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ABSTRACT

Deep generative models often face a fundamental tradeoff: high sample quality
can come at the cost of memorisation, where the model reproduces training data
rather than generalising across the underlying data geometry. We introduce Carré
du champ flow matching (CDC-FM), a generalisation of flow matching (FM), that
improves the quality-generalisation tradeoff by regularising the probability path
with a geometry-aware noise. Our method replaces the homogeneous, isotropic
noise in FM with a spatially varying, anisotropic Gaussian noise whose covari-
ance captures the local geometry of the latent data manifold. We prove that this
geometric noise can be optimally estimated from the data and is scalable to large
data. Further, we provide an extensive experimental evaluation on diverse datasets
(synthetic manifolds, point clouds, single-cell genomics, animal motion capture,
and images) as well as various neural network architectures (MLPs, CNNs, and
transformers). We demonstrate that CDC-FM consistently offers a better quality-
generalisation tradeoff. We observe significant improvements over standard FM
in data-scarce regimes and in highly non-uniformly sampled datasets, which are
often encountered in AI for science applications. Our work provides a mathemat-
ical framework for studying the interplay between data geometry, generalisation
and memorisation in generative models, as well as a robust and scalable algorithm
that can be readily integrated into existing flow matching pipelines.

1 INTRODUCTION

Deep generative models aim to sample from an unknown probability density ν(x), given only finitely
many training points D = {x(i)}Ni=1 ⊂ Rd. Prominent paradigms include variational autoencoders
(Kingma & Welling, 2014), generative adversarial networks (Mahdizadehaghdam et al., 2019), dif-
fusion processes (Sohl-Dickstein et al., 2015; Ho et al., 2020), and methods based on continuous
normalising flows (Chen et al., 2019; Song & Ermon, 2019; Lipman et al., 2023; Albergo et al.,
2023) (CNFs). Among these, CNFs have had striking recent success across domains from image
generation to molecule design and weather prediction, owing to their ability to generate high-quality
samples. At the same time, quality alone cannot measure the goodness of the generative model, as
high quality can be achieved by reproducing training points or close variants, known as memorisa-
tion, which has become a recurring concern (Somepalli et al., 2023; Škrinjar et al., 2025), under-
mining novelty, diversity, and data privacy. In this regard, another desirable property of generative
models is their ability to generate high-quality, yet novel examples, known as generalisation.

This paper reports an advance on mitigating the quality-generalisation tradeoff in flow matching
(FM, Lipman et al. (2023)), a unifying framework of CNFs, that models a deterministic probability
path pt(x) between a source density at t = 0 (often Gaussian), and a target density of arbitrary
complexity at t = 1, and subsumes the probability paths modelled by other generative models,
such as diffusion processes and score matching (Lipman et al., 2023). The standard, widely used
FM construction induces, near t = 1, a homogeneous and isotropic Gaussian kernel approxima-
tion that concentrates around each training point. In practice, most implementations consider a
small-bandwidth limit to maximise accuracy, thereby relying on architecture and training loss for
regularisation. Empirically, we find that the quality-generalisation tradeoff defines a frontier for FM:
while models stopped early during training typically generalise well but yield subpar sample qual-
ity, training longer improves sample quality at the cost of memorisation and, consequently, reduced
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Figure 1: Carré du champ flow matching. a FM conditional path design is oblivious to the man-
ifold structure, which can result in off-manifold samples, shown by the black arrows (σmin > 0).
b Conditional velocity fields (blue arrows) in FM transport mass to training points. c Generated
density by FM trained on eight samples of a unit circle (σmin = 0). FM memorises, concentrating
likelihood around training points. d CDC-FM conditional probability paths are the displacement
(optimal transport) interpolants between local covariances and are thus aligned with the geometry.
e CDC-FM conditional velocity fields flow perpendicular to the manifold. f CDC-FM regularises
along the manifold, mitigating memorisation and facilitating generalisation.

generalisation. This result remained consistent across datasets and for different neural network ar-
chitectures (MLP, UNet, Transformer). We further demonstrate that the quality-generalisation trade-
off does not simply depend on the dataset size, but on a balance between local geometry and data
sparsity, indicating that memorisation can also occur in large-scale datasets.

To improve the quality-generalisation tradeoff, we introduce Carré du champ flow matching (CDC-
FM), which explicitly regularises the FM probability paths through an anisotropic and inhomoge-
neous diffusion term that, for p0 = N (0, I), yields the conditional probability path (see Appendix
A for the general case for arbitrary initial density p0)

pt(x|x1) = N
(
x; t x1,

[
(1− t) I+ t Γ̂(x1)

1
2

]2)
. (1)

The matrix field Γ̂ controls the local Dirichlet (carré du champ) energy, and can be efficiently and
robustly estimated from data using diffusion geometry (Jones, 2024a;b), providing explicit geomet-
ric noise regularisation aligned with the data manifold. We demonstrate that across diverse synthetic
and real-world datasets and neural network architectures, CDC-FM achieves comparable or bet-
ter quality than FM, preserving the fine-grained details of the data, while substantially reducing
memorisation and increasing generalisation. Our work provides a theoretical framework for the
geometry-aware regularisation of flow-based generative models and a practical method that can be
readily used in existing FM pipelines.

2 BACKGROUND

In this paper, we are interested in modelling a set of data points Rd whose density ν(x) concentrates
around an unknown lower-dimensional manifold. We begin by revisiting the standard FM formu-
lation (Lipman et al., 2023). We highlight that the FM probability path pt(x) induces at t = 1
a homogeneous, isotropic Gaussian kernel approximation of ν. This will motivate our generalised
framework in Section 3, where we incorporate an anisotropic and inhomogeneous kernel approxima-
tion to strike a balance between faithfully modelling the data, substantially reducing memorisation,
and improving generalisation. To illustrate the distinction between the two frameworks, we use a
toy problem of learning to generate a circle from equidistant training points (Fig. 1).

2.1 FLOW MATCHING

FM learns a velocity field ut(x) : [0, 1] × Rd → Rd (vanishing at the domain boundaries) that
generates the probability path pt(x), satisfying the continuity equation

∂

∂t
pt(x) = −∇ · (ut(x)pt(x)), p0(x) = µ(x), p1(x) = ν(x). (2)
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We consider µ(x) = N (x; 0, I) for simplicity, and generalise it to arbitrary µ in Appendix A. Con-
ceptually, FM takes a bottom-up approach by designing the flow path of particles Xt := ψt(X0) ∼
pt. The velocity field ut is related to ψt(X0) by the characteristic ODE

d

dt
ψt(x) = ut(ψt(x)), ψ0(x) = x. (3)

The velocity ut, in turn, induces pt(x), the probability of finding a particle at x at time t, via (2).
Specifically, FM takes the final particle position X1 ∼ ν as an auxiliary variable (a training point)
and specifies the conditional flow ψ(X|X1). Although the choice of ψ(X|X1) has implications for
the regularity of the density ν(x) (Albergo et al., 2023), the standard choice is the affine flow

ψt(X|X1) = tX1 + σtX, σt := (1− t) + tσmin. (4)

This choice of flow induces a mapping between Gaussian distributions via the probability path

pt(x|x1) = N
(
x | tx1, σ2

t I
)
, (5)

which linearly interpolates the position and convolves with an isotropic Gaussian, and therefore is
oblivious to the manifold geometry (Fig. 1a). Given the conditional probability path, the marginal
velocity field ut(x) is learnt via a neural network ûθt (x) with weights θ by minimising the loss

L(θ) = Et,X1,X ||ûθt (X)− ut(X|X1)||2 = Et,X0,X1
||ûθt (ψ(X0|X1))−

d

dt
ψt(X0|X1)||2, (6)

where t ∼ U [0, 1], X0 ∼ N (0, I), X1 ∼ ν, and X ∼ pt(x|x1). After training, ûθt (x) will approxi-
mate ut(x) (Theorem 2, Lipman et al. (2023)), generating the marginal probability path pt via (2).
Note that, in the second equality, we used (3-4) to specify closed-form expressions for the condi-
tional target velocity to lead directly to training points. Our numerical experiments corroborate this,
showing that as t→ 1 the learnt fields concentrate mass around training points (Fig. 1b).

Flow matching risks memorisation of training data. FM’s flexibility lives in the transport, i.e.,
the learnt velocity field ûθt (x). Yet, in the limit t → 1, it produces a fixed-bandwidth, isotropic
approximation of ν. Indeed, marginalising (5) over the target distribution ν(x1) yields the mixture:

ν ≃ p1(x) =
∫
Rd

N
(
x
∣∣x1, σ2

minI
)
ν(x1)dx1 ≃

1

N

N∑
i=1

N
(
x
∣∣∣x(i), σ2

minI
)
. (7)

Thus, in the limit t → 1, σmin ↓ 0, the probability path converges to the empirical density. While
setting σmin > 0 can achieve a fixed-bandwidth regularisation, in practice, it is common to take
σmin = 0, risking memorisation (Fig. 1c) as shown by simulations of our toy model.

3 REGULARISED FLOW MATCHING ON GENERALISED DATA MANIFOLDS

3.1 DIFFUSIVE REGULARISATION: CARRÉ DU CHAMP FLOW MATCHING (CDC-FM)

Motivated by the fact that the data density is concentrated around the manifold, we introduce a
principled regularisation into FM by replacing the conditional flow path (4) with

ψΓ
t (X|X1) = tX1 +ΣΓ

t (X1)
1
2X, ΣΓ

t (x) =
[
(1− t)I+ tΓ̂(x)1/2

]2
, (8)

where Γ̂(x) is a local anisotropic covariance around x. We have chosen this flow path because it
replaces the homogeneous, isotropic covariance in the conditional probability path (5) by

pt(x|x1) = N (x | tx1,ΣΓ
t (X1)), (9)

the displacement (optimal transport) interpolant between µ = N (0, I) and an anisotropic Gaussian
centred at x1 ∼ ν that is geometrically aligned with the data manifold. While above we presented
the special case of a Gaussian initial density µ, we also derive a general flow path valid for arbitrary
µ, ν (Appendix A, Proposition 1). Note that as an alternative to (8) one could consider the naı̈ve
data augmentation that replaces the training points by perturbed samples, x(i) 7→ N (x(i), Γ̂(x(i))),
and then uses FM flow paths (5). However, as we prove, this approach is strictly different from (8)
and generates suboptimal paths (Appendix B, Theorem 1).
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Our choice of flow path (8) provides an inductive bias in the FM model to learn the manifold.
To see this, we substitute our flow path (8) into the FM loss (6), noting that the target velocity is
d
dtψt(X0|X1 = x1) = x1+

[
Γ̂(x1)

1/2−I
]
X0. The random part (second term) can be approximated

to leading order as
[
Γ̂(x1)

1/2 − I
]
X0 ∼ N (0, I − 2Γ̂(x1)

1/2 + Γ̂(x1)) ≃ N (0, I − Γ̂(x1)). This
means that if Γ̂(x1) approximates the projection map onto the local tangent space, the dominant
contributions to the velocity are approximately perpendicular (Fig. 1e), minimising tangential flows
(Fig. 1c), which are associated with memorisation Achilli et al. (2024).

To further understand the geometric regularisation by the flow path (8), we may, as before,
marginalise (9) over the target distribution ν(x1) to obtain

ν ≃ p1(x) =
1

N

N∑
i=1

N
(
x
∣∣∣x(i); Γ̂(x(i))) , (10)

replacing the FM approximation of ν in (7) with an anisotropic Gaussian mixture. As Γ̂(x1) ap-
proximates the projection map onto the local tangent space, we numerically observe that CDC-FM
faithfully learns the data manifold (Fig. 1f) in contrast to FM (Fig. 1c).

The approximation in (10) is equivalent to a noise-induced regularisation of data. We prove (Ap-
pendix C, Proposition 2) that the flow path (8) is equivalent to adding a geometry-aware anisotropic
noise term to the continuity equation (2) to obtain a drift-diffusion process (22). The amount of
smoothing introduced by diffusion integrated over the manifold is measured by the Dirichlet en-
ergy (32). Meanwhile, the integrand of the Dirichlet energy in (32) measuring the local smoothness
around a training point x(i) is precisely Γ̂(x(i)), known as the carré du champ, justifying our con-
struction. Compare Algorithms 1 and 2 in Appendix D for a condensed summary.

3.2 ESTIMATING THE CARRÉ DU CHAMP

To compute Γ̂ that optimally captures the local geometry, we follow Jones (2024a;b) and provide
a local kernel density estimate using the diffusion maps Laplacian (Coifman & Lafon, 2006; Berry
& Harlim, 2016). We compute a variable-bandwidth Gaussian kernel up to the kth neighbour of
node i, wϵ(x

(i), x(j)) = exp
(
−∥x(i) − x(j)∥2/(ϵiϵj)

)
, where ϵi, ϵj is the distance to the kbwth

nearest neighbour of x(i), x(j), respectively. We use this to obtain a local estimate of the transition
probabilities of a Markov process generating the data:

(Pf)(x(i)) :=
∑
j

Pij f(x
(j)) = EY∼Pi

[
f(Y )

]
, Pij :=

wϵ(x
(i), x(j))∑

ℓ wϵ(x(i), x(ℓ))
. (11)

where f is a well-behaved test function and Pij represents the one-step transition probabilities from
sample x(i) to a neighbour x(j). Using the local Markov kernel estimates (11), we compute

Γ̂(x(i)) = EX∼Pi

[(
X −m∗(x(i))

)(
X −m∗(x(i))T

)]
, (12)

which is the local covariance of the random variable X ∼ Pi (Bakry et al., 2014). We prove in
Appendix E (Theorem 2) that (12) is the optimal Gaussian covariance at x(i) given the Markov
kernel (11). In practice, we downscale Γ̂(x(i)) to ensure that the added Gaussians (10) add only a
small first-order correction to the FM path and do not distort the training distribution (Appendix E).
We then take the rank-dcdc approximation of Γ̂, optimising dcdc using grid search. To globally scale
the effect of regularisation, we also introduce a hyperparameter γ multiplying Γ̂.

Computational complexity. Our algorithm is scalable to large datasets. The additional compo-
nent compared to FM is the computation of Γ̂, which has a complexity of O(N log(N)) and a
memory requirement of O(N) with respect to the training set size (Appendix F). Further, in our ex-
periments below, we also report the number of function evaluations (NFE) required for the adaptive
ODE solver to reach a prespecified tolerance during inference. We find that CDC-FM has compara-
ble or lower inference-time complexity than FM.
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4 EXPERIMENTS

We now present a series of experiments to quantify the advantages of geometric regularisation over
FM, particularly concerning: (i) low memorisation of training data; (ii) good generalisation to test
data; and (iii) high sample quality. We quantify (i) by marking a generated sample y from the model
as memorised if its nearest-neighbour ratio (Yoon et al., 2023), M(y) := ||y − x(1)||/||y − x(2)||,
with x(1) and x(2) the first and second nearest training neighbours of y, falls below a cutoff. To
allow analysis at the level of training points, we compute the percentage of memorised samples per
nearest training point and average for a global memorisation measure. To measure (ii), we use the
negative log-likelihood (NLL) of a test dataset, which is equivalent to the cross-entropy loss between
the data and the model predictions. While both (i) and (ii) indirectly measure quality (iii), we, in
addition, use the distance-to-manifold (DtM) when possible. For details on network architectures
and hyperparameters, see Appendix G.

4.1 IMPROVED REPRESENTATION OF GEOMETRIC DATASETS

Given that Γ̂ approximates tangent spaces, we expected our method to be well-suited for data with
strong geometric structure.

Training data FM CDC-FM (ours) Test data

Figure 2: Visual comparison of FM vs CDC-FM
for LiDAR data.

Three-dimensional geometry inference.
Light Detection and Ranging (LiDAR)
scans provide point clouds of complex two-
dimensional (2D) surfaces embedded in 3D
space from limited samples. We consider
topographic LiDAR data from Mt. Rainier,
WA, previously used in geometric applications
of FM (Liu et al., 2024; Kapusniak et al.,
2024). We trained FM and CDC-FM on 40-200
uniformly sampled points, with velocity fields
parameterised by multilayer perceptrons.

Early in training, both FM and CDC-FM samples covered the target manifold, achieving low mem-
orisation and good generalisation but poor geometric fidelity (DtM, Table A6). As training pro-
gressed, their behaviour diverged. FM had consistently higher quality than CDC-FM, but achieved
this by memorising training points, at the expense of generalisation. In contrast, CDC-FM improved
quality with substantially better generalisation (Table A7). Qualitatively, FM terrain reconstructions
appeared patchy and disconnected, while those of CDC-FM were smoother and coherent (Fig. 2).

Table 1: Comparison of FM and
CDC-FM on single-cell data. Earth
mover distance between predicted and
held-out snapshots, mean over 5 runs.

Method Cite ↓ Multi ↓

I-FM 48.276 ± 3.281 57.262 ± 3.855
I-CDC-FM 46.657 ± 3.412 54.419 ± 0.629

OT-FM 45.393 ± 0.416 54.814 ± 5.858
OT-CDC-FM 44.410 ± 0.993 52.043 ± 1.948

Inference of single-cell gene expression trajectories.
We evaluated the impact of geometric regularisation on
two single-cell gene expression benchmarks (CITE-seq
– ’Cite’ and Multiomics – ’Multi’) from Lance et al.
(2022). These datasets comprise temporal snapshots of
low-dimensional, spatially complex trajectories in a high-
dimensional space, where points define the gene expres-
sion state of cells. Interpolation between snapshots is
challenging because cell sampling methods are destruc-
tive, meaning cells between time points are unpaired.

Following Kapusniak et al. (2024), we used PCA to reduce dimensionality to 100-dimensions, and
performed leave-one-out interpolation by assessing the models’ ability to reconstruct from a total of
four snapshots one of the two intermediate snapshots. We modelled the velocity field using an MLP
and trained FM and CDC-FM until the validation loss plateaued. We found that CDC-FM resulted
in consistently better reconstruction than FM, both when samples from snapshots were unpaired
(I-FM) or paired using optimal transport (Tong et al. (2024), OT-FM, Table 1).

These experiments demonstrate that CDC-FM can improve the quality-generalisation tradeoff in
domains with underlying geometric structure.

5
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Figure 3: Early stopping for spatially heterogeneous data. a Samples from FM and CDC-FM
trained on the two-circles dataset at an epoch late in the training (40k), when FM captures the small
circle and memorises samples on the larger one. b Quality, c generalisation, and d memorisation
against training epoch for the two methods, presented separately for the two circles. Lines represent
means over samples.

4.2 QUALITY-GENERALISATION TRADEOFF FOR SPATIALLY HETEROGENEOUS DATA

Choosing the number of training epochs trades off sample quality against generalisation and memo-
risation. We hypothesised that for spatially heterogeneous data, different regions converge at differ-
ent rates: at any fixed epoch, FM may memorise sparse regions and generalise in dense ones.

Early stopping for spatially heterogeneous data. To illustrate this, we trained FM and CDC-FM
on two circles with different diameters, each with eight training points. We observed two training
phases. In the initial phase (≲104 epochs), both methods broadly covered both circles (Fig. A1a)
with low quality (Euclidean DtM; Fig. 3b), corroborating our earlier findings. In the second phase
(≳104 epochs), sample quality improved rapidly (Fig. 3a,b). For FM, this improvement on the
sparser, larger circle came via collapse onto training points (Fig. 3a), reflecting the loss of gener-
alisation (Fig. 3c) and memorisation (Fig. 3d). By contrast, CDC-FM quality increased without
over-representation of training points, yielding markedly less memorisation (Fig. 3d), stable gener-
alisation (Fig. 3c) and better inference-time numerical efficiency (Fig. A1b) across both circles.

Overall, this example illustrates that there is no single optimal early-stopping point for FM. At any
epoch, FM tends to produce a mix of high-quality yet memorised samples and novel yet low-quality
samples. CDC-FM is substantially less sensitive to this heterogeneity, allowing training to proceed
until the desired quality is reached without incurring memorisation.

Limiting spatially localised memorisation in animal motion capture data. To reinforce our
results on the two-circles data, we considered animal motion capture data of the fruit fly, Drosophila
melanogaster (DeAngelis et al., 2019). Points in this data are 31-frame 2D pose sequences of the
6-legged fly (Fig. 4a, inset), yielding a 372-dimensional (2× 6× 31) state space. The data manifold
is parametrised by the walking speed on the longitudinal axis and phase on the cyclic coordinate,
permitting visualisation in a 3D UMAP embedding (Fig. 4a).

To benchmark our model, we trained transformers, a leading architecture for character motion syn-
thesis (Hu et al., 2023), to approximate the velocity field of CDC-FM and FM (varying σmin, neg-
ative control). We measured quality by the faithfulness with which samples covered the manifold,
quantified by the mean distance of test points to the nearest samples. We found that FM with
σmin = 0 traced out a frontier at increasing training epochs, trading off sample quality with gen-
eralisation (Fig. 4b) and memorisation (Fig. 4c). We used a memorisation cutoff of M(y)≃ 0.6,
confirmed by the movement traces (Fig. A2). Naı̈vely regularising FM by increasing σmin did not
exceed this frontier, achieving either worse generalisation (memorisation) or quality. By contrast,
adding CDC regularisation (γ > 0) surpassed the FM frontier, simultaneously improving sample
quality, generalisation and memorisation. While the advantage was strongest around γ = 0.3 (Fig.
4b,c), other values also lead to improvements (Fig. A3). Increasing dcdc = rank(Γ̂) led to better
generalisation with a slight drop in quality, possibly due to noise leakage in off-manifold directions.

Amongst the models in Fig. 4b,c across different epochs, which one should one choose? When
plotted against epochs, we see that generalisation in FM monotonically deteriorates (Fig. 4d). This
means that FM models require early-stopping strategies to optimise. By contrast, CDC-FM test-set
performance plateaus, meaning that early-stopping strategies are less relevant. Our results show that
for a given sample quality, especially when high, there is a CDC-FM model with comparable or
better generalisation and memorisation than FM, and vice versa.
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Figure 4: Quality-generalisation tradeoff for animal motion capture data. a Inset: an example
fruit fly pose sequence. Point cloud, each point representing a 31-frame pose sequence, visualised
in 3D UMAP coordinates. Shading indicates walking speed. b Generalisation against quality for
CDC-FM for different Γ̂ ranks, dcdc, and for FM for different σmin. Black circles indicate epochs
analysed in e. c Same as b, but for memorisation. d Generalisation against epochs. e Percentage of
memorised samples nearest to a training point (FM: σmin=0, CDC-FM: dcdc = 16). f Variation of
train data sparsity. g Average memorisation against sparsity for different epochs.

The behaviours vary from highly stereotyped, tripod gaits to complex non-canonical gaits as the
walking speed decreases (Fig. 4a). We expected that this heterogeneity would lead to spatially dif-
ferent trade-offs in quality, generalisation and memorisation. To visualise memorisation patterns,
we took a late epoch (100k) for both FM and CDC-FM (Fig. 4b,c, black dots), finding that memo-
risation predominantly occurred on the right end of the UMAP (Fig. 4e). Memorisation correlated
with the sparsity of the training points (Fig. 4f,g), estimated based on the distance to the closest
neighbour, and occurred first at the sparsest points (Fig. 4g), corroborating our earlier findings (Fig.
3). By contrast, CDC-FM showed substantially lower (Fig. 4f,g) and less sparsity-dependent mem-
orisation (Fig. 4g). Overall, these results indicate that geometry-aware regularisation is especially
valuable when data varies heterogeneously over the data manifold. In the next section, we examine
its limits as the intrinsic dimension and dataset size increase.

4.3 LIMITS OF EXPLICIT GEOMETRIC REGULARISATION

Until now, we have demonstrated that CDC-FM achieves better quality-generalisation tradeoff for
different architectures (MLP, UNet, Transformers) and diverse domains (LiDAR, single-cell, motion
capture). We now test the limits of CDC-FM on two axes, which are known to challenge manifold
methods: (i) increasing dimensionality, (ii) scaling to large data.

Influence of manifold dimension. To study the influence of dimension, we generate tori T d =
(S1)d ⊂ R2d varying the dimensions d and the number of training points. As the dimension in-
creases, the effective data density decreases exponentially (curse of dimensionality), and we ex-
pected the performance of generative models to decrease. We present the results for FM and CDC-
FM trained to 4k epochs, but found that qualitatively similar results hold for different epochs.

As before, we found that FM samples were of consistently high quality, and while CDC-FM could
attain a comparable quality, it required an increasingly larger number of training points as the dimen-
sion increased (Fig. 5a). Yet, strikingly, FM memorised almost all of the dataset when the dimension
was high enough (Fig. 5b). By contrast, while memorisation in FM and CDC-FM was compara-
ble in dimensions one or two, CDC-FM memorisation decreased with dimension and remained low
(Fig. 5b). CDC-FM also attained generally higher generalisation (Fig. 5c). Taken together, these
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Figure 5: Synthetic experiment on toroidal manifold. Effect of data dimension on a sample
quality, b memorisation and c generalisation.

experiments show that, unlike FM, CDC-FM prevents memorisation and facilitates generalisation
irrespective of dimension, an effect that remained robust when adding small Gaussian noise to the
data (Fig. A4). Yet, as the dimension increases, the desirable sample quality may only be achievable
with a sufficient amount of data, likely due to the knn graph construction of the kernel.

Influence of dataset size. Finally, we studied the scaling of CDC-FM to large data in image syn-
thesis, where generative models have enjoyed considerable success, although memorisation is still
reported, particularly for a low number of training points (Kadkhodaie et al., 2024; Gu et al., 2025).

We trained FM on increasing subsets of CIFAR-10 for σmin=0, as we found that this choice yielded
the best performance (Fig. A5), and similarly, CDC-FM, using a UNet network architecture. We
measured sample quality by the Fréchet inception distance (FID) on a test set of 10k samples. We
found that, for small training set sizes (<10k), all training points became abruptly memorised (M<
0.2) as training progressed, consistent with a phase transition as reported in diffusion models (Pham
et al., 2024), while the fraction of memorised points steadily increased with larger training sizes (Fig.
6b). By comparison, we found only a few per cent of memorised points with CDC-FM (Fig. 6b).
Lower memorisation was accompanied by substantially better generalisation and sample quality at a
late epoch after the FM phase transition (4k, Fig. 6c,d, bottom), but only comparable generalisation
and quality for epochs before the phase transition (2k, Fig. 6c,d, top). Yet, as the number of training
points increased, quality and generalisation in FM and CDC-FM were comparable across epochs,
indicating that implicit regularisation, from the architecture and loss function, becomes dominant.

Our results demonstrate that the benefit of geometric noise is highest for low, heterogeneous or
geometrically structured data settings.

5 RELATED WORK

Manifold hypothesis and generative modelling. Our approach is motivated by geometric ap-
proaches of generative modelling under the so-called manifold hypothesis, surveyed in Loaiza-
Ganem et al. (2024), which presumes that high-dimensional data often concentrates near a lower-
dimensional manifold. Generative models have also been used to estimate intrinsic geometric quan-
tities, e.g., manifold dimension (Stanczuk et al., 2024). Conversely, related line of work constrains
generative models to predefined manifolds (Chen & Lipman, 2024; Huang et al., 2022; Mathieu &
Nickel, 2020; De Bortoli, 2022), or to manifolds that are learnt from data (Kapusniak et al., 2024;
Peach et al., 2024; Gosztolai et al., 2025). Our work also uses manifold tangent space estimates, but
differs by focusing on modifying the probability path with an anisotropic diffusive term aligned to
estimated tangents, rather than constraining generation to a pre-specified manifold.

The quality-generalisation tradeoff in diffusion models. Memorisation and generalisation have
been studied in the context of diffusion models, where empirical evidence showed a strong depen-
dence on training set size and architecture (Yoon et al., 2023; Gu et al., 2025). From a geometric
standpoint, Ross et al. (2025) argues that memorisation occurs when the learned manifold’s dimen-
sion is too low due to either overfitting-driven memorisation, when tangent directions are not fully
captured, or data-driven memorisation, when the underlying data manifold itself is degenerate. In
this regard, Achilli et al. (2024) observed failures to capture tangent space dimensions and Ventura
et al. (2025) studied the dynamical regimes of diffusion models from a geometric perspective. On
the theoretical side, De Bortoli (2022) studied the convergence of denoising diffusion models under
manifold assumptions. While FM and diffusion share strong formal analogies — indeed, FM uni-
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fies score-based and diffusion training — there has been much less work on memorisation in FM.
Bertrand et al. (2025) shows that the optimal FM vector field memorises and argues that generali-
sation does not come from the stochasticity of the FM objective. Our results thus complement and
extend the existing understanding of memorisation phenomena in generative modelling.

Geometric regularisation. Early work applied geometric regularisation to supervised learning by
introducing tangent information either via hand-crafted invariances (Simard et al., 1991) or tangents
estimated from neural network Jacobians (Rifai et al., 2011). CDC-FM differs from these by ap-
plying geometric regularisation in a generative modelling setting: rather than modifying the loss,
we regularise the generative path. We use a geometry–guided, anisotropic diffusion that enforces
smoothness aligned with the local data geometry, and prevents collapse onto training points.

6 DISCUSSION

We introduced Carré du Champ Flow Matching (CDC-FM), a principled modification of flow match-
ing (FM) that injects geometric regularisation into the conditional probability path. Our generalisa-
tion can be understood as adding a spatially-modulated, geometry-aware noise to the deterministic
FM generative path to minimise its Dirichlet energy. This noise term encourages transport normal
to the data manifold and suppresses tangential collapse onto training points. We show that this noise
term can be rigorously justified as the optimal transport path in the space of probabilities and can be
optimally estimated from data.

Empirically, we find across synthetic and real data that sample quality and generalisation are in
tradeoff. Namely, FM models require a specified number of training epochs to reach a desired
sample quality, which comes at a cost of memorisation and decreased generalisation to the test
set. CDC-FM could mitigate this tradeoff by achieving higher generalisation for the desired sample
quality for diverse datasets, including geometric point clouds (LiDAR) and continuous trajectories
(single-cell time courses; motion capture). Notably, CDC-FM reduced localised memorisation that
plagues FM under heterogeneous sampling densities, even for moderately large data.

One limitation of our method stems from the use of the manifold hypothesis. We found that as the
manifold dimension rises, our method needs exponentially more samples to maintain accuracy, due
to the need to estimate tangent spaces from local neighbourhoods. Further, for non-geometric data,
the benefit of geometric regularisation diminishes, on average, as the training set size increases,
because the neural network architectures and the loss function already confer inductive biases.

Yet, we show that sufficient implicit regularisation can depend heavily on the local complexity and
sparsity of the data, while the use of CDC-FM does not degrade performance. Thus, we expect that
even in overall high data settings, local memorisation is likely a common occurrence, driven by local
sparsity patterns (Škrinjar et al., 2025). In these scenarios, we expect that CDC-FM can provide a
robust tool to reduce or eliminate memorisation and improve generalisation. Thus, our approach is
not a competitor to FM but a plug-in regulariser that can be scheduled, adapted, or even learned,
opening a path to geometry-aware flow-based generative models with stronger guarantees, better
sample efficiency, and improved robustness to privacy risks.

9
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Peter Škrinjar, Jérôme Eberhardt, Gerardo Tauriello, Torsten Schwede, and Janani Durairaj. Have
protein-ligand cofolding methods moved beyond memorisation? bioRxiv, 2025. doi: 10.1101/
2025.02.03.636309.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, 2015.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffu-
sion art or digital forgery? Investigating data replication in diffusion models. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, 2019.

Jan Pawel Stanczuk, Georgios Batzolis, Teo Deveney, and Carola-Bibiane Schönlieb. Diffusion
models encode the intrinsic dimension of data manifolds. In International Conference on Machine
Learning, volume 235, 2024.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. Transactions on Machine Learning Research, 2024.

Enrico Ventura, Beatrice Achilli, Gianluigi Silvestri, Carlo Lucibello, and Luca Ambrogioni. Man-
ifolds, random matrices and spectral gaps: The geometric phases of generative diffusion. In
International Conference on Learning Representations, 2025.

TaeHo Yoon, Joo Young Choi, Sehyun Kwon, and Ernest K. Ryu. Diffusion probabilistic models
generalize when they fail to memorize. In ICML Workshop on Structured Probabilistic Inference
& Generative Modeling, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendices

STATEMENTS

Reproducibility statement. All details necessary to reproduce the experiments are present in the
paper. We commit to publishing an open-source implementation of our code and guidelines to
reproduce each experiment.

Use of LLMs and other tools. We used Grammarly to facilitate writing and GPT-5, Gemini, and
Claude to check for mathematical and notational inconsistencies, as well as facilitate writing code.

A ARBITRARY SOURCES AND TARGETS

In the main text, we described our method in the special case of generating flow paths from a
Gaussian µ = N (0, I) to a complex density ν. Here we show that our framework can be readily
extended to model flow paths between two arbitrary densities µ, ν. In addition to the single-cell
dataset in Section 4.1, this setup is relevant for many other applications (Liu, 2022; Albergo et al.,
2023). FM naturally lends to this setting as the conditional paths can be conditioned on both source
and target samples (Tong et al., 2024). First, to approximate the manifold structure, we compute
CDC matrices Γ̂(x0), Γ̂(x1), for training points x0 ∼ µ, x1 ∼ ν, respectively, as described in
Section 3.2. We incorporate these local tangent spaces in the conditional probability path by using
the displacement interpolant between N (x0, Γ̂(x0)) and N (x1, Γ̂(x1)). We formalise this in the
following proposition.

Proposition 1. Given that p0(x|x0, x1) = N (x0, Γ̂(x0)) and p1(x|x0, x1) = N (x1, Γ̂(x1)) are
Gaussian, the displacement interpolant between them, pt(x|x0, x1) := [p0, p1]t, is also Gaussian,
with mean and covariance given by

µt = (1− t)x0 + tx1

Σt = AtΓ̂(x0)A
⊤
t

(13)

where At = (1− t) I + tB and B := Γ̂(x0)
− 1

2

(
Γ̂(x0)

1
2 Γ̂(x1)Γ̂(x0)

1
2

) 1
2

Γ̂(x0)
− 1

2 , with the cor-
responding conditional flow being

ψt(x|x1, x0) = (1− t)x0 + tx1 +At (x− x0) . (14)

Proof. Follows from the optimal transport interpolation of two covariance matrices Γ̂(x0), Γ̂(x1)
(Bhatia et al., 2019).

B CARRÉ DU CHAMP FLOW MATCHING GENERATES OPTIMAL TRANSPORT
FLOW PATHS

Since we aim to improve the approximation of the underlying density as ν(x) ≃
1
N

∑N
i=1N (x(i), Γ̂(x(i))) using the carré du champ tangent space approximations Γ̂(x(i)), a naı̈ve

approach might be to randomly augment each training point x(i) by some perturbation from
N (0, Γ̂(x(i))), take the standard conditional OT paths (5), and train against the FM loss (6). How-
ever, we show that this approach is equivalent to FM between N (0, I) and N (x(i), Γ̂(x(i))) with
non-optimal transport probability paths.
Theorem 1. Training an FM model with source points X0 ∼ N (0, I) and target points Z ∼
N (X1, Γ̂(X1)) forX1 ∼ ν is equivalent, in expectation, to training with the conditional probability
path

p̃t(x|x1) = N (tx1, (1− t)2I+ t2Γ̂(x1)) (15)
which differs from the optimal probability path obtained via displacement interpolation

pt(x|x1) := [N (0, I), N (x1, Γ̂(x1))]t = N
(
tx1,

[
(1− t)I+ tΓ̂(x1)

1/2
]2)

(16)
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whenever Γ̂(x1) ̸= 0.

Proof. We first show that training with conditional flow paths leading to a naı̈vely augmented train-
ing set leads to the correct marginal probability paths. We start by considering the FM loss with
augmented data, which results in the loss

Laug(θ) := Et,X0,X1,Z∥ûθt ((1− t)X0 + tZ)− (Z −X0)∥2 (17)

for t ∼ U(0, 1), X0 ∼ p, X1 ∼ ν, and Z ∼ N (x1, Γ̂(x1)). Differentiating with respect to θ, we get

∇θLaug = EX1∇θEt,X0,Z∥ûθt ((1− t)X0 + tZ)− (Z −X0)∥2. (18)

The expectation on the right is just the FM loss (6) for an affine flow ψ̃t(X|Z) = (1 − t)X + tZ
between N (0, I) and δZ . By Theorem 2 in Lipman et al. (2023), we may marginalise over the
conditional flows ψ̃t(·|Z)

∇θEt,X0,Z∥ûθt ((1−t)X0+tZ)−(Z−X0)∥2 = ∇θEt,X0∥ûθt (ψ̃t,X1
(X0))−

d

dt
ψ̃t,X1

(X0)∥2 (19)

where ψ̃t,X1
denotes the marginal flow between N (0, I) and N (x1, Γ̂(x1)). This tells us that we

can view data augmentation as a distinct FM problem for each training point X1. We may then take
the expectation over these points to obtain

∇θLaug = EX1∇θEt,X0∥ûθt (ψ̃t,X1(X0))− ψ̃′
t,X1

(X0)∥2

= ∇θEt,X0,X1
∥ûθt (ψ̃t,X1

(X0))− ψ̃′
t,X1

(X0)∥2.

If we define conditional flows between N (0, I) and N (x1, Γ̂(x1)) by ψ̃t(·|X1) := ψ̃t,X1 then

∇θLaug = ∇θEt,X0,X1∥ûθt (ψ̃t(X0|X1))− ψ̃′
t(X0|X1)∥2, (20)

which shows that training with Laug is the same, in expectation, as training with L (6) using the
conditional flows ψ̃t(·|X1).

Although the above shows that naı̈ve data augmentation is equivalent to an FM problem, we now
show that the resulting conditional flow paths are different from the CDC-FM paths, and so are
suboptimal. We can derive a closed-form expression for the conditional path p̃t(·|X1) as

p̃t(·|X1) = N
(
tX1, (1− t)2I + t2Γ̂(X1)

)
, (21)

because, if X ∼ p̃t(·|X1), then X = ta + (1 − t)b where a ∼ N (0, I) and b ∼ N (x1, Γ̂(x1))

are independently sampled. but the optimal probability path between N (0, I) and N (x1, Γ̂(x1)) is
given by the displacement interpolant

pt(·|X1) := [N (0, I), N (X1, Γ̂(X1))]t

= N
(
tX1,

[
(1− t)I+ tΓ̂(X1)

1/2
]2)

= N
(
tX1, (1− t)2I+ t2Γ̂(X1)

1/2 + 2t(1− t)Γ̂(X1)
1/2

)
,

which differs from p̃t(·|X1) whenever Γ̂(X1) ̸= 0. Therefore, whereas the probability paths used in
CDC-FM are displacement (optimal transport) interpolants, those in FM with data augmentation are
not displacement interpolants, except for when Γ̂(X1) = 0, where they both collapse to FM.

This means that, unlike the displacement interpolant paths in CDC-FM, data augmentation is not
conditionally optimal. In Lipman et al. (2023), the authors show that an FM model trained with
deterministic displacement interpolant probability paths requires fewer solver steps to compute a
solution.
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C INTERPRETATION OF CDC-FM AS AN ANISOTROPIC DIFFUSIVE
REGULARISATION

Fundamentally, our framework seeks to identify the Markov process, whose density at t = 1 matches
the data density ν. The CDC-FM flow path (8) introduces a data-driven regularity in this Markov
process. In this section, we justify that the CDC-FM flow path is equivalent to adding a space-
dependent, anisotropic diffusion term into the marginal probability path (2). This leads to the
Fokker–Planck equation

∂

∂t
pt(x) = (L∗pt)(x) := −∇ · (ut(x) pt(x)) +

1

2

∑
q,r

∂q∂r(At(x)qr pt(x)). (22)

Here, L∗ is the adjoint of L, the infinitesimal generator of the stochastic process, and At is the
diffusion tensor, which adapts to the local geometry of data.

Note that the mean and covariance in (8) do not depend on x, only on the end-point x1. We may
therefore prove the following result.
Proposition 2. Let pt(x) define a Gaussian probability path

pt(x) = N (x; mt,Σt), mt ∈ Rd, Σt ∈ Sd++, (23)

where mt,Σt are differentiable and independent of x. Then, pt(x) satisfies the following Fokker-
Planck equation

∂

∂t
pt(x) = ∇ · (ṁt pt(x)) +

1

2

∑
q,r

∂q∂r(Σ̇t,q,r pt(x)). (24)

Proof. Because pt(x) is Gaussian, we have

log pt(x) = C − 1
2 log detΣt − 1

2 (x−mt)
⊤Σ−1

t (x−mt). (25)

Differentiating with respect to t, we have

∂

∂t
log pt =

1

pt

∂

∂t
pt = − 1

2 tr(Σ
−1
t Σ̇t) + ṁ⊤

t Σ
−1
t (x−mt) +

1
2 (x−mt)

⊤Σ−1
t Σ̇tΣ

−1
t (x−mt).

(26)
Further, for a Gaussian density pt(x), we may compute the drift term

−∇ · (ṁt pt) = ṁ⊤Σ−1(x−mt)pt. (27)

Likewise, for the diffusion part

1
2

∑
q,r

∂q∂r(Σ̇t,qr pt) =
1
2

∑
q,r

Σ̇∂q∂rpt =
pt

2

[
(x−mt)

⊤Σ−1
t Σ̇tΣ

−1
t (x−mt)− tr(Σ−1

t Σ̇t)
]
.

(28)
Adding (27) and (28), we obtain the right-hand side of (26), which is the desired result.

Using Proposition 2, we see that the conditional probability path satisfies

∂

∂t
pt(x|x1) = ∇ · (ṁt pt(x|x1)) +

1

2

∑
q,r

∂q∂r(Σ̇t,q,r pt(x|x1)), (29)

where, using our CDC-FM flow path in (8), we have

ṁt(x1) = x1

Σ̇t(x1) =
[
(1− t)I+ tΓ̂(x1)

1/2
]
(Γ̂1/2 − I).

(30)

We may then marginalise by taking expectations over ν in (29) to obtain (22) with

ut(x) = Eν [X1|Xt = x]

At(x) = Eν [Σ̇t(X1)|Xt = x],
(31)

where we used the fact that, by Bayes’ rule,
∫
F (x1)pt(x|x1)p1(x)dx1 = pt(x)Eν [F (X1)|Xt = x]

for any integrable function F .

15
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Dirichlet form and carré du champ. The global smoothness introduced by the diffusive term
induced by the flow path is measured by the (weighted) Dirichlet form E(f, g), which monotonically
decreases along the evolution pt. For well-behaved test functions f, g : Rd → R this reads

E(f, g) :=
∫
Rd

Γ(f, g)(x) dx :=
1

2

∫
Rd

(L(fg)− fLg − gLf) dx =

∫
Rd

∇f ·At(x)∇g dx. (32)

In contrast to E , the integrand Γ(f, g), known as the carré du champ (CDC), measures the local,
point-wise smoothness, and encodes the geometry of the underlying manifold (Jones, 2024a). Note,
we recover FM in the deterministic limit, At(x) ≡ 0 as t → 1. Consequently, E = 0, meaning the
associated generator has no intrinsic mechanism to dissipate energy, thus no smoothing.

Taken together, the spatially varying covariances introduce a source of randomness into the sample
paths, which can be interpreted as an anisotropic diffusion. The CDC quantifies this diffusion and
relates it to the smoothness of the data itself.

D PSEUDO CODE

We present pseudo code for CDC-FM in the case of noise to data and compare it to standard FM in
the following algorithms.

Algorithm 1 Flow Matching

1: Input: Samples D = {x(i)}Ni=1 ⊂ Rd from
ν(x) parameterized vector field vθ(x, t).

2: Output: Gradient∇θL(θ) for updating pa-
rameters θ

3: Sample x1 ← x(i) ∼ ν(x)
4: Sample t ∼ Uniform[0, 1]
5: Sample x0 ∼ N (0, I)
6: Define

xt ← tx1 + ((1− t) + tσmin)x0

7: Define the target conditional vector field at

vt(xt | x1)← x1 − (1− σmin)x0

8: Compute the loss

L(θ) =
∥∥vθ(xt, t)− vt(xt | x1)∥∥2

9: Compute the gradient∇θL(θ)
10: return ∇θL(θ)

Algorithm 2 CDC Flow Matching

1: Input: Samples D = {x(i)}Ni=1 ⊂ Rd

from ν(x) together with their local covari-
ance square-root Γ̂(x(i))0.5; parameterized
vector field vθ(x, t).

2: Output: Gradient∇θL(θ) for updating pa-
rameters θ

3: Sample x1 ← x(i) ∼ ν(x)
4: Sample t ∼ Uniform[0, 1]
5: Sample x0 ∼ N (0, I)
6: Define

xt ← tx1 +
(
(1− t) I+ tΓ̂(x1)

0.5
)
x0

7: Define the target conditional vector field

vt(xt | x1)← x1 −
(
I− Γ̂(x1)

0.5
)
x0

8: Compute the loss

L(θ) =
∥∥vθ(xt, t)− vt(xt | x1)∥∥2

9: Compute the gradient∇θL(θ)
10: return ∇θL(θ)

E OPTIMAL ESTIMATION OF THE CARRÉ DU CHAMP MATRIX

In Section 3.2, we estimate the local geometry at a sample x using the carré du champ matrix Γ̂(x),
which we define as the mean-centred covariance of the sample’s neighbours. We now prove that this
choice is optimal in the sense that it is the best local Gaussian approximation to the data. Specifically,
the Gaussian that maximises the expected log-likelihood of the kernel Px is the one whose mean and
covariance match the empirical mean and covariance.

Theorem 2. Let Pxy be a transition kernel on Rd. Let Px denote the probability measure supported
on the k nearest neighbours of x obtained by restricting and renormalising Pxy (11). Assume Px has
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finite second moments. Then the unique maximiser over m ∈ Rd and Σ over the space of positive
definite matrices of the expected log-likelihood of a sample Y from a Gaussian density N (m,Σ)

(m,Σ) 7−→ EY∼Px [logN (Y ;m,Σ)]

is given by matching the first two moments of Px:

m∗(x) = EY∼Px
[Y ], Σ∗(x) := Γ̂(x) = EPx

[
(Y −m∗)(Y −m∗)⊤

]
.

Equivalently, N (m∗,Σ∗) minimises KL(Px ∥N (m,Σ)).

Proof. For Σ ≻ 0, the log-likelihood of a sample Y
N(m,Σ) is

logN (Y ) = −d
2
log(2π)− 1

2
log detΣ− 1

2
(Y −m)⊤Σ−1(Y −m).

Taking the expectation with respect to Y ∼ Px gives

EY∼Px
[logN (Y ;m,Σ)] = −d

2
log(2π)− 1

2
log detΣ− 1

2
EY∼Px

[
(Y −m)⊤Σ−1(Y −m)

]
.

We can differentiate with respect to m to get

∂

∂m
EY∼Px [logN (Y ;m,Σ)] = Σ−1(EY∼Px [Y ]−m),

which is zero at the maximum m∗(x) = EY∼Px
[Y ]. To find the optimal Σ, let Sx = E[(Y −

m∗)(Y −m∗)⊤]. We can rewrite the expectation term as

E[logN (Y ;m∗,Σ)] = 1
2 log detΣ

−1 − 1
2 tr(Σ

−1Sx) + const,

which is strictly concave in Σ−1 ≻ 0. Differentiating with respect to Σ−1 we obtain

∂

∂Σ−1
EY∼Px

[logN (Y ;m∗,Σ)] =
1

2
Σ− 1

2
Sx.

This quantity is zero at the maximum Σ∗ = EY∼Px

[
(Y −m∗)(Y −m∗)⊤

]
, and unique-

ness follows from strict concavity. Thus, the optimal covariance is given by Γ̂ :=
EY∼Px

[
(Y −m∗)(Y −m∗)⊤

]
, the centred covariance of the neighbours of x.

This theorem justifies using the mean-centred local covariance of the diffusion kernel’s neighbour-
hood as the statistically optimal covariance for a local Gaussian fit.

Rescaling the carré du champ matrix If the bandwidth of the kernel is set appropriately, the
carré du champ matrix Γ̂(x(i)) will capture the local shape of the density near a training point x(i).
However, depending on the bandwidth, samples from N (x(i), Γ̂(x(i))) may be far from x(i). To
quantify this, we may diagonalise Γ̂ = Q⊤diag(λ1, ..., λd)Q, where Q is the orthonormal matrix
of principal components of Γ̂, then Γ̂ represents Gaussian noise with variance λi in the direction
of the component Qi. Then, if samples are drawn randomly from N (x, Γ̂), their expected squared
distance from x is

E
(
∥X − x∥2

)
= tr(Γ̂).

This means that excessive noise in directions normal to the manifold can reduce the fidelity of the
geometric regularisation. Thus, to control the maximum amount of noise added to the data by Γ̂ in
any direction, we need to rescale Γ̂ such that the largest eigenvalue λ1 is of the right scale.

As a heuristic, we would like the noise added by Γ̂(x(i)) to be small enough that it is contained
in the gaps between the training point x(i) and its neighbours. This way, the training signal is still
dominated by the location of the training data, with the carré du champ adding a small, unintrusive
amount of directional training on top of that. If π(x(i)) is the nearest neighbour of x(i), then we
choose to ensure that all the eigenvalues of Γ̂(x(i)) are no larger than ∥x(i) − π(x(i))∥2/9. This
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means that, in any given direction, the noise added has standard deviation at most ∥x(i)−π(x(i))∥/3,
so at least 99.7% of it will be closer to x(i) than its nearest neighbour π(x(i)).

This local heuristic is effective except in the case that x(i) is very isolated, in which case ∥x(i) −
π(x(i))∥ is very large. To avoid adding too much excess noise to these points, we will also cap the
maximum noise level at cmax, defined to be the 90th percentile of all the local constraints ∥x(i) −
π(x(i))∥2/9. This limits the scale of the noise at the 10% most outlying points in the data, which
we can guarantee by ensuring that all the eigenvalues are below c2max.

To meet both the local and global constraints, we rescale Γ̂(x(i)) by

ci =
1

λi1
min

(∥x(i) − π(x(i))∥2
9

, c2max

)
, (33)

where λi1 is the largest eigenvalue of Γ̂(x(i)). The largest eigenvalue of the rescaled matrix will then
be the smaller of ∥x(i) − π(x(i))∥2/4 and c2max.

The above method describes a heuristic for setting the size of the carré du champ at each point, but, in
particular cases, we may attain better performance by further globally rescaling Γ̂(xi). We therefore
use the carré du champ γciΓ̂(x(i)), where ci is from (33) and γ is a tuneable hyperparameter that
defaults to 1.0.

F COMPUTATIONAL COMPLEXITY AND RUNTIMES

The conditional paths in CDC-FM require Γ̂(x1)1/2, for which we have to compute and diagonalise
Γ̂(x1). Since we truncate the diffusion kernel to have only k non-zero entries per point (the neigh-
bours of the point), the carré du champ at each point has rank at most k, so we can avoid working with
full d×d covariance matrices. Instead, we project the neighbour differences into their k-dimensional
span and compute Γ̂(x1) in this reduced basis. The resulting k×k matrices capture the full spectrum
while being far cheaper to store and diagonalise. The dominant costs are therefore O(k2d) for the
projection step and O(k3) for the eigen-decomposition, rather than O(d3). In practice, k is small
even when the dimension d is high, so the computation effectively takes O(N(log(N) + d)) time
and O(Nd) space. The complexities of the different steps are given in Table A1. We also report the
empirical preprocessing time for the CIFAR-10 experiments in Table A2.

Table A1: Compute and memory complexity. Here, N is the number of training points, k is the
number of neighbours, and d is the ambient dimension.

Step Compute Memory
k-NN graph construction O(N log(N)) O(Nk +Nkd)
Diffusion kernel O(Nk) O(Nk)
Form covariance terms in Rd O(Nkd) O(Nkd)
Project covariance terms to Rk O(Nk2d) O(Nkd+Nk2)

Diagonalise Γ̂(xi) in Rk O(Nk3) O(Nk2)
Overall complexity O

(
N(log(N) + k2d+ k3)

)
O(Nkd+Nk2)

Computational Resources All experiments were feasible and primarily performed on NVIDIA
A10s (24 GB). Some experiments were performed on NVIDIA H100s (80GB). Drosophila experi-
ments were performed on NVIDIA A100s (40GB).

G EXPERIMENT DETAILS

Numerical solver. Unless stated otherwise, for inference and likelihood computations, we use
the adaptive step size solver dopri5 with atol=rtol=1e-5 using the torchdiffeq library
(Chen et al., 2019).
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Table A2: Preprocessing empirical runtimes. Runtimes are reported in seconds for CIFAR-10
subsets of varying sizes and were ran on NVIDIA A10s.

Dataset size KNN graph (s) Γ̂ eigendecomposition (s) Total (s)
1000 0.45 19.27 19.72
2000 0.55 38.03 38.58
3000 1.19 56.14 57.33
4000 1.10 73.56 74.66
5000 1.89 92.09 93.98

Circle, two circles, LiDAR, and torus experiments. These experiments use the same basic MLP
architecture from Lipman et al. (2024) with 4 hidden layers of dimension 512 and Swish activations.
We used the Adam optimiser with a learning rate of 10−3. We summarise the CDC-specific hyper-
parameters in Table A3. For the memorisation metric, we used a nearest-neighbour ratio cutoff of
0.2.

Single cell experiment. For the single cell experiments, we followed the setup in Kapusniak et al.
(2024) and used a 3-layer MLP with width 1024 and SeLU activation to learn the vector field.
We used the AdamW optimiser with a learning rate of 10−3 and a weight decay of 10−5. For
inference, we used the Euler solver for 100 steps. We summarise the CDC-specific hyperparameters
in Table A4. We found that adding isotropic noise with variance σmin in addition to the anisotropic
CDC noise helped stabilise training.

Drosophila experiment. For the Drosophila experiments, we learn the vector field with a trans-
former architecture previously used for flow-matching-based human motion synthesis (Hu et al.,
2023). To accommodate the simpler motion of Drosophila compared to human motion, we down-
scaled the network and used 4 transformer blocks with feedforward and key/value dimensions
dff =dkv=256 with 4 attention heads and GELU activation. The model was trained on 2k training
points for 105 epochs using the Adam optimiser with a constant learning rate of 10−4 and batch
size of 512. We summarise the CDC-specific hyperparameters in Table A3. To evaluate NLL, per-
centage memorised, and sample quality, we used a test set of 25k points as well as 25k generated
samples. For the memorisation metric, we used a nearest-neighbour ratio cutoff of 0.6 (Fig. A2). As
in DeAngelis et al. (2019), we fitted UMAP with 30 nearest neighbours on standardised data points,
first subtracting the per-limb-coordinate mean across time steps from each trajectory and then scal-
ing each of the 372 dimensions across all data points to zero mean and unit variance. UMAP was
fitted on the larger test set, and the resulting model was subsequently used to project the training
points into the UMAP embedding space.

CIFAR-10 experiment. For the CIFAR-10 experiments, we followed the setup in Tong et al.
(2024) with the exception that we did not use the standard flip transform for data augmentation to
focus on the fundamental differences between FM and CDC-FM losses. We used a UNet (Dhariwal
& Nichol, 2021) with 128 channels, depth of 2, channel multiples [1, 2, 2, 4], 4 heads, 64-channel
heads, attention resolution of 16, and 0.1 dropout. Following Tong et al. (2024), we used a constant
learning rate 2 × 10−4, gradient clipping with norm 1.0, and exponential moving average weights
with decay 0.9999.

We summarise the CDC-specific hyperparameters in Table A5. To tune the dcdc and γ hyperparam-
eters, we computed the empirical covariances as described in Section 3.2, we used the closed-form
p1 to generate 10k samples and computed the FID on a validation set consisting of 10k images. For
negative log likelihoods, we report bits per dimension as done in Lipman et al. (2024) using the
regular uniform dequantization with K = 1. FID is computed using the inception v3 embeddings
(Szegedy et al., 2016) and the cleanfid package (Parmar et al., 2022). For the memorisation metric,
we used a nearest-neighbour ratio cutoff of 0.2.
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Table A3: Model parameters for different experiments.

Parameter Description Experiments
Circle
(Fig. 1)

LiDAR
(Fig. 2)

Two-circles
(Fig. 3)

Drosophila
(Fig. 4)

d-Torus
(Fig. 5)

k Maximal nearest neighbours wϵ 3 32 3 128 32
kbw Bandwidth of wϵ 8 8 8 8 8
dcdc Rank of Γ̂ 1 2 1 2, 4, 8, 16 d

γ Scaling of Γ̂ 0.3 1.0 0.7 0.3 1.0

Table A4: Model parameters for the single-cell experiment.

Parameter Description Single Cell Experiments
Cite Cite + OT Multi Multi + OT

k Maximal nearest neighbours wϵ 256 256 256 256
kbw Bandwidth of wϵ 8 8 8 8
dcdc Rank / CDC dimension 8 4 4 2
γ Scaling of Γ̂ 0.5 0.4 0.4 0.1
σmin Isotropic noise 0.4 0.3 0.2 0.4

Table A5: Model parameters for the different CIFAR-10 experiments.

Parameter Description Dataset size
250 500 750 1000 2000 3000 4000 5000

k Maximal nearest neighbours wϵ 256 256 256 256 256 256 256 256
kbw Bandwidth of wϵ 8 8 8 8 8 8 8 8
dcdc Rank / CDC dimension 8 16 16 8 8 8 16 8
γ Scaling of Γ̂ 2.0 0.9 0.8 1.0 1.0 0.7 0.5 0.7
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H SUPPLEMENTARY TABLES

Table A6: Comparison between FM and CDC-FM on LiDAR landscape after 4k epochs.

Dataset Generalisation (NLL) ↓ Memorisation ↓ Numerical efficiency (NFE) ↓ Distance to manifold ↓
Size FM CDC-FM FM CDC-FM FM CDC-FM FM CDC-FM
40 2.26 1.92 5.1 3.2 74 74 105 122
80 1.51 1.52 2.1 1.8 68 68 116 122

120 1.25 1.28 1.9 1.8 68 68 99 106
160 1.20 1.22 1.5 1.5 62 68 101 106
200 1.10 1.12 1.8 1.6 74 74 76 80

Table A7: Comparison between FM and CDC-FM on LiDAR landscape after 16k epochs.

Dataset Generalisation (NLL) ↓ Memorisation ↓ Numerical efficiency (NFE) ↓ Distance to manifold ↓
Size FM CDC-FM FM CDC-FM FM CDC-FM FM CDC-FM
40 3.50 2.23 32.4 7.5 92 80 65 101
80 2.16 1.66 15.4 6.5 98 86 56 72

120 1.65 1.45 11.0 6.3 98 104 50 62
160 1.30 1.22 4.8 3.3 98 92 56 65
200 1.34 1.24 5.6 3.5 98 98 49 56
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Figure A1: Supplementary figures for the two-circles experiment. a Samples from FM and
CDC-FM, trained on the two-circles dataset at an epoch early in the training (10k), when the quality
(distance to manifold) is still low, but generalisation is high. b Inference-time numerical efficiency
of FM and CDC-FM.
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Figure A2: Memorised samples in the Drosophila motion capture dataset. Three sample time
series showing the longitudinal motion for the six limbs for aM = 0.6, bM = 0.6 and cM = 0.58.
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Figure A3: Quality-generalisation and quality-memorisation for the Drosophila motion cap-
ture data. Same as Fig. 4b,c, but with CDC rescaling parameter γ = 0.1, 0.5.
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Figure A4: Synthetic experiment on toroidal manifold with additive Gaussian noise. Effect of
data dimension on a generalisation, b memorisation and c sample quality. Noise level: σ = 0.02.

(a) FM (b) CDC-FM

Figure A5: Visual comparison of generated images from FM and CDC-FM models. Models
were trained 40k epochs on 5k images from CIFAR-10. Both models have similar visual quality.
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