovered the ratios of (Fahrbach et al., [2019a; [Kuhnle, 2021b)
by some threshold sampling routines with the respective analysis. More recent, (Cui et al.| [2023)
showed two algorithms with ratios of 1/8 — ¢ and 1/4 — € with O(logn) and O(log” n) adaptive
complexities, respectively. However, they took at least (nk log? n) query complexity.

3 PRELIMINARIES

Given a ground set V' of sized n, and the set function f : 2" + R* is submodularity iff it satisfies the
diminishing return property, i.e., f(AU{e}) — f(A) > f(BU{e}) — f(B) where A C Bande ¢ B.
The marginal gain (or contribution gain) of a set 7" to a set S is defined as f(7T'|.S) = f(T'US) — f(5).
For simplicity, we denote f({e}|A) by f(e|A) and assume f normalized, i.e., f()) = 0. Given a
positive number & (cardinality constraint), the SMC problem is to determine arg maxgcv, s|<x f ().

We define [k] = {1,2,...,k} for any integer k. We denote an instance of SMC by a tuple (f, V. k)
and O is an optimal solution with the optimal value opt = f(O). In this work, we assume that
there exists an oracle query that returns f(S) when queried for the set S with any S C V. The
parallelization capacity of an algorithm is evaluated through the following definition.

Definition 3.1 ((Balkanski & Singer, [2018)). Given a value of oracle of f, the adaptivity or adaptive
complexity of an algorithm is the minimum sequential number of rounds needed such that in each
round the algorithm makes O(poly(n)) independent queries to the evaluation oracle.

We recap two sub-problems for solving SMC in parallel setting, Batch Selection with Threshold
(BST) and unconstrained submodular maximization (USM). Given an instance (f,V, B), a fixed
threshold 7 and € > 0 as inputs, BST asks to find a subset S C V in O(log n) adaptive complexity
satisfying two conditions: (1) f(S) > (1 — €)7|S]; (2)if |S| < k, f(e]S) < 7 forany e ¢ S.

Although several attempts exist to solve the BST, most only work with a monotone submodular
function (Fahrbach et al.l [2019b} [Kazemi et al.l[2019). In this work, we use the ThreshSeq algorithm
in (Chen & Kuhnle, [2024)) and its theoretical satisfaction to analyze our algorithm’s performance in a
nonmontone setting.

Theorem 3.2 (Theorem 3 in (Chen & Kuhnle, 2024)). Let (f,V, k) be an instance of SMC. For any
constants €,0 > 0, the algorithm ThreshSeq outputs A’ C A C V such that the following properties
hold: 1) The algorithm succeeds with probability at least 1 — §/n. 2) There are O(n/¢) oracle
queries in expectation and O(log(n/¢)/€) adaptive complexity. 3) It holds f(A") > (1 — e)7|Al. If
|A| <k, then f(e|A) < 7 foralle € V. 4) It also holds f(A") > f(A) and |A'] > (1 — €)|A|.

Regarding USM, which aims to find arg maxgcy f(.5), there exist several solving methods giving
the constant approximation ratios such as the (Fahrbach et al.l 2019a))’s algorithm (USM1) provides a
ratio of 1/4 — e with probability at least 1 — 4 for the problem in O(1) adaptive round and O(% log(}))
queries and an essentially optimal algorithm of (Chen et al.,[2019) (USM2) slightly improves the
approximation ratio to 1/2 — € using O(log(1/€)/¢) adaptive rounds and O(n log®(1/¢)/€e*) query
complexity. Due to the space limitations, Pseudocodes for ThreshSeq and USM algorithms are given
in the Appendix

4 LinAdapt: PARALLEL ALGORITHM WITH LINEAR QUERY COMPLEXITY

In this section, we introduce LinAdapt (Algorithm [I)), the first constant ratio ap-
proximation algorithm within O(logn) adaptivity and O(n) query complexity.
LinAdapt receives an instance (f,V, k), accu-
racy parameters ¢, > 0, a constant > 0 Algorithm 1: LinAdapt(f, V. k, €, 6)

and works in a novel algorithmic framework. 1. Input: f,V, k, a, €, d.

LinAdapt first sequentially calls a subroutine 2. A, A’ + LinBoundSet(f,V, k,¢,4/3)
LinBoundSet twice to find two candidates: one 3. B, B’ < LinBoundSet(f,V \ A’, k,¢,6/3)
to get A’ over the ground set V' and the other to 4. ¢ « USM1(A’ ¢,6/(3n))

get B over a new ground set V' \ A. Note that 5: return arg maxge a5/ ¢y f(5)

A and B in LinAdapt are temporary sets that are :

Under review as a conference paper at ICLR 2025

useful only for theoretical analysis. For any ground set V', LinBoundSet is a key subroutine with the
following nice properties:

1) running in O(log(n)/€?) and O(n/e3) query complexity.

2) returning two sets A and A" so that f(AU X) < (8 +2a+ 2 4+ O(e)) f(A’), for any subset
X C V,|X| < k with high probability.

To easily follow the algorithm, we will latter provide a detailed analysis of LinBoundSet in Section[d.1}
Finally, LinAdapt calls USM1 to find another candidate solution C' and returns the best among
A B, C.

Conceptually, our LinAdapt takes advantage of the properties LinBoundSet (by Theorem [4.4), and

the fact that f(O) < f(OU A) 4+ f(O U B) to give the desired bound of solution. We state the
LinAdapt’s performance in Theorem 4.1

Theorem 4.1. For any input (f,V, k), where €, € (0,1), LinAdapt runs in O(log(n/6)/€?) adap-

tive complexity and O(n/€3) query complexity, returns a solution S satisfying opt < (8 + 2a + % +
(25 +2(1+ é)%)e)ﬂé’) with probability at least 1 — 0 /n. If « = 1, the algorithm
achieves the best ratio of m.

Proof. Each subroutine terminates with failure probability 1/(3n). By the union bound of probabili-
ties, the failure probability of the algorithm is bounded by 3 - % = % Leta =2+ a+ i +(1+

2(2—e
1)((2—¢)

) o= & If the algorithm terminates successfully, we have:

f(0) < F(OU A+ fOUB) n
< FOUA) + F(OUB)\ &) + f((OUB) N A) @
= JOUA) + [((O\ A)UB) + (0N A) ®
< a(F(A) + f(B) + 1 1(C) @

4 2 16 1 2(2—¢)
< (2 —)f(S)=18+2 — — 21+ —) S
< (2a+ 1—4e)f() [+ a+o¢+ (1—4e+ (+a)(1—€)(1—26)>6} 1(5)
where inequalities equation [I]is due to the submodularity of f; inequalities equation[2]is due to the
submodularity of f and the fact that A N B = (), and inequality equationis due to Theorem
and USM1’s performance. For the complexities, the algorithm calls USM1 and LinAdapt twice so its
adaptive complexity is 2-O(*%")+1 = O('%4™) and query complexity is 2-O(Z)+O(L log(2)) =
O(%). O

4.1 A KEY SUBROUTINE: LinBoundSet

LinBoundSet (Algorithm [2) receives an instance (f,V, k), accuracy parameters €,d > 0 and a
positive constant «. It first initiates a set S that contains an element with maximal value e,,,, and
then operates in £ = O(log n) iterations of the main loop (Lines 3-21). Denote \S; as .S after iteration
7. At each iteration of main loop, it generates a random permutation of V' (Line 5) and divides V' into
blocks T3 ,VA; € A. We define an element v; € T} thatis good if f(v¢[{v1,...,v—1}) > aMy,/F,
where M), = max;—o.; f(SUT);),i € [m]; ablock T} is good if it has at least (1 — €)o7} |
good elements.

At a high level, at iteration 7, the algorithm selects a segment of elements T~ and its subset 7
(Line from set 7', a random permutation of V' satisfying three following requirements with high
probability: (1) |T7] > (1 — €)|Th=|; (2) f(T7]S) > (1 — O(e))a|Tx=|f(S)/k; and (3) remove
elements in V' with the marginal gain is less than a f (S)/k, i.e., f(e|S) < af(S)/k foralle € V'\ S.

To achieve the requirements, the algorithm first removes every element whose marginal gain is less
than o f(S)/k (Line 3); later, it selects T)+, a consecutive sequence of elements 7" that contains at
least (1 — €)-fraction number of blocks that are good by finding A* in Line Finally, it selects
new block T} that only contains elements with non-negative marginal gain from 7% (Line and

Under review as a conference paper at ICLR 2025

Algorithm 2: LinBoundSet(f,V, k, a, €, 0)
1: Input: f,V,k, a,€0
2! emaz — Maxeey f(€), S < {emax}, B elog((1 —e=")/8)/16, { + [(4—1— 52) log(%)]
3: for j + 1to /¢ do
4 V< {zxeV:f(zlS)>af(S)/k}
5: If V = () then break;
6: V= {vi,v,...,vy|} ¢ rand-permutation(V’)
7
8

A~ {0+ :1< |1+ <k,leN}
o Ao — {lk+lek]|: [k+1ek] <|V|,l e NtU{|V|}
9: A= {)\1, R)\m} — AN UAT; = {Ul, V2, .y Ui}, T)/\1 — TM \T)\Fl
10: Calculate M), < maxy, <y, f(SUT),) (in parallel)
11: blv;] < none,Vv; € V; B[)\;] + false,V\; € A
12: for \; € A (in parallel) do

13: for v; € T’ (in parallel) do

14: if f(vl\S UTi—1) > (1 — €)aMy,_, /k then b[v;] + true

15: else if f(v;[SUT;—1) < 0 then b[vl] + false

16: if [{v € T}, : b[v] = true}| > (1 — €)|T},| then B[\;] + true

17: A7« max{\; € A, \; < k: B[\;] = false, B]\] = B[\3] = ... = B[A\i—1] = true}

18 A5« max{\ € AN >k Fu> st | Ui, T4 | > kand([J=BA]=...=
B[\;_1] = true}

19: A* < max{\}, A5}

20: Define new blocks: T « {v € T} : b[v] # false}

21 19Uy cn TV, S < SUTY

22: If |[V| > 0, then return failure

23: S” + last blocks added into S with the size at most &

24: return S, S’

selects all new blocks from 77« (Lmez At the end of each iteration, it adds 7 into .S and the main
loop ends after ¢ iterations or V' is empty. Finally, the algorithm returns S’ as the union of last T

blocks added to S so that the size of S’ does not exceed k (Line[23)).

The analysis LinBoundSet’s performance works in following process. We first focus on the bridge
between S and S’ in Lemmal4.2]

Lemma 4.2. If LinBoundSet ends successfully, then f(S) < (1 + (l_e)l(ﬁ)f(sf)

We define an iteration j succeeds if the algorithm successfully filters out more than Se-fraction of
V' at the next iteration. Otherwise, the iteration j fails. The following Lemma provides a bound of
probability for the event that iteration j fails.

Lemma 4.3. Priteration j fails | < 1/2.

Combine Lemmaf4.2]and Lemma[4.3] we state the performance of LinBoundSet in Theorem

Theorem 4.4. For any €,6 € (0,1), the algorithm LinBoundSet runs in O(log(n/d)/€?), returns
two sets S and S’ such that the following holds unconditionally: (1) The algorithm succeeds with a
probability of at least 1 — §/n; (2) The algorithm takes O(n/€*) query complexity in expectation;
(3) If the algorithm succeeds, it returns S, S’ satisfying: for any subset X C V,|X| < k, we have

FISUX) < (2+a+§+(1+§)(12§(7;)2€)) £(5").

Due to the space limit, the proofs of Lemma4.2] Lemma [4.3] and Theorem 4.4]are in Appendix [E]

5 IMPROVED RATIO ALGORITHMS WITH LINEAR QUERY COMPLEXITY

This section introduces two linear query and near-optimal adaptivity algorithms: LinAtg and
LinAst. Both share a common framework in which LinAdapt plays a central role and pro-
vides O(1) number of guesses of the optimal solution. Firstly, they adapt LinAdapt with

Under review as a conference paper at ICLR 2025

a = 1,8 = 1/3 to give a candidate solution S (Line 2 of Algorlthml 3| and Algorithm [4) with
opt € [f(So) (12 + O(€)) f(So)]. It thus provides O(Z log(L)) guesses of opt. They then use
the Adaptive Simple Threshold (AST) framework (Chen & Kuhnle, 2024) and the iterated greedy
algorithm framework (Gupta et al.,|2010; |Chen & Kuhnle| [2024)) to boost the approximation ratio.
In particular, LinAst constructs O(£ log(1))
solutions in the main loop with one adaptive - -
round (Lines 4-9, Algorithm). For each it- Algorithm 3: LinAst

eration, the algorithm calls ThreshSeq twice 1: Input: f, V, k, €.

sequentially to get candidate solutions A}, 2: Sp < LinAdapt(f, V,k,1,¢,1/3),
B} with a threshold 7; related to the guess of a+ 12+ (L
optimal value.

i + %>

3 e 64604 [log_ ()] +1,0+«1/3,
Then, LinAst finds another solution by using M <« af(Sp)/(ck)

USM2 algorithm of (Chen et al., 2019) for for i < 1 to £ (in paralell) do

USM over the ground set A’. Finally, it re- Ti < M(1—€)

turns the best among the obtained solutions A;, Al < ThreshSeq(f(+), V. k, 7i,€,0)
(Line 10, Algorithm 3). B;, B, < ThreshSeq(f(-),V \ 4;,k, T, €,0)
LinAtg works in a different way. It sequen A7 USM2(4;, E/)/ ’ 1"

tially constructs two pairs of disjoint sets o G argmax{f(4), f(B), F(AV)}
(A, B) and (A’, B') in two main loops which
contain at most £ = O(% log(1)) iterations
(Lines 5-14, Algorithm ET) At each iteration, Algorithm 4: LinAtg

thg algorithm calls ThreshSeq over appro- 7. Input: f,V, k, c.

priate groupd sets to se}ect two batcl}es of . Sp < Lin Adapt(£V, k1,e,1/3),
elements with high marginal gain (.5, S") and 19 8(2 E)
adds them into (A, A") (or (B, B')), respec- e (1 et o

AN A

10: S <= argmaxxerc,yr ugs,) (X
11: return S

2€))6
tively. It then selects a candidate solution by ~ 3: ¢ = 8/¢, 6 < (1—1/e)e/8, L«

adapting the USM2 algorithm of (Chen et al | [logy_(5:)] +1,0 + 1/(30),
2019) over the ground set A’. Finally, LinAtg M« af /So)/)
returns the best one among the obtained fea- 4: A A 0, A"« 0,B <« 0,B" <0
sible solutions (Line 16, Algorithm d). 5: fori< 1to/ldo
. . 6: T+ M(1—¢)t
We provide the performance of LinAtg and 7. 4 ¢/ «
LinAst ip Th@orems Their proofs ThreshSeq(f(AU-), A, k — |A|, V. ¢, 8,7)
are provided in Appendix [E] 8 A« AUS. A« AUS

Theorem 5.1. For any input (f,V,k,e), 9 If|A| =k then break
where ¢ € (0,1), LinAst runs in 10: fori< 1to/ldo
(1og()/€?) adaptive complexity and 11: T M(1—¢€)"
O(n/€e*) query complexity and returns an 12: S, S
approximation ratio of 1/6 — € in expectation ThreshSeq(f(BU-),V \ A,k —|B|,€,0,7)
with probability of at least 1 — 1/n. 133 B« BUS,B '+ B'UY
Theorem 5.2. For any input (f,V,k,¢), 14: //If Bl =k thein ‘t/)reak
where ¢ € (0,1), LinAtg runs in ig é ;_akjsglﬂigff’(z% FB), F(A"), 1(So)}
O(log(1/€) log(n)/€e?) adaptive complexity 17 returng ’ ’ P SA20
and O(n/e®) query complexity, returns an .
approximation ratio of 0.193 — € in expecta-
tion with probability of at least 1 — 1/n.

6 BoostAdapt: BOOST PARALLEL ALGORITHM WITH NEAR-LINEAR QUERY
COMPLEXITY

This section introduces our last algorithm, BoostAdapt (Algorithm 3)), which further improves the
ratio to (1/4 — €) in O(log(n) log(k)) adaptivity and O(nlog(k)) query complexity.

Different from LinAtg and LinAst, after reusing LinAdapt’s solution (Line[2)), BoostAdapt operates in
a novel staggered strategy that consists of a main loop with O(log(k/€)/¢) iterations (Lines 5-11). It
initiates two disjoint sets X, Y and their subsets X', Y. At each iteration, it only updates alternatively
partial solutions, either X, X' or Y,Y”, by calling ThreshSeq (Lines 8, 10). The algorithm then

Under review as a conference paper at ICLR 2025

carefully selects candidates X" and Y that consist of min{k, | X’|} and min{k, |Y”’|} from X’
and Y, respectively (Lines 13-14). Finally, it returns the best among candidates without violating
the cardinality constraint (Line 15). At a high level, our BoostAdapt algorithm do not adapt USM

Algorithm 5: BoostAdapt
1: Input: f,V,k,e.
2: 8o « LinAdapt(f, V. k, 1,6,1/3), a < 12+ ({25 + o572)e
3 M+ af(So), A« [log 1 (§%)] + 1,6 + 1/(34)
4 X, X' V)Y + 0,k + max{i e N: (1 —¢e)i <k}, T+ %
5: fori < 1to A do
6.
7
8

if ¢ is odd then

Tx < 7(1 — €)%, (Ai, A}) < ThreshSeq(f(X U-),V\ (X UY), k¥ —|X]|,€,6,7x)
: X+ XUA, X'+ X' UA
9: else
10: Ty < 7(1 — €)%, (B;, B}) < ThreshSeq(f(Y U-),V\ (X UY), k' —|Y],¢,0,7y)
1 Y+ YUB,Y «Y'UB!
12: Define X' = {1, 25, ..., 2x, }, Y = {y1, 45, ..., y|y, } contain elements in the order

selected.)

13: X" < set of min{k, | X'|} elements =} € X’ with largest marginal gain f(z}|X'<%:)
14: Y" « set of min{k, |Y’|} elements ¢, € Y" with largest marginal gains f(y/}|Y"<¥%)
15: S« argmaxye(x vy’ x7 v 50}.1z|<k f(Z)
16: return S

algorithms (may make the approximation ratio worse) and operates differently from Iterated Greedy
(Gupta et al., |2010), which inspired AdaptiveThresholdGreedy of (Kuhnle} 2021b;|Chen & Kuhnle,
2024)). BoostAdapt is an elegant combination between threshold greedy (Badanidiyuru & Vondrak,
2014)) and twin greedy (Han et al., 2020) via using ThreshSeq procedures alternatively to update two
disjoint solutions X and Y. Interestingly, we found that X and Y can support each other to bound
elements in the optimal solution. Besides, by carefully analyzing the role of the set X after the first
iteration (i.e., X1), we can give a better ratio than previous algorithms.

Before analyzing the BoostAdapt’s performance, we provide some useful notations as follows: X :
Y™ are the sets of first ¢ elements added into X and Y, respectively; X; and Y; are X and Y after the
iteration 4 of the main loop and X = Y, = (); X! and Y} are defined analogously. Define A (res.
Bj’) as the set of elements in A; (res. B;) having the marginal gain at least 7x (res. 7y) at iteration
i, Xt = Ui Af,Y" = Ui_ B and X* = X{,Y* = Y. Foranelemente € X UY, we
denote by X <¢, Y <¢as X, Y right before e is selected into X or Y, respectively.

By carefully analyzing the relationship between X and Y through thresholds, we further provide
connection between X and Y after each iteration in Lemmal6.1]

Lemma 6.1. If BoostAdapt succeeds and X1 = 0, after iteration i the following properties hold:

(a) If i is odd and | X;| < K/, for any set C C Y; |, we have 3" . f(#]|X;) <, cco %}::e)

(b) If i is even and |Y;| < K/, for any set D C X' |, we have > ., f(2]Y;) <X cp %)f:e)
Using Lemma|6.1]and the fact that if |T'| = k, then |\ O| > |O\ T|, where T € {X,Y*}, we
can bound of the optimal solution in some cases related to the size of X and Y in Lemmal6.2]
Lemma 6.2. If BoostAdapt succeeds and X, = 0, at the end BoostAdapt we have

@) If|X| <K and |Y| < K, then f(O) < ({55,

b) If there exists T € {X,Y} such that |T| = k', then f(S) > (1 — e)*<E.

Finally, putting them together, we give the tighter ratio in Theorem [6.3]

Theorem 6.3. For any € € (0,1/4) the algorithm runs in O(log(n/e€)log(k/€)/€?) adaptive com-
plexity, O(nlog(k/€)/e?) query complexity in expectation. The algorithm succeeds with a probability
of at least 1 — 1/n. If the algorithm succeeds, it returns an approximation ratio of 1/4 — .

Under review as a conference paper at ICLR 2025

Proof. Due to the space limit, we put proof for successful probability and complexities in Appendix|[G]
If the algorithm succeeds, we now prove the ratio by considering the following cases: (1) If X; # ()

or Y # 0, we have f(S) > max{f(X1), f(Ya)} > U=FM > (1 _ ¢)298t 5 (1 _ yopt. (2) If
X1 and Y; are both empty. If | X| < k¥’ and |Y| < &/, from Lemma|6.2{and € < 1/4, we have

(1—¢€)2(1—2e) 1 Te 1
Y T opt > (- — ———)opt > (= — €)opt. 5
f(8) > 1o oPt> (3 4(2_6))0|D 2 (7 —€op)
If there exists 7 € {X, Y} such that |T'| = k, then f(S) > (1—¢)*% > (1 —€)opt. This completes

the proof. O

7 EMPIRICAL STUDY

In this section, we experiment our LinAst, LinAtg and BoostAdapt by comparing to state-of-the-art
for non-monotone SMC including IteratedGreedy (IG) (Gupta et al [2010), FastRandomGreedy
(FRG) (Buchbinder et al.| 2015)), AdaptiveNonmonotoneMax (ANM) (Fahrbach et al.,2019a)), Adap-
tiveSimpleThreshold (AST) (Chen & Kuhnle), 2024), and AdaptiveThresholdGreedy (ATG) (Chen &
Kuhnlel 2024). The comparison is about four metrics: object values, adaptive complexity, number
of queries, and running time. We experimented with two well-known applications: Revenue Maxi-
mization (RM) and Maximum Cut (MC) (Chen & Kuhnle, 2024} [Kuhnlel [2019; |/Amanatidis et al.|
2020).

Dataset and Setting. For all algorithms, we set ¢ = 0.1. Our algorithms were set @ = 4.0.
Algorithms were run 20 times and averaged the results.We used ca-Astro (n = 18,772,m =
198,110) for RM and utilized web-Google (n = 875,713, m = 5,105,039), ca-GrQc (n =
5,242, m = 14,496), and Barabasi-Albert (n = 968, m = 5, 708) for MC. These standard datasets
were sourced from SNAPH Appendix [H| gives a more detailed setting.

— ANM ¢ AST —+ ATG -® BoostAdapt — FRG — |G ~® LinAST ~ LinATG --- ParSKP2
Astro(small k) Astro(small k) Astro(small k) Astro(small k)
8M +
g 6M + +
£ 10 £ ' A 210 -
F = sw - 2 e
g = H - g +
fo L : ~ = |
== EN ==& = 1NN Z o
(@) (b) (©) (d)
GrQc GrQc GrQc GrQc
- 4 —+ + +
e + 00y
X + ' ym%
X - g 0 - _ —_
x i I
. g — - - .
© ® ® (h)

Figure 1: Performance of algorithms on Revenue Maximization (a-d) and Maximum Cut (e-h).

Overview of Results. Figure[T]displays the performance of compared algorithms on the ca-Astro
and ca-GrQC datasets for RM and MC, respectively. Additional results are presented in Appendix [H]

Objective value: Figures|[T[a)(e) show the objective values of algorithms. It can be observed that the
lines of BoostAdapt consistently reach the highest points with every k. Equivalent to BoostAdapt is
LinAtg, IG and AST. Both LinAst and FRG mark a little lower than BoostAdapt, followed by ANM,
AST, and ParSKP Finally, our algorithms significantly improve the solution quality.

Adaptive rounds: In the MC application (Figure [I(f)), the adaptive rounds result three distinct
groups. The group with low adaptivity includes ANM, AST, LinAst, and FRG while the medium

'https://snap.stanford.edu/data/

Under review as a conference paper at ICLR 2025

group includes |G, LinAtg, and BoostAdapt. The high group is the remaining. ParSKP and ATG
algorithms waste the highest number of adaptive rounds while ANM hits the lowest points. With the
RM application (Figure[I|b)), ParSKP, ATG and IG give high adaptivity. When k increases, their
number of adaptive rounds can quickly grow to 4-10 times larger than the others. LinAtg slightly
differs from the lowest ANM while LinAst and BoostAdapt are higher than ANM, but they do not
exceed 200.

Number of queries: In both RM and MC (Figures [I[c) and (g)), our algorithms almost always
minimize the number of queries. In RM (Figure c)), LinAst has the lowest number of queries,
followed by LinAtg and BoostAdapt algorithms. Meanwhile, AST is almost close to ANM and
slightly higher than BoostAdapt. The remaining ATG, FRG, ParSKP, and |G belong to the group
with many queries. The ATG algorithm wastes the highest number of queries. For MC (Figure[I](g)),
LinAtg has the lowest number of queries, followed by BoostAdapt and LinAst. The algorithms
AST, ParSKP, FRG, and ANM are again at an average level. while ATG and IG typically require
the highest number of queries, about 5 times greater than the lowest line, LinAtg. On the whole,
all our algorithms save queries more than the others. This is consistent with (nearly) linear query
complexities of our algorithms.

Time taken: In MC (Figure[T[(h)), LinAst wastes the lowest time, followed by |G and FRG. While
BoostAdapt and LinAtg have the same running time, which is higher than IG and FRG but lower than
AST, ParSKP and ANM. The gap among these considerably reduces, especially when k increases,
except ParSKP. Meanwhile, the time consumption of ParSKP steadily grows up along with k’s
growth. In RM (Figure[I(d)), LinAst and AST have the lowest running time, followed by the group of
LinAtg, BoostAdapt, ATG, but with a small gap. the rest uses more time than the others, especially
ParSKP, which wastes the highest, about 10-20 times higher than the others.

The above metrics show that our algorithms outperform the others when keeping the best quality
solutions, wasting the lowest query numbers within acceptable low adaptive rounds.

8 CONCLUSIONS

Motivated by the big data challenge for non-monotone submodular maximization under cardinality
constraint, in this work, we focus on parallel approximation algorithms based on the concept of
adaptive complexity. In particular, we proposed efficient parallel algorithms that significantly improve
both approximation ratio and query complexity but keep the near-optimal adaptive complexity
of O(logn). Our algorithm also expresses superior solution quality and computation complexity
compared to state-of-the-art algorithms. However, there is still a weakness in our contribution, which
is about the approximation factor. It leads to an opening question: how to reduce the gap between
ours and the best ratio for O(logn) adaptive complexity in (Ene & Nguyen, 2020)?

REFERENCES

Georgios Amanatidis, Federico Fusco, Philip Lazos, Stefano Leonardi, and Rebecca Reiffenhéuser.
Fast adaptive non-monotone submodular maximization subject to a knapsack constraint. In Annual
Conference on Neural Information Processing Systems, 2020.

Georgios Amanatidis, Federico Fusco, Philip Lazos, Stefano Leonardi, Alberto Marchetti-Spaccamela,
and Rebecca Reiffenhduser. Submodular maximization subject to a knapsack constraint: Combina-
torial algorithms with near-optimal adaptive complexity. In International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 231-242, 2021.

Ashwinkumar Badanidiyuru and Jan Vondrék. Fast algorithms for maximizing submodular functions.
In Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1497-1514, 2014. doi: 10.1137/1.
9781611973402.110.

Eric Balkanski and Yaron Singer. The adaptive complexity of maximizing a submodular function. In
Annual ACM SIGACT Symposium on Theory of Computing, pp. 1138-1151, 2018.

Eric Balkanski, Adam Breuer, and Yaron Singer. Non-monotone submodular maximization in
exponentially fewer iterations. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen

10

Under review as a conference paper at ICLR 2025

Grauman, Nicold Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 2359-2370, 2018.

Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An exponential speedup in parallel running
time for submodular maximization without loss in approximation. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pp. 283-302. SIAM, 2019.

Adam Breuer, Eric Balkanski, and Yaron Singer. The FAST algorithm for submodular maximization.
In Proc. of the International Conference on Machine Learning, volume 119, pp. 1134-1143, 2020.

Niv Buchbinder and Moran Feldman. Deterministic algorithms for submodular maximization
problems. ACM Trans. Algorithms, 14(3):32:1-32:20, 2018.

Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a nonsymmetric
technique. Math. Oper. Res., 44(3):988-1005, 2019.

Niv Buchbinder and Moran Feldman. Constrained submodular maximization via new bounds for
dr-submodular functions. In Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pp. 1820-1831. ACM, 2024.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In IEEE Symposium on Foundations
of Computer Science, pp. 649—658, 2012.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization with
cardinality constraints. In Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1433-1452.
SIAM, 2014.

Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing apples and oranges: Query tradeoff
in submodular maximization. In Proc. of the 26thl ACM-SIAM SODA 2015, pp. 1149-1168, 2015.

Chandra Chekuri and Kent Quanrud. Parallelizing greedy for submodular set function maximization
in matroids and beyond. In Moses Charikar and Edith Cohen (eds.), Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pp. 78-89. ACM, 2019.

Lin Chen, Moran Feldman, and Amin Karbasi. Unconstrained submodular maximization with
constant adaptive complexity. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, pp. 102-113, 2019.

Yixin Chen and Alan Kuhnle. Approximation algorithms for size-constrained non-monotone sub-
modular maximization in deterministic linear time. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August
6-10, 2023, pp. 250-261. ACM, 2023.

Yixin Chen and Alan Kuhnle. Practical and parallelizable algorithms for non-monotone submodular
maximization with size constraint. Journal of Artificial Intelligence Research, 719:599-637, 2024.

Yixin Chen, Tonmoy Dey, and Alan Kuhnle. Best of both worlds: Practical and theoretically optimal
submodular maximization in parallel. In Marc’ Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,

NeurlPS 2021, December 6-14, 2021, virtual, pp. 25528-25539, 2021.

Shuang Cui, Kai Han, Jing Tang, He Huang, Xueying Li, and Aakas Zhiyuli. Practical parallel
algorithms for submodular maximization subject to a knapsack constraint with nearly optimal
adaptivity. In Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium
on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February
7-14, 2023, pp. 7261-7269. AAAI Press, 2023.

11

Under review as a conference paper at ICLR 2025

Alina Ene and Huy L. Nguyen. Parallel algorithm for non-monotone dr-submodular maximization.
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 2902-2911.
PMLR, 2020.

Alina Ene, Huy L. Nguyen, and Adrian Vladu. Submodular maximization with matroid and packing
constraints in parallel. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pp. 90-101. ACM, 2019.

Matthew Fahrbach, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Non-monotone submodular
maximization with nearly optimal adaptivity and query complexity. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 1833-1842. PMLR, 2019a.

Matthew Fahrbach, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Submodular maximization
with nearly optimal approximation, adaptivity and query complexity. In Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 255-273, 2019b.

Matthew Fahrbach, Vahab Mirrokni, and Morteza Zadimoghaddam. Non-monotone submodular
maximization with nearly optimal adaptivity and query complexity. preprint, arXiv:1808.06932,
2023. URL https://arxiv.org/abs/1808.06932.

Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained non-monotone
submodular maximization: Offline and secretary algorithms. In International Workshop on Internet
and Network Economics, 2010.

Kai Han, Zongmai Cao, Shuang Cui, and Benwei Wu. Deterministic approximation for submodular
maximization over a matroid in nearly linear time. In Hugo Larochelle, Marc’ Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Kai Han, Shuang Cui, Tianshuai Zhu, Enpei Zhang, Benwei Wu, Zhizhuo Yin, Tong Xu, Shaojie Tang,
and He Huang. Approximation algorithms for submodular data summarization with a knapsack
constraint. Proc. ACM Meas. Anal. Comput. Syst., 5(1):05:1-05:31, 2021.

Jason D. Hartline, Vahab S. Mirrokni, and Mukund Sundararajan. Optimal marketing strategies over
social networks. In Proceedings of the 17th International Conference on World Wide Web, WWW
2008, Beijing, China, April 21-25, 2008, pp. 189-198. ACM, 2008.

Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, and Amin Karbasi.
Submodular streaming in all its glory: Tight approximation, minimum memory and low adaptive
complexity. In Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pp. 3311-3320. PMLR, 2019.

Alan Kuhnle. Interlaced greedy algorithm for maximization of submodular functions in nearly linear
time. In Neural Information Processing Systems, pp. 2371-2381, 2019.

Alan Kuhnle. Quick streaming algorithms for maximization of monotone submodular functions in
linear time. In Proc. of the 24th AISTATS 2021, volume 130 of Proc. of MLR, pp. 1360-1368,
2021a.

Alan Kuhnle. Nearly linear-time, parallelizable algorithms for non-monotone submodular maximiza-
tion. In Proc. of the 30th AAAI 2021, pp. 8200-8208, 2021b.

Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maximizing nonmonotone
submodular functions under matroid or knapsack constraints. SIAM J. Discret. Math., 23(4):2053—
2078, 2010.

Wenxin Li, Moran Feldman, Ehsan Kazemi, and Amin Karbasi. Submodular maximization in clean
linear time. In Advances in Neural Information Processing Systems, pp. 7887-7897, 2022.

12

https://arxiv.org/abs/1808.06932

Under review as a conference paper at ICLR 2025

Hui Lin and Jeff A. Bilmes. A class of submodular functions for document summarization. In Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies, pp.
510-520, 2011.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. Fast constrained submod-
ular maximization: Personalized data summarization. In International Conference on Machine
Learning, volume 48 of JMLR Workshop and Conf. Proc., pp. 1358-1367, 2016.

Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005. ISBN 978-0-521-83540-4.

George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations
for maximizing submodular set functions - I. Math. Program., 14(1):265-294, 1978.

Abraham Wald. Some generalizations of the theory of cumulative sums of random variables.
The Annals of Mathematical Statistics, 16(3):287-293, 1945. ISSN 00034851. URL http
//www. jstor.org/stable/2235707.

13

http://www.jstor.org/stable/2235707
http://www.jstor.org/stable/2235707

Under review as a conference paper at ICLR 2025

A ORGANIZATION OF THE APPENDIX

* Section [B]presents simplified version of BoostAdapt algorithms and discussion.

* Section |C]presents some essential Probability Lemmas and Concentration Bounds used in
this work.

* Section D] presents algorithms missed in Section 3]
* Section [E] presents the proofs missed of Section [4]
» Section |G| presents the proofs missed of Section [6]
* Section [H|presents the additional experimental details and results of Section[7}

» Section [[provides additional related work for monotone SMC.

B SIMPLIFIED VERSION OF BoostAdapt ALGORITHM

To easily follow the idea of the BoostAdapt algorithm, this section presents a simplified version of
Boost and some discussion on related algorithms.

This version operates in O(log_1_ (’Z—Z)) iterations. It adapts greedy threshold Badanidiyuru &

'Vondrak| (2014) to update two disjoint sets X and Y. In particular, it alternately selects elements
with the marginal gain at least 7x (7y') into X (Y). Note that the thresholds 7x and 7y are updated
alternately after each iteration. Finally, the algorithm returns the best solution among X and Y.

It is noted that our algorithm operates in a different way from Iterated Greedy |Gupta et al. (2010),
which works as follows: (1) it repeats greedy methods to construct two solutions: finding a feasible
solution X over ground set V' then finding another solution Y over new ground set V' \ X; (2) it then
adapts the unconstrained submodular maximization (USM) algorithm to find the solution X’ over
ground set X and returns the best one among X, Y, and X’. Our algorithm also differs from the twin
greedy strategy Han et al.| (2020) and Interlaced Greedy Kuhnle|(2019), allowing simultaneously
updating two disjoint sets simultaneously in each iteration. In contrast to these algorithms, our
algorithm allows the integration of ThreshSeq in each iteration; thus, it can be effectively parallelized.

Algorithm 6: Simplified Version of BoostAdapt Algorithm
1: Input: f,V,k, ¢

2: M + maxcey f(e)

3 A« Tlog o (B)]+1, 7« kM/4
4: X <0, Y <0

5: fori < 1to Ado

6: if i is odd then

7: x — 7(1 —€)?

8: forec V\(XUY)do
9: if f(e|X) > 7x then
10: X+ XU{e}

11: else

12: Ty + 7(1 —¢€)?

13: forec V\ (XUY)do
14: if f(e]Y) > 7y then
15: Y « Y U{e}

16: S« argmaxzerx,yy f(Z)
17: return S

We define the following notations used for analyzing the algorithm’s performance guarantees

* Supposing X and Y ordered: X = {x1,22,...,2x}, Y = {y1,%2, ...,y v}, We conduct:
Xt ={w1,22,...,2:}, Y = {y1,v2, .- .,yi}, where z; (or y;) is i-th element added into
X (orY).

14

Under review as a conference paper at ICLR 2025

» Fore € X UY, we assume that z is added into X or Y at iteration I(e).
e X;and Y; are X and Y after the iteration ¢ of the main loop and Xy = Yy = 0.

» Foranelemente € X UY, we denote X<¢, Y<¢, 7% and 7 are X, Y, 7x and 7y right
before e is selected into X or Y, respectively.

o 745t and 712%t are 7y and Ty at the last iterations when X and Y are considered to update.

We provide the performance guarantees of Algorithm[6]in Theorem [B.T]

Theorem B.1. Forany e € (0,1/4), the Algorithm@takes o2 log(f)) query complexity and return
an approximation ratio of 1/4 — e.

Proof. The Algorithm @ takes n queries to find M and then runs in A = O(logl/(l_e)(%)) =
O(%1log(%)) iterations. Each iteration takes O(n) queries to update X or Y. Thus, the algorithm
takes total O(n) + O(% log(f)) =0(2 log(%)).

For the approximation ratio. If | X | # () or |Y| # 0, i.e., it contains at least one element, we have

fo) > 4 _46)2 max{ F(X1), f(¥a)} > L= Z)QkM > _z)%pt > (i —opt. (6)

We consider the other case when X; = Y2 = (. In this case f(X1) = 0,s0 f(X1 N O) = 0. We
further consider the following sub-cases

* If | X| < kand |Y| < k. Considering an element e is added into Y (at iteration [(e) > 4), it
was not added into X at previous iterations. Therefore, it has marginal gain f(e| X <¢) <

i(e) e
65 = 2 < L) Combining this with £M > 7 > U=9M e have
FOUX)=f(X)< > flelX))
e€cO\X
= > feX)+ > flelx) ®)
ecoOnNy e€O\(XUY)
f(e|Y<e) last
< Z 17_6"‘7')(k (9)
eeOnNYy
Y
< # + eopt (10)
— €

where inequality equation[7]is due to the submodularity of f, inequality equation[9]is due to:
TSt < eM/k < eopt/k, f(Y) =Y .oy f(e]Y<¢) and Y contains elements with positive
marginal gain.

On the other hand, since X; = () any element e is added into X (at iteration I(e) > 2)

i) o
having marginal gain f(e|Y <¢) < 05 = Hl)ge)*l = 6”? < LX) Thys

1 1—e
FOUY)=f(Y)< Y fleV)+ > flelX) (11)
ecONX e€O\(XUY)
X<e
< Z f(i|_6)_i_ﬁz/astk (12)
eecONX
< LX) + eopt. (13)
1—¢

By combining the submodularity of f, inequalities equation [10|and equation |13|and the
selection rule of the final solution, we have:

fO) < f(OUX)+ f(OUY) (14)
< w + f(X) + f(Y) + 2¢opt (15)
< zf —<1(5) + 2copt (16)

15

Under review as a conference paper at ICLR 2025

which implies that

(1-2¢)(1—¢) 1 1 e 1

f(8) =

o If | X| =k and |Y| = k, then [(x) > 3. Any element e is not added into X at iteration

I(z1) is not added into X at iteration [(x)) — 2. On the other hand, since | X| =k > |O|,
so | X \ O| > |0\ X|, we have:

F(XU0) < Y flelX) (18)
e€O\X
< >0 fleX)+ D> flelX) (19)
ecONY e€O\(XUY)
<e
< ZeéOﬁlY_fieD/) + |O\X| l(rk) 2 (20)
<e I(zk)
< Zeemly_fielY)4 X\ O (TX 7 1)
<(’ e
< Zeeomly _fidy + fle _X:). 22)
ee X\O

Similarly, we have

JOUY) =)< 30 fe)+ 3 flelX))
eEOﬂX ccO\(YUY)
< Eeeoﬂf{_f(j\X<) o s)=2) o)
_ EeeOmX f(e‘X<e> T}l/(yk)
= 1—¢€ + (1*6)2]6 (25)
Ceconx FelX<) f |Y<e
: L-e 2 g (26)
eeY\O

By combining equation[22]and equation [26] we have

ZeeOmee|Y<e Z f(‘Y<e
1—c¢)

£(0) < S0 L

eeY\O

felX<°) | Decon f(€|X<e)
+ Z |—e))+ = 1X—e

+ (X)) + 1Y)
ee X\O

70 + J(Y) 2 !
< PAS) =2t g9 < g 9)

which implies that f(S) > %opt > (4 — €)opt.

* If | X| < k and |Y| = k, by applying the transformations to equation[9]and equation 26| we
have

fOUX)—fX)< Y %Hept 27)

and

flOuy)—f(¥) <

<e e
> econx flelX s f€|_Y: _ (28)

1—c¢

16

Under review as a conference paper at ICLR 2025

Therefore
fO) < fOUX) + f(OUY) (29)
e iyt i |Y<f> 0
ecONY eeY\O
<e
+ ZEEO”IXf(:'X) + f(X) + f(Y) + eopt 31)
< (1f(_Y€))2 —&-%—I—Qf(S)—i—eopt (32)

Thus f(S) > %opt > (4 — €)opt.

o If | X| = k and |Y'| < k, by applying the transformations to equation |12|and equation [22| we

also have
felX=9)
FOUY) = f(Y) < A2 1 copt (34)
EE;X 1—e
and
<E’ e
fOUX) = f(X) < Zeeo”lyf Ty f |X< fer) (35)
€ e€eX\O N 6
Therefore
flO) < flOUX)+ f(OUY) (36)
X<e X<e
<y I ‘ + Y I e'_ 5 (37)
ecONX ec X\O0
Y<e
+ Zeeoqy_fid) + f(X) + f(Y) + eopt (38)
fX) 1Y)
< (1 — 6)2 + 1—¢ + Qf(S) + eopt 39)
4
< mf(S) + eopt. (40)
Thus f(S) > U= 6) opt > (] — €)opt.
Combining all cases, we complete the proof. O

C PROBABILITY LEMMAS AND CONCENTRATION BOUNDS

This section provides Probability Lemmas and Concentration Bounds that are useful for analyzing
the theoretical bounds of our algorithms.

Lemma C.1 (Chernoff bounds Mitzenmacher & Upfal| (2005)). Supposing that X1, ..., X,, are
independent binary random variables such that Pr(X; = 1] = p;. Let p = Y. | p;, and X =
> Xi. Then for any § > 0, we have

Pr[X > (14 6)u] < e 77 (41)

For 0 < 6 <1, we have

—52u

Pr[X <(1-9d)u] <e 2

(42)

17

Under review as a conference paper at ICLR 2025

Lemma C.2 (Lemma 6 in [Chen et al.| (2021)). Suppose there is a sequence of n Bernoulli
trials: X1, Xo,..., X, where the success probability of X, depends on the preceding trials
X1, Xo,...,X;_1. Suppose it holds that

PrX; = 1|X1 =21, Xo = 20,..., Xs 1 = 251] 2, 43)
where 1 > 0 is a constant and x1, . . ., x;—1 are arbitrary.
Then if Y1, ...,Y, are independent Bernoulli trials, each with probability n of success, then

H(iX£Q§H<iESQ, (44)
i=1 =1

where b is an arbitrary integer. Moreover, let A be the first occurrence of success in sequence X;.
Then,

E[A] < 1/n. (45)

Lemma C.3 (Lemma 7 in |Chen et al.| (2021)). Suppose there is a sequence of n + 1 Bernoulli
trials: X1, Xo, ..., X,41, where the success probability of X, depends on the preceding trials
X1,Xo,...,X;_1, and it decreases from 1 to 0. Let t = max{i : Pr[X; = 1] > n}, where
0 < n < 1is a constant. Then, it holds that

PI‘[Xl =].|X1 = CEl,XQ =Z2,... aXi—l = fti_l,i § t] Z m, (46)
where x1,...,x;—1 are arbitrary.
Then if Y1,...,Y, 11 are independent Bernoulli trials, each with probability 1 of success, then

t t
Pr (Z X, < bt) < Pr (Z)@ < bt) , (47)
i=1 =1

where b is an arbitrary integer.

Lemma C.4 (Wald’s Equation |[Wald (1945)). Let (X,)nen be an infinite sequence of real-valued
random variables and let N be a nonnegative integer-valued random variable. Assume that: 1)
(Xn)nen are integrable (finite-mean) random variables, 2) E[X, 1n>,] = E[X,]P(N > n) for
every natural number n, 3) the infinite series satisfies >, E[| Xy|1{n>n}] < 00. Then the random

sums Sy = 22;1 Xy and Ty = Ziv=1 E[X,,] are integrable and E[SNn] = E[Tn].
Lemma C.5 (Lemma 11 in|Chen et al.| (2021)). Let (Y;) be a sequence of independent and identically
distributed Bernoulli trials, where the success probability is Se. Then for a constant integer o, we
have

(1-p)?

Pr[) |Yi > ea] < min{B,e” 5 “}. (48)

=1

D ALGORITHMS MISSED IN SECTION 3]

In this section, we recap some subroutines in our algorithms and their performance bounds.

D.1 ThreshSeq (ALGORITHM 2 IN|CHEN & KUHNLE| (2024)))

D.2 UNCONSTRAINED SUBMODULAR MAXIMIZATION ALGORITHMS

In the LinAdapt algorithm, we adapt the [Fahrbach et al.| (2019al)’s algorithm (USM1) that provides
a factor of 1/4 — ¢ with constant probability for the USM problem. The guarantees for the USM1
algorithm are sated in Lemma|[D.1]

Lemma D.1. For any nonnegative submodular function f and subset A C 'V, Algorithm|8|outputs a
set S C V in one adaptive round using O(log(1/8)/e) oracle queries such that with probability at
least 1 — 6 we have f(S) > (1/4 — €)opt 4, where opt , = maxpca f(T).

We further adapt an essentially optimal algorithm of [Chen et al.|(2019) for USM in our LBA which
allows us to improve the approximation ratio slightly.

Theorem D.2 (Chen et al.|(2019)). There is an algorithm that achieves a 1/(2 + ¢)-approximation
for USM using O(log(1/€)/€) adaptive rounds and O(nlog®(1/¢)/€*) query complexity.

18

Under review as a conference paper at ICLR 2025

Algorithm 7: ThreshSeq(V, ¢, J)

1: Input: f,V,k, ¢ 05,7
2 A0, A« 0,U«V,A=[42log(n) +log(4))]
3: for j < 1to A do

4: UpdateU <~ {z € U: f(z|A) > 7}
5: if |U| = 0 then
6: return A, A’
7. U < random — permutation(U)
8: s« min{k — |A],|V]}
9: B[l:s] <« [none,none,...,none|
10: for i < 1 to s (in parallel) do
11: Ti,1<—{’U1,’U2,...,’U1‘,1}
12: if f(’UZ|A U Ti—l) >T then
13: BJi] + true
14: else
15: if f(vi|/AUT;_1) <0 then
16: BJi] + false
17: i* <— max{i : #truesin B[1:4] > (1 —¢)i}
18: A+ AUT-
19: A’ + A’ UT;+[where B # false]
20: if |A| = k then
21: return A, A’

22: return failure

Algorithm 8: USM1(V ¢, §)

1: Input: f,asubset AC V, ¢,
Set iteration bound ¢ «+ [log(1/§)/log(1 + (4/3)e)]
for i = 1 to ¢ in parallel do
Let R; be a uniformly random subset of A
Set S + arg mMaXxe{R,,...,R:} f(X)
return S

AN AN

19

Under review as a conference paper at ICLR 2025

E PROOFS MISSED OF SECTION [4]

E.l1 PROOFS MISSED OF LinBoundSet (ALGORITHM 2)
Proof of Lemma@.2] If S < k, ' = S, thus the Lemma holds. We consider the remaining case

S > k. LetS = S\ S’ Beside the notations of 73, T in Lmelglof Algonthm we use the following
useful notations:

* 5j and T} \- are S and T)s- after iteration j.

* T} ; is the set of first 4 elements added into T, e

Tj{,)w =Tjx \TjJ\i—l-

« I{, = {v; € T3, : b[ﬂ # false}, i.e., elements in T with non-negative marginal gain.
* 77 =Usax: TG TS, = Unan, T

s c=max{ceN: 8 C Uﬁ:ch}.

By the selection rule in Lme E Algorlthml T y/ only contains elements with non-negative marginal
gain. If T is a good block, it has at least (1 — e)|T)\ | good elements and thus |73 | > (1 — €)|T |.
It’s easy to see that [T7| < k for any j > c, and the size of T may be larger than k. Therefore, we
consider two following cases:

Case 1. If j > ¢, |T7| < k. By the selection rule of * in L1ne. Algonthml there are A7 — 1 first
blocks in T}, Ay are good and the last one is bad. For any block TJ’ \ C T, VT Ai < AT, we have

FINS;—1 UTY) > F(T31S;—1 UTya,) (By the submodularity and 7%, _, C Tjx,_,)
> Z fu]S;—1UTj1-1)
UleT;‘/i
My,
> (1—e)alT] % (Since 77 , is a good block)
S
> (1—e)alT} ,, |¥ (By selection rule of My, ,).
(49)
Since the block size exponentially increases with factor of 1 + € when A; < k, so we have |T" I3 <
€|Tjxx|/(1 + €). Combining this with equation , we have:
FT1S50) = 3 FTIS4 0T) (50)
X <]
> > f(IYS;-1UTY,) (Since ble] > 0,Ve € TY) (51)
f(S5-1)
> > fe)a|T]{7>\i\T (52)
A <AT
S;_
= (1= ol p; \ T, 1571 53)
1-— e Tz |
A 54
> Tt f(s;) 54
1—e¢ |T7|
> —_— i—1).
1% % f(S85-1) (55)

Case 2. If j = ¢, also by the selection rule of A*, the last block Tc’,/*. is always bad. If [T, x| < k,
all previous blocks 77 , , A; < A} are good. If [T\«

> k, some previous contiguous blocks are

20

Under review as a conference paper at ICLR 2025

good and they contain at least k elements. By the selection rule of S, we can let A\, = min{\, € A :
Ui, <xn,<a= Tt'x, € S'}. With a note that each block T/, = contains at most ek elements and 5" is
the union of some blocks, we have:

oSy =y ATLISuTK) (56)
ArSAi<AY
> > fTSUT.a) (57)
Ar<A <Az
M,
> Y0 (= aalTl, [(58)
Ar<A<AZ
S
> 3 g, LY)
>\r§/\1<kt
S
> (1—€)al(Ten: N 8)\ Ty % (60)
> (1 —€)a-max{0,|T°NS'| — ek}@ 61)
Combining two cases above with a note that k > |S’| > (1 — €)k, we have:
¢
F(8) = () = [(TeIS) + 3 F(T718j-1) (62)
j=c+1
cngand®) - Loe, [T
> (1= e)a-max{0,|T°N S| — ek}~ +j§11—+6a7f(sj_l). (63)
> (1 —¢)a-max{0,|T°NS"| — ek}f(ks) + 1 ; Za 15" >€T6| f(S). (64)
1—e l f(i)
= /(8)
> T 6oz(k — 2ek)—— (66)
1—c¢ —
> 1—_1_6(1 —2¢)af(S) (67)
which implies that f(S) > (1 + W) f(S). By the submodularity of f, we have
N , - 1—e)(1-2
1) < 18 + 1) = £(8) 2 1(8) - 13) 2 1o 0200 pis) o)
which implies the proof. O

Proof of Lemma We first show that the following propositions are true.

Proposition E.1. For each iteration in LinBoundSet, let A\;y = max{\; € A : \; < t} and
Qir={ecV: f(e][SUT) < aMy, /k}, wehave |Qo| =0, Qv| = |V, and |Q:] < [Qi11.

By Line[d]of Algorithm[2] we have f(e|S) > af(S)/k for all e € V. Therefore |Qo| = 0. On the
other hand, since f(e|SUV) =0 < aM,,, /kforalle € V, |Qy|| = |V]. For the last property,
by the submodularity of f and the definition of M},, for any element e € (); we have
M)‘(Prl)

k)

My
fle|lSUTi1) < f(e]SUTY) < « ’ <a (69)

which implies that e € Q1. Hence Q; C Q41 and |Q¢| < [Q¢t1]-

Now, we provide a bound probability that B[] is false in the following Proposition.

21

Under review as a conference paper at ICLR 2025

Proposition E.2. Lert = min{j € N : [Q;| > Be|V|}, Ay = max{\ € A: X\ <t} and (Y;) be the
sequence of the independent and identically distributed Bernoulli trials with the success probability
is Be. For any A < A, we have Pr[B[)\] = false] < Pr[Z‘sz*l‘ Y; > €|T%]].

We define an element v; that is bad if f(v;|SUT;_1) < aM) o /k and good otherwise. Consider the
random permutation of V" as a sequence of independent Bernoulli trials, with success if the element
is bad and failure otherwise.

We have Pr{v; is bad|v, ..., v;—1] = |Qi—1|/|V| thus the probability that v;, j < ¢ is bad is less
than fBe. By the definition of B[] in Line Algorithrn the block T7 is bad, it must contain more
than ¢|T}| elements. Let X; = 1 if v; is bad; and X; = 0, otherwise, we have

Pr(B[\] = false) < Pr(the number of bad elements in T} > €|T%]) (70)
=Pr| > X;> €Ty (71)
vj GT)/\
T3]

<Pr Z Y; > €|Ty] (Due to appplying Lemma|[C.3). (72)
j=1

The probability iteration j failure is upper bounded by the probability A* < ¢. We now consider
two cases. If * < k, there is at least one block T)’\ with A € A\ < /\(t) is bad. If * > k,
let Aj;) = max{\" € A : Z/\GA,NS/\S/\m |T5| > k}. Then there must be at least one integer
A € A between A, and)\’(t) such that block 77 is bad. Therefore, let By = {A € A : A < k},
By ={A € A:|[AN[A\ Ayl < [1/€]}, then we have

Pr(iteration j fails) < Pr[A* < ¢] < Pr(3\ € By U By, B[\] = false) < (73)

DN | =

The proof of inequality equation[73]is based on some properties of Bernoulli trials, which is shown
in detail in|Chen et al.| (2021). For the sake of completeness, we write down the details of the proof
below.

By Lemma[C.4] we have
Prliteration j fails] < Pr[3\ € By U By with B[)\] = false] (74)

= E[l{aAeBluBz with B[,\]:false}] (75)

<E Z 1{B[A|=false} T Z 1{3[,\]_false}] (76)
LAEB: AEB3

<E Z LB =false} | T E Z 1{B[A]—false}])
LAeB; AEB,

=E Z E[l{B[)\]:false}] +E Z E[l{B[A]_false}]] (78)
LA€ By AEDB>

where equation [78|holds, since the sequence (1{ B /\]:false}) and the random variable ¢ follows the
assumptions in Lemma 1) 1{B[n]=talse}]s are all integrable random variables because they only
take the values 0 and 1; 2) is a stopping time since it only depends on the previous ¢ — 1 selections;
3) Pr[ly>yy = 0)] = 1forany n > |V].

22

Under review as a conference paper at ICLR 2025

The first term of equation [78]is bounded by adapting Proposition [E.2]as follows:

E [Z E[1{B[x]=false}]

AEB;

751

<E Z < Pr ZY > €| T%| (79)
AGBl

751

<E > ZY > €| TY| (80)

| e{l(1+e)*]u>1}

3 min{g, e~ T} By LemmalC3) (81)

Ae{l(1re u>1}

IN

<Y min{,e”%} Duetof < 1/2,|T5| < N (82)
A>1
- 1 2
<ap+ Y e, (wherea =) = [Zlos(;— 7))
A=a+1
(83)
efe(aJrl)/Z
<af+ "y (84)
1 1 1
<4 == 85
-8 + 8 4’ (8
where equationfollows from By C {|{(14+¢€)":u> 1]}, andlet {[(1+€)":u>1|}} =

{>\17)\2, .- ~}, |T | =X — Ai—1;

For the second term in equation[78] from Proposition[E.2] Lemma C.5|and the fact that | Bo| < [1/€],
we have

T3
1
E| > Ellpp—tase)] | SE| Y <Pr ZY >eTi| || < B[/ <7 ®6)
AEBs AEB:
Put it into equation [78] we have
1 1 1
Prliteration j fail 4+ == 87
r[iteration j aus]<4—i-4 5 (87)

O

Proof of Theorem Prove the success probability. Since each successful iteration will remove
(Be)-fraction of V' thus if the LinBoundSet fails, there are no more than [log; ;) (n)] successful
iterations. Let X be the number of successes in the ¢ iterations. Then, By Lemma.3] X can be
regarded as a sum of dependent Bernoulli trials, where the success probability is larger than 1/2.
Let Y be a sum of independent Bernoulli trials, where the success probability is equal to 1/2. By
applying Lemma|[C.5] we have

Pr[LinBoundSet fails| < Pr[X < [log; /;_g)(n)]] (88)
<Pr[Y < flogl/(l_ﬂe)(n)ﬂ (By Lemma|[C.3) (89)
log(n)
< <
<Pr { <=5] (90)
<e %Uzzfﬁill)))*2(1+5;) log(§) (By Lemma|[C.T)) 1)
< (é)% (92)
n
<2 ©3)
n

Prove the bound of f(X U S). We use the notation in the proof of Lemma[4.2] We now further
prove that f(X U S) < (a+ 1)f(S). For each element z € X \ S, define j(x) + 1 be the iteration

23

Under review as a conference paper at ICLR 2025

where z is filtered out (LmeE], Algonthm. we have f(2|S;()) < af(Sj())/k. Therefore.

f(XUS)— < Y f@lSiw) (94)

xEX\S

ze€X\S
< af(Sjw) (Sice | X| < k) (96)
< af(9). C0)

Combine this with equation[68] we obtain
1+4e€ ,
f(XUS)S(a+1)f(S)§(0<+1)(1+ue)(l%)cy)f(s) (98)
1 1 22—¢) ,

Prove the adaptive and query complexities. LinBoundSet requires the oracle queries on Lines
[[TOl [12] of Algorithm [2] At these times, the queries are executed in parallel, there are constant
adaptive rounds in each iteration or the main loop. Thus, the algorithm needs O(¢) = O(log(n/d)/€3)
adaptive complexity.

Let V; be the set V' after Line[at iteration j and let Y; be the number of iterations between (i — 1)-th
success and ¢-th success. By Lemma we have E[Y] < 2. At each iteration 7, the algorlthm takes
|V;—1] + 1 queries on Line[4] takes Hﬁ |V;| queries on Line[10|and takes total |V;| queries after
the second and the third loops. Therefore, the number of queries is bounded by

¢ ¢
Y E(Vial+ 142V <n+ e+ 3|V (100)
j=1 j*l
<n+€—|—32 (1—e€B)'n] (101)
=1
n
<n+{+3— (102)
Be
n
= 0(6—3). (103)
This completes the proof. O

F PROOFS MISSED OF SECTION[3

F.1 PROOFS MISSED OF LinAst (ALGORITHM [3))

LinAst calls LinAdapt to find Sy. This task takes O(lofzn) adaptivity and O(%) queries. Then,
the algorithm runs in 2¢ = 2([log; _.(£)] 4+ 1) = O(Xlog(1)) iterations in one adaptive round.

Each iteration takes O(2) query complexity and O(2 log(%)) adaptive rounds to call ThreshSeq
algorithm. Therefore, the adaptive complexity of LinAst is at most

1 1 1
O(%™) + 0 1og() = o) (104)
€ € €
and its query complexity is
1
O() +0(-log(2)™) = O(5). (105)

The probability that LinAdapt fails is at most 1/(3n). In the main loop of LinAst, each iteration
returns sets (A;, A}) (or (A;, A})) with fail probability at most 1/(3n). Therefore, the algorithm
returns the set C' as the final solution with a successful probability of at least 1 — 1/n by the union

24

Under review as a conference paper at ICLR 2025

bound. By Theorem we have f(Sg) < opt < af(Sp), where a = (12 + (125 + %)e).

Thus % < < % = M. Besides, M (1 — €)' € [%, %] Therefore, there exist an
integer ¢ so that

(1 —€)opt
ck

If the algorithm succeeds, the proof of approximation ratio is similar to the proof of Theorem 7 in
Chen & Kuhnle| (2024). For the sake of completeness, we write down the details of the proof by
following. Denote 7; is the value of 7 at iteration ¢ in LinAst.

Case 1: If |A| = k or | B| = k. By the theoretical guarantee of ThreshSeq (Theorem[3.2), we have

F(C) z max{f(A"), f(B')} = (1 -)7 (107)

opt

<M(1—e)'< - (106)

1
opt > <6 — €)opt. (108)

Case 2: If |A| < k and |B| < k. By Theorem 3.2] for any element e € V we have f(e|A) < 7; and
f(e|B) < ;. By the submodularity of f, we have

FOUA) — F(A) £ 3 feld) < kri < 2. (109)
ecO

FO\AUB) ~fB)< 3 f(elB) < kr < . (110)

ecO\A ¢

Combine two inequalities equation|[109}equation with the fact that A N B = (), we have

FA) + f(B') = f(A) + f(B) (111)
> f(OUA) + [(0\ A)uB) - 2P (112)
> f(ONA)+ f(OUAUB) — Zopt (Due to the submodularity) (113)
> f(O\A) — @ (Due to the non-negativity) (114)

Besides, the USM2 gives approximation ratio of 1/(2+¢€), we have E[f(A”)] > f(OU A). Combine
this with equation|[I14] we have

opt < f(O) < f(OUA)+ f(O\ A) (115)
< (24 OE[f(C)] + 2(C) + @ (116)

it follows that E[f(C)] > % > (1 — €)opt. The proof is completed.

F.2 PROOFS MISSED OF LinAtg (ALGORITHM [4)

Proof of Theorem[5.1] Prove the complexities. The algorithm LinAdapt takes O(1052”) adaptivity
and O(Z) queries to call LinAdapt. Then, the algorithm runs two loops, each loop takes ¢ =

log%(acﬂ +1 = O(%log(1)) sequential iterations. In each iteration, it takes O(Z2) query

complexity and O(%log(%)) to call ThreshSeq algorithm, where § = 1/(3¢). Therefore, the
adaptive complexity LBA is

(") + O log(2) Hlos()) = O loa() lox(™ loa(1)) (a1
= 0(S 1os(2) (log(n) + log(log(2))) (118)
_ o(logegn) log(%)). (119)
and its query complexity is
0(5) + 0 108(0)") = 0(). (120)

Under review as a conference paper at ICLR 2025

The probability that LinAdapt fails is at most 1/n, and the probability that ThreshSeq fails in

each iteration is at most §. By the union probability, the probability BoostAdapt fails is at most
1/n+2¢-6=1/n.

Prove the approximation ratio. ATG algorithm in |Chen & Kuhnle (2024) use f (€42 to give the
bound f(%k; < f(emaz) < f(O). Our LinAtg uses M = af(So)/k to give a bound of opt/k. By

Theorem(4.1| we have f(Sy) < opt < af(S0), where a = (12 + (25— + %)e) Thus
M f(So) _ opt _ af(So)
— = <—< =M 121
a kK — k = Kk (121)
implying that M (1 —¢')* € [2 A1) O[22 %] From the main loops, LBA works similarly to ATG.

Therefore, we follow the proof of Theorem 8 in|Chen & Kuhnle (2024). For the sake of completeness,
we write down the details of the proof below. The notations used in the proof are listed below.

A’ and A’ are returned by the first loop of Algorithm4] while B and B’ are returned by the
second one.

» Define A; as A after iteration 1.

e Let .A;- be the first j elements in A, where 1 < j < |A|. Furthermore, for |A'| < j < k, let
A’ be A’ combined with k& — |A[dummy elements.

* Let {a}} = A} \ A)_;, a; be returned at iteration i(j), and A;(;) be the set A returned at
iteration (7). If {aj } is dummy element, let i(j) = £ + 1. Then, we likewise define B;, B}
Big) -
Lemma F.1 (Lemma 9 in|Chen & Kuhnle|(2024)). For 1 < j < k, there are at least [(1 — €')k] of j
such that

/ / M 1-
fAS) = f(j—1)+a2 k€

(F(OUAjjy—1) — A1) (122)
And for any j,
FOAY) > fAG-). (123)

Lemma F.2 (Lemma 10 in/Chen & Kuhnle|(2024)). For 1 < j < k, there are at least [(1 — €')k] of

7 such that

1—¢
k

FBY) = F(B) + o > SO\ U By)~ FBLy). (24)

And for any j,
f(Bj) = f(Bj_y)- (125)

Lemma F.3 (Lemma 11 in/Chen & Kuhnle|(2024)). Let Iy = f(A}(,)) + f(Bj,)). where j(u) is

the u-th j which satisfies Lemmaor Lemma Then, there are at least [(1 — ')k of u follow
that

foNa) -, - 2 < (1— 1:') (f<0\A>—ru1—C<ffﬂ,)). (126)

Lemma yields a recurrence of the form (b — u;11) < a(b — u;), up = 0, and has a solution
u; > b(1 — a'). Consequently, we have

FA) + f(B) > (1 - (1 - 1k€/>(1_€,)k> (f(O\A) — df%) (127)

> (1m0)((O\A) C(ffi)) (128)

26

Under review as a conference paper at ICLR 2025

Let 3 =1 — e~(1=¢)”_ From the choice of C on line 16, Algorithm@ we have 2f(C) > f(A') +
f(B’) and from equation[128] we have

FONA) < 2HC)+ o (129
< %f(C) + C(2lf(06/))2_ (130)

Assume USM2 has a ratio of 1/p for USM problem. For any A, f(O N A)/p < E[f(A")|A];
therefore

£(0 1 A) < pE[f(C)]. (131)

For any set 4, f(O) < f(ON A) 4+ f(O\ A) by the submodularity and nonnegativity. Thus
fO) < fF(ONA)+ f(O\ A) (132)
<210+ 05+ (133)

Therefore
Fe)2 T o) > (oTms <) f© (134
T opt3 —\ple—1)+2e '

By replacing p = 2 + ¢ for USM2, we obtain the ratio. O

G PROOFS MISSED OF SECTION

We recap the following notations used for analyzing the BoostAdapt’s performance guarantees

* Supposing X and Y ordered: X = {x1,22,...,2x}, Y = {y1,%2, ...,y v}, Wwe conduct:

Xt ={xy,29,...,2;}, Y = {y1,v2,...,9i}, where z; (or y;) is i-th element added into
X (orY).

e Fore € X UY, we assume that e is added into X or Y at iteration 7.

e X, and Y; are X and Y after the iteration ¢ of the main loop and Xy = Yy =). Then, we
define X/ and Y; analogously.

o 7% and 7 are Tx and Ty after the iteration i of the main loop of BoostAdapt.

o 75t and 7{5! are Tx and Ty at the last iterations of the main loop of BoostAdapt when X
and Y are considered to update.

¢ Define Af (res. Bj) as the set of elements in A; (res. B;) having the marginal gain at least
Tx (res. 7y) atiteration 4, X;t = Ui_ A, V;" = Ui_ | B} and XT = X{, YT =V},

e For an element e € X UY, we denote by X <¢, Y <¢ as X, Y right before ¢ is selected into
X orY, respectively.

We first explore some basic properties of X, X’, X" and Y,Y”,Y” in Lemma|G.1}

Lemma G.1. a) For any iteration i, we have f(X]) > f(X;) and f(Y]) > f(Y3).
b) At the end of BoostAdapt, we have f(X") > (1 —€)f(X') and f(Y") > (1 —¢) f(Y).

Proof of|[G.1] a) We prove the Lemma by the induction hypothesis. For i = 1, we have f(X{) =
f(AY) > f(A1) = f(X1) due to the Theorem so the Proposition holds. Assuming the
proposition holds for j, we have:

f(Xj41) = fA L UXD) = F(A, 4 1X)) + f(X)) (135)
> AL 1X5) + f(X5) (136)
> f(Aj41|X5) + f(X;) = f(Xj41) (137)

27

Under review as a conference paper at ICLR 2025

where the inequality equation [136[is due to the submodularity of f and X j’ C Xj, inequality
equation[I37]is due to the theoretical bound of ThreshSeq (Theorem[3.2). Therefore, by the induction
hypothesis, we have f(X!) > f(X;) for any iteration 7.

By similar reasoning, we can prove f(Y;) > f(Y;) for any iteration ¢, which completes the proof of
a).

b). If | X’| = k, then X"/ = X’ the Lemma holds. If | X’| > k, by the setting of k£’ and the selection
rule of X", we get | X"| =k > k'(1—¢€) > |X|(1—¢€) > | X'|(1 —¢€). Therefore | X'\ X”'| < €| X’|.
Elements in | X"\ X’| have lowest marginal so we obtain

FX) =" felX=0) = > flelX'<)+ > fle]X'<%) (138)
eeX/ eeX/l eEX/\XII
< D fEX) e Y fel X (139)
ee X" eeX’
< Z f(e]X"<¢) 4+ ef(X’) (Due to the submodularity and X" C X') (140)
eeX"
= f(X") +ef(X') (141)
which implies f(X”) > (1 — €) f(X’). By similar reasoning, we can prove f(Y") > (1 —¢€) f(Y”).
This completes the proof of b). O

Proof of Lemmal6.1} a) Fori > 1,iisodd. If i = 1, X; = Yy = (. Thus C' =) and the Lemma
holds. If ¢ > 3,1et C = CoUC,U...UC;_1, where C; (j < i—1)is the set of elements in C' added
into Yj+, ie,C; = B;f N C. Each element e € C} is selected into YjJr at iteration j < ¢ — 1 and has
not been added yet into X at the previous iteration. By the Theorem [3.2]and the submodularity of f,
for any e € C; we have

N fEY=)

) <) J=1 _
fle|Xi) < fle|X;-1) < 7% TS (142)
It follows that
> flelXi) = Z > flelXi) (143)
ecC 2,4,...,i—1eeC}

f |Y<e
< Y Z% (144)

§=2,4,...,i—1 ecC;

Y<e
=y A FeY=2). (145)
1—e€
ecC
b) We prove this case by the same reasoning with part a)
Ifi > 2,7iseven. If i = 2, since X; = (), thus D =) and the Lemma holds. If i > 4, let
D =D UD3U...UD;_y, where D; = A+ N D. Each e € D is selected into X at iteration
5,3<j<i-1 and has not been added yet 1nt0 Y at the previous iteration. By the Theorem [3.2] for
any e € D; we have

LTk fEX)

flelYi) < flelYj—1) <1 ST (146)
Therefore
e = D D fev) (147)
e€D §=3,5,...,i—1 e€D;
f ‘X<e
< 2 5 He (148)
j=3,5,...,i—le€D;
f(e\X“)
< — 14
<> T (149)
eeD
which completes the proof. O

28

Under review as a conference paper at ICLR 2025

Proof of Lemma(6.2] We consider following cases: '
Case 1. If | X| < k" and |Y'| < ¥/, by the definition of A in Algorithm we have 4 > 7(1 — €)' >

w. Thus 74¢5t < ef(Sp)/k < eopt/k. By the submodularity and applying Lemmaand
Theorem 3.2} we have

FXUO0) = f(X)< Y flelX) (150)
ecO\X
= > feX)+) fleX) (151)
e€eY+NO e€O\(XUY 1)
<e
- Zeew;O_J;(e'Y)+ krlgst (152)
<e
< Zeey'qo_f 6(6|Y) + krigst (153)
< J;(fe) + copt (154)

where inequality equation [I50]is due to the submodularity of f, inequality equation [I32]is due to:
applying Lemmal6.1]with D = Y+ N O and applying Theorem 3.2}
Similarity, since X; = () and by applying Lemma and Theoremwe have

fYUO) = f(Y)< > f(e]Y) (Due to the submodularity of f) (155)
ecO\Y
= > fleM+ D fley) (156)
eeONX+ eeO\(XtuUY)
<e
< 2660”1” JelX™) + kTt (157)
—€
<e
< Zee@“f’ Xy oo (158)
— €
<) copt (159)

Combining two inequalities equation|[T54]and equation[I59]and the selection rule of the final solution
we have

F(0) < F(OUX) + f(OUY) (Due to the submodularity of f) (160)
< ORI) + 1) + 20t (161)
- f — (£ + 7(Y")) + 2e0pt (162)
< (12_;:)2 (F(X")+ 7 (")) +2e0pt (Due to LemmalC2) (163)
< % £(S) + 2eopt (164)

which implies the proof of a).
Case 2. If | X| = &’ and |Y'| = k’. Since X; = 0 we must have i,,, > 1. If i;, , = 2, we have

(1 —€)opt

F(S) > f(Y3) > (1 —¢)|Yo|rE > (165)

thus the Lemma holds.
If 3, , > 2, then each element e that is not added into X at iteration i, , also has not been added
into X at iteration i,,, — 2. By applying Lemma with a note that ‘Xizk/ _o| < K/, we have

29

Under review as a conference paper at ICLR 2025

fe]X) < T);k/ ? Therefore

f(XU0) - < > flelX) (166)
eEO\X
S flelX) + > flelX=°) (167)
e€Y+NO e€O\(XU3/i+ -1
T I A

Similarly, each element e is not added to Y at iteration 4, , also is not added to Y" at iteration ,,, — 2.
By Lemmal6.1] we have:

fYUo) - < > fley)+ 2 FlelY) (169)
 ecOnx+ eeO\(YUX;;k,,l)
X <e [-
R (170)

On the other hand, since | X| = k' > k > |O|. Since at each iteration i, ThreshSeq selects at
least (1 — €)|A;| element with marginal gain is above the threshold, so |A| > (1 — €)|4;|. Thus
| XF| > (1 —¢€)|X]| = (1— €k If (1 — €)k’ is an integer, then (1 — ¢)k’ = k and thus | X | = k.
If (1 — €)%’ is not an integer, then (1 — €)k" < k, [(1 — €)k’] = k. Since | X *| is an integer, we have
| X*| =1 - ek . = k which implies |[XT\ O| > |O\ XT| > |0\ X'| >
|O \ X|. By the definition of X', X we have

S FEXT) = XN\ O] -y (171)
eeXt\O
> (1= 0\ Xy (172)
> (1- 0?0\ X|ryr (173)
i X<e
— |0\ X|ry P < EEEX&\O_{;), (174)

Similarly, since |Y| =&/, |[YT| > kand YT\ O] > |O\ Y| we have

ST HEY) = (1?0 YR (175)
e€eY+\O

Zeew\o flelY=°)

(1—¢€)? '

— [0\ Y|ry* < (176)

30

Under review as a conference paper at ICLR 2025

Combining equation [T68] equation[T70] equation[I74]and equation [I76]together we get
flO)<f(OUX)+fOUY)
Yeevino fElY =) | Peeyrio f(elY™)
1—e (1—¢)?
>econx+ f(e[X <) N Deexo f(elX=)
1—e¢ (1—¢)2
Deey+ SV =) Deexs f(el X9
= 61(/1 —€)? + E)((1 —€)?
Sy SV <) | S S X
T (1= (1—e)?
[y | fx0
Sh-or taoee T+
2f/(Y) 2f(X") _ f(X)+f(Y)
R L TR E A (R
SX") + fY")
(1—¢)?
Case 3. If |Y| = k' and | X| < K'. If ¢,, = 2, we have
F(8) = f(V2) = (1= €’y > (1—¢)

the Lemma holds. If 4, > 2, similar to the Case 2 of this proof, we also have

<

+

+ (X)) + f(Y)

+ f(X)+ f(Y)

+ (X)) + f(Y)

<2 (Due to LemmalC.2])

s opt

JYU0)—f(¥) < Zeeo“ﬁff'w) +1O\Y]-
and
iy, —2 ZGEY+\O flely=°)
[O\Y|r/*s = < e .

Since | X | < &/, similar to the Case 1, we have

FXUO) = f(X)< Y flelX)

ecO\X

= D> fleX)+ Y feX)

e€cY+NO e€cO\(XUY+)
Y <e
< EEEY*;O_ ff') | kel

It follows that
f(O) < f(OUY)+ f(OUX)
2eev+no f(elY ™) n Dcey o f(elY =) N Y econx+ f(e]X<9)
1—¢ (1—¢)? 1—e¢
+ f(X)+ f(Y) + eopt
- Teeye V™) | Teen [X)

<

+ f(X)+ f(Y) + eopt

> (1—€)2 1—e¢
< A
< QW + eopt

b Y
< Qf((l)jf)g) + eopt

31

(177)

(178)

(179)

(180)

(181)

(182)

(183)

(184)

(185)

(186)

(187)

(188)

(189)

(190)

(191)

(192)
(193)

(194)

(195)

(196)

(197)

Under review as a conference paper at ICLR 2025

Case 4. If |Y| < k' and | X| = k’. Since X; # 0 we must have i,, > 1. Similar to the Case 2, we
have

U0 - s < 3 s < oo D o e e

1 _
e€cO\X
and
Gy, —2 ZeEXJr\O f(e|X<e)
|0\ X7y < e . (199)
Since |Y'| < k' similar the Case 1, we have
<e .
fYuo)—f{) < ZCEO”f_fE(dX)4 O\ Y]y 7 (200)
It follows that
fO)< flOUX)+ f(OUY) (201)
< Ze€Y+TO FlelY=°) + Zeeomlﬁ f(e] X=°) (202)
— € — €
X<e
Zeexgﬁ‘ii;j')| F(X) + f(Y) + eopt (203)
< ZeeY/ flely=°c) I ZeEX+ fle|X=°) (204)
1—c¢ (1—¢)?
Y o fXx0)
< T +(176)2+f(X)+f(Y)+eopt. (205)
SX) + £(Y)
< QM + eopt. (207)
(1—e)?
Combine Case 2, Case 3, Case 4, we have:
FX)+fY7) _ 4f(9)
HO) 2= =S S g (208)
which completes the proof of b). O

Proof of Theorem[6.3] Prove successful probability and complexities. BoostAdapt first calls
LinAdapt to find Sy in O(*%8™) adaptivity and O(%) queries. Then, the algorithm runs in A =

oL log(f)) iterations; each takes O(2) query complexity and O(% log(%)) adaptive rounds to call
ThreshSeq algorithm. Therefore, the adaptive complexity BoostAdapt is

logn 1 k.1 ny\ 1 k n k
O(=57) +0(< log(2)= log(5)) = O(5 log () log(~ log(5)) (209)
1 k 1 k k
= O[5 log(2) log(%) + — log(-) log(5))) (210)
1 k
= 0(log(>) log(+)) 211
and its query complexity is
1 k k
O(%) + (< log(=) =) = O(5 log(=) 12)

The probability that LinAdapt fails is at most 1/(3n), and the probability that ThreshSeq fails in
each iteration is at most 6. By the union probability, the probability BoostAdapt fails is at most
1/(3n)+A-6=1/n. O

32

Under review as a conference paper at ICLR 2025

H ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

In this section, we elaborate on the experimental configuration and provide additional empirical
findings along with some discussions.

H.1 ALGORITHMS AND SETTINGS

We compare our algorithms LinAst, LinAtg and BoostAdapt with state-of-the-arts for non-monotone
SMC including:

* IteratedGreedy (IG): The algorithm in|Gupta et al. (2010) achieves 1/6 — e approximation
ratio when the 1/2-approximation of Buchbinder et al.|(2012) is used for the unconstrained
maximization subproblem. The algorithm takes O(nk) query and adaptive complexities.

* AdaptiveNonmonotoneMax (ANM): The algorithm in [Fahrbach et al.| (2023) achieves
0.039 — € approximation ratio with O(log(n)) adaptivity complexity and O(n log(k)) query
complexity.

« ParSKP2: The algorithm in|Cui et al.|(2023) that runs in O(log? n) adaptivity, O(nk log® n)
query complexity and returns a 1/4 — e approximation solution in expectation.

» AdaptiveSimpleThreshold (AST): The algorithm in [Chen & Kuhnle] (2024) achieves
1/6 — € approximation ratio with O(log(n/d)/e 4 log(1/¢€)/¢) adaptivity complexity and
O(log, _.(1/(6k)).(n/e +nlog®(1/€)/€*)) query complexity.

* AdaptiveThresholdGreedy (ATG): The algorithm in [Chen & Kuhnle| (2024) achieves
0.193 — e approximation ratio with O (log(n) log(k)) adaptivity complexity and O(n log(k))
query complexity.

» ENE: The algorithm of Ene and Nguyen Ene & Nguyen|(2020) that returns a ratio of 1 /e — e
in O(logn) adaptive rounds and Q(nk? logn).

» FastRandomGreedy (FRG): The algorithm in Buchbinder et al.[(2015) achieves 1/e — ¢
approximation ratio with O(k) adaptivity complexity and O(n) query complexity.

The comparison is about four metrics: object values, adaptive complexity, number of queries, and
running time. We experimented with two well-known applications: Revenue Maximization (RM)
and Maximum Cut (MC)|Chen & Kuhnle| (2024); Kuhnle| (2019); Amanatidis et al.| (2020).

We set € = 0.1 for all algorithms, and other settings are set the same as (Chen & Kuhnle|(2024).
Furthermore, we use an algorithm in|Fahrbach et al.|(2019a) (USM1), which returns a ratio of 1/4 — ¢
for our LinAst, LinAtg and algorithms (AST, ATG, ANM) in|Chen & Kuhnle|(2024); |[Fahrbach et al.
(2023) and set the same setting with |Chen & Kuhnle (2024); Fahrbach et al.| (2023)). ENE algorithm
requires access to an oracle for the multilinear extension and its gradient. In the case of maximum
cut, the multilinear extension and its gradient can be computed in closed form in time linear in the
size of the graph and thus one can evaluate it using direct oracle access to the multilinear extension
and its gradient on the maximum cut application. However, no closed form exists for the multilinear
extension of the revenue maximization objective Chen & Kuhnle|(2024).

H.2 APPLICATIONS AND SETTINGS

The applications utilized in the experiments are defined as follows:

Maximum Cut Application. Given graph G = (V, E), and nonnegative edge weight w;; for each
edge (i,7) € E. For S C V, let

F8) = >0 wiy (213)

1EV\S jES

The objective of the problem is to find a solution set .S such that f(S) is maximized while ensuring
that the cardinality of S is less than k. The function f(-) is a submodular and non-monotone function.

33

Under review as a conference paper at ICLR 2025

Revenue Maximization Application. Considering a graph G = (V, E) representing a social
network, where each edge (4, j) € E is associated with a non-negative weight w;;, we adopt the
concave graph model introduced by (Hartline et al.,2008). In this model, each user ¢ € V is linked to

a non-negative, a concave function f; : RT™ — R™. The function v;(S) = f; (Z jes wij) indicates

the likelihood of user ¢ purchasing a product if the set S adopts it. Thus, the total revenue from
seeding a set S is given by

) =Y £ D owi |- (214)

1€EV\S jeSs

The objective of the application is to find a solution S such that f(S) is maximized while ensuring
that the cardinality of S is less than k. The function f(-) is a submodular and non-monotone function.

Table 2: Details of datasets used in the experiments.

Dataset Name Nodes Edges Types Applications Sources\References
Barabasi-Albert 968 5,708 Undirected MC Chen & Kuhnle/(2024)
ca-GrQc 5,242 14,496 Undirected MC SNAP
ca-Astro 18,772 198,110 Undirected RM SNAP
web-Google 875,713 5,105,039 Undirected MC SNAP

Other settings. In our experimental setup, we employed OpenMP to parallelize the code written in
C++. To precisely measure the execution time of these algorithms, we utilized Chrono, a standard
component of C++. Our methodology includes marking the start and end points of each algorithm’s
execution using Chrono and computing the time gap between these two points. In the Maximum Cut,
we uniformly set the weight of all edges to 1.0. In the Revenue Maximization, we randomly assigned
weights to all edges from the interval (0, 1). Besides, we experimented on a high-performance
computing (HPC) server cluster with the following parameters: partition=large, #threads(CPU)=64,
node=2, max memory = 3,073 GB.

H.3 ADDITIONAL RESULTS

Figure [2] shows the results of compared algorithms on Barabdsi-Albert and Astro with both RM and
MC, while Figure [3|focuses on the largest dataset, Google, with various % on the MC application. On
Google, we do not show the result of ENE and ParSKP2 because they become impractical with large
size data and large k.

Objective value: Figures 2}[3(a)(e) show the objective values. They show that our BoostAdapt
lines consistently reach the highest points with every k. LinAtg approximates to BoostAdapt while
LinAst is a little lower than BoostAdapt. With Barabasi-Albert and Astro, except AST and ParSKP2,
other algorithms are also consistent with ours. AST are moderately lower than ours. Significantly,
ParSKP2 always hits the lowest values. With Google, the gap between ours with FRG, AST, and
ParSKP2 seems larger, especially in the case of small k. Especially, Figure [3(a) indicates ours are
much higher than FRG, AST and ParSKP2. In this case, our algorithms can be up to 1.3-1.6 times
larger than FRG and AST. Finally, our algorithms significantly improve the solution quality.

Adaptive rounds: In RM (Figure[2[b)), ANM marks the lowest points, which means it saves the
best adaptive rounds. Being consistent to ANM they are LinAst, FRG and AST. Moderately higher
than these lines they are LinAtg, IG and BoostAdapt. Significantly, ParSKP, ENE and ATG are
much higher than the others. In MC (Figures 2}3[f)), ATG, IG, and ParSKP2 always waste a sharply
large number of adaptive rounds, the others can use an acceptable number of them. Especially, our
LinAst always hits the lowest points while our other algorithms are almost close to it. Also, AST and
FRG save more considerable rounds compared to mentioned high adaptivity lines. As can be seen,
our algorithms outperform the others in the adaptive rounds.

Number of queries: In both RM and MC of Figures[2|c)(g), our algorithms almost always minimize
the number of queries. In RM Figure c), LinAtg, ENE, FRG, ParSKP2 and BoostAdapt are the

34

https://snap.stanford.edu/data/ca-GrQc.html
https://snap.stanford.edu/data/ca-AstroPh.html
https://snap.stanford.edu/data/web-Google.html

Under review as a conference paper at ICLR 2025

— ANM -* AST —+ ATG ® BoostAdapt - ENE — FRG — IG -® LinAST —# LinATG --- ParSKP2

Barab asi-Albert Barab asi-Albert Barab’asi-Albert Barab asi-Albert

S X =K
.
+ :
§1HM + m
+ ot
E__ &
b
L -4;/{'/‘
(@ (b) (©) (@
Astre
(e) () () (h)

Figure 2: Performance of algorithms for Revenue Maximization (a-d) and Maximum Cut (e-h).

—¢ AST —+ ATG & BoostAdapt — FRG — IG -® LinAST —# LinATG

Google (small k) Google (small k) Google (small k) Google (small k)

Figure 3: Performance of algorithms for Maximum Cut on large Google Dataset.

group of the lowest number of queries, followed by LinAst, ANM, ParSKP2 and IG algorithms.
Meanwhile, AST and ATG require many queries. Nevertheless, in MC (Figure 2Jg)), |G along with
FRG reach highest points, followed by ATG. The others are substantially low.

The change also happens with the experiment of Google. With small k£, ATG and IG waste much
higher than the others. Our algorithms always mark the lowest points. With bigger &, LinAtg still
hit the lowest points. LinAst, ATG and AST are close to LinAtg while BoostAdapt grows when k
grows. With high values of k, BoostAdapt reaches to FRG. |G wastes the highest number of queries.
Finally, LinAtg and LinAst always keep steadily low while BoostAdapt keep low values in most
cases except Google with large k.

Time taken: Inthe RM (Figure Ekd)), LinAst has the lowest execution time, followed by the ENE,
IG and FRG algorithms. Our algorithms BoostAdapt and LinAtg have the same running time, which
is higher than |G and FRG but lower than the remaining. In MC (Figure 2(h)), all our algorithms have
the lowest points, a little lower than ATG and IG. ANM, ENE and FRG are moderately higher than
the above algorithms while ParSKP2 has essentially highest values.

35

Under review as a conference paper at ICLR 2025

On the Google dataset (Figure[3)), LinAst always runs fastest while others fluctuate. With small k,
our BoostAdapt and LinAtg are almost equal to AST, higher than FRG and |G, and lower than ATG.
With bigger k, |G runs slower than BoostAdapt and LinAtg and LinAst and have the trend run faster
than the remaining.

The above metrics show that our algorithms outperform the others when keeping the best quality
solutions, wasting the lowest the number of queries within acceptable query adaptivity.

I ADDITIONAL LITERATURE REVIEW MONOTONE SMC

People studied non-adaptive methods for SMC first. [Nemhauser et al.| (1978)) showed the best
approximation algorithm with a factor of 1 — 1/e based on the sequential greedy approach. However,
the sequential searching of greedy made time running too slow if the input increased. It led other
works to try to reduce the time consumption problem. In Badanidiyuru & Vondrak| (2014)), they
proposed a deterministic approximation algorithm to reduce time consumption down to O(n logn)
by streaming fashion model. Significantly, Kuhnle|(2021a)) and|Li et al.|(2022) have simultaneously
proposed a linear-time approximation algorithm with a tight factor of nearly 1—1/e recently. However,
these algorithms cannot work for non-monotone functions.

To work with the approach of parallel, the first major contribution belonged to Balkanski & Singer
(2018)) when first applied the adaptive sampling method for the monotone SMC problem with constant
3-approximation ratio and O (log n) adaptivity. Their algorithm filtered a fixed fraction of the elements
out of the ground set to get a quadratic query complexity. In contrast, Breuer et al.| (2020) sped up
the sampling method to enhance the approximation factor to 1 — 1/e within O(log n log k) adaptive
rounds and O(n log(log k)) queries.

36

	Introduction
	Related Works
	Preliminaries
	 LinAdapt: Parallel Algorithm with Linear Query Complexity
	A key subroutine: LinBoundSet

	Improved Ratio Algorithms with Linear Query Complexity
	BoostAdapt: Boost Parallel Algorithm with Near-Linear Query Complexity
	Empirical Study
	Conclusions
	Organization of the Appendix
	Simplified Version of BoostAdapt algorithm
	Probability Lemmas and Concentration Bounds
	Algorithms missed in Section 3
	ThreshSeq (Algorithm 2 in Kuhnleadaptfix)
	Unconstrained Submodular Maximization Algorithms

	Proofs missed of Section 4
	Proofs missed of LinBoundSet (Algorithm 2)

	Proofs missed of Section 5
	Proofs missed of LinAst (Algorithm 3)
	Proofs missed of LinAtg (Algorithm 4)

	Proofs missed of Section 6
	Additional Experimental Details and Results
	Algorithms and Settings
	Applications and settings
	Additional results

	Additional literature review monotone SMC

