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Abstract001

Recent advances in large language models002
(LLMs) have enabled zero-shot automated es-003
say scoring (AES), providing a promising way004
to reduce the cost and effort of essay scoring005
in comparison with manual grading. How-006
ever, most existing zero-shot approaches rely007
on LLMs to directly generate absolute scores,008
which often diverge from human evaluations009
owing to model biases and inconsistent scoring.010
To address these limitations, we propose LLM-011
based Comparative Essay Scoring (LCES), a012
method that formulates AES as a pairwise com-013
parison task. Specifically, we instruct LLMs014
to judge which of two essays is better, collect015
many such comparisons, and convert them into016
continuous scores. Considering that the number017
of possible comparisons grows quadratically018
with the number of essays, we improve scalabil-019
ity by employing RankNet to efficiently trans-020
form LLM preferences into scalar scores. Ex-021
periments using AES benchmark datasets show022
that LCES outperforms conventional zero-shot023
methods in accuracy while maintaining compu-024
tational efficiency. Moreover, LCES is robust025
across different LLM backbones, highlighting026
its applicability to real-world zero-shot AES.027

1 Introduction028

Automated essay scoring (AES) aims to assess the029

quality of written essays using natural language030

processing and machine learning techniques. AES031

has garnered significant attention as a means to032

reduce the cost relative to human grading and to033

ensure fairness (Uto, 2021; Do et al., 2023).034

Most conventional AES methods focus on035

prompt-specific approaches1, which train machine036

learning models or neural networks on scored es-037

says tailored to each essay prompt (Alikaniotis038

et al., 2016; Dong et al., 2017; Yang et al., 2020;039

Xie et al., 2022; Shibata and Uto, 2022; Wang040

1Here, we use prompt to refer to the essay topic and LLM
prompt to refer to instructions given to language models.

(b) LLM-based Comparative Essay Scoring (LCES)

(a) Direct essay scoring with LLM

Instruction:
Assign a score from 1 to 3.

LLM Output:
Score = 2

Instruction:
Compare Essay A and B.

LLM Output:
Essay A is better.

Perform pairwise comparisons 
of sampled pairs with LLM

Aggregate pairwise preferences 
via scoring module

Assigning numerical score

Pair 1

Pair 2

Pair 3

Essay A Essay B

Figure 1: Comparison between (a) direct essay scoring
using LLMs and (b) our proposed LCES framework.

and Liu, 2025). However, this approach requires 041

collecting large amounts of scored essays for ev- 042

ery prompt, resulting in substantial costs. To ad- 043

dress this issue, recent studies have proposed cross- 044

prompt AES methods that leverage domain adapta- 045

tion or domain generalization techniques (Ridley 046

et al., 2021; Chen and Li, 2023; Do et al., 2023; 047

Chen and Li, 2024; Li and Pan, 2025). In those 048

techniques, models are trained on scored essays 049

from source prompts and evaluated on a different, 050

target prompt. Although these methods can main- 051

tain high score accuracy even when scored essays 052

for the target prompt are scarce or unavailable, they 053

still require a certain amount of scored essay data 054

for training, leaving unsolved the fundamental chal- 055

lenge of satisfying data requirements. 056

In parallel to the above, large language models 057

(LLMs) have recently demonstrated remarkable ca- 058

pabilities across various natural language process- 059

ing tasks in zero-shot settings (Kojima et al., 2022), 060

motivating efforts to apply them to AES without 061

the use of scored essays. A typical zero-shot AES 062

approach instructs an LLM with a rubric and es- 063

say to generate a numerical score (Mizumoto and 064

Eguchi, 2023). A more advanced method first con- 065

verts the original rubric defined in the dataset into 066
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trait-level rubrics using LLMs, then employs LLMs067

to independently predict scores for each trait, and068

finally aggregates these scores to estimate the over-069

all score (Lee et al., 2024). While these approaches070

are promising, they still have several limitations of071

direct score generation. They tend to be sensitive072

to the phrasing of LLM prompt and susceptible073

to model bias, and often exhibit grading behavior074

inconsistent with that of human raters (Zheng et al.,075

2023; Liu et al., 2024; Mansour et al., 2024; Li076

et al., 2025).077

To address the issues above, we explore an al-078

ternative AES formulation. Instead of predicting079

absolute scores, we instruct the LLM to perform080

pairwise comparisons in which the better of two081

essays is determined. This approach is inspired by082

recent advances in LLM-based evaluation for nat-083

ural language generation (Liu et al., 2024; Liusie084

et al., 2024a), dialogue systems (Park et al., 2024),085

and information retrieval (Qin et al., 2024), where086

pairwise comparisons have demonstrated stronger087

alignment with human preferences. Despite its088

promise, pairwise comparisons remain largely un-089

explored in the AES literature.090

Against this backdrop, we propose LLM-based091

Comparative Essay Scoring (LCES), a novel frame-092

work for zero-shot AES that first collects pairwise093

comparisons using LLMs and then estimates con-094

tinuous essay scores. As shown in Figure 1, LCES095

differs from conventional LLM-based scoring by096

shifting from direct score generation to relative097

preference modeling. To scale this approach to098

large essay datasets, we employ RankNet (Burges099

et al., 2005), which allows efficient training from100

pairwise comparisons without exhaustively enu-101

merating all essay pairs. This mitigates the102

quadratic complexity in the number of items as103

is typically seen in pairwise comparisons (Liusie104

et al., 2024b).105

Through comprehensive experiments using stan-106

dard AES benchmark datasets, we demonstrate that107

LCES substantially outperforms existing zero-shot108

scoring methods. Moreover, LCES is robust to109

the choice of LLM and can be applied with virtu-110

ally any model, making it well suited for practical111

deployment.112

The contributions of this work are summarized113

as follows: (1) We introduce the first AES frame-114

work based on LLM-generated pairwise compar-115

isons, addressing key limitations of direct score116

generation. (2) We leverage RankNet to convert117

LLM-generated preferences into continuous scores,118

enabling accurate and computationally efficient 119

zero-shot AES. (3) Extensive experiments con- 120

firm that LCES outperforms conventional zero-shot 121

AES baselines and is robust across different types 122

of LLMs. 123

2 Related Work 124

Automated Essay Scoring. Early AES sys- 125

tems were largely prompt-specific, beginning with 126

handcrafted-feature-based models (Yannakoudakis 127

et al., 2011) and later adopting neural net- 128

works (Dong et al., 2017; Xie et al., 2022). Because 129

it is costly to collect scored essays for every new 130

prompt, cross-prompt methods have been proposed 131

to train models that generalize across prompts (Rid- 132

ley et al., 2020; Chen and Li, 2023, 2024). Recently, 133

zero-shot AES using LLMs has emerged (Mizu- 134

moto and Eguchi, 2023; Yancey et al., 2023; Wang 135

et al., 2024; Mansour et al., 2024; Lee et al., 2024), 136

enabling score generation without the use of scored 137

essays. Mizumoto and Eguchi (2023) used Ope- 138

nAI’s text-davinci-003 to score essays based on 139

rubric and essay content. In a zero-shot frame- 140

work called Multi-Trait Specification (MTS), Lee 141

et al. (2024) instructed an LLM to generate trait- 142

level rubrics and then used them to evaluate essays 143

by scoring each trait individually and aggregating 144

the results. Mansour et al. (2024) demonstrated 145

that LLM-generated scores are highly sensitive to 146

the instructions given to the model, raising con- 147

cerns about reliability. While zero-shot AES offers 148

a promising direction, its scoring accuracy still 149

lags behind supervised prompt-specific and cross- 150

prompt methods. 151

LLM-based Evaluation. With the growing zero- 152

shot capabilities of LLMs, the LLM-as-a-judge 153

paradigm (Zheng et al., 2023) has gained atten- 154

tion as a general framework for using LLMs in 155

evaluation tasks. Although direct score genera- 156

tion is common, it often suffers from LLM prompt 157

sensitivity (Li et al., 2025) and misalignment with 158

human judgments (Liu et al., 2024). To improve 159

reliability, recent studies in natural language gen- 160

eration (Liu et al., 2024; Liusie et al., 2024a), dia- 161

logue systems (Park et al., 2024), and information 162

retrieval (Qin et al., 2024) have instructed LLMs 163

to make pairwise comparisons in which the better 164

of two candidates is selected. Compared with abso- 165

lute scoring, this approach requires fewer reason- 166

ing steps by LLMs and yields more consistent and 167

human-aligned judgments. However, it remains 168
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underexplored in AES.169

Comparisons to Scores. Converting pairwise170

comparisons into continuous scores, which can be171

interpreted as latent measures of item quality that172

explain observed comparisons, has been widely173

studied. The Elo rating system (Elo, 1978) updates174

scores iteratively based on match outcomes. The175

Bradley–Terry model (Bradley and Terry, 1952)176

estimates win probabilities using the difference in177

latent scores between items, which are inferred by178

maximizing the likelihood of the observed com-179

parisons. RankNet (Burges et al., 2005) extended180

this idea by learning latent scores from input fea-181

tures via a neural pairwise loss function. We use182

RankNet to transform LLM-generated essay com-183

parisons into latent scores, enabling accurate and184

computationally efficient zero-shot AES.185

3 Proposed Method186

We start with a set of unscored essays D = {xi}Ni=1,187

where xi denotes the ith essay and N is the total188

number of essays. The goal of LCES is to estimate189

a latent score ŝi for each essay xi, representing its190

relative quality within the set D. Depending on the191

assessment objective, the estimated score ŝi can be192

converted into a ranking r̂i or a score ŷi aligned193

with a predefined rubric.194

LCES consists of three main steps: (1) Pair-195

wise comparison generation: Sample essay pairs196

from D and use an LLM to judge which essay is197

better, or whether they are of equal quality, based198

on a given rubric; (2) Latent score estimation:199

Train a RankNet model on the comparison dataset200

to estimate a latent score ŝi for each essay; and201

(3) Output conversion: Convert the latent score ŝi202

into either a ranking r̂i or a score ŷi, depending on203

the evaluation goal. Each step is described in detail204

in the following subsections.205

3.1 Pairwise Comparison Generation206

To generate pairwise comparisons, we use an LLM207

prompt template T that guides the LLM to eval-208

uate two essays based on a given rubric. A sim-209

plified version of this template is shown in Fig-210

ure 2, and the complete version can be found211

in Appendix A. Given essay prompt p, scoring212

rubric r, and two essays xi and xj , we construct213

the query T (p, r, xi, xj) by inserting each input214

into the corresponding placeholder in the tem-215

plate. Specifically, the placeholders <prompt>,216

<rubric>, <essay1>, and <essay2> are replaced217

# Instruction:
Read the following two essays and evaluate them based on rubric
guidelines. Then, indicate which essay is better overall. If both
essays are judged to be of the same score, evaluate them as "tie".
# Prompt: <prompt>
# Rubric Guidelines: <rubric>
# Essay 1: <essay1>
# Essay 2: <essay2>
Provide your reasoning and final decision.
Reasoning: (Your reasoning here)
Decision: (Either "Essay 1", "Essay 2", or "tie")

LLM prompt template 

Figure 2: Simplified LLM prompt template T used for
pairwise essay comparisons.

with p, r, xi, and xj respectively. To improve the re- 218

liability and interpretability of the comparisons, we 219

use chain-of-thought prompting (Wei et al., 2022). 220

This encourages the LLM to explain its reason- 221

ing before making a final decision. For the essay 222

judged to be better, the LLM outputs a categorical 223

label wij , which is one of “Essay 1”, “Essay 2 ”, 224

and “tie ”. We convert this to a numerical label cij 225

by assigning scores of 1, 0, and 0.5 for “Essay 1”, 226

“Essay 2”, and “tie”, respectively. 227

LLMs can be sensitive to the order in which the 228

two essays are presented (Zheng et al., 2023). To 229

reduce this position bias, we query the LLM twice 230

for each pair. One query presents the essays as 231

(xi, xj), and the other as (xj , xi). Let cij be the 232

numerical label from the first query and cji be the 233

label from the second. We define the final debiased 234

label c̃ij as follows: 235

c̃ij =

{
cij if cij = 1− cji

0.5 otherwise.
(1) 236

If the two results are consistent, we retain the origi- 237

nal label. If the results contradict each other or one 238

of them indicates a tie, we treat the pair as a tie. 239

To apply this comparison procedure, we con- 240

struct a set of essay pairs. Let I = {(i, j) | 241

i ̸= j, i, j ∈ {1, 2, . . . , N}} be the set of all 242

possible ordered essay pairs. Since comparing all 243

N(N − 1) pairs is computationally expensive, we 244

randomly sample a subset Is ⊂ I containing M 245

pairs, where M ≪ N(N − 1). For each sampled 246

pair, we obtain a debiased label c̃ij as described 247

above. This yields the pairwise comparison dataset 248

Dpair = {(xi, xj , c̃ij) | (i, j) ∈ Is}, which is used 249

to train the RankNet model. 250

3.2 Latent Score Estimation 251

Using the pairwise comparison dataset Dpair gen- 252

erated in Section 3.1, we estimate a latent score 253

ŝi for each essay xi. To this end, we employ 254

3



Bradley–Terry model layer

Shared
weights

Linear layer

Linear layer

ReLU activation

Linear layer

Linear layer
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corresponding to essay 
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corresponding to essay 

Figure 3: Architecture of the RankNet model used to
estimate latent essay scores ŝi from pairwise compar-
isons.

RankNet (Burges et al., 2005), a neural model de-255

signed to learn latent scores from pairwise prefer-256

ences.257

As shown in Figure 3, RankNet uses two par-258

allel multi-layer perceptrons (MLPs) with shared259

weights. These form a scoring model, denoted by260

f , which maps an input essay representation to a261

scalar score. Specifically, we first convert each262

essay xi into an embedding vector hi using any263

suitable text embedding model, and then compute264

its score as si = f(hi). Each MLP consists of265

two linear layers with a ReLU activation (Agarap,266

2019) applied after the first layer.267

Given two essays xi and xj , the model computes268

scores si and sj using the shared network f , and269

estimates the probability that xi is preferred over270

xj as:271

ĉij = σ(si − sj) =
1

1 + exp(−(si − sj))
. (2)272

Here, σ(·) denotes the sigmoid function.273

This formulation mirrors the Bradley–Terry274

model (Bradley and Terry, 1952) and enables275

probabilistic modeling of pairwise preferences.276

The model is trained to minimize the discrep-277

ancy between the predicted preference ĉij and the278

debiased target label c̃ij . We use the binary cross-279

entropy loss L:280

L = − 1

M

∑
(i,j)∈Is

[c̃ij log ĉij + (1− c̃ij) log(1− ĉij)] .281

Let S = {si}Ni=1 denote the set of latent essay282

scores. The optimized scores Ŝ = {ŝi}Ni=1 are283

obtained by minimizing the loss: Ŝ = argminS L.284

3.3 Output Conversion 285

The estimated latent scores ŝi can be converted into 286

standard AES outputs, such as numerical scores or 287

rankings, depending on the evaluation goal. 288

To produce a score ŷi within a rubric-defined 289

range [ymin, ymax], we apply a linear transforma- 290

tion to the latent scores: 291

ŷi =
ŝi − smin

smax − smin
× (ymax − ymin) + ymin, (3) 292

where smin = mini ŝi and smax = maxi ŝi are the 293

minimum and maximum latent scores across all 294

essays. If the rubric defines discrete score levels, 295

the resulting ŷi can optionally be rounded to the 296

nearest valid level. 297

Alternatively, a ranking r̂i can be obtained by 298

sorting essays in descending order of their latent 299

scores ŝi. This is useful in settings where only 300

relative essay quality is required. 301

4 Experiments 302

We empirically evaluate the effectiveness of 303

LCES through experiments using AES benchmark 304

datasets, focusing on scoring performance and com- 305

parisons with existing methods. 306

4.1 Datasets 307

We utilized the following two benchmark 308

datasets, which are commonly used in AES re- 309

search (Taghipour and Ng, 2016; Chen and Li, 310

2023; Lee et al., 2024; Wang et al., 2024): 311

ASAP (Automated Student Assessment Prize) 312

is a dataset released by the Kaggle competition2. 313

It consists of 12,978 essays across eight different 314

prompts, each with human-assigned scores. 315

TOEFL11 is a dataset of essays written by 316

non-native English speakers taking the TOEFL 317

iBT (Blanchard et al., 2013). It contains 12,100 318

essays across eight different prompts, each with 319

human-assigned scores. 320

Table 1 summarizes the statistics of the ASAP 321

and TOEFL11 datasets. 322

4.2 Baselines 323

We adopted the following two zero-shot AES meth- 324

ods as baselines for comparison with LCES: 325

2https://www.kaggle.com/c/asap-aes
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Table 1: Statistics of the ASAP and TOEFL11 datasets.
l/m/h denotes low/medium/high.

Dataset Prompt No. of Essays Avg. Len. Score Range

ASAP

1 1,783 427 2–12
2 1,800 432 1–6
3 1,726 124 0–3
4 1,772 106 0–3
5 1,805 142 0–4
6 1,800 173 0–4
7 1,569 206 0–30
8 723 725 0–60

TOEFL11

1 1,656 342 l/m/h
2 1,562 361 l/m/h
3 1,396 346 l/m/h
4 1,509 340 l/m/h
5 1,648 361 l/m/h
6 960 360 l/m/h
7 1,686 339 l/m/h
8 1,683 344 l/m/h

Vanilla. A direct scoring approach where the326

LLM generates a rubric-aligned score for each es-327

say without pairwise comparison. It uses chain-of-328

thought prompting to elicit reasoning before scor-329

ing. We used the same LLM prompts and hyperpa-330

rameters as Lee et al. (2024).331

MTS. As described in Section 2, MTS (Lee et al.,332

2024) is a state-of-the-art zero-shot AES frame-333

work. The original implementation used GPT-3.5334

to generate trait-level rubrics from the original335

rubric. In our experiments, we used GPT-4o in-336

stead because GPT-3.5 is no longer available. All337

other LLM prompts and hyperparameters followed338

the original implementation.339

4.3 Experimental Setup340

LLMs. We conducted our evaluation using341

five distinct LLMs, namely, Mistral-7B (-instruct-342

v0.2) (Jiang et al., 2023), Llama-3.2-3B (-Instruct),343

Llama-3.1-8B (-Instruct) (Grattafiori et al., 2024),344

GPT-4o-mini (-2024-07-18), and GPT-4o (-2024-345

08-06) (OpenAI, 2024). All LLM inferences were346

performed with a temperature setting of 0.1.347

Implementation Details. The number of sam-348

pled pairwise comparisons M was set to 5,000349

to construct the Dpair dataset. Essay embed-350

ding vectors hi were generated using OpenAI’s351

text-embedding-v3-large model. Results ob-352

tained with alternative embedding models are pre-353

sented in Appendix B. The RankNet model was354

trained for 100 epochs using the Adam (Kingma355

and Ba, 2015) optimizer with a learning rate of356

0.001. The full set of hyperparameters is provided357

in Appendix C.358

Rubrics. For pairwise comparisons within the359

ASAP dataset, we used the original scoring rubrics360

provided with the dataset. For the TOEFL11 361

dataset, consistent with previous studies (Mizu- 362

moto and Eguchi, 2023; Lee et al., 2024), we used 363

the IELTS Task 2 Writing Band Descriptors as the 364

evaluation rubric. 365

Evaluation Metrics. We evaluated model per- 366

formance using two standard metrics in AES, 367

namely quadratic weighted kappa (QWK) (Cohen, 368

1960) and the Spearman rank correlation coeffi- 369

cient. Following common practice in previous 370

work (Taghipour and Ng, 2016; Alikaniotis et al., 371

2016; Dong et al., 2017; Do et al., 2023), we pri- 372

marily report QWK. Results for Spearman correla- 373

tions are provided in Appendix D. For the ASAP 374

dataset, we followed Lee et al. (2024) and ran- 375

domly sampled 10% of essays from each prompt 376

for evaluation. For TOEFL11, we used the prede- 377

fined test split consisting of 1,100 essays across 378

eight prompts. 379

Scoring Strategy. For QWK-based evaluation, 380

we rounded the predicted scores ŷi to align with the 381

score range of each prompt in the ASAP dataset. 382

For the TOEFL11 dataset, we first converted the 383

latent scores to a [1, 5] scale by the linear trans- 384

formation described in Section 3.3, and we then 385

mapped them to low/medium/high categories using 386

thresholds of 2.25 and 3.75, following the approach 387

used in previous research (Blanchard et al., 2013; 388

Lee et al., 2024). 389

4.4 Results and Discussion 390

The results in Table 2 show that LCES outperforms 391

both MTS and Vanilla in most settings, achiev- 392

ing higher average QWK scores across models 393

and prompts, with particularly large gains on the 394

ASAP dataset. The only exception is TOEFL11 395

with Mistral-7B, where LCES performs worse than 396

MTS. As shown later in Section 5.2, Mistral-7B ex- 397

hibits a high inconsistency rate (51.4%) when essay 398

order is reversed, suggesting that it has difficulty 399

in reliably identifying the better essay. Notably, 400

Mistral-7B achieves the highest performance under 401

the MTS setting on TOEFL11, surpassing more 402

recent or larger models such as GPT-4o and Llama- 403

3.1-8B. This suggests that MTS and LCES may 404

favor different model capabilities. While LCES un- 405

derperforms MTS with Mistral-7B, it consistently 406

outperforms MTS with all other LLMs, highlight- 407

ing the general effectiveness of the LCES frame- 408

work. 409
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Table 2: QWK scores for each essay prompt in ASAP and TOEFL11. Bold indicates the best-performing method
for each prompt. P1-8 refers to Prompt 1 through Prompt 8.

Dataset Model Method P1 P2 P3 P4 P5 P6 P7 P8 Avg.

ASAP

Mistral-7B Vanilla 0.429 0.439 0.387 0.518 0.576 0.534 0.276 0.209 0.429
MTS 0.546 0.479 0.481 0.683 0.706 0.519 0.501 0.175 0.511
LCES 0.600 0.603 0.690 0.614 0.729 0.792 0.591 0.315 0.617

Llama-3.2-3B Vanilla 0.254 0.405 0.410 0.009 0.397 0.330 0.438 0.276 0.315
MTS 0.197 0.452 0.353 0.507 0.460 0.462 0.146 0.190 0.346
LCES 0.555 0.608 0.647 0.603 0.717 0.756 0.580 0.612 0.635

Llama-3.1-8B Vanilla 0.129 0.023 0.243 0.550 0.301 0.341 0.006 -0.042 0.194
MTS 0.516 0.483 0.284 0.461 0.479 0.378 0.328 0.199 0.391
LCES 0.669 0.599 0.662 0.651 0.710 0.707 0.727 0.636 0.670

GPT-4o-mini Vanilla 0.106 0.402 0.314 0.602 0.577 0.470 0.425 0.517 0.426
MTS 0.472 0.386 0.448 0.552 0.708 0.419 0.479 0.412 0.485
LCES 0.537 0.602 0.679 0.638 0.709 0.737 0.614 0.521 0.630

GPT-4o Vanilla 0.216 0.498 0.447 0.681 0.710 0.571 0.535 0.411 0.509
MTS 0.380 0.547 0.513 0.621 0.500 0.515 0.421 0.432 0.491
LCES 0.531 0.592 0.702 0.626 0.747 0.766 0.669 0.593 0.653

TOEFL11

Mistral-7B Vanilla 0.235 0.128 0.174 0.106 0.050 0.046 0.106 0.222 0.133
MTS 0.634 0.496 0.571 0.607 0.603 0.573 0.578 0.689 0.594
LCES 0.415 0.514 0.663 0.519 0.508 0.496 0.532 0.644 0.536

Llama-3.2-3B Vanilla 0.184 0.117 0.291 0.195 0.149 0.206 0.067 0.149 0.170
MTS 0.361 0.389 0.454 0.456 0.341 0.364 0.323 0.299 0.373
LCES 0.615 0.542 0.709 0.678 0.582 0.479 0.555 0.708 0.608

Llama-3.1-8B Vanilla -0.036 0.148 0.003 0.021 0.019 -0.023 -0.029 0.063 0.021
MTS 0.368 0.408 0.407 0.311 0.351 0.285 0.335 0.379 0.356
LCES 0.597 0.570 0.727 0.697 0.652 0.550 0.558 0.717 0.633

GPT-4o-mini Vanilla 0.094 0.202 0.182 0.107 0.041 0.101 0.126 0.124 0.122
MTS 0.439 0.529 0.548 0.521 0.603 0.501 0.536 0.591 0.533
LCES 0.655 0.559 0.722 0.692 0.633 0.649 0.629 0.724 0.658

GPT-4o Vanilla 0.206 0.208 0.365 0.189 0.211 0.245 0.226 0.252 0.238
MTS 0.480 0.539 0.607 0.545 0.469 0.526 0.426 0.664 0.532
LCES 0.604 0.545 0.734 0.671 0.713 0.572 0.580 0.739 0.645

Moreover, LCES demonstrates strong robustness410

across backbone LLMs. On ASAP, the standard de-411

viation of its average performance across five back-412

bone models is just 0.021, compared to 0.072 for413

MTS and 0.122 for Vanilla. On TOEFL11, LCES414

similarly shows low variability, with a standard415

deviation of 0.048 across models, outperforming416

MTS (0.106) and Vanilla (0.079). These low inter-417

model variances indicate that LCES remains stable418

regardless of backbone choice, whereas MTS and419

Vanilla fluctuate more, making their performance420

less predictable.421

In summary, LCES exhibited high zero-shot ac-422

curacy across diverse settings, with robustness to423

LLM choice and reliable scaling with model size.424

Even when the model struggles to distinguish essay425

quality, as with Mistral-7B on TOEFL11, LCES426

remains competitive, supporting its practicality in427

real-world AES scenarios.428

5 Analysis429

We present a set of analyses to further examine430

the effectiveness and properties of the proposed431

Table 3: Average QWK scores across all ASAP prompts
for LCES and supervised learning baselines.

Method Avg. QWK

Prompt-specific
NPCR (Xie et al., 2022) 0.792
BERT-base-uncased (Devlin et al., 2019) 0.740
RoBERTa-base (Liu et al., 2019) 0.743

Cross-prompt
PAES (Ridley et al., 2020) 0.678
PMAES (Chen and Li, 2023) 0.658

Zero-shot
LCES (Llama-3.1-8B) 0.670

framework beyond overall performance metrics. 432

5.1 Comparison with Supervised Models 433

Although LCES is a zero-shot method, we also 434

compare it with several supervised learning base- 435

lines on the ASAP dataset, as summarized in Ta- 436

ble 3. We include both prompt-specific and cross- 437

prompt models. The prompt-specific models are 438

trained on 90% of the essays from a single prompt 439

and evaluated on the remaining 10%, using the 440

6



Table 4: Average percentage of LLM judgments that
change when the order of essay pairs is reversed, com-
puted across all prompts in each dataset.

Model ASAP (%) TOEFL11 (%)

Mistral-7B 42.8 51.4
Llama-3.2-3B 28.8 39.0
Llama-3.1-8B 21.6 23.8
GPT-4o-mini 13.8 10.5
GPT-4o 10.4 17.0

same evaluation split described in Section 4.3. The441

cross-prompt models are trained on essays from all442

prompts except the one under evaluation, and are443

also evaluated on the same 10% split of the target444

prompt.445

Specifically, we make comparisons against446

NPCR (Xie et al., 2022), which is reported to pro-447

vide state-of-the-art results on ASAP, as well as448

BERT (Devlin et al., 2019) and RoBERTa (Liu449

et al., 2019) fine-tuned on the same prompt-specific450

splits. We also include PAES (Ridley et al., 2020)451

and PMAES (Chen and Li, 2023), which are two452

strong cross-prompt baselines.453

As shown in Table 3, LCES with Llama-3.1-8B,454

which achieved the highest overall performance455

among all tested LLMs in the zero-shot experi-456

ments (see Section 4.4), obtains QWK scores that457

are comparable to several supervised learning mod-458

els. While NPCR, BERT, and RoBERTa still out-459

perform LCES, the performance gap has signif-460

icantly narrowed in comparison with previously461

reported zero-shot methods. In addition, LCES462

achieves performance on par with the strong cross-463

prompt baselines PAES and PMAES3. This level464

of performance is unprecedented among zero-shot465

AES methods. These results highlight the effec-466

tiveness of the proposed method in the absence of467

scored essays.468

5.2 Position Bias469

We measure the impact of position bias by calcu-470

lating the percentage of pairwise comparisons that471

change when the order of essays is reversed. Ta-472

ble 4 shows the inconsistency rates for each LLM473

on the same comparison pairs used to construct474

Dpair for ASAP and TOEFL11. As expected, larger475

models such as GPT-4o exhibit lower inconsistency,476

suggesting greater robustness to position bias. In477

contrast, Mistral-7B shows a particularly high in-478

3PMAES was run with a smaller batch size due to GPU
limitations (RTX 4090), which may have led to reduced per-
formance.

Table 5: Average QWK on ASAP and TOEFL11 with
and without position bias correction.

Dataset Model Avg. QWK

w/o Debias w/ Debias

ASAP

Mistral-7B 0.611 0.617
Llama-3.2-3B 0.630 0.635
Llama-3.1-8B 0.661 0.670
GPT-4o-mini 0.633 0.630
GPT-4o 0.649 0.653

TOEFL11

Mistral-7B 0.510 0.536
Llama-3.2-3B 0.588 0.608
Llama-3.1-8B 0.628 0.633
GPT-4o-mini 0.664 0.658
GPT-4o 0.648 0.645

consistency rate of 51.4% on TOEFL11, indicating 479

substantial sensitivity to essay order. 480

To assess the effect of position bias correction, 481

we compare average QWK scores with and without 482

the position bias correction. As shown in Table 5, 483

models with higher inconsistency rates, such as 484

Mistral-7B and Llama-3.2-3B, tend to benefit more 485

from the correction. These results suggest that 486

the proposed correction method is generally more 487

effective for models with higher position inconsis- 488

tency, whereas its effect is limited for models that 489

already exhibit low inconsistency. 490

5.3 Comparison of Latent Score Conversion 491

Methods 492

We evaluate the effectiveness of different latent 493

score conversion techniques by comparing our 494

RankNet-based approach with the Bradley–Terry 495

model and the Elo rating system which are rep- 496

resentative methods described in Section 2. The 497

experiment examines how the number of pairwise 498

comparisons M , ranging from 50 to 10,000, af- 499

fects scoring accuracy, measured by QWK, on the 500

ASAP and TOEFL11 datasets. This experiment 501

adopts GPT-4o as the LLM, in view of its robust 502

performance on both datasets. 503

Figure 4 illustrates the performance trends. As 504

M increases, accuracy improves for all methods, 505

highlighting the benefit of additional preference 506

data. Among them, the RankNet-based approach 507

consistently outperforms both the Bradley–Terry 508

model and the Elo rating system across the entire 509

range of M on both datasets. Notably, RankNet 510

achieves high QWK scores even with relatively few 511

comparisons (e.g., M = 50 or M = 100), demon- 512

strating strong performance particularly in limited 513

data scenarios. This advantage likely stems from 514

RankNet’s ability to incorporate textual features 515
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Figure 4: Relationship between the number of pairwise comparisons (log scale) and QWK scores. (a) ASAP dataset.
(b) TOEFL11 dataset.

Table 6: QWK scores of LCES in transductive and inductive settings, evaluated using GPT-4o-mini.

Dataset Setting P1 P2 P3 P4 P5 P6 P7 P8 Avg.

ASAP Transductive 0.537 0.602 0.679 0.638 0.709 0.737 0.614 0.521 0.630
Inductive 0.611 0.622 0.588 0.631 0.707 0.783 0.487 0.603 0.629

TOEFL11 Transductive 0.655 0.559 0.722 0.692 0.633 0.649 0.629 0.724 0.658
Inductive 0.624 0.613 0.715 0.617 0.622 0.615 0.616 0.707 0.641

directly from essays, whereas the baseline methods516

rely solely on comparison outcomes.517

These results suggest that RankNet is highly ef-518

fective for pairwise-based essay scoring. Its su-519

perior accuracy and greater data efficiency make520

it well suited for practical settings where collect-521

ing extensive comparison data may be costly or522

infeasible.523

5.4 Performance in the Inductive Setting524

In LCES, pairwise preferences predicted by an525

LLM are used to train a scoring function, f . When526

all target essays are available at once, comparisons527

can be directly made among them. We refer to this528

as the transductive setting, which corresponds to529

the main experimental setup used throughout this530

paper. In contrast, the inductive setting assumes531

that new essays must be scored individually, with-532

out additional comparisons. Instead, the learned533

function f , trained on prior comparisons, is applied534

for score estimation. Because f maps essay em-535

beddings to scalar scores, it can generalize to new536

essays without further pairwise information.537

To simulate this scenario, we train the scoring538

function f on pairwise comparisons constructed539

from 90% of the essays in each dataset (ASAP540

or TOEFL11) and use it to predict scores for the541

remaining 10%. We use GPT-4o-mini for its com-542

putational efficiency and low API cost.543

QWK scores in the inductive setting are close544

to those in the transductive setting, with 0.629 vs. 545

0.630 on ASAP and 0.641 vs. 0.658 on TOEFL11 546

(Table 6). These results demonstrate that f gen- 547

eralizes effectively to unseen essays. This abil- 548

ity to score new essays without constructing addi- 549

tional comparisons involving them makes LCES 550

well suited for inductive scenarios. In contrast, 551

models such as the Bradley–Terry model or Elo 552

require the generation of new comparisons for each 553

essay, leading to higher deployment overhead in 554

inductive settings. 555

6 Conclusion 556

In this study, we presented LLM-based Compara- 557

tive Essay Scoring (LCES), a zero-shot AES frame- 558

work that leverages LLM-driven pairwise compar- 559

isons to address key limitations of direct score gen- 560

eration. LCES instructs an LLM to judge which 561

of two essays is better, and then trains a RankNet 562

model to estimate continuous essay scores. 563

Experimental results on two benchmark datasets, 564

namely, ASAP and TOEFL11, demonstrate that 565

LCES consistently outperforms existing zero-shot 566

methods in scoring accuracy. It maintains strong 567

performance even with a limited number of compar- 568

isons and is robust to the choice of LLM. Moreover, 569

LCES can be applied in inductive settings without 570

requiring additional comparisons for new essays. 571

These properties make LCES well suited for real- 572

world AES applications. 573
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Limitations574

Despite its advantages, LCES has several limita-575

tions. First, it relies on pairwise preference labels576

generated by an LLM, which may contain noise577

or inconsistencies. These imperfect labels directly578

affect the quality of learned scoring function f .579

Second, while LCES tends to perform reliably580

when provided a sufficient number of comparisons581

M , it remains unclear how to determine an ap-582

propriate value of M . This limits the ability to583

systematically control scoring quality.584

Third, LCES maps latent relative scores to an585

absolute scale via linear transformation, assuming586

sampled comparisons span the full score range. If587

low- or high-scoring essays are missing, the trans-588

formation may yield inaccurate absolute scores.589

While ranking performance would remain unaf-590

fected, this can reduce alignment with human judg-591

ment in tasks requiring precise or rubric-specific592

scoring.593

Finally, the zero-shot nature of LCES means594

that, without labeled data, its performance cannot595

be quantitatively assessed. For practical deploy-596

ment, this necessitates manually scoring a subset597

of essays to establish a benchmark for evaluation.598
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A LLM Prompts 843

This section describes the LLM prompt templates 844

used to elicit pairwise preferences from LLMs dur- 845

ing the comparison step in Section 3.1. We de- 846

sign separate LLM prompts for the ASAP and 847

TOEFL11 datasets to reflect their target popula- 848

tions and scoring rubrics. Each LLM prompt in- 849

cludes a system message defining the evaluator’s 850

role and a user message with the task context, 851

rubric, and two essays. The model is instructed 852

to return a brief justification and a final decision 853

in structured JSON format for automated parsing. 854

Our LLM prompt format is based on the template 855

introduced by Lee et al. (2024). 856

A.1 ASAP 857

System Prompt

As an English teacher, your primary respon-
sibility is to evaluate the writing quality of
essays written by middle school students on
an English exam. During the assessment pro-
cess, you will be provided with a prompt and
an essay. First, you should provide compre-
hensive and concrete feedback that is closely
linked to the content of the essay. It is es-
sential to avoid offering generic remarks that
could be applied to any piece of writing.
To create a compelling evaluation for both the
student and fellow experts, you should refer-
ence specific content of the essay to substanti-
ate your assessment.
Next, your task is to determine which essay,
Essay 1 or Essay 2, scores higher, or if they
score the same, please respond with “tie”. The
evaluation criteria can be part of an overall
rubric or separate evaluation criteria. Regard-
less of the type of rubric, please determine
which essay achieves a higher overall score.
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User Prompt

# Prompt
{prompt}
# Rubric Guidelines
{rubric}
# Note
I have made an effort to remove personally
identifying information from the essays using
the Named Entity Recognizer (NER).
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The relevant entities are identified in the text
and then replaced with a string such as "PER-
SON", "ORGANIZATION", "LOCATION",
"DATE", "TIME", "MONEY", "PERCENT”,
“CAPS” (any capitalized word) and “NUM”
(any digits). Please do not penalize the essay
because of the anonymizations.
# Essay1
{essay1}
# Essay2
{essay2}
Provide your reasoning and final decision in
json format:
{ "reasoning": "Your reasoning in one sen-
tence here.", "preference": "essay1" or "es-
say2" or "tie" }
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A.2 TOEFL11861

System Prompt

As an English teacher, your primary respon-
sibility is to evaluate the writing quality of
essays written by second language learners
on an English exam. During the assessment
process, you will be provided with a prompt
and an essay.
First, you should provide comprehensive and
concrete feedback that is closely linked to the
content of the essay. It is essential to avoid
offering generic remarks that could be applied
to any piece of writing. To create a compelling
evaluation for both the student and fellow ex-
perts, you should reference specific content of
the essay to substantiate your assessment.
Next, your task is to determine which essay,
Essay 1 or Essay 2, scores higher, or if they
score the same, please respond with “tie”. The
evaluation criteria are based on four assess-
ment categories. Use these categories to com-
prehensively evaluate and compare the essays,
and decide which one achieves a higher over-
all score.
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User Prompt

# Prompt
{prompt}
# Rubric Guidelines
{rubric}
# Essay1
{essay1}

863

Table 7: QWK scores of LCES with different embed-
dings (using GPT-4o).

Embedding Model ASAP TOEFL11

text-embedding-v3-large 0.653 0.645
text-embedding-v3-small 0.668 0.630
BERT-base-uncased 0.658 0.663
RoBERTa-base 0.655 0.601

Table 8: Hyperparameters for RankNet.

Hyperparameter Value

Batch size 4096
Dropout rate 0.3
Hidden units 256
Weight decay 0.01

# Essay2
{essay2}
Provide your reasoning and final decision in
json format:
{ "reasoning": "Your reasoning in one sen-
tence here.", "preference": "essay1" or "es-
say2" or "tie" }

864

B Embedding Models 865

We compare four pretrained embedding models 866

used to convert essays into fixed-length vectors 867

for RankNet. Two of them are OpenAI mod- 868

els: text-embedding-v3-large (3072 dimen- 869

sions) and text-embedding-v3-small (1536 di- 870

mensions), both of which were designed for seman- 871

tic similarity tasks. The other two are BERT-base 872

and RoBERTa-base. For these models, we use the 873

[CLS] token from the final hidden layer as the essay 874

representation. 875

Table 7 shows the average QWK scores on 876

ASAP and TOEFL11 using GPT-4o for pairwise 877

comparisons. For ASAP, the choice of embedding 878

model has little impact on performance overall. For 879

TOEFL11, we observe slightly more variation, but 880

all models yield consistently high accuracy. These 881

results suggest that LCES is robust to the choice of 882

embedding encoder. 883

C Hyperparameters 884

Table 8 shows the hyperparameters used for train- 885

ing the RankNet model described in Section 3.2. 886

The model consists of two linear layers with a 887

ReLU activation and a dropout layer applied be- 888

tween them. Weight decay is applied as part of the 889

12



Table 9: The Spearman rank correlation coefficient for each prompt in ASAP and TOEFL11. Bold indicates the
best-performing method for each prompt.

Dataset Model Method P1 P2 P3 P4 P5 P6 P7 P8 Avg.

ASAP

Mistral-7B Vanilla 0.511 0.511 0.439 0.658 0.527 0.418 0.379 0.459 0.488
MTS 0.593 0.468 0.612 0.729 0.739 0.555 0.566 0.306 0.571
LCES 0.616 0.678 0.745 0.784 0.811 0.806 0.684 0.632 0.719

Llama-3.2-3B Vanilla 0.068 0.109 0.452 -0.033 0.276 0.142 0.209 0.076 0.162
MTS 0.205 0.528 0.500 0.712 0.606 0.527 0.210 0.276 0.445
LCES 0.665 0.693 0.725 0.767 0.741 0.738 0.589 0.684 0.700

Llama-3.1-8B Vanilla 0.005 0.050 0.451 0.618 0.424 0.429 0.061 -0.090 0.245
MTS 0.538 0.580 0.546 0.723 0.731 0.543 0.570 0.366 0.574
LCES 0.702 0.685 0.723 0.809 0.754 0.710 0.724 0.719 0.728

GPT-4o-mini Vanilla 0.394 0.472 0.464 0.730 0.668 0.545 0.435 0.580 0.536
MTS 0.560 0.523 0.509 0.672 0.763 0.565 0.498 0.555 0.580
LCES 0.588 0.678 0.736 0.817 0.761 0.727 0.636 0.693 0.705

GPT-4o Vanilla 0.468 0.518 0.525 0.787 0.729 0.557 0.546 0.549 0.585
MTS 0.417 0.642 0.639 0.771 0.557 0.576 0.502 0.608 0.589
LCES 0.578 0.682 0.750 0.833 0.812 0.776 0.713 0.713 0.732

TOEFL11

Mistral-7B Vanilla 0.272 0.126 0.185 0.145 0.030 0.042 0.141 0.241 0.148
MTS 0.717 0.587 0.674 0.649 0.703 0.634 0.640 0.740 0.669
LCES 0.470 0.565 0.638 0.665 0.560 0.495 0.562 0.681 0.579

Llama-3.2-3B Vanilla 0.204 0.144 0.339 0.205 0.182 0.229 0.080 0.161 0.193
MTS 0.649 0.572 0.720 0.644 0.532 0.549 0.608 0.563 0.604
LCES 0.663 0.628 0.748 0.722 0.636 0.505 0.627 0.721 0.656

Llama-3.1-8B Vanilla -0.077 0.166 -0.002 -0.005 -0.004 -0.047 -0.034 0.095 0.012
MTS 0.665 0.609 0.791 0.686 0.647 0.542 0.622 0.663 0.653
LCES 0.751 0.668 0.759 0.755 0.723 0.582 0.690 0.767 0.712

GPT-4o-mini Vanilla 0.131 0.252 0.261 0.172 0.044 0.123 0.151 0.177 0.164
MTS 0.684 0.655 0.781 0.716 0.727 0.645 0.650 0.715 0.696
LCES 0.753 0.674 0.757 0.745 0.753 0.684 0.695 0.769 0.729

GPT-4o Vanilla 0.257 0.244 0.440 0.239 0.253 0.270 0.258 0.323 0.285
MTS 0.675 0.655 0.802 0.713 0.728 0.628 0.635 0.727 0.695
LCES 0.748 0.712 0.768 0.733 0.779 0.614 0.699 0.784 0.730

Adam optimizer configuration.890

D Evaluation by Spearman Rank891

Correlation Coefficient892

In addition to the primary metric QWK, we report893

Spearman rank correlation coefficients to evalu-894

ate the ordinal consistency between predicted and895

gold-standard scores. This metric is especially rel-896

evant in applications where preserving the relative897

ranking of essays is more important than matching898

exact scores. Compared with the baseline methods,899

LCES generally achieves higher Spearman corre-900

lations across most prompts and LLMs (Table 9),901

supporting its strength in maintaining rank order.902

E Agreement Rate903

To further validate the reliability of LLM-generated904

pairwise comparisons, we measure the agreement905

rate between LLM decisions and human annota-906

tions on a subset of evaluation pairs. We report907

results for two metrics (Table 10): All, which re-908

Table 10: Agreement rates (%) between LLMs and
human evaluators in pairwise comparisons.

Model ASAP TOEFL11

All Excl. Ties All Excl. Ties

Mistral-7B 55.9 58.0 52.1 41.2
Llama-3.2-3B 56.3 65.0 54.5 60.1
Llama-3.1-8B 60.3 71.6 57.6 76.6
GPT-4o-mini 59.9 75.1 55.9 86.6
GPT-4o 64.3 80.0 57.8 83.0

flects agreement across all pairs including ties, and 909

Excl. Ties, which excludes cases where the gold- 910

standard label indicates a tie. The latter focuses 911

on pairs where a clear score difference exists and 912

thus better captures the LLM’s ability to detect 913

meaningful distinctions. 914

Better-performing LLMs such as GPT-4o and 915

Llama-3.1-8B show higher agreement rates, par- 916

ticularly when ties are excluded. These results are 917

consistent with the final scoring performance in 918

terms of both QWK and Spearman correlation, sup- 919
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porting the use of agreement rate as an indicator of920

pairwise comparison quality.921

14


	Introduction
	Related Work
	Proposed Method
	Pairwise Comparison Generation
	Latent Score Estimation
	Output Conversion

	Experiments
	Datasets
	Baselines
	Experimental Setup
	Results and Discussion

	Analysis
	Comparison with Supervised Models
	Position Bias
	Comparison of Latent Score Conversion Methods
	Performance in the Inductive Setting

	Conclusion
	LLM Prompts
	ASAP
	TOEFL11

	Embedding Models
	Hyperparameters
	Evaluation by Spearman Rank Correlation Coefficient
	Agreement Rate

