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Abstract
The Balanced-Pairwise-Affinities (BPA) feature
transform is designed to upgrade the features of a
set of input items to facilitate downstream match-
ing or grouping related tasks. The transformed
set encodes a rich representation of high order
relations between the input features. A particu-
lar min-cost-max-flow fractional matching prob-
lem, whose entropy regularized version can be
approximated by an optimal transport (OT) op-
timization, leads to a transform which is effi-
cient, differentiable, equivariant, parameterless
and probabilistically interpretable. While the
Sinkhorn OT solver has been adapted extensively
in many contexts, we use it differently by min-
imizing the cost between a set of features to it-
self and using the transport plan’s rows as the
new representation. Empirically, the transform is
highly effective and flexible in its use and con-
sistently improves networks it is inserted into,
in a variety of tasks and training schemes. We
demonstrate state-of-the-art results in few-shot
classification, unsupervised image clustering and
person re-identification. Code is available at
github.com/DanielShalam/BPA .

1. Introduction
In this work, we reassess the functionality of features in set-
input problems, in which a task is defined over a set of items.
Prominent examples of this setting are few-shot classifica-
tion (Ravi & Larochelle, 2017), clustering (Van Gansbeke
et al., 2020), feature matching (Korman & Avidan, 2015)
and person re-identification (Ye et al., 2021), to name but a
few. In such tasks, features computed at test time are mainly
compared relative to one another, and less so to the features
seen at training time. For such tasks, the practice of learning
a generic feature extractor during training and applying it at
test time is sub-optimal.
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In set-input problems, such as few-shot classification, an
instance of the task is in the form of a set of n items (e.g.
images) {xi}ni=1. A generic neural-network pipeline (Fig. 1
Left) typically uses a feature embedding (extractor) F , that
is applied independently to each input item, to obtain a set
of features V ={vi}ni=1={F (xi)}ni=1, prior to downstream
task-specific processing G (e.g. a clustering head or classi-
fier). The features V can be of high quality (concise, unique,
descriptive), but are limited in representation since they are
extracted based on knowledge acquired for similar examples
at train time, with no context of the test time instance they
are part of, which is critical in set-input tasks.

We rather consider the more general framework (Fig. 1
Right), in which the per-item independently extracted fea-
ture collection V is passed to an attention-mechanism type
computation, in which some transform jointly processes the
entire set of instance features, re-embedding each feature in
light of the joint statistics of the entire instance.

The main idea of BPA is very intuitive and is demonstrated
on a toy example in Fig. 2. The embedding of each feature
will encode the distribution of its affinities to the rest of the
set items. Specifically, items in the embedded space will be
close if and only if they share a similar such distribution, i.e.
’agree’ on the way they ’see’ the entire set. In fact, the trans-
form largely discards the item-specific feature information,
resulting in a purely relative normalized representation that
results in a highly efficient embedding with many attractive
properties.

The proposed transformation can be computed very effi-
ciently, with negligible runtime within the hosting network,
and can be easily used in different contexts, as can be seen
in the pseudo-code snippets we provide in Sections A and
C of the Appendix. The embedding itself is given by rows
of an optimal-transport (OT) plan matrix, which is the solu-
tion to a regularized min-cost-max-flow fractional matching
problem that is defined over the pairwise (self)-affinities
matrix of the features in the set.

Technically, it involves the computation of pairwise dis-
tances and several normalization iterations of a Sinkhorn
(Cuturi, 2013) algorithm, baring apparent similarities to
many related methods based on either Spectral Clustering
(Ng et al., 2001) that normalize the same affinity matrix),
attention-mechanisms (Vaswani et al., 2017) that learn fea-
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Figure 1. Generic designs of networks that act on sets of items. These cover relevant architectures, e.g. for few-shot-classification and
clustering. Left: A generic network for processing a set of input items typically follows the depicted structure: (i) Each item separately
goes through a common feature extractor F . (ii) The set of extracted features is the input to a downstream task processing module G. ;
Right: A more general structure in which the extracted features undergo a joint processing by a transform T . Our BPA transform (as well
as other attention mechanisms) is of this type and its high-level design (within the ‘green’ module) is detailed in Fig. 2.

tures based on a self-affinities matrix perhaps even normal-
ized (Sander et al., 2022) and other matching (Sarlin et al.,
2020) or classification (Hu et al., 2020) algorithms where
optimal-transport plans are computed between source items
and target items or class centers. However, the most im-
portant difference and our main novel observation is that
the self fractional matching itself (which can be viewed as
a balanced affinity matrix) can serve as a powerful embed-
ding, since the distances in this space (between assignment
vectors) have explicit interpretations that we explore, which
are highly beneficial to general grouping based algorithms
that are applied to such set-input tasks.

Contribution
We propose a parameter-less optimal-transport based feature
transform, termed BPA, which can be used as a drop-in addi-
tion that converts a generic feature extraction scheme to one
that is well suited to set-input tasks (e.g. from Figure 1 Left
to Right). It is analyzed and shown to have the following
attractive set of qualities. (i) efficiency: having real-time
inference; (ii) differentiability: allowing end-to-end training
of the entire ‘embedding-transform-inference’ pipeline of
Fig. 1 Right; (iii) equivariance: ensuring that the embed-
ding works coherently under any order of the input items;
(iv) probabilistic interpretation: each embedded feature
will encode its distribution of affinities to all other features,
by conforming to a doubly-stochastic constraint; (iv) valu-
able metrics for the item set: Distances between embedded
vectors will include both direct and indirect (third-party)
similarity information between input features.

Empirically, we show BPA’s flexibility and ease of applica-
tion to a wide variety of tasks, by incorporating it in leading
methods of each type. We test different configurations, such
as whether the hosting network is pre-trained or re-trained
with BPA inside, across different backbones, whether trans-
ductive or inductive. Few-shot-classification is our main ap-
plication with extensive experimentation on standard bench-
marks, testing on unsupervised-image-clustering shows the
potential of BPA in the unsupervised domain and the person-

re-identification experiments show how BPA deals with non-
curated large-scale tasks. In all three applications, over the
different setups and datasets, BPA consistently improves its
hosting methods, achieving new state-of-the-art results.

2. Relation to Prior Work
2.1. Related Techniques

Set-to-Set (or Set-to-Feature) Functions have been devel-
oped to act jointly on a set of items (typically features) and
output an updated set (or a single feature), which are used
for downstream inference tasks. Deep-Sets (Zaheer et al.,
2017) formalized fundamental requirements from architec-
tures that process sets. Point-Net (Qi et al., 2017) presented
an influential design for learning local and global features on
3D point-clouds, while Maron et al. (2020) study the design
of equi/in-variant layers. Unlike BPA, the joint processing
in these methods is limited, amounting to weight-sharing
between separate processes and joint aggregations.

Attention Mechanisms. The introduction of Relational
Networks (Santoro et al., 2017) and Transformers (Vaswani
et al., 2017) with their initial applications in vision mod-
els (Ramachandran et al., 2019) have lead to the huge impact
of Vision Transformers (ViTs) (Dosovitskiy et al., 2020) in
many vision tasks (Khan et al., 2021). While BPA can be
seen as a self-attention module, it is very different, first,
since it is parameterless, and hence can work at test-time on
a pre-trained network. In addition, is can provide an explicit
probabilistic global interpretation of the instance data.

Spectral Methods have been widely used as simple trans-
forms applied on data that needs to undergo grouping or
search based operations, jointly processing the set of fea-
tures, resulting in a compact and perhaps discriminative
representation. PCA (Pearson, 1901) provides a joint di-
mension reduction, which maximally preserves data vari-
ance, but does not necessarily improve feature affinities
for downstream tasks. Spectral Clustering (SC) (Shi &
Malik, 2000; Ng et al., 2001) is the leading non-learnable
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Figure 2. The BPA transform: illustrated on a toy 7 image 3-class MNIST example.

clustering method in use in the field. If we ignore its final
clustering stage, SC consists of forming a pairwise affinity
matrix which is normalized (Zass & Shashua, 2006) before
extracting its leading eigenvectors, which form the final
embedding. BPA is also based on normalizing an affinity
matrix, but uses this matrix’s rows as embedded features
and avoids any further spectral decompositions, which are
costly and difficult to differentiate through.

Optimal Transport (OT) problems are directly related to
measuring distances between distributions or sets of features.
Cuturi (2013) popularized the Sinkhorn algorithm which is
a simple, differentiable and fast approximation of entropy-
regularized OT, which has since been used extensively, for
clustering (Lee et al., 2019; Asano et al., 2020), few-show-
classification (Huang et al., 2019; Ziko et al., 2020; Hu
et al., 2020; Zhang et al., 2021; Chen & Wang, 2021; Zhu
& Koniusz, 2022), matching (Wang et al., 2019; Fey et al.,
2020; Sarlin et al., 2020), representation learning (Caron
et al., 2020; Asano et al., 2020), retrieval (Xie et al., 2020),
person re-identification (Wang et al., 2022), style-transfer
(Kolkin et al., 2019) and attention (Sander et al., 2022).

Our approach also builds on some attractive properties of the
Sinkhorn solver. While our usage of Sinkhorn is extremely
simple (see Algorithm 1), it is fundamentally different from
all other OT usages we are aware of, since: (i) We com-
pute the transport-plan between a set of features and itself -
not between feature-sets and label/class-prototypes (Huang
et al., 2019; Ziko et al., 2020; Hu et al., 2020; Zhang et al.,
2021; Chen & Wang, 2021; Zhu & Koniusz, 2022; Lee et al.,
2019; Asano et al., 2020; Xie et al., 2020; Wang et al., 2022;
Kolkin et al., 2019), or between two different feature-sets
(Wang et al., 2019; Fey et al., 2020; Sarlin et al., 2020;
Sander et al., 2022); (ii) While others use the transport-plan
to obtain distances or associations between features and
features/classes, we use its own rows as new feature vectors
for downstream tasks.

2.2. Instance-Specific Applications

Few-Shot Classification (FSC) is a branch of few-shot
learning in which a classifier learns to recognize previously
unseen classes given a limited number of labeled examples.

In the meta-learning approach, the training data is split into
tasks (or episodes) mimicking the test time tasks to which
the learner is required to generalize. MAML (Finn et al.,
2017) “learns to fine-tune” by learning a network initializa-
tion from which it can quickly adapt to novel classes. In
ProtoNet (Snell et al., 2017), a learner is meta-trained to
predict query feature classes, based on distances from sup-
port class-prototypes in the embedding space. The trainable
version of BPA can be viewed as a meta-learning algorithm.

Subsequent works (Chen et al., 2018; Dhillon et al., 2020)
advocate using larger and more expressive backbones, em-
ploying transductive inference, which fully exploits the data
at inference, including unlabeled images. BPA is transduc-
tive, but does not make assumptions on (nor needs to know)
the number of classes (ways) or items per class (shots), as it
executes a general probabilistic grouping action.

Recently, attention mechanisms were shown to be effective
for FSC (Kang et al., 2021; Zhang et al., 2020; Ye et al.,
2020) and a number of works (Ziko et al., 2020; Huang
et al., 2019; Hu et al., 2020; Zhang et al., 2021; Chen &
Wang, 2021) have adopted Sinkhorn (Cuturi, 2013) as a
parameterless unsupervised classifier that computes match-
ings between query embeddings and class centers. Sill-Net
(Zhang et al., 2021) that augments training samples with
illumination features and PTMap-SF (Chen & Wang, 2021)
that proposes DCT-based feature embedding, are both based
on PTMap (Hu et al., 2020). The state-of-the-art PMF (Hu
et al., 2022), proposed a 3 stage pipeline of pre-training on
external data, meta-training with labelled tasks, and fine-
tuning on unseen tasks. BPA can be incorporated into these
methods, immediately after their feature extraction stage.

Unsupervised Image Clustering (UIC) is the task of
grouping related images, without any label information,
into representative clusters. Naturally, the ability to measure
the similarities among samples is a crucial aspect of UIC.

Recent methods have achieved tremendous progress in this
task, towards closing the gap with supervised counterparts.
The leading approaches directly learn to map images to la-
bels, by constraining the training of an unsupervised classi-
fication model with different types of indirect loss functions.
Prominent works in this area include DAC (Chang et al.,
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2017), which recasts the clustering problem into a binary
pairwise-classification framework and SCAN (Van Gans-
beke et al., 2020) which builds on a pre-trained encoder
that provides nearest-neighbor based constraints for training
a classifier. The recent state-of-the-art SPICE (Niu et al.,
2022), is a pseudo-labeling based method, which divides
the clustering network into a feature model for measuring
the instance-level similarity and a clustering head for identi-
fying the cluster-level discrepancy.

Person Re-Identification (Re-ID) is the task identifying a
certain person (identity) between multiple detected pedes-
trian images, from different non-overlapping cameras. It
is challenging due to the scale of the problem and large
variation in pose, background and illumination.

See Ye et al. (2021) for an excellent comprehensive sur-
vey on the topic. Among the most popular methods are
OSNet (Zhou et al., 2019) that developed an efficient small-
scale network with high performance and DropBlock (Top-
DB-Net) (Quispe & Pedrini, 2020) which achieved state-of-
the-art results by dropping a region block in the feature map
for attentive learning. The Re-ID task is typically larger
scale - querying thousands of identities against a target of
tens of thousands. Also, the data is much more real-world
compared to the carefully curated FSC sets.

3. The BPA Transform
3.1. Derivation

Assume we are given a task instance which consists of an
inference problem over a set of n items {xi}ni=1, where
each of the items belongs to a space of input items Ω ⊆ RD.
The inference task can be modeled as fθ({xi}ni=1), using a
learned function fθ, which acts on the set of input items and
is parameterized by a set of parameters θ. Typically, such
functions combine an initial feature extraction stage that is
applied independently to each input item, with a subsequent
stage of (separate or joint) processing of the feature vectors
(see Fig. 1 Left or Right, respectively).

That is, the function fθ takes the form fθ({xi}ni=1) =
Gψ({Fϕ(xi)}ni=1), where Fϕ is the feature extractor (or
embedding network) and Gψ is the task inference function,
parameterized by ϕ and ψ respectively, where θ = ϕ ∪ ψ.

The feature embedding F : RD → Rd, usually in the form
of a neural-network (with d ≪ D), could be either pre-
trained, or trained in the context of the task function f ,
along with the inference function G.

For an input {xi}ni=1, let us define the set of embedded
features {vi}ni=1 = {F (xi)}ni=1. In the following, we con-
sider these sets of input vectors and features as real-valued
row-stacked matrices X ∈ Rn×D and V ∈ Rn×d.

We suggest a novel re-embedding of the feature set V , using
a transform, that we denote by T , in order to obtain a new
set of features W = T (V), where W ∈ Rn×n. The new
feature set W has an explicit probabilistic interpretation,
which is specifically suited for tasks related to classification,
matching or grouping of items in the input set X . In par-
ticular, W will be a symmetric, doubly-stochastic matrix
(non-negative, with rows and columns that sum to 1), where
the entry wij (for i ̸= j) encodes the belief that items xi
and xj belong to the same class or cluster.

The proposed transform T : Rn×d → Rn×n (see Fig. 2)
acts on the original feature set V as follows. It begins by
computing the squared Euclidean pairwise distances matrix
D, namely, dij = ||vi − vj ||2, which can be computed
efficiently as dij = 2(1 − cos(vi, vj)) = 2(1 − vi · vTj ),
when the rows of V are unit normalized. Or in a compact
form, D = 2(1 − S), where 1 is the all ones n× n matrix
and S = V · VT is the cosine affinity matrix of V .

W will be computed as the optimal transport (OT) plan
matrix between the n-dimensional all-ones vector 1n and
itself, under the self cost matrix D∞, which is the distance
matrix D with a very (infinitely) large scalar replacing each
of the entries on its diagonal (which were all zero), that
enforces the affinities of each feature to distribute among
the others. Explicitly, let D∞ = D + αI , where α is a very
(infinitely) large constant and I is the n× n identity matrix.

W is defined to be the doubly-stochastic matrix that is the
minimizer of the functional

W = argmin
W∈Bn

⟨D∞,W⟩ (1)

where Bn is the set (known as the Birkhoff polytope) of
n × n doubly-stochastic matrices and ⟨·, ·⟩ stands for the
Frobenius (standard) dot-product.

This objective can be minimized using simplex or interior
point methods with complexity Θ(n3 log n). In practice,
we use the highly efficient Sinkhorn-Knopp method (Cu-
turi, 2013), which is an iterative scheme that optimizes an
entropy-regularized version of the problem, where each iter-
ation takes Θ(n2). Namely:

W = argmin
W∈Bn

⟨D∞,W⟩ − 1

λ
h(W) (2)

where h(W) = −
∑
i,j wij log(wij) is the Shannon en-

tropy of W and λ is the entropy regularization parameter.

The transport-plan matrix W that is the minimizer of Equa-
tion (2) will become the result of our transform, after ’restor-
ing’ perfect affinities on the diagonal (replacing the diagonal
entries from 0s to 1s) by W = W + I , where I is the n× n
identity matrix. Our final set of features is T (V) = W and
each of its rows is the re-embedding of each of the corre-
sponding features (rows) in V . The BPA transform is given
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Figure 3. The min-cost max-flow perspective: Costs are shown.

in Algorithm 1 in the appendix, in PyTorch-style pseudo-
code. Note that W is symmetric as a result of the symmetry
of D and its own double-stochasticity. We next explain its
probabilistic interpretation.

3.2. Probabilistic interpretation

The optimization problem in Equation (1) can be written
more explicitly as follows:

min
W

⟨D∞,W⟩ s.t. W · 1n = WT · 1n = 1n
(3)

which can be seen to be the same as:

min
W

⟨D,W⟩ s.t. W · 1n = WT · 1n = 1n

wii = 0 for i = 1, . . . n
(4)

since the use of the infinite weights on the diagonal of D∞
is equivalent to using the original D with a constraint of
zeros along the diagonal of W .

The optimization problem in Equation (4) is in fact a frac-
tional matching instance between the set of n original fea-
tures and itself. It can be posed as a bipartite-graph min-cost
max-flow instance (The problem of finding a min cost flow
out of all max-flow solutions), as depicted in Fig. 3. The
graph has n nodes on each side, representing the original
features {vi}ni=1 (the rows of V). Across the two sides, the
cost of the edge (vi, vj) is the distance dij and the edges
of the type (vi, vi) have a cost of infinity (or can simply be
removed). Each ‘left’ node is connected to a ’source’ node
S by an edge of cost 0 and similarly each ’right’ node is
connected to a ‘target’ (sink) node T. All edges in the graph
have a capacity of 1 and the goal is to find an optimal frac-
tional self matching, by finding a min-cost max-flow from
source to sink. Note that the max-flow can easily be seen to
be n, but a min-cost flow is sought among max-flows.

In this set-to-itself matching view, each vector vi is fraction-
ally matched to the set of all other vectors V−{vi} based on
the pairwise distances, but importantly taking into account
the fractional matches of the rest of the vectors in order to
satisfy the double-stochasticity constraint. The construction
constrains the max flow to have a total outgoing flow of
1 from each ‘left’ node and a total incoming flow of 1 to
each ‘right’ node. Therefore, the ith transformed feature

Figure 4. The (symmetric) embedding matrixW and the abso-
lute difference between its ith and jth rows.

wi (ith row of W) is a distribution (non-negative entries,
summing to 1), where wii = 0 and wij is the relative belief
that features i and j belong to the same ‘class’.

3.3. Properties

We can now point out some important properties of the
proposed embedding, given by the rows of the matrix W .
Some of these properties can be observed in the toy 3-class
MNIST digit example, illustrated in Fig. 2.

Interpretability of distances in the embedded space: An
important property of our embedding is that each embed-
ded feature encodes its distribution of affinities to all other
features. In particular, the comparison of embedded vectors
wi and wj (of items i and j in a set) includes both direct
and indirect information about the similarity between the
features. Refer to Figure 4 for a detailed explanation of
this property. If we look at the different coordinates k of
the absolute difference vector a = |wi − wj |, BPA cap-
tures (i) direct affinity: For k which is either i or j, it holds
that ak = 1− wij = 1− wji

1. This amount measures how
high (close to 1) is the mutual belief of features i and j about
one another. (ii) indirect (3rd-party) affinity: For k /∈ {i, j},
we have ak = |wik − wjk|, which is a comparison of the
beliefs of features i and j regarding the (third-party) feature
k. The double-stochasticity of the transformed feature-set
ensures that the compared vectors are similarly scaled (as
distributions, plus 1 on the diagonal) and the symmetry
further enforces the equal relative affinity between pairs.

As an example, observe the output features 4 and 5 in Fig. 2,
that re-embed the ’green’ features of the digit ’7’ images.
As desired, these embedding are close in the target 7D space.
The closeness is driven by both their closeness in the original
space (coordinates 4 and 5) as well as the agreement on
specific large differences from other images. This property
is responsible for better separation between classes in the
target domain, which leads to improved performance on
tasks like classification, clustering or retrieval.

1Note: (i) wii = wjj = 1 ; (ii) wij = wji from symmetry of
W ; (iii) all elements ofW are≤ 1 hence the | · | can be dropped ;
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Parameterless-ness, Differentiability and Equivariance:
These three properties are inherited from the Sinkhorn OT
solver. The transform is parameterless, giving it the flexi-
bility to be used in other pipelines, directly over different
kinds of embeddings, without the harsh requirement of re-
training the entire pipeline. Retraining is certainly possible,
and beneficial in many situations, but not mandatory, as our
experiments work quite well without it. Also, due to the
differentiability of the Sinkhorn algorithm (Cuturi, 2013),
back-propagating through BPA can be done naturally, hence
it is possible to (re-)train the hosting network to adapt to
BPA, if desired. The embedding works coherently with
respect to any change of order of the input items (features).
This can be shown by construction, since min-cost max-flow
solvers as well as the Sinkhorn OT solver are equivariant
with respect to permutations of their inputs.

Usage flexibility: Recall that BPA is applied on sets of
features, typically computed by some embedding network
and its output features are passed to downstream network
components. Since BPA is parameterless, it can be simply
inserted to any trained hosting network and since it is differ-
entiable, it is possible to train the hosting network with BPA
inside it. We therefore denote by BPAp the basic drop-in
usage of BPA, inserted into a pretrained network. This is the
easiest and most flexible way to use BPA, nevertheless show-
ing consistent benefits in the different tested applications.
We denote by BPAt the usage where the hosting network
is trained with BPA within. It allows to adapt the hosting
network’s parameters to the presence of the transform, with
the potential of further improving performance.

Transductive or Inductive: Note that BPA is a transductive
method in the sense that it needs to jointly process the data,
but in doing so, unlike many transductive methods, it does
not make any limiting assumptions about the input structure,
such as knowing the number of classes, or items per class.
In any case, we consider the BPAp and BPAt variants to be
transductive, regardless of the nature of the hosting network.
Nevertheless, being transductive is possibly restrictive for
certain tasks, for which test-time inputs might be received
one-by-one. Therefore, we suggest a third usage type, BPAi,
where the hosting network is trained with BPA inside (just
like in BPAt), but BPA is not applied at inference (simply
not inserted), hence the hosting network remains inductive
if it was so in the first place.

Dimensionality: BPA has the unique property that the
dimension of its embedded feature depends on (equals)
the number of features in the set. Given a batch of n d-
dimensional features V ∈ Rn×d, it outputs a batch of n
n-dimensional features W = BPA(V ) ∈ Rn×n. On one
hand, this is a desired property, since it is natural that the
feature dimensionality (and capacity) depends on the com-
plexity of the task, which typically grows with the number

Table 1. Feature-dimension control strategies: Accuracy on
5-way 1-shot MiniImagenet. * marks the dimension of original
640d pre-trained resnet-12 features. # marks the size of a batch that
includes a single 5-way 1-shot 15-query task (80 = 5 · (1 + 15)),
which is the output dimension of vanilla BPA. Best and second
best results, per dimension, are in Bold and italics.

input to ProtoNet / dim. 5 10 20 40 80# 640∗

V (orignal) - - - - - 64.6
PCA(V ) 66.2 65.7 64.4 64.1 64.3 -
SC(V ) 66.8 58.2 46.2 38.3 25.5 -
BPAp(V ) - - - - 71.2 -
BPAt(V ) - - - - 72.1 -
BPAp Attn(V ) - - - - - 69.1
BPAt Attn(V ) - - - - - 70.0
BPAp Attn(SC(V )) 69.1 69.1 68.1 68.5 69.2 -
BPAp Attn(PCA(V )) 67.1 67.8 67.5 67.6 67.8 -

of features (Think of the inter-relations which are more
complex to model). On the other hand, it might impose
a problem in situations at which the downstream calcula-
tion that follows expects a specific feature dimension, for
example with a pre-trained non-convolutional layer.

In order to make BPA usable in such cases, we propose
an attention-like variant, BPA Attn, in which the normal-
ized BPA matrix is used to balance the input features with-
out changing their dimension, by simple multiplication, i.e.
BPA Attn(V ) = BPA(V ) · V . This variant allows to main-
tain the original feature dimension d, or even a smaller
dimension if desired, by applying dimension reduction on
the original set of features prior to applying BPA Attn.

In Table 1, we examine few-shot classification accuracy on
MiniImagenet (Vinyals et al., 2016) with downstream classi-
fication by ProtoNet (Snell et al., 2017). Each classification
instance consists of 80 images, encoded to 640-dimensional
features by a pre-trained resnet-12 network. ProtoNet works
on either: (i) the original feature set V (ii) its dimension
reduced versions, calculated by either PCA or Spectral-
Clustering (SC) (iii) vanilla BPA (iv) BPA Attn on original
or reduced features. As can be observed, the best accuracies
are achieved by vanilla BPA, but the attention provided by
BPA is able to stabilize performance across the entire range
of dimensions.

Hyper-parameters and ablations: BPA has two hyper-
parameters that were chosen through cross-validation and
kept fixed for each application over all datasets. The number
of Sinkhorn iterations for computing the optimal transport
plan was fixed to 5 and entropy regularization parameter λ
(Eq. (3.1)) was set to 0.1 for UIC and FSC and to 0.25 for
ReID. In Appendix B we ablate these hyper-parameters as
well as the scalability of BPA in terms of set-input size (Fig.
5) on few-shot-classification, and in Appendix D, we study
its robustness to noise and feature dimensionality (Fig. 10)
by a controlled synthetic clustering experiment.
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Table 2. Few-Shot Classification (FSC) accuracy on MiniIma-
genet. Results are ordered by backbone (resnet-12, wrn-28-10, ViT
small/base), each listing baseline methods and BPA variants. BPA
improvements (colored percentages) are in comparison with each
respective baseline hosting method (obtained by division). Bold
and italics highlight best and second best results per backbone.
T/I denotes transductive/inductive methods. (&) from Ziko et al.
(2020); ($) from original paper; (#) our implementation;

method T/I network 5-way 1-shot 5-way 5-shot
ProtoNet(#) I ResNet 62.39 80.33
DeepEMD($) I ResNet 65.91 82.41
FEAT($) I ResNet 66.78 82.05
RENet($) I ResNet 67.60 82.58
ProtoNet-BPAp T ResNet 67.34 (+7.9%) 81.84 (+1.6%)
ProtoNet-BPAi I ResNet 64.36 (+3.1%) 81.82 (+1.8%)
ProtoNet-BPAt T ResNet 67.90 (+8.8%) 83.09 (+3.2%)
ProtoNet(&) I WRN 62.60 79.97
PTMap($) T WRN 82.92 88.80
SillNet($) T WRN 82.99 89.14
PTMap-SF($) T WRN 84.81 90.62
PTMap-BPAp T WRN 83.19 (+0.3%) 89.56 (+0.9%)
PTMap-BPAt T WRN 84.18 (+1.5%) 90.51 (+1.9%)
SillNet-BPAp T WRN 83.35 (+0.4%) 89.65 (+0.6%)
PTMap-SF-BPAp T WRN 85.59 (+0.9%) 91.34 (+0.8%)
PMF($) I ViT-s 93.10 98.00
PMF-BPAp T ViT-s 94.49 (+1.4%) 97.68 (-0.3%)
PMF-BPAi I ViT-s 92.70 (-0.4%) 98.00 (+0.0%)
PMF-BPAp T ViT-s 95.30 (+2.3%) 97.90 (-0.1%)
PMF($) I ViT-b 95.30 98.40
PMF-BPAp T ViT-b 95.90 (+0.6%) 98.30 (-0.1%)
PMF-BPAi I ViT-b 95.20 (-0.1%) 98.70 (+0.3%)
PMF-BPAt T ViT-b 96.3 (+1.0%) 98.5 (+0.1%)

4. Results
In this section, we experiment with BPA on three applica-
tions: Few-Shot Classification (Sec. 4.1), Unsupervised
Image Clustering (Sec. 4.2) and Person Re-Identification
(Sec. 4.3). In each, we achieve state-of-the-art results, by
merely using current state-of-the-art methods as hosting
networks of the BPA transform. Perhaps more importantly,
we demonstrate the flexibility and simplicity of applying
BPA in these setups, with improvements in the entire range
of testing, including different hosting methods, different
feature embeddings of different complexity backbones and
whether retraining the hosting network or just dropping-in
BPA and performing standard inference. To show the sim-
plicity of inserting BPA into hosting algorithms, we provide
pseudocodes for each of the experiments in Appendix C.

4.1. Few-Shot Classification (FSC)

Our main experiment is a comprehensive evaluation on the
standard few-shot classification benchmarks MiniImagenet
(Vinyals et al., 2016) and CIFAR-FS (Bertinetto et al., 2019),
with detailed results in Tables 2 and 3 respectively. We
evaluate the performance of the proposed BPA, applying
it to a variety of FSC methods including the recent state-
of-the-art (PTMap (Hu et al., 2020), SillNet (Zhang et al.,
2021), PTMap-SF (Chen & Wang, 2021) and PMF (Hu

Table 3. Few-Shot Classification (FSC) accuracy on CIFAR-FS.
method T/I network 5-way 1-shot 5-way 5-shot
PTMap($) T WRN 87.69 90.68
SillNet($) T WRN 87.73 91.09
PTMap-SF($) T WRN 89.39 92.08
PTMap-BPAp T WRN 87.37 (-0.4%) 91.12 (+0.5%)
SillNet-BPAp T WRN 87.30 (-0.5%) 91.40 (+0.3%)
PTMap-SF-BPAp T WRN 89.94 (+0.6%) 92.83 (+0.8%)
PMF($) I ViT-s 81.1 92.5
PMF-BPAp T ViT-s 84.7 (+4.4%) 92.8 (+0.3%)
PMF-BPAi I ViT-s 84.80 (+4.5%) 93.40 (+0.9%)
PMF-BPAt T ViT-s 88.90 (+9.6%) 93.80 (+1.4%)
PMF($) I ViT-b 84.30 92.20
PMF-BPAp T ViT-b 88.2 (+4.6%) 94 (+1.9%)
PMF-BPAi I ViT-b 87.10 (+3.3%) 94.70 (+2.7%)
PMF-BPAt T ViT-b 91.00 (+7.9%) 95.00 (+3.0%)

et al., 2022)) as well as to conventional methods like the
popular ProtoNet (Snell et al., 2017). While in the Mini-
Imagenet evaluation we include a wide range of methods
and backbones, in the CIFAR-FS evaluation we focus on the
state-of-the-art methods and configurations.

For each evaluated ’hosting’ method, we incorporate BPA
into the pipeline as follows. Given an FSC instance, we
transform the entire set of method-specific feature repre-
sentations using BPA, in order to better capture relative
information. The rest of the pipeline is resumed, allowing
for both inference and training. Note that BPA flexibly fits
into the FSC task, with no required knowledge or assump-
tions regarding the setting (# of ways, shots or queries).

The basic ‘drop-in’ BPAp consistently, and in many cases
also significantly, improves the hosting method performance,
including state-of-the-art, across all benchmarks and back-
bones with accuracy improvement of around 3.5% and 1.5%
on the 1- and 5- shot tasks. This improvement without re-
training the embedding backbone shows BPA’s effectiveness
in capturing meaningful relationships between features in a
very general sense. When re-training the hosting network
with BPA inside, in an end-to-end fashion, BPAt provides
further improvements, in almost every method, with aver-
ages of 5% and 3% on the 1- and 5- shot tasks.

While most of the leading methods are transductive, our
inductive version, BPAi, can be seen to steadily improve on
inductive methods like ProtoNet and PMF, without intro-
ducing transductive inference. This further emphasizes the
generality and applicability of our method.

4.2. Unsupervised Image Clustering (UIC)

Next, we evaluate BPA in the unsupervised domain, using
the unsupervised image clustering task, with the additional
challenge of capturing the relation between features that
were learned without labels. To do so, we adopt SPICE (Niu
et al., 2022), a recent method that has shown phenomenal
success in the field. In SPICE, training is divided into
3 phases: (i) unsupervised representation learning (using
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Table 4. Unsupervised Image Clustering (UIC) results on STL-
10 (Coates et al., 2011), CIFAR-100-20 (Krizhevsky & Hinton,
2009) and CIFAR-100-20 (Krizhevsky & Hinton, 2009).
benchmark STL-10 CIFAR-10 CIFAR-100-20
network ACC NMI ARI ACC NMI ARI ACC NMI ARI
k-means 0.192 0.125 0.061 0.229 0.087 0.049 0.130 0.084 0.028
DAC 0.470 0.366 0.257 0.522 0.396 0.306 0.238 0.185 0.088
DSEC 0.482 0.403 0.286 0.478 0.438 0.340 0.255 0.212 0.110
IDFD 0.756 0.643 0.575 0.815 0.711 0.663 0.425 0.426 0.264
SPICEs 0.908 0.817 0.812 0.838 0.734 0.705 0.468 0.448 0.294
SPICE 0.938 0.872 0.870 0.926 0.865 0.852 0.538 0.567 0.387
SPICEs-BPAt 0.912 0.823 0.821 0.880 0.784 0.769 0.494 0.477 0.334
SPICE-BPAt 0.943 0.880 0.879 0.933 0.870 0.866 0.550 0.560 0.402

MoCo (He et al., 2019) over a resnet-34 backbone); (ii)
clustering-head training, with result termed SPICEs; and
(iii) a joint training phase (using FixMatch (Sohn et al.,
2020) over a wrn backbone), result termed SPICE.

We insert BPA into phase (ii), clustering-head training, as
follows. Given a batch of representations, SPICE assigns
class pseudo-labels to the nearest neighbors of the most
probable samples (k samples with the highest probability
per class). In the original work, SPICE uses the dot-product
of the MoCo features to find the neighbors. Instead, we
transform each batch of MoCo features using BPA and
use the same dot-product on the resulting informative BPA
features to find a more reliable set of neighbors. We experi-
ment on 3 standard datasets, STL-10 (Coates et al., 2011),
CIFAR-10 and CIFAR-100-20 (Krizhevsky & Hinton, 2009),
while keeping all original SPICE implementation hyper-
parameters unchanged. We report both SPICEs and SPICE
results, as in the original work (Niu et al., 2022).

Table 4 summarizes the experiment, in terms of clustering
Accuracy (ACC), Normalized Mutual Information (NMI),
and Adjusted Rand Index (ARI). It is done for the two stages
of SPICE, with and without BPA, along with several other
baselines. The results show a significant improvement of
SPICEs-BPAt over SPICEs (just by applying BPA to the
learned features), with an average increase of 5% in NMI
and 8% in ARI. The advantage brought by the insertion
of BPA carries on to the joint-processing stage (BPAt over
SPICEs), though with a smaller average increase of 0.1%
in NMI and 2.2% in ARI, leading to new state-of-the-art
results on these datasets. These results demonstrate the
relevance of BPA to unsupervised feature learning setups
and its possible potential to other applications in this area.

4.3. Person Re-Identification (Re-ID)

We explore the application of BPA to large-scale instances
and datasets by considering the person re-identification task
(Ye et al., 2021). Given a set of query images and a large
set of gallery images, the task is to rank the similarities of
each query against the entire gallery. This is typically done
by learning specialized image features that are compared

Table 5. Image Re-Identification (Re-ID) results on CUHK03
(Li et al., 2014) and Market-1501 (Zheng et al., 2015).

benchmark CUHK03-det CUHK03-lab Market-1501
network mAP Rank-1 mAP Rank-1 mAP Rank-1
MHN 65.4 71.7 72.4 77.2 85.0 95.1
SONA 76.3 79.1 79.2 81.8 88.6 95.6
OSNet 67.8 72.3 – – 84.9 94.8
Pyramid 74.8 78.9 76.9 81.8 88.2 95.7
TDB 72.9 75.7 75.6 77.7 85.7 94.3
TDBRK 87.1 87.1 89.1 89.0 94.0 95.3
TDB-BPAp 77.9 80.4 80.4 82.6 88.1 94.4
TDBRK -BPAp 87.9 88.0 89.5 89.8 94.0 95.0

by Euclidean distances. BPA is used to replace such pre-
computed image features, by a well balanced representation
with strong relative information, that is jointly computed
over the union of query and gallery features. BPA is applied
on pre-trained TopDBNet (Quispe & Pedrini, 2020) resnet-
50 features and tested on the large-scale ReID benchmarks
CUHK03 (Li et al., 2014) (both ’detected’ and ‘labeled’) as
well as the Market-1501 (Zheng et al., 2015) set, reporting
mAP (mean Average Precision) and Rank-1 metrics.

In Table 5, TDB and TDBRK are shorthands for using
TopDBNet features, before and after re-ranking (Zhong
et al., 2017). There is a consistent benefit in applying BPA
to these state-of-the-art features, prior to the distance com-
putations, with a significant average increase of over 5% in
mAP and 4% in Rank-1 prior to re-ranking and a modest
increase of 0.5% in both measures after ranking. These re-
sults demonstrate that BPA can handle large-scale instances
(with thousands of features) and successfully improve per-
formance measures in such retrieval oriented tasks.

5. Conclusions, Limitations and Future Work
We presented a novel feature-embedding approach for set-
input grouping-related tasks such as clustering, classifica-
tion and retrieval. The proposed BPA feature-set transform
is non-parametric, differentiable, efficient, easy to use and
is shown to capture complex relations between the set-input
items. Applying BPA to the tasks of few-shot-classification,
unsupervised-image-clustering and person-re-identification,
whether by insertion into a pre-trained network or by re-
training the hosting network, has shown across-the-board
improvements, setting new state-of-the-art results.

In future work, we plan to address current limitations and
explore potential extensions. BPA is currently limited to pro-
ducing features that represent relative information, within
the set-items. It could possibly be applied to tokens (e.g.
patches) of a single item (e.g. image), similar to trans-
formers, perhaps dropping the equivariance property and
utilizing spatial encoding, to improve non-relative represen-
tations. In addition, it could be useful for guiding contrastive
self-supervised learning, where embeddings are trained by
relative information of augmented views.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendix
The Appendix includes the following sections:

A. PyTorch-style BPA Implementation

B. Ablation Studies

C. BPA Insertion into Hosting Algorithms

D. Clustering on the Sphere - a Case Study

A. PyTorch-style BPA Implementation
We provide in Algorithm 1 a PyTorch Style implementation
that fully aligns with the description in the paper as well as
with our actual implementation that was used to execute all
of the experiments. In Appendix C we further demonstrate
the ”insertions” of BPA into hosting methods, for each of
our three main applications.

Notice mainly that: (i) The transform can easily be dropped-
in, using the simple one-line call: X = BPA(X). (ii) It is fully
differentiable (as Sinkhorn and the other basic operations
are). (iii) The transform does not need to know (or even
assume) anything about the number of features, their dimen-
sion, or distribution statistics among classes (e.g. whether
balanced or not).

It follows the simple steps of: (i) Computing Euclidean self
pairwise distances (using cosine similarities between unit
normalized input features); (ii) Avoiding self-matching by
placing infinity values on the distances matrix diagonal; (iii)
Applying a standard Sinkhorn procedure, given the distance
matrix and the only 2 (hyper-) parameters with their fixed
values: entropy regularization parameter λ and the number
of row/col iterative normalization steps. Note that Sinkhorn
defaultly maps between source and target vectors of ones;
(iv) Restoring the perfect self-matching probabilities of one,
along the diagonal.

Algorithm 1 BPA transform on a set of n features.
input: n× d matrix V output: n× n matrix W

def BPA(V):
# compute self pairwise-distances

D = 1 - pwise cosine sim(V/V.norm())

# infinity self-distances on diagonal

D inf = D.fill diagonal(10e9)

# compute optimal transport plan

W = Sinkhorn(D inf,lambda=.1,iters=5)

# stretch affinities to [0,1]

W = W/W.max()

# self-affinity on diagonal to 1

return W.fill diagonal(1)
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Figure 5. BPA scaling in terms of accuracy and efficiency.

B. Ablation Studies
B.1. Scalability (accuracy, runtime vs. input size)

Being a transductive module, the accuracy and efficiency
of the BPA transform depend on the number of inputs that
are processed as a batch. Recall that BPA is a drop-in
addition that usually follows feature extraction and precedes
further computation - e.g. k-means for clustering, or (often
transductive) layers in FSC and ReID.

The ReID experiment is a good stress-test for BPA, since
we achieve excellent results for batch sizes of up to ∼15K
image descriptors. In terms of runtime, although BPA’s
complexity is quadratic in sample size, its own (self) runtime
is empirically negligible compared to that of the processing
that follows, in all applications tested.

Typical FSC tasks sizes ((shots+queries)·ways) are small:
100 = (5 + 15) · 5 at the largest. To concretely address this
matter, we test a resnet-12 PTMap-BPAp on large-scale FSC,
following (Dhillon et al., 2020), on the Tiered-Imagenet
dataset and report accuracy for 1/5/10-shot (15-query) tasks
for an increasing range of ways. The results, shown in
Fig. 5, show that: (i) Total runtime, where BPA is only a
small contributor (compare black vs. yellow dashed line),
increases gracefully (notice log10 x-axis) even for extremely
large FSC tasks of 4000 = (10 + 15) · 160 images; (ii) Our
accuracy scales as expected - following the observation in
(Dhillon et al., 2020) that it changes logarithmically with
ways (straight line in log-scale).

B.2. Sinkhorn Iterations

In Table 6 we ablate the number of normalization iterations
in the Sinkhorn-Knopp (SK) (Cuturi, 2013) algorithm at
test-time. We measured accuracy on the validation set of
MiniImagenet (Vinyals et al., 2016), using ProtoNet-BPAp
(which is the non-fine-tuned drop-in version of BPA within
ProtoNet (Snell et al., 2017)). As was reported in prior
works following (Cuturi, 2013), we empirically observe that
a very small number of iterations provide rapid convergence,
with diminishing return for higher numbers of iterations.
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Figure 6. Ablation of entropy regularization parameter λ using
the Few-Shot-Classification (FSC) task: Considering different
‘ways’ (top), and different ‘shots’ (bottom). See text for details.

We observed similar behavior for other hosting methods,
and therefore chose to use a fixed number of 5 iterations
throughout the experiments.

Table 6. Sinkhorn iterations ablation study: See text for details.

method iters 5-way 1-shot 5-way 5-shot
ProtoNet-BPAp 1 70.71 83.79
ProtoNet-BPAp 2 71.10 84.01
ProtoNet-BPAp 4 71.18 84.08
ProtoNet-BPAp 8 71.20 84.10
ProtoNet-BPAp 16 71.20 84.10

B.3. Sinkhorn Entropy Regularization λ

We measured the impact of using different values of the
optimal-transport entropy regularization parameter λ (the
main parameter of the Sinkhorn algorithm) on a variety of
configurations (ways and shots) in Few-Shot-Classification
(FSC) on MiniImagenet (Vinyals et al., 2016) in Fig. 6 as
well as on the Person-Re-Identification (RE-ID) experiment
on Market-1501 (Zheng et al., 2015) in Fig. 7. In both cases,
the ablation was executed on the validation set.

Figure 7. Ablation of entropy regularization parameter λ us-
ing the Person-Re-Identification (Re-ID) task. Accuracy vs. λ,
using the validation set of Market-1501 (Zheng et al., 2015) and
considering both mAP and Rank-1 measures. See text for details.

For FSC, in Fig. 6, the top plot shows that the effect of the
choice of λ is similar across tasks with a varying number of
ways. The bottom plot shows the behavior as a function of
λ across multiple shot-values, where the optimal value of λ
can be seen to have a certain dependence on the number of
shots. Recall that we chose to use a fixed value of λ = 0.1,
which gives an overall good accuracy trade-off. Note that a
further improvement could be achieved by picking the best
values for the particular cases. Notice also the log-scale of
the x-axes to see that performance is rather stable around
the chosen value.

For Re-ID, in Fig. 7, we experiment with a range of λ
values on the validation set of the Market-1501 dataset. The
results (shown both for mAP and rank-1 measures) reveal a
strong resemblance to those of the FSC experiment in Fig. 6,
however, the optimal choices for λ are slightly higher, which
is consistent with the dependence on the shots number, since
the re-ID tasks are typically large ones. We found that a
value of λ = 0.25 gives good results across both datasets.

B.4. BPA vs. Naive Baselines

In Fig. 8, we ablate different simple alternatives to BPA,
with the PTMap (Hu et al., 2020) few-shot-classifier as the
’hosting’ method, using MiniImagenet (Vinyals et al., 2016).
Each result is the average of 100 few-shot episodes, using
a WRN-28-10 backbone feature encoder. In blue is the
baseline of applying no transform at all, using the original
features. In orange - using BPA. In gray and yellow, respec-
tively, are other naive ways of transforming the features,
where the affinity matrix is only row-normalized (’softmax’)
or not normalized at all (’cosine’) before taking its rows as
the output features. It is empirically evident that only BPA
outperforms the baseline consistently, which is due to the
properties that we had proved regarding the transform.
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Figure 8. Comparison of BPA to different baselines over differ-
ent configurations in few-shot learning tasks over MiniImagenet
(Vinyals et al., 2016). Created by measuring accuracy (y-axis)
over a varying number of shots (x-axis), with fixed 5-ways and
15-queries. See text for details.

C. BPA Insertion into Hosting Algorithms

C.1. PTMap (Hu et al., 2020) (Few-Shot Classification)

We present the pseudo-code for utilizing BPA within the
PTMap pipeline, as outlined in Alg. C.1. The only alteration
from the original implementation pertains to row 5, wherein
the support and query sets are concatenated and transformed
using BPA. This approach can be extended to a wide range
of distance-based methodologies, thus providing a simple
and versatile solution to a variety of applications.

Algorithm 2 PTMap training and inference
inputs: xs,xq # support, query images

ℓs, (ℓq) # support, (query) labels

fϕ # pre-trained embedding network

fs = fϕ(xs), fq = fϕ(xq) # extract features

(fs∪ fq) =BPA(fs∪ fq) # BPA transformed features

cj = 1
s
·
∑

f∈fs,ℓs(f)=j f , ∀j # init class centers

repeat:
· Lij = ∥fi−cj∥2, ∀i, fi∈fq # feature-center dists

· M = Sinkhorn(L, λ) # S-horn soft assignments

· cj ← cj + α(g(M, j)− cj), ∀j # update centers

ℓ̂q(fi) = argmaxj(M[i, j])# prediction per fi∈fq
if inference:

return ℓ̂q # query predictions

else (training):
update fϕ by∇ϕC-Entropy(M, ℓq) # grad-desc.

C.2. SPICE (Niu et al., 2022) (Unsupervised Clustering)

In our implementation of SPICE, as detailed in the paper,
we utilize BPA during phase 2 of the algorithm (clustering-
head training). Specifically, as depicted in Alg. C.2, we
transform the features using BPA, batch-wise, before con-
ducting a nearest-neighbor search. Afterwards, we retrieve

the pseudo-labels and resume with the original features, as
in the original implementation.

Algorithm 3 SPICE training

Phase (i): pre-train embedding network fϕ
Phase (ii): train clustering network cθ
repeat per batch x:
· f = fϕ(x) # extract features

· fBPA = BPA(f) # BPA transformed features

· Find 3 most confident samples per cluster (use f )
· Compute cluster centers as their means (use fBPA)
· Find nearest-neighbors of each center (use fBPA)
· Assign them to the cluster (as pseudo-labels)
· Use pseudo-labels to train (update) cθ

Phase (iii): jointly fine-tune fϕ and cθ

C.3. TopDBNet (Quispe & Pedrini, 2020) (Person ReID)

Finally, Alg. C.3 illustrates the application of BPA dur-
ing inference in the context of Person ReID. Typically, the
query identity search within the gallery involves identifying
the nearest sample to each query. In our implementation,
we adopt the same methodology, with the additional step
of transforming the concatenated set of query and gallery
features, using the BPA transform prior to the search.

Algorithm 4 TopDBNet inference
inputs: xg,xq # gallery images, query images

fϕ # pre-trained embedding network

# extract features

fg = fϕ(xg), fq = fϕ(xq)

# transform them with BPA

(fg ∪ fq) = BPA(fg ∪ fq)

# return gallery image with closest feature

return argmin
{j:fj∈fg}

∥fi − fj∥ for every {i : fi ∈ fq}

D. Clustering on the Sphere - a Case Study
We demonstrate the effectiveness of BPA using a
controlled synthetically generated clustering experiment,
with k = 10 cluster centers that are distributed uniformly at
random on a d-dimensional unit-sphere, and 20 points per
cluster (200 in total) that are perturbed around the cluster
centers by Gaussian noise of increasing standard deviation,
of up to 0.75, followed by a re-projection back to the sphere
by dividing each vector by its L2 magnitude. See Fig. 9
for a visualization of the 3D case, for several noise STDs.
Following the random data generation, we also apply dimen-
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sionality reduction with PCA to d = 50, if d > 50.

We performed the experiment over a logarithmic 2D grid
of combinations of data dimensionalities d in the range
[10, 1234] and Gaussian in-cluster noise STD in the range
[0.1, 0.75]. Each point is represented by its d-dimensional
coordinates vector, where the baseline clustering is obtained
by running k-means on these location features. In addition,
we run k-means on the set of features that has undergone
BPA. Hence, the benefits of the transform (embedding) are
measured indirectly through the accuracy2 achieved by run-
ning k-means on the embedded vs. original vectors.

Evaluation results, in terms of Normalized Mutual Informa-
tion (NMI) and Adjusted Rand Index (ARI), are reported
in Fig. 10, averaged over 10 runs, as a function of either
dimensionality (for different noise STDs) or noise STDs
(for different dimensionalities). The results show (i) general
gains and robustness to wide ranges of data dimensionality
(ii) the ability of BPA to find meaningful representations
that enable clustering quality to degrade gracefully with the
increase in cluster noise level. Note that the levels of noise
are rather high, as they are relative to a unit radius sphere.

2Accuracy is measured by comparison with the optimal permu-
tation of the predicted labels, found by the Hungarian Algorithm
(Kuhn, 1955).
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Figure 9. Clustering on the sphere: Data Generation. 10 Random cluster centers on the unit sphere, perturbed by increasing noise STD.

Figure 10. Clustering on the sphere: Detailed Results. Clustering measures (top: ARI, bottom: NMI) of k-means, using BPA features
(dashed lines) vs. original features (solid lines). For both measures - the higher the better. Shown over different configurations of feature
dimensions d (left) and noise levels σ (right).
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