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Abstract

Recent equivariant models have shown significant progress in not just chemical
property prediction, but as surrogates for dynamical simulations of molecules and
materials. Many of the top performing models in this category are built within
the framework of tensor products, which preserves equivariance by restricting
interactions and transformations to those that are allowed by symmetry selection
rules. Despite being a core part of the modeling process, there has not yet been
much attention into understanding what information persists in these equivariant
representations, and their general behavior outside of benchmark metrics. In this
work, we report on a set of experiments using a simple equivariant graph convolu-
tion model on the QM9 dataset, focusing on correlating quantitative performance
with the resulting molecular graph embeddings. Our key finding is that, for a scalar
prediction task, many of the irreducible representations are simply ignored dur-
ing training—specifically those pertaining to vector (l = 1) and tensor quantities
(l = 2)—an issue that does not necessarily make itself evident in the test metric.
We empirically show that removing some unused orders of spherical harmonics
improves model performance, correlating with improved latent space structure. We
provide a number of recommendations for future experiments to try and improve
efficiency and utilization of equivariant features based on these observations.

1 Introduction

Equivariant modeling has been known and subsequently shown to be extremely useful for holistic
descriptions of atomic systems by respecting native symmetries of both systems (i.e. molecules)
and the operators that act on them for property modeling. The core concept of equivariance lends
itself to enabling a new degree of research productivity in applications ranging from molecular
conformer generation [1, 2] to condensed phase materials discovery [3–5]. One of the most powerful
applications of equivariant models is in the dynamical simulation of materials via the creation of
interatomic potentials, which contrasts conventional atomic force-fields by allowing a single neural
network architecture to support a wide range of elements of the periodic table, as opposed to bespoke
force fields tuned for particular material classes. Recent examples of equivariant neural networks
developed for this purpose are the SE(3)-Transformer [6], SEGNN [7], NequIP [8], MACE [9],
eSCN [10], and Equiformer [11, 12] amongst others [13]. While many of these architectures have
been successful in property modeling for a diversity of chemical systems, further work remains in
understanding their capabilities and limitations as machine learning interatomic potentials [14].

The common theme between these architectures is how they achieve equivariance; tensor products
using spherical harmonic functions as a basis provides a unifying framework covering invariance
to specific types of equivariance, primarily through the order l and parity of spherical harmonics
used. This framework was originally devised for analyzing how different sources of angular momenta
can couple together [15, 16], and equivariant neural networks that use spherical harmonics and
tensor products follow the same guiding principles: symmetry rules dictate which sets of irreducible
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representations can interact, and their coupling strength is given by the Clebsch-Gordon coefficients.
Despite their general success, current state-of-the-art models like MACE [9] limit their order of
spherical harmonics to l∼2, and in the case of NequIP, l = 3 [8]. From a signal processing perspective,
higher order spherical harmonics can be thought of as analogous to high frequency components
in Fourier series; their complex node structure is potentially capable of encoding correspondingly
complex atomic motifs, in addition to providing the same equivariant preserving treatment to the
prediction of higher rank properties as the need arises, such as octopole (a rank-three tensor) moments
and multiphoton spectroscopy (rank-k for k ≤ the number of photons) [17].

Recent work by Lee et al. [18] investigated approaches to improve the computational efficiency of
spherical harmonics by implementing them in the Triton language [19]. The aim of Lee et al. [18]
was to unblock research avenues into using higher orders of spherical harmonics—and therefore
richer feature spaces—by relieving their computational complexities. In this paper, we built on top
of Lee et al. [18] to provide a new set of implementations for spherical harmonics up to l = 10,
described in Appendix A.2, which remove inter-order dependencies in spherical harmonics. This
reformulation allows free, efficient composition of spherical harmonics. We apply these kernels
in a series of experiments that seek to understand how irreducible representations ultimately affect
regression tasks. Our experiments in Section 3 show that equviariance-preserving feature sets can
potentially be left unused, leading to worse model performance. The experimental space allowed us
to correlate quantiative metrics with qualitative visualizations of the latent embedding space, which
can be correlated to poorer test errors. Finally, we propose testable hypotheses and recommendations
for future investigations into the optimal usage and design of tensor product models.

2 Methodology

In this work, we implement a highly simplified equivariant graph convolution model inspired by
NequIP [8] to embed molecular graphs. In an attempt to arrive at semantic embeddings, we train
this architecture on atomization energy prediction at 0 K (Uatom

0 ) using the QM9 dataset [20, 21]: at
a high level, the model couples (initially) scalar atom features of dimension h with atom positions
embedded in a basis set of L1 spherical harmonics with fully connected tensor products to yield
node embeddings with a dimensionality of d =

∑L
l∈L h(2l + 1), where i indexes the orders of

spherical harmonics specified, and l ∈ {0− 10} in our current implementation. A sequence of graph
convolutions aggregate information across multiple node hops and irreducible representations, with
the latter according to allowed tensor product coupling schemes. After convolution, we use a scalar
(l = 0) projection to obtain node-wise contributions of the energy, with the total atomization energy
given as the sum over nodes.

Next, we use PHATE [22] as a method of obtaining low-dimensional projections of the embeddings.
PHATE preserves local and global structure of the high dimensional manifold by first converting
euclidean distances into a affinity/likelihood through a modified Gaussian kernel transformation, and
subsequently represents pairwise distances in the manifold as marginalized likelihoods—intuitively,
“minimum energy paths” between points—which are projected down to lower dimensions. Conse-
quently, PHATE is able to faithfully represent both local and global structure in the data, contrasting
other similar approaches like t-SNE [23] and traditional principal components analysis. We apply
PHATE to the joint (d dimensionality) graph embeddings as well as features that correspond with
each irreducible representation—this decomposition permits insight into how equivariant graph
networks use individual sets of [h(2l + 1)] tensor features for this particular scalar prediction task.
To guide interpretation of these projections, points are colored based on a straightforward measure
of chemical complexity; we use the normalized spacial score (NSPS) [24] (see Appendix A.4 for
details). Training/inference code and implementations of the Triton spherical harmonics can be found
at the EquiTriton repository.

1We use L to denote a set of spherical harmonics, and l to refer to individual orders and subsets.
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3 Results & Discussion

3.1 Quantitative metrics

Table 1 presents the test-set performance for a number of experiment configurations, split into two
parts. In the top half, the best performing hyperparameters correspond to the “canonical” equivariant
set, L = [0, 1, 2], which is also the smallest configuration in terms of the number of parameters.
The remaining runs in this part of the table add higher order spherical harmonics on an individual
basis, and does not indicate any strong correlation with test error, performing slightly worse than the
canonical set.

In the second half of the table, we constrained experimental parameters by decreasing the number of
training epochs and the nominal size of the hidden dimension; there is a large dynamic range in time to
completion due to the additional tensor contractions and model size, which grows quickly with L. The
fewer training epochs generally accounts for the poorer performance relative to experiments in the top
half of Table 1. In this set of experiments, the test performance interestingly improves, then degrades
with higher order l—we initially postulate that this could be due to the substantially larger feature
space2 leading to overparametrization and thus poorer convergence dynamics. Perhaps the most
interesting result is in the last line, where we omit l = 1, 2, which yields the best performing model
of the set; despite having roughly the same number of learnable parameters as L = [0, 1, 2, 3, 4],
performs over two times better, and when trained for 100 epochs, outperform even the canonical
L = [0, 1, 2] by an order of magnitude. In the next section, we will attempt to rationalize these
findings using the PHATE embedding projections.

Table 1: Test set performance for a small set of hyperparameters. Test error corresponds to the mean
squared value in atomization energy in units of eV. Figures bolded denote the lowest test error within
the subset of experiments.

L Epochs h # of parameters (M) Test error (eV) ↓
[0, 1, 2] 100 32 1.6 0.12
[0, 1, 2, 4] 100 32 3.0 0.15
[0, 1, 2, 6] 100 32 2.6 0.21
[0, 1, 2, 8] 100 32 2.6 0.19
[0, 1, 2, 10] 100 32 2.6 0.19

[0, 1, 2, 3, 4] 30 16 0.8 1.24
[0, 1, 2, 3, 4] 100 16 0.8 0.22
[0, 1, 2, 3, 4, 5, 6] 30 16 1.9 0.73
[0, 1, 2, 3, 4, 5, 6, 7, 8] 30 16 3.7 1.02
[0, 3, 4, 5, 6] 30 16 0.8 0.52
[0, 3, 4, 5, 6] 100 16 0.8 0.01

3.2 Embedding projections

Figure 1 compares PHATE projections of embeddings in the test set obtained with the two best
performing models in the second half of Table 1, namely L = [0, 1, 2, 3, 4, 5, 6] and L = [0, 3, 4, 5, 6].
First and foremost, in both cases, the joint projections (i.e. embeddings from the final layer of
dimensionality h) show some degree of structure, albeit noisy. The color distribution of individual
points—each of which correspond to a molecular graph in the test split—shows that the learned joint
representation does not clearly distinguish or “recognize” molecular complexity measured by NSPS,
particularly in Figure 1a. The joint projection in Figure 1b, appears to be slightly less noisy, and to a
certain extent, there is a clearer partitioning of molecular complexity, with higher NSPS scores at the
top than at the bottom.

It is in the projections of l = 0 that seems to contain the most structure and information: the
embeddings are significantly less noisy, i.e. less uniformly distributed, and present some relative

2Since the number of projections scales as 2l + 1, parameters belonging to higher orders make up an
increasing fraction of the full model.
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(a) Embeddings produced for L = [0, 1, 2, 3, 4, 5, 6].

(b) Embeddings produced for L = [0, 3, 4, 5, 6]. Note that the model was trained without l = 1, 2.

Figure 1: PHATE embedding projections for two configurations: for the same hidden dimension
(h = 16) and trained for the same number of epochs, 1a uses a contiguous basis, while 1b skips
l = 1, 2 in favor of adding l = 3, 4, 5, 6. The leftmost panel shows the PHATE projection when
considering unified embeddings; from left to right, we decompose the unified embeddings into feature
spaces that correspond to specific irreducible representations.

ordering based on NSPS, to the extent that subclusters are visible particularly in l = 0 of Figure 1a.
Within the same row, we see that l = 1, 2, 3 embeddings amorphous, in stark contrast to l = 0, but
embedding structure re-appears at higher order l. In Figure 1b, the l = 3 embeddings are noisy, but
are significantly more structured than in Figure 1a. Of particular interest are l = 4 and l = 5, where
there is clear branching to extrema which can be interpreted as molecules that have maximal response
to these two particular representations.3

With the combined context of Table 1 and Figure 1, we correlate the test generalization performance
with the degree of semanticity or structure contained in the resulting embeddings. Figure 1a shows
comparatively less structure than Figure 1b, and results in the poorer model performance seen in Table
1—we attribute this to how embeddings in l = 1, 2, 3 are effectively noise, which dominates the scalar
readout and hampers model efficacy.4 This behavior resembles that of early autoencoding generative
models where the decoder is capable of minimizing the training loss without needing efficient and
semantic embeddings—the encoder is scarcely updated during training and overwhelmingly resembles
priors. This appears to be the l = 1, 2, 3 results in Figure 1a, and indeed, in other experiments (Figure
4). We conclude, then, that equivariant model training is still potentially capable of ignoring carefully
crafted, physically inspired priors and latents, and persists even with longer training (Appendix A.5.3).
Given the simple task of energy prediction, which is inherently a scalar and invariant quantity, the
lack of embedding structure in l = 1, 2, 3 in Figure 1a shows that equivariant models still fall into
the common pitfall of maximum likelihood learning by overfitting certain features. On the one hand,
basis functions by definition are convergent but if unused, are essentially wasted computation. We
postulate that this may be remedied in a few ways:

• Conventional regularization—dropout and other methods of encouraging weight sparsity
may decrease the propensity of overfitting to specific irreducible representations.

• Tuning sets of spherical harmonics—Figure 1b interestingly shows that, by omitting interme-
diate orders l = 1, 2, the higher order terms actually gain structure in their respective spaces.

3Refer to Section A.5.4 and Figure 7 for further discussion.
4This corroborates with how the joint projection embeddings are significantly less structured than l = 0,

which represents a very small fraction of the full embedding dimensionality. See Section A.5.1 for further
discussion.
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The contrast is particularly stark for l = 3, which changes from being relatively amorphous
to being less uniform how complexity in molecules are distributed in the latent space. When
trained for the full 100 epochs, this configuration also becomes the best performing model
(last row in Table 1). Potentially, by pruning the feature space (the number of irreducible
representations) and adapting the basis to data may result in improvements to modeling and
computational performance.

• Pretraining on equivariant tasks—as previously mentioned, energy is an invariant property
and therefore equivariance is not actually strictly required. While atomic forces require
equivariance, when treated as a derivative of the energy it is unclear as to whether or not
it constitutes as a strong training signal in backpropagation that necessitates higher order
tensor representations. Recent work has demonstrated the efficacy of denoising curricula for
training both invariant and equivariant [25] models; pretraining from vector and/or tensor
quantities directly may be necessary to guarantee utilization of features in each irreducible
representations uniformly.

4 Conclusions

In this work, we adapt the improved spherical harmonics kernels developed in earlier work to
understand how equivariant models use their spherical harmonic basis. We implement a simple
equivariant graph convolution model and performed experiments on atomization energy prediction
using the QM9 dataset, primarily treating the orders of spherical harmonics L as a hyperparameter. A
joint quantitative and qualitative perspective into the latent space yield two important, and perhaps
largely counterintuitive insights: irreducible representations can be largely ignored and can degrade
test performance, and the choice of L can behave more like a hyperparameter—i.e. tuned—rather
than a convergent basis.

It remains to be seen how these results transfer to other equivariant architectures and tasks—we have
shown that it is possible for physical latents to be ignored, in the same way as highly expressive
decoders have been known to do in autoencoders. Our work demonstrates an analysis methodology
that can help identify under/unused representations, which we hope will spur interest in subsequent
analysis and design of equivariant models. As future work, we have proposed a number of potential
remedies and experiments that may encourage improved efficiencies, both in terms of crafting
pretraining curricula based on learning high rank properties, as well as the potential for pruning
unused representations.
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A Appendix

A.1 Equivariance, spherical harmonics, & angular momentum

In this section, we give interested readers a brief background overview of the relationship between
the spherical harmonic basis functions and angular momentum. The intention is to provide a bridge
between deep learning practitioners (i.e. applications) where equivariance is a fairly recent idea,
and quantum mechanics and spectroscopy, where these ideas have been developed and over the last
century—many of which are described in seminal texts by Zare [16], Rose [26], and with conventions
set as far back as 1935 by Condon and Shortley [15]. In quantum mechanics, the general treatment
of any system is often done with matrix representations: we describe a system in terms of some
basis functions ψ indexed by i, j, and a (Hamiltonian) operator H determines some property of the
system by solving ⟨ψi|H|ψj⟩5—concretely, this means evaluating matrix elements and diagonalizing
to obtain eigenvalues and eigenvectors, with the former corresponding to the actual quantities of
interest. Note that this not only provide a means to numerically reach solutions, but bestows a number
of desirable properties of H and ψ themselves when chosen correctly: commutation properties
of H allow derived quantities to be invariant or equivariant, while basis functions can be chosen
deliberately to make matrices diagonal or at least block diagonal, providing a better abstraction and
decreasing the need for computation. Thus, the relationship between spherical harmonics (Ylm) and
angular momentum operators (L for orbital angular momentum, and J for total angular momentum)
is simply that Ylm are eigenfunctions of L2 and thus renders the matrix diagonal [26].

The relevance with deep learning is to take advantage of these properties, as remarked by Smidt
et al. [27]. Equivariance in physical systems is a consequence of angular momentum conservation
rules, and the preservation of angular momentum necessitates the understanding of how to two or
more sources of angular momentum couple together—within the context of this equivariant neural
networks, how two sets of feature vectors of particular irreducible representations with d(2l + 1)
elements interact together and mix. The algebra of this is relatively straightforward [26]—in the
so-called “uncoupled” representation, two sources of angular momentum denoted with l1,m1 and
l2,m2 are described by basis functions ψl1m1 and ψl2m2 and operators L1 and L2; as previously
described, they are diagonal in a basis of spherical harmonics. The “coupled” regime, with operator
L = L1 + L2, has its representation ψlm related to the uncoupled representation via the unitary
transformation:

ψlm =
∑

m1m2

C(l1l2l;m1m2m)ψl1m1
ψl2m2

where C(l1l2l;m1m2m) are the so-called Clebsch-Gordon coefficients, with the double summation
occurring over m1m2 projections. The Clebsch-Gordon coefficient can be seen to gate interactions—
not all angular momentum coupling schemes between l1m1 and l2m2 are allowed, which gives rise
to a number of simplifications and/or “selection rules” where C is zero. Some are straightforward,
such as the general conservation of angular momentum; |l1 − l2| ≤ l ≤ l1 + l2 for m = m1 +m2.
How C is obtained is detailed in a number of texts, but concretely, C is generally a orthogonal, real
matrix of shape (2l1 + 1)(2l2 + 1) × (2l1 + 1)(2l2 + 1), many elements of which are zero as the
condition m = m1 +m2 is not satisfied [16]. As to the physical/geometric intuition of coefficients
of C2—the squared coefficients—they correspond to the probability density of interaction; for those
more familiar with deep learning, this is akin to an attention mechanism as their values range from
[0, 1].

In e3nn, the “valid” tensor paths for tensor products correspond to non-zero probability amplitudes.
The relevance to this work is such that there is no strict requirement that L contains a contiguous set
of spherical harmonic orders: providing that there are valid coupling schemes/paths that connect a
pair of irreducible representations—e.g. conserve angular momentum—we can arbitrarily compose
l orders to form L. Figure 2 uses e3nn to visualize allowed paths for a select few experimental
configurations. In particular, L = [0, 1, 2, 4] skips l = 3 but still includes paths that ensure that every

5This notation is referred to as “bra-ket” notation, which effectively acts in this context as a short form for
matrix multiplication with ψi,j being row and column vectors. These vectors are also referred to as “states” in
spectroscopy, which reflect vectors that provide a complete description of the system of interest; electron or
nuclear spin, external electric or magnetic fields, etc.
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Figure 2: Tensor product paths for configurations of L considered in this work. Input feature
representations are shown in the top left of each diagram, with spherical harmonics on the right and
outputs on the bottom. Here, the input features are assumed to be the output of the first interaction
layer, i.e. we have already transformed the scalar atomic features.

Figure 3: Visualization of the reduction in the number of arithmetic operations owing to aggressive
symbolic refactoring. Each scatter point represents the number of arithmetic operations to compute a
particular spherical harmonic Ylm for projection m and order l. Red points correspond to a naive
recurrent computation (i.e. higher l depends on prior terms of l); blue points correspond to expressions
derived and implemented in this work.

irreducible representation is used, and in L = [0, 3, 4, 5, 6], the number of paths are quite similar to
L = [0, 1, 2, 3, 4] despite the former having a higher order number.

A.2 EquiTriton kernels

Building on top of earlier work [18] in implementing performant kernels for spherical harmonics
embedding, here we implemented a new set of kernels with significantly more aggressive symbolic
refactoring. The main focus for the refactoring was to decouple each order of spherical harmonic: for
every spherical harmonic order l and its set of 2l + 1 projections, we used sympy [28] to reformulate
them as direct functions of x, y, z, removing the recurrent nature where terms in Ylm depend on
Yl−1m. By removing this dependency, we are able to freely compose L sets without impacting
performance negatively. Furthermore, for every Ylm, we performed a set of symbolic refactoring and
ordering prior to reducing terms to constants, which significantly reduces the number of arithmetic
operations as shown in Figure 3. The number of operations are theoretically determined by sympy,
and are not measured. We see that the number of operations is nearly constant with l with the
refactored expressions, while the cost of recurrence is clearly seen in the original implementation.

We have ensured that these kernels preserve equivariance using e3nn functionality, e.g. random
rotation of coordinates, and checking that the embeddings produced are equivalent to direct rotation
of the embeddings themselves. The remaining potential trade-off then is numerical accuracy and
stability: while we have taken care to provide constant terms with sufficient digits of precision (up to
double floating point precision), there may still be finite differences from the e3nn implementation
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Table 2: General hyperparameters used for model training. The training seed is passed into the
PyTorch Lightning seed_everything, which sets the same seed for PyTorch, NumPy, and builtin
math libraries. The degree normalization term is used to rescale message updates.

Parameter Value

Optimizer AdamW
Learning rate 10−3

Random seed 21616
Train/val./test split fraction 0.8/0.1/0.1
Label normalization (µ/σ) −76.116/10.3238

Degree normalization 6.0828
Initial atom embedding dim. 64

# of bessel functions 20
Radius cutoff 6.0

# of interaction blocks 3

due to the conversion of terms into rationals via sympy, rather than platform-specific compilers6.
Indeed, even implementing the same kernels in pure PyTorch was found to introduce numerical
differences in a large fraction of trials in half precision, less so at single precision, and finally
effectively absent at double precision. Thus while the Triton kernels are functionally equivalent,
it does not necessarily guarantee perfect exchangablility—i.e. a model trained with e3nn kernels
using EquiTriton for inference may yield different results, and for training, may lead to different
minima. This is particularly of import for molecular dynamics simulations which demand long
timestep integrations, where numerical instability and error propagation compounds over time. We
intend to investigate this aspect of the Triton kernels more thoroughly in the near future.

A.3 Model architecture & training

We developed a heavily simplified equivariant graph neural network architecture for experiments
detailed in this paper. The architecure is implemented using e3nn, with the option to interchange
spherical harmonics kernels between Triton and e3nn’s own torchscript implementations. The
overall model takes an input molecular graph, which comprises atomic numbers and positions for each
node, and edges that describe connectivity between nodes. The architecture comprises a sequence of
replicated interaction or equivariant graph convolution blocks. In the initial input layer, the atomic
numbers are used to index an embedding table, mapping each atom type as scalar (l = 0) features.
The atom positions are embedded in two ways: pairwise distances (scalar) are expanded in a basis
of Bessel radial functions and passed into a multilayer perceptron, while pairwise displacements
(vectors) are mapped onto the set of spherical harmonic functions. A fully connected tensor product
combines—whilst preserving their respective representations—the scalar atomic features, radial
features, and spherical harmonics to yield messages, and a scatter add subsequently updates node
features.

The model was implemented in PyTorch [29] using PyTorch Geometric [30] for message passing
abstraction, and PyTorch Lightning [31] for abstracting accelerator offloading, training, and evaluation.
The e3nn [32] was used for computing tensor products. For all of our experiments, we kept
hyperparameters fixed except for those mentioned in the main text—Table 2 shows the general
configuration used.

A.4 Spacial scores for molecular complexity

The PHATE projections are colored throughout this paper using the normalized spacial score (NSPS)
[24], which provides a easily calculable metric for quantifying the relative complexity of a molecule.
The metric is defined as NSPS =

∑N
n=1 spnsnrnH

2
n

NH
where the summation is over N atoms in a

molecule, with sp the degree of hybridization (e.g. three for sp3), s is the number of stereoisomers (2
for possible E/Z, 1 otherwise), r being a measure of aromaticity or linearity (r = 1 if so, otherwise

6At runtime, irrational values such as
√
37 are likely to be converted into literals—what this literal is exactly

depends on the hardware platform and compiler, and depends on whether the operations are deterministic.
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2), and finally, H as the number of heavy atom neighbors. The normalization factor NH corresponds
to the total number of heavy atoms in the molecule, which accounts for the size of a molecule.
Intuitively, large NSPS scores indicate complex motifs in a molecule; relevant to QM9, this generally
pertains species that are highly branched and saturated (i.e sp3 hybridized atoms), and to a lesser
extent aromatic rings.

A.5 Additional experiments and ablations

A.5.1 Using higher order spherical harmonics while omitting lower orders

Figure 4 shows PHATE projections for experiments in the top half of Table 1, where we observed
degradation of test performance of models when we append a higher order spherical harmonic of even
parity to the canonical set of L = [0, 1, 2]. The embedding projections provide a rationale for this,
as l ̸= 0 does not present any embedding structure for any of the configurations, we are essentially
adding h(2l + 1) elements of noise to the regression model, and l = 0 is the only representation that
consistently shows structure. From this perspective, the canonical set understandbly provides the best
performance, as the effective signal-to-noise ratio (i.e. l = 0 versus l ̸= 0) is the highest.

A.5.2 Considering a contiguous L set up to l = 4

From Figure 1a, it is not immediately clear whether the structure arising from l ≥ 4 occurs by
chance—i.e. whether the specific set of hyperparameters leads to l = 1, 2, 3 being unstructured, and
l ≥ 4 only happens to end up gaining structure. Figure 5 shows PHATE projections for a similar
experiment where we consider a contiguous set of L, albeit truncating up to l = 4. We observe
the same lack of overall structure in l = [1, 2, 3], which is consistent with Figure 1a, and generally
Figure 4. The latent structure appearing consistently in l = 4 across our experiments does suggest
that there is some degree of affinity with the molecular graphs, akin to a “matched filter” in signal
processing. With this interpretation, l = 1, 2, 3 do not produce a sizable signal when convolved (or
rather, cross-correlated) with the data.

As to why this particular set, L = [0, 1, 2, 3, 4] shows structure but not L = [0, 1, 2, 4] in Figure 4,
as our current set of experiments do not provide evidence, we can only speculate that there may be
that in this particular case, l = 4 depends on coupling with l = 3, and/or the training dynamics
resulted in converging on a point in the loss landscape that did not require the use of l = 4. Additional
experiments with techniques such as input gradients [33] may provide the required insight into the
relationship between l orders.

A.5.3 Embedding visualization with longer training

Figure 6 shows the change in latent space with longer training: from 30 to 100 total epochs. In both
experiments with L, the PHATE projections show that the latent spaces do not qualitatively change
with more training. While the model performance improves for both in terms of the test metric, the
fact that the latent spaces do not change significantly indicates that the global structure is learned quite
early on, with some small adjustments to local structure only. This result leads us to speculate that
the latent structure could be largely dictated by strong physical priors that may not update well with
data—at least when trained with backpropagation. From this perspective, equivariant models may
not benefit as well as they could from naive data and model scaling; the study by Frey et al. [34] does
show data scaling for PaiNN [35], but an embedding analysis is likely needed to ascertain whether
l ≥ 1 embeddings are being used. Our result with L = [0, 3, 4, 5, 6] shows room for improvement
over the canonical L = [0, 1, 2] baseline when the embedding space is being used.

A.5.4 Branching and clusters in the latent space

In Section 3.2 we alluded to the interpretation of branches in the PHATE projected global structure.
As PHATE is capable of preserving both local and global manifold structure [22], we can interpret
aspects like branching and clustering with more flexibility than what would be afforded by methods
like t-SNE and UMAP. With this in mind, and interpreting the action of the spherical harmonics
as signal filters, Figure 7 shows the PHATE projections from Figure 6b with the most distance
molecules found in each quadrant, which represent the extremes. This visualization is ideally suited
for l = 4, where there are conveniently four branches that extend into these quadrants, and allow us
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(a) Embeddings from L = [0, 1, 2], with a hidden dimension of 32.

(b) Embeddings from L = [0, 1, 2, 4], with a hidden dimension of 32.

(c) Embeddings from L = [0, 1, 2, 6], with a hidden dimension of 32.

(d) Embeddings from L = [0, 1, 2, 8], with a hidden dimension of 32.

(e) Embeddings from L = [0, 1, 2, 10], with a hidden dimension of 32.

Figure 4: PHATE embedding projections when considering the “canonical” equviariant set of
spherical harmonics (l = 0, 1, 2). With the exception of the first row, we include an one additional set
of higher order spherical harmonics of even parity, increasing in orbital angular momentum from top
to bottom.
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Figure 5: PHATE projections for a contiguous set of L = 0, 1, 2, 3, 4, with a hidden dimension of 16.
This is directly comparable and consistent with Figure 1a: l = 1, 2, 3 do not contain structure in their
embeddings, but l = 4 appears to contain information.

(a) Embeddings from l = [0, 1, 2, 3, 4], with a hidden dimension of 16 and trained for 100 epochs.
These projections can be compared with Figure 5, which were trained for 30 epochs.

(b) Embeddings from l = [0, 3, 4, 5, 6], with a hidden dimension of 16 and trained for 100 epochs.
These projections can be compared with Figure 1b, which was trained for 30 epochs.

Figure 6: PHATE embedding projections for two configurations in Table 1 with training up to 100
epochs.

to speculate on what kind of molecules match well to l = 4 weights. The general trend appears to
differentiate between aromatic rings, and identifies four branches based on composition—roughly
speaking, oxygen-bearing species on the right (east), and the degree of fluourination as well. In the
scalar representation (l = 0), the more saturated (i.e. sp3 hybridized) structures branch towards the
left (west) both from the example structures and from the NSPS color map.

13



(a) l = 0 (b) l = 4

Figure 7: PHATE projections with molecule image annotations overlaid. Structures correspond
to the nearest molecule in the embedding space to the edges (i.e. north-east, south-west) of the
four quadrants. The projections are equivalent to Figure 6b, albeit with a different aspect ratio for
visualization purposes.
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