
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PLUG-AND-PLAY FIDELITY OPTIMIZATION FOR DIF-
FUSION TRANSFORMER ACCELERATION VIA CUMU-
LATIVE ERROR MINIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Although Diffusion Transformer (DiT) has emerged as a predominant architec-
ture for image and video generation, its iterative denoising process results in
slow inference, which hinders broader applicability and development. Caching-
based methods achieve training-free acceleration, while suffering from consider-
able computational error. Existing methods typically incorporate error correction
strategies such as pruning or prediction to mitigate it. However, their fixed caching
strategy fails to adapt to the complex error variations during denoising, which lim-
its the full potential of error correction. To tackle this challenge, we propose a
novel fidelity-optimization plugin for existing error correction methods via cumu-
lative error minimization, named CEM. CEM predefines the error to characterize
the sensitivity of model to acceleration jointly influenced by timesteps and cache
intervals. Guided by this prior, we formulate a dynamic programming algorithm
with cumulative error approximation for strategy optimization, which achieves
the caching error minimization, resulting in a substantial improvement in genera-
tion fidelity. CEM is model-agnostic and exhibits strong generalization, which
is adaptable to arbitrary acceleration budgets. It can be seamlessly integrated
into existing error correction frameworks and quantized models without introduc-
ing any additional computational overhead. Extensive experiments conducted on
nine generation models and quantized methods across three tasks demonstrate that
CEM significantly improves generation fidelity of existing acceleration models,
and outperforms the original generation performance on FLUX.1-dev, PixArt-α,
StableDiffusion1.5 and Hunyuan. The code will be made publicly available.

1 INTRODUCTION

Diffusion models Ho et al. (2020); Rombach et al. (2022) have significantly advanced visual gener-
ation tasks, including image Chen et al. (2023) and video Zheng et al. (2024) generation, and even
extended to text generation Nie et al. (2025); Hu et al. (2025). Diffusion Transformers (DiT) Peebles
& Xie (2023) have emerged as the dominant architecture for diffusion models, replacing U-Net Ron-
neberger et al. (2015) due to their inherent scalability and superior generative capabilities. Despite
the impressive performance of these powerful models, their slow inference speed remains a criti-
cal barrier to widespread adoption. Currently, image generation typically requires tens of seconds,
while video generation can take up to several minutes or even longer. This limitation primarily
stems from the sequential nature of the reverse denoising process, which precludes parallel decod-
ing. Moreover, the expansion of parameters, coupled with computationally intensive operations like
attention Vaswani et al. (2017), further worsens efficiency.

To accelerate the DiT-based diffusion generation, researchers have adopted general techniques such
as distillation Yin et al. (2024); Salimans & Ho (2022); Gu et al. (2025), learning Huang et al.
(2024a); Ma et al. (2024a) and quantization Shang et al. (2023); He et al. (2023); Li et al. (2025),
aiming to reduce inference latency by decreasing the model size. However, they necessitate training
phases, which entails substantial computational cost, and lack generalization across models. An al-
ternative technical approach is the caching mechanism Liu et al. (2025b); Saghatchian et al. (2025);
Qiu et al. (2025), which leverages the similarity Ma et al. (2024b) between adjacent timesteps or lay-
ers to reuse previous cached hidden states, achieving training-free acceleration. Naive caching Sel-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

TaylorSeer(5.0×)
DiT-DDPM DiT-DDIM DiT-Quantization (W6A8)

Origin(1×) +Ours(5.0×) Origin(1×) Q-DiT(2.6×) +Ours(5.2×)

Te
xt

2V
id

eo
C

la
ss

2I
m

ag
e

FLUX.1-dev
Origin(1×)

PixArt- SD1.5
TeaCache(3.3×) +Ours(3.3×)Error↓ IR↑ Origin(1×) DuCa(2.3×) +Ours(2.4×)Error↓ FID↓ Origin(1×) FasterSD(1.4×) +Ours(1.4×)Error↓ FID↓

0.97

0.72
0.74

0.18

0.13

0.00

41.56

28.06
27.570.17

0.27 21.75
21.62

19.99

0.00

1.06

0.59

0.00

78.46
79.78

81.24

0.00

0.36

0.26

Error↓ VBench↑ Origin(1×) TaylorSeer(5.1×) +Ours(5.1×)
OpenSora

Origin(1×) DuCa(2.5×) +Ours(2.5×)
79.13

78.39
78.45

0.00

0.61
0.59

Hunyuan
Origin(1×) TaylorSeer(5.6×) +Ours(5.6×)

0.00

0.24

0.14

78.97

75.31

76.18

Error↓ VBench↑ Error↓ VBench↑

Wan2.1-1.3B

Origin(1×) ToCa(3.3×) +Ours(3.3×)Error↓ IS↑

0.00

2.81

4.81 275

247
249

0.00

1.14

0.90

240

224

231

Error↓ IS↑

NaN

0.59

246

237

240

0.00

Error↓ IS↑

Te
xt

2I
m

ag
e

Figure 1: Our CEM significantly reduces caching error while maintaining acceleration,
thereby improving the generation fidelity of existing acceleration methods. Comprehensive
experiments demonstrate the effectiveness and generalization of CEM.

varaju et al. (2024); Ma et al. (2024b) inevitably accumulates noise throughout the denoising process,
with error growing exponentially as the cache interval increases, resulting in a substantial deteriora-
tion in generation fidelity.

Therefore, existing caching optimization methods are combined with additional mechanisms to per-
form error correction, aiming to mitigate the cumulative caching error. For example, methods such
as ToCa Zou et al. (2024a), DuCa Zou et al. (2024b), and FastCache Liu et al. (2025a) incorporate
the pruning operation when reusing cache to retain the computation of a subset of important tokens,
thereby reducing error. In addition, methods such as ICC Chen et al. (2025b) and TaylorSeer Liu
et al. (2025c); Guan et al. (2025) leverage historical trends to predict the output variations across dif-
ferent timesteps and guide the update of cached representations, rather than directly reusing cache.

Although the idea of error correction partially reduces the cumulative error for balancing the gener-
ation quality and acceleration efficiency, its effectiveness is limited by the error of relatively simple
or fixed caching strategies. For example, ToCa Zou et al. (2024a) and DuCa Zou et al. (2024b) adopt
the cache schedule that changes linearly with the timestep, while the cache interval of methods like
ICC Chen et al. (2025b) and TaylorSeer Liu et al. (2025c); Guan et al. (2025) is a constant. They are
incapable of handling the complex dynamics of sensitivity to caching during denoising. This limita-
tion results in an insufficient characterization of the model’s intrinsic sensitivity to caching, thereby
preventing the mitigation of error accumulation during acceleration. Consequently, the potential of
error correction is limited, leading to degradation in generation fidelity.

To address this issue, we propose a training-free fidelity optimization plugin via Cumulative Error
Minimization, CEM, that seamlessly integrates into existing acceleration methods and quantized
models. CEM customizes an error to model the intrinsic sensitivity of generation models to dif-
ferent cache intervals during denoising, which is then leveraged as an offline prior. Guided by this
prior, CEM employs dynamic programming to derive the optimal cache strategy under a given ac-
celeration budget by minimizing the cumulative error. When integrated as a plugin into existing
error correction methods and quantized models, CEM effectively mitigates the cumulative errors,
significantly improves generation fidelity, and maintains or enhances their acceleration efficiency.

Although several prior works Qiu et al. (2025) like TeaCache Liu et al. (2025b) have explored
caching optimization, they rely on real-time error estimation, introducing additional computational
overhead that undermines efficiency gains. Furthermore, they are tied to specific acceleration ratios
or model architectures, limiting compatibility with error correction. In contrast, our CEM conducts
offline error modeling prior to inference, enabling the use of prior knowledge without incurring
runtime cost. CEM is model-agnostic, supports arbitrary acceleration budgets, and integrates seam-
lessly with both error correction methods and quantized models.

Extensive experiments demonstrate that our CEM, when used as a plug-in, significantly improves the
generation fidelity of existing acceleration models across eight generation models while preserving
their acceleration efficiency. Specifically, CEM helps TaylorSeer, ToCa, DuCa and FasterSD achieve
fidelity surpassing the original models of Hunyuan, FLUX.1-dev, PixArt-α and StableDiffusion1.5,
respectively, without sacrificing their acceleration efficiency. In addition, CEM seamlessly integrates

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

with quantized models, achieving a further 2× speed-up on Q-DiT beyond its original acceleration,
along with enhanced generation fidelity. In summary, the contributions of this paper are fourfold:

• We propose a novel training-free and plug-in caching-strategy optimization method, CEM, that
can be seamlessly integrated into existing error correction methods and quantized models, sub-
stantially improving generation fidelity while maintaining acceleration efficiency.

• We propose offline error modeling, which constructs the model’s intrinsic sensitivity under differ-
ent cache intervals through random sample generation. This offline prior subsequently guides the
optimization of caching strategy, requiring no extra online computational cost.

• We introduce dynamic programming based on prior errors to derive the optimal caching strategy
that minimizes cumulative error, thereby substantially reducing the error of existing caching-based
methods.

• Extensive experiments conducted on eight generation models and one quantized model demon-
strate that CEM can be effectively employed as a plug-in to improve the generation fidelity of
state-of-the-art acceleration methods and quantized models.

2 RELATED WORK

Diffusion Transformer. Diffusion models Ho et al. (2020); Rombach et al. (2022) have demon-
strated remarkable capabilities in image Chen et al. (2023) and video Zheng et al. (2024); Kong
et al. (2024) generation. Upon this, DiT Peebles & Xie (2023) replace the convolutional modules
in U-Net Ronneberger et al. (2015) with attention Vaswani et al. (2017), which enhances scalability
and leads to breakthrough improvements in generation quality. Despite these advancements, the
iterative nature of the diffusion combined with the computational complexity of attention results in
slow inference. As a result, acceleration techniques have emerged as a key focus of research.

DiT Acceleration. General acceleration techniques such as distillation Meng et al. (2023); Yao et al.
(2024) and quantization Li et al. (2023b); Liu et al. (2025d) typically require retraining the mod-
els, which incur substantial time costs and lacks generalization across different generation models.
Consequently, training-free methods have emerged as a promising direction. Caching-based meth-
ods Selvaraju et al. (2024); Zou et al. (2025); Lv et al. (2024) accelerate inference by reusing pre-
vious hidden states with high similarity, while the reuse of cache inevitably introduces error, which
accumulate over time and result in a significant degradation of generation quality. To correct the
caching error, two strategies have been proposed: (1) Token pruning, which retains the computation
of a subset of important tokens during cache reuse to reduce the error caused by fully relying on
cache. For example, DuCa Zou et al. (2024b) applies pruning at specific timesteps when reusing
the cache to balance generation quality and acceleration efficiency. (2) Predictive reuse, which esti-
mates future representations based on the historical evolution of cached features rather than directly
reusing them. For instance, TaylorSeer Liu et al. (2025c); Guan et al. (2025) performs a Taylor
expansion on intermediate outputs and utilizes gradient dynamics to predict features for reuse.

Although these methods alleviate caching error to some extent, they overlook the optimization of the
caching strategy itself. Consequently, corrections are applied on top of relatively high cumulative er-
ror, limiting their effectiveness. Although a few studies have explored caching strategy optimization,
they are difficult to integrate with error correction for generation quality enhancement. For instance,
AdaCache Kahatapitiya et al. (2024) relies on motion trajectories and is restricted to video; Adap-
tiveDiffusion Ye et al. (2024) introduces overhead from third-order difference calculations and is
specific to the U-Net; TeaCache Liu et al. (2025b) performs real-time input-output estimation and
polynomial fitting, while the extra cost offsets the benefits of cache-based acceleration. To address
these issues, we propose a plug-and-play acceleration framework that optimizes the caching strat-
egy by offline prior, seamlessly integrates with most error correction methods, and introduces no
additional computational overhead, substantially improving their generation fidelity.

In addition, optimizing the sampling strategy in diffusion also leads to acceleration. For example,
DDIM Song et al. (2020) introduces deterministic sampling to reduce the number of denoising
steps while maintaining generation quality. DPM-Solver Lu et al. (2022) and DPM-Solver++ Lu
et al. (2025) leverage adaptive high-order solvers to accelerate denoising. Rectified flow Liu et al.
(2022); Liu (2022) improves the transport of the distribution in the ordinary differential equation.
Our method is orthogonal to these approaches and can be integrated and generalized across different
models and sampling strategies, even supporting compatibility with quantized models.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

: Minimum: Valid

FLUX.1-dev

Origin(1×)

PixArt- SD1.5

Hunyuan OpenSora Wan2.1-1.3B

TeaCache(3.3×) +Ours(3.3×)

Error↓ IR↑ Speed↑

Origin(1×) DuCa(2.3×) +Ours(2.4×)

Error↓ FID↓ Speed↑

Origin(1×) FasterSD(1.4×) +Ours(1.4×)

Error↓ FID↓ Speed↑

Origin(1×) TaylorSeer(5.1×) +Ours(5.1×)

Error↓ VBench↑ Speed↑

Origin(1×) DuCa(2.5×) +Ours(2.5×)

Error↓ Speed↑

Origin(1×) TaylorSeer(5.6×) +Ours(5.6×)

Error↓ Speed↑VBench↑ VBench↑

Origin(1×) ToCa(3.3×) +Ours(3.3×)

Error↓ Speed↑ Error↓ IS↑ Speed↑ Error↓ IS↑ Speed↑IS↑

Te
xt

-t
o-

Im
ag

e 1.0
3.3
3.3

0.97
0.72

0.74

0.00
0.18

0.13

0.00
41.56

28.06

27.57

1.0
2.3

2.40.17
0.27

1.0
1.4
1.4

21.75
21.62

19.99

0.00
1.06

0.59

1.0
5.1
5.1

78.46
79.78

81.24

0.00
0.36

0.26

1.0
2.5
2.5

79.13
78.39
78.45

0.00
0.61

0.59

1.0
5.6
5.6

0.00
0.24

0.14

0.00

2.81
4.81

1.0
3.3
3.3

275
247

249

0.00
1.14

0.90

240
224

231

1.0
5.0
5.0

0.00
NaN

0.59

246
237

240

1.0
2.6

5.2

DP array: e.g. T=15 steps, Nc =7

Caching strategy:

Optimal substructure:

Dynamic Caching Strategy

: No solution

Dynamic costs:

Cache Reuse

1

2

3

4

a b c d

a a+b a+b+c

a+b+c+d

Timesteps
t

tt+1 t+2 t+3 t+4

t+1 t+2 t+3 t+4

Prior Error Modeling

Cache
E.g. FLUX.1-dev, T=50, Nc=10

Plug-and-Play
Deployment

1 2

Our strategy

strategy

Acceleration
methods

Generation
or

quantization
models

Replace Deploy

Improve
quality

Improve
acceleration

Modular Deployment

Base
lin

e
+ Ours

Er
ro

r↓

Base
lin

e
+ Ours

Pe
rf

or
m

an
ce

↑

+ Ours

A
cc

el
er

at
io

n↑

Quantized

model + Ours
Acceleration

methods

maintain boost

(a)

78.97
75.31

76.18

ToCa: 2.94×, total error: 0.1618

0 49

TaylorSeer: 4.99×, total error: 0.1325

TeaCache: 3.33×, total error: 0.1840

Ours: 4.99×, total error: 0.1089

Timesteps

N=6 N=6 N=6 N=6 N=6 N=6 N=6 N=6

N=6 N=6 N=6 N=6N=6N=6N=6N=1

N=5 N=6 N=6 N=6 N=6 N=6 N=6 N=5 N=3

N=6N=4 N=5 N=5 N=6 N=6 N=6 N=5
Full compute skip

(b) (c)

Error accumulation

Figure 2: Overview of our CEM framework. It first performs Offline Error Modeling to char-
acterize the model’s intrinsic sensitivity to caching under different timesteps and cache intervals,
forming an offline prior. Guided by this prior, it employs Dynamic Caching Strategy with dy-
namic programming to determine the optimal caching strategy that minimizes cumulative error and
enhances generation fidelity. Finally, CEM supports Plug-and-Play Deployment and can be seam-
lessly integrated into existing error correction methods and quantized models.

3 METHODOLOGY

To mitigate the caching error and address the limitations of simplistic caching strategies in error
correction methods, we propose a training-free, plug-and-play acceleration approach, CEM, that
significantly improves generation fidelity while preserving the acceleration efficiency. As shown
in Fig. 2, CEM first performs (1) Offline Error Modeling, where it models the joint influence
of denoising timesteps and cache intervals on caching error distribution. Then, we introduce (2)
Dynamic Caching Strategy, which selects a set of cache intervals that minimizes the cumulative
error through dynamic programming. Finally, (3) Plug-and-Play Deployment integrates the derived
caching strategy seamlessly into the error correction methods, thereby improving generation fidelity.

3.1 OFFLINE ERROR MODELING

To maintain acceleration efficiency without incurring the computation overhead of real-time caching
strategies, we propose offline error modeling that models caching error by analyzing it under differ-
ent caching strategies on randomly generated content before inference.

Error definition. We model the error distribution by considering the joint variation of denoising
steps and cache intervals, rather than relying solely on temporal changes as in real-time methods.
Specifically, given the cache interval n (perform caching every n timesteps) and the current timestep
t, we denote the output of the diffusion model with input x at a specific timestep t as D(x, t).
Furthermore, we flatten D into D′ and compute the Cosine loss between the ground-truth output of
t and the cached output of previous timestep t+ n via a normalized inner product:

E(t, n) = 1

Ns

Ns−1∑
i=0

[1− D′(x, t) · D′(x, t+ n)

||D′(x, t)||2 · ||D′(x, t+ n)||2
], (1)

where E is our error, Ns denotes the number of generation, see Appendix. B.1 for error visualization.

Offline modeling. The modeling captures complex intrinsic error variations and provides the basis
for adaptive caching by sensitivity errors. However, if the modeling is performed online, it in-
evitably needs additional computational overhead, hindering acceleration efficiency. Moreover, the
sensitivity is model-intrinsic, making repeated modeling during inference redundant and wasteful.

Therefore, CEM performs the modeling offline by generating multiple (Ns times in Eq. 1) random
contents and averaging them, storing it as intrinsic prior. It makes the modeling content-agnostic,
so each generation model only needs to be modeled once for permanent use.

Error distribution consistency. A key implicit assumption of error modeling is: The statistics from
randomly generated samples are representative of those encountered during actual inference. To
validate it, we analyze the variation of error distributions across different samples in Fig. 3:

• In Fig. 3(a), the error exhibits small variances across different cache intervals, showing that the
variation of both content and cache interval exert only minor effects on the error distribution.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) (b) (c)

Error type Error type

FID↓ IS↑

Number of random samples ImageReward↑

Error↓

(a) (b) (c)

Timesteps

Error Error Error

Cache intervals Timesteps(a) (b) (c)
Figure 3: Error Analysis. (a). Mean-variance of offline error modeling under different cache
intervals. The error variance remains relatively small across various contents and cache intervals.
(b). Consistency between offline modeling and actual inference. The error points obtained during
inference fall within the prior-modeled distribution, indicating strong consistency between prior
modeling and real inference. (c). Offline cumulative error vs. online error. The cumulative error
approximation accurately captures the trend of error variation during actual inference.

• In Fig. 3(b), the errors from actual inference lie within the range of the error distribution from
offline modeling, demonstrating that this error distribution remains highly consistent between
prior modeling and actual inference scenarios.

These results both demonstrate the robustness of the error distribution to generated content. Further-
more, we conduct extended experiments in Appendix. B.2 using different prompt sources for offline
modeling, and observe consistent behavior during inference. This provides further evidence that the
error distribution captures the model’s intrinsic sensitivity to acceleration, which is content-agnostic.
Refer to Sec. 4.3 for more results on robustness, offline cost and the effect of random sample size.

Joint modeling analysis. We model the error as a joint function of denoising timesteps and cache
intervals. Previous methods Zou et al. (2024a;b); Liu et al. (2025c) only consider differences across
timesteps and determine cache intervals heuristically, limiting control over the acceleration budget.
In contrast, we explicitly model cache intervals together with timesteps to capture the error distribu-
tion and analyze the sensitivity of different denoising stages. This formulation is simple yet accurate,
offering flexible acceleration control, while its offline design introduces no additional computational
overhead and provides the foundation for our algorithm of cumulative error minimization in Sec. 3.2.

3.2 DYNAMIC CACHING STRATEGY

After introducing offline error modeling to quantify the error, we can further leverage these errors to
evaluate entire caching strategies, i.e., the combinations of cache intervals throughout the denoising.
It inherently possesses an optimal substructure: the minimum cumulative error at each caching
operation builds upon the optimal result of the preceding operation. So CEM employs dynamic
programming, as shown in Fig. 2, to optimize combination of cache intervals.

Problem setup. Given a acceleration budget (Nc), let n denote the current cache interval, t+n and
t represent the timesteps with full computation with same setting as Sec. 3.1.

Cumulative error approximation. Naturally, the modeled error serves as the dynamic cost for
dynamic programming. Given a fixed number of Nc, we compute the optimal combination of cache
intervals that minimizes the error. However, the error in cache acceleration is a continuously accu-
mulating process, which is not considered in the offline error modeling. This is because direct mod-
eling of cumulative error is exponentially inefficient: Simple error modeling completes all timesteps
in one forward pass, while cumulative modeling needs T passes for T timesteps.

To incorporate cumulative error effects without sacrificing efficiency, we introduce cumulative error
approximation. It estimates the cumulative error based on E(t, n), achieving a balance between error
fidelity and modeling efficiency. Specifically, we observe that a simple cumulative integral over the
E(t, n) yields an effective approximation. The cumulative error E∗(t, n) at an arbitrary timestep is:

E∗(t, n) = CUMSUM(E(t, n), dim = 0), (2)

where CUMSUM(·) denotes the cumulative integral in Numpy and we apply weighting factors to
amplify the differences across cache intervals. As shown in Fig. 3(c), this simple approximation

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

closely matches the actual error. It can be attributed to the high structural similarity between the
input and output of each module in DiT, which causes input perturbations to propagate to the output
and accumulate across timesteps. Refer to Appendix. C.2 for more analysis.

Optimal substructure. Given the specific constraint on acceleration efficiency (the number of
caching Nc), we construct a dynamic programming array dp[t][j] based on the E∗(t, n) described
above. The array dp[t][j] represents the minimum total caching error when denoising from beginning
up to timestep t with j caching operations. We formulate the optimal substructure based on dp[t][j]:

dp[t][j + 1] = min
n∈N ,t>0

{E∗(t, n) + dp[t+ n][j]}, j ∈ [1, Nc], t ∈ [T, 1], (3)

whereN denotes the set of candidate cache intervals. Our final objective is to solve for the minimum
value of dp[1][Nc]. Then, a backtracking procedure is employed to recover the positions of the
selected timesteps and associated cache intervals. See Appendix C.1 for implementation details.

Analysis. Dynamic programming enables CEM to obtain caching strategy with optimal error. As
shown in Fig. 1, it effectively reduces the sensitivity error and improves generation fidelity under
the same acceleration efficiency. The algorithm operates on offline errors, so it can derive the op-
timal cache-interval combination that can be shared across multiple generations without additional
overhead given an acceleration budget, analysis can be found in Sec. 4.3 and Appendix.

3.3 PLUG-AND-PLAY DEPLOYMENT

Our optimized caching strategy can replace the existing caching components in current acceleration
methods, significantly improving generation fidelity while maintaining the acceleration efficiency. It
can also be directly applied to generation or quantized models to achieve high-fidelity acceleration.
As illustrated in Sec. 4, CEM can be integrated with pruning-based methods such as DuCa and ToCa,
and can also enhance prediction-based approaches like TaylorSeer in error correction. Moreover,
CEM can also be directly incorporated into the generation process of quantized models such as
Q-DiT, effectively doubling its acceleration. In summary, our method is compatible with various
generation models, acceleration techniques, and quantized models.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Models and baselines. We conduct extensive experiments across three tasks: text-to-image gen-
eration (using StableDiffusion1.5 (SD1.5) Rombach et al. (2022), PixArt-α Chen et al. (2023) and
FLUX.1-dev Labs (2024)), text-to-video generation (Hunyuan Kong et al. (2024), Wan2.1-1.3B Wan
et al. (2025) and OpenSora Zheng et al. (2024)), and class-to-image generation (DiT-XL/2 with
DDPM Ho et al. (2020) and DDIM Song et al. (2020) samplers). Our method is integrated into five
SOTA acceleration methods: FasterSD Li et al. (2023a), TeaCache Liu et al. (2025b), ToCa Zou
et al. (2024a), DuCa Zou et al. (2024b) and TaylorSeer Liu et al. (2025c). In addition, we ensure
compatibility with quantized models by applying our approach to the Q-DiT Chen et al. (2025a).

Evaluation and metrics. For text-to-image generation, we use captions of MS-COCO2017 Lin
et al. (2014) to generate images and evaluate performance using FID Heusel et al. (2017), CLIP-
Score (CLIP) Hessel et al. (2021), ImageReward (IR) Xu et al. (2023), Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM) and Learned Perceptual Image Patch Simi-
larity (LPIPS). Note that variations in sample counts (10K or 50K) and CLIP versions stem from
differences in the respective acceleration baselines. For text-to-video generation, we report the av-
erage performance across 16 tasks from the VBench Huang et al. (2024b). For the class-to-image
generation, we randomly sample 50,000 class labels from ImageNet and compute FID, sFID, Incep-
tionScore (IS) Salimans et al. (2016), Precision (P) and Recall (R). Finally, we evaluate generation
speed on RTX4090 or A800 using both FLOPs and latency. Refer to Appendix. D.1 for more details.

4.2 MAIN RESULTS

Text-to-image generation. In the results shown in Tab. 1, our CEM is integrated into four ac-
celeration methods across three different generation models. Our method improves FasterSD of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparison on text-to-image gen-
eration. ↓/↑ denotes lower/higher values indicate superior
performance. “-” denotes the absence of reference results.
“+Ours” indicates the baseline with our CEM. Bold font

highlights our better results.
StableDiffusion1.5, DDIM 50 steps, 512×512

FLOPs
(T)↓

Latency
(s)↓

FID
10K↓

CLIP
(L)↑

PSNR
↑

SSIM
↑

LPIPS
↓

Origin 37.05 1.44 21.75 30.92 INF 1.00 0.00
50% steps 18.53 0.73 25.21 32.15 20.19 0.62 0.26
FasterSD 27.35 0.33 21.62 32.54 16.42 0.56 0.36
+Ours 27.35 0.33 19.99 32.85 15.77 0.60 0.35

PixArt-α, DPM-Solver 20 steps, 256×256
FLOPs

(T)↓
Latency

(s)↓
FID

50K↓
CLIP
(L)↑

PSNR
↑

SSIM
↑

LPIPS
↓

Origin 11.18 0.86 28.06 16.29 INF 1.00 0.00
50% steps 5.59 0.43 37.41 15.82 18.67 0.70 0.20

FORA 5.66 0.52 29.67 16.40 - - -
ToCa 4.26 0.44 29.73 16.45 - - -

DuCa(N5) 4.79 0.40 41.56 16.46 14.96 0.46 0.42
+Ours 4.75 0.39 27.57 16.37 18.25 0.68 0.21

FLUX.1-dev, Rectified Flow 50 steps, 1024×1024
FLOPs

(T)↓
Latency

(s)↓
IR
↑

CLIP
(G)↑

PSNR
↑

SSIM
↑

LPIPS
↓

Origin 3719.50 35.63 0.9649 32.57 INF 1.00 0.00
25% steps 967.07 8.91 0.9310 32.72 14.71 0.58 0.46

FORA 1320.07 14.66 0.9227 - - - -
ToCa(N4) 1263.22 14.60 0.9822 32.36 18.27 0.67 0.30

+Ours 1263.22 14.13 1.0151 32.67 17.72 0.67 0.31
TeaCache(l0.6) 1115.85 16.57 0.7228 30.66 17.41 0.70 0.35

+Ours 1115.85 16.05 0.7362 31.13 17.89 0.71 0.33
TaylorSeer(N6) 744.81 10.09 0.9410 32.57 15.59 0.60 0.41

+Ours 744.81 10.09 0.9811 32.89 16.11 0.61 0.39

Table 2: Quantitative comparison
on text-to-video generation. N (or
l): baseline hyperparameter control-
ling acceleration efficiency.

OpenSora, rflow 30 steps, 480P, 51 frames
FLOPs

(T)↓
Latency

(s)↓
VBench

(%)↑
Origin 3283.20 102.29 79.13

50% steps 1641.60 51.16 76.55
∆-DiT 3166.47 98.31 78.21
ToCa 1394.03 54.70 78.34

DuCa(N3) 1315.62 50.64 78.39
+Ours 1315.62 50.24 78.45

Hunyuan, flow-solver 50 steps, 480P, 65 frames
FLOPs

(T)↓
Latency

(s)↓
VBench

(%)↑
Origin 29773.00 441.76 78.46

25% steps 7741.11 111.13 70.89
FORA 5960.40 93.92 78.83
ToCa 7006.20 109.89 78.86

TeaCache(l0.4) 6550.06 108.54 77.56
+Ours 6550.06 105.94 78.15

TaylorSeer(N6) 5939.10 95.22 79.78
+Ours 5939.10 95.01 81.24

Wan2.1-1.3B, unipc 50 steps, 480P, 65 frames
FLOPs
Spe.↑

Latency
(s)↓

VBench
(%)↑

Origin 1.00× 187.46 78.97
25% steps 3.85× 48.97 61.64
∆-DiT 1.24× 165.89 75.97

TaylorSeer(N6) 5.56× 39.55 75.31
+Ours 5.56× 39.37 76.18

t2i

A black and
white cat is
lazily laying
around.

A briefcase with
decorated with
stickers placed on
a table.

A brown desk
with a wooden
chair in a
classroom.

A brown, black
and white bird
resting on a tree
branch.

O
ri

gi
n

Fa
st

er
SD

+O
ur

s

A beach with an
area with umbrellas
and an open area
without them.

O
ri

gi
n

D
uC

a
+O

ur
s

A all white
bathroom with
blue tape on
the walls.

A banana
laying next to
a plastic
container with
lid.

A bayside cafe
with piers and
boats in the
water.

O
ri

gi
n

Ta
yl

or
Se

er
+O

ur
s

(a) StableDiffusion1.5 (b) PixArt-α (c) FLUX.1-dev

A single clock
is sitting on a
table.

A panda
making latte
art.

A tennis ball. Two cars on
the street.

Figure 4: Qualitative visualization comparison on text-to-image generation. We highlight the
areas with red dashed boxes to emphasize the comparison. Our CEM achieves higher generation
fidelity under the same or higher acceleration efficiency compared with baselines. More experiment
results and visualizations are provided in the Appendix. D.2, E.1 and E.2.

SD1.5 by 1.63 on FID and 0.31 on CLIP, surpassing the performance of the original model. More-
over, these improvements come at no additional computational cost, as both FLOPs and latency
remain unchanged. On PixArt-α, our enhancement of the DuCa leads to a 13.99 improvement
in FID. Furthermore, thanks to our offline cache strategy optimization, we further reduce latency
while maintaining the same FLOPs, ensuring improved efficiency without additional computational
cost. Similarly, we improve both ToCa and TaylorSeer on FLUX.1-dev. In addition, we integrate
our CEM with the online optimization technique TeaCache, achieving a 0.0134 improvement in IR
while eliminating its extra computation during inference, thus reducing inference latency.

These text-to-image models span diverse backbones, sampling strategies and resolutions, demon-
strating the generalization of CEM, even beyond DiT (SD1.5 is UNet). As shown in the qualitative
results in Fig. 4, our CEM produces higher-fidelity images that closely resemble those of the original
model, like the cat’s face in (a), the umbrella in (b), and the texture of the tennis ball in (c).

Text-to-video generation. We validate the effectiveness of our plug-in on Hunyuan, Wan21 and
OpenSora. Taking Hunyuan as an example, we improve TaylorSeer in Tab. 2, achieving VBench
gains of 1.46 at N=6 (Our method replaces the design of N, so when combined with our CEM,
the baseline no longer requires the N to be specified). These improvements significantly improve
the generation fidelity of the acceleration models, even surpassing the original model performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Quantitative comparison on class-to-image generation with DiT-XL/2 and quantized
model. W/A denotes the quantization bit-width of weights and activations. More experiment results
and visualizations are provided in the Appendix. D.2 and E.4.

Bit-width
(W/A)

Size
(MB)↓

Latency
(s)↓

FID
↓

sFID
↓

IS
↑

P
↑

R
↑

PSNR
↑

SSIM
↑

LPIPS
↓

Origin 16/16 1349 0.62 5.31 17.61 245.85 0.81 0.68 INF 1.00 0.00
Q-DiT 6/8 518 0.45 5.44 17.61 237.34 0.80 0.68 31.10 0.95 0.04
+Ours 6/8 518 0.22 5.51 17.49 240.36 0.80 0.68 31.06 0.93 0.05
Q-DiT 4/8 347 0.39 6.31 17.81 209.30 0.76 0.69 24.88 0.82 0.14
+Ours 4/8 347 0.20 6.20 17.62 213.50 0.76 0.69 24.99 0.82 0.14

Sampling
/Steps

FLOPs
(T)↓

Latency
(s)↓

FID
↓

sFID
↓

IS
↑

P
↑

R
↑

PSNR
↑

SSIM
↑

LPIPS
↓

Origin DDPM/250 118.68 2.51 2.23 4.57 275.64 0.83 0.58 INF 1.00 0.00
50% steps DDPM/250 59.34 1.26 2.42 5.04 270.40 0.82 0.57 8.55 0.14 0.78

FORA DDPM/250 39.95 1.01 2.80 6.21 - 0.80 0.59 - - -
ToCa(N6) DDPM/250 36.30 0.84 3.08 6.58 246.59 0.79 0.59 20.92 0.71 0.21

+Ours DDPM/250 36.48 0.82 3.09 6.00 248.58 0.80 0.59 22.63 0.76 0.16
Origin DDIM/50 23.74 0.53 2.25 4.33 239.93 0.80 0.59 INF 1.00 0.00

33% steps DDIM/50 8.07 0.18 4.24 5.52 214.35 0.77 0.56 9.22 0.17 0.81
AdaCache DDIM/50 - 0.46 4.64 - - - - - - -
LazyDiT DDIM/50 11.93 0.28 2.70 4.47 237.03 0.80 0.59 - - -
ToCa(N5) DDIM/50 7.44 0.20 6.37 7.09 199.48 0.74 0.53 16.56 0.53 0.40

+Ours DDIM/50 7.14 0.18 4.68 6.41 212.13 0.77 0.55 21.59 0.72 0.20
DuCa(N5) DDIM/50 6.32 0.17 6.07 6.64 199.64 0.74 0.52 16.63 0.53 0.39

+Ours DDIM/50 6.73 0.17 3.96 5.87 218.66 0.78 0.55 23.00 0.76 0.16
TaylorSeer(N6) DDIM/50 4.76 0.14 3.56 7.52 223.83 0.79 0.56 24.69 0.80 0.13

+Ours DDIM/50 4.76 0.13 3.08 6.43 231.10 0.80 0.57 25.64 0.83 0.10

t2v

A baseball glove.
A beautiful coastal beach in spring, waves lapping

on sand by Hokusai, in the style of Ukiyo. A bear climbing a tree.

O
ri

gi
n

T
ay

lo
rS

ee
r

+O
ur

s

(a) (b)
Figure 5: Qualitative visualization comparison on Hunyuan. Our CEM improves the TaylorSeer
for better consistency with the original model. See Appendix. E.3 for more visualizations.

of 80.66. Our method significantly reduces the cumulative error in caching strategies through of-
fline error modeling and dynamic programming, without introducing any additional computational
overhead, which is supported by the latency and performance metrics shown in the Tab. 2.

Furthermore, the visualization examples in Fig. 5(a) also demonstrate that CEM is capable of better
preserving fine-grained generation details, such as the baseball glove and the village by the beach.
Detailed VBench results in Fig. 5(a) also show that our method significantly enhances video gener-
ation quality on TaylorSeer, particularly in multi-objects, semantics and quality evaluations.

Class-to-image generation. In Tab. 3, we report the results of DiT-XL/2 under DDPM and DDIM
sampling strategies. Under DDPM, our CEM improves ToCa by 0.58 on sFID and 1.99 on IS,
respectively. Under the more commonly used DDIM, we explore optimizations for ToCa, DuCa
and TaylorSeer. Taking DuCa as an example, our CEM achieves more than a 3× acceleration,
reducing FID by 2.11, increasing IS by 19.02, and improving PSNR by 6.37. The performance
gain mainly arises from the fact that the baseline method inevitably introduces more caching error
as the acceleration efficiency increases, leading to a sharp degradation in fidelity. In contrast, our
CEM effectively improves generation fidelity by combining offline error modeling with dynamic
programming to identify the caching strategy that minimizes cumulative error.

In addition, to demonstrate the effectiveness and generalization of our method, we further integrate
it into the quantized model Q-DiT. As shown in Tab. 3, under the manually specified 2× acceleration
budget (Nc=25 in total 50 steps), our CEM not only further speeds up inference on top of the
quantized model, but also improves the generation fidelity. Taking IS as an example, we improve it
by 3.02 and 4.20 on W6A8 and W4A8, respectively.

In summary, on DiT-XL/2, our method not only improves the fidelity of existing acceleration models
without compromising their efficiency, but also supports direct integration with quantized models,
achieving substantial reductions in both computational time and memory usage.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation results on three generation models. “Vanilla” is naive caching with fixed cache
intervals. “DCS” is Dynamic Caching Strategy, and “CEA” is Cumulative Error Approximation.

PixArt-α FID↓ Hunyuan VBench(%)↑ DiT-XL/2 FID↓ IS↑
Vanilla 30.04 Vanilla 77.64 Vanilla 3.83 213.12
+DCS 28.69 +DCS 79.21 +DCS 2.73 234.78
+DCS

w/ CEA 27.94 +DCS
w/ CEA 80.44 +DCS

w/ CEA 2.65 235.11

4.3 ABLATION STUDIES

Module effectiveness. To demonstrate the effectiveness of CEM, we conduct ablation studies on
three generation tasks (one model per task). As the offline error modeling cannot be ablated in
isolation, we perform ablation primarily on the Dynamic Caching Strategy (DCS) built upon it, with
particular attention to the effects of the Cumulative Error Approximation (CEA).

As shown in Tab. 4, the dynamic programming in our DCS module significantly improves model
performance. It improves the FID by 1.35 on PixArt-α, increases the VBench by 1.57 on Hun-
yuan, and achieves improvements of 1.1 on FID and 21.66 on IS on DiT-XL/2. On the one hand,
it demonstrates that the dynamic programming algorithm effectively optimizes the caching error,
thereby improving the generation fidelity of generation models while maintaining acceleration. On
the other hand, these results provide indirect evidence that our offline error modeling can effectively
learn intrinsic caching error distributions of generation models, and apply them to actual inference
acceleration without incurring any additional computational cost.

Furthermore, by incorporating the CEA in DCS module, we observe further performance improve-
ments across all three models. The performance increases by 0.75, 1.23, 0.08 and 0.33 across the
four metrics on the three models after leveraging cumulative integral to better fit the caching error.
We believe this is mainly attributed to the approximate estimation of caching error, which also plays
a smoothing role to some extent, reducing the impact of data variations on the error distribution.

Table 5: Cost analysis of our OEM and DCS module.
See the Appendix. B.4, C.3 for the cost of all models.

Models FLUX.1-dev Hunyuan DiT-XL/2
Time of only generation 1.92h 4.72h 19.63m

Time of OEM 2.08h 5.21h 25.52m
Memory of only generation 43.42GB 57.36GB 4.09GB

Memory of OEM 53.06GB 72.62GB 4.65GB
Time of DCS 1.10ms 0.71ms 1.13ms

Memory of error 0.88KB 0.88KB 0.88KB

Comparison of error definitions. In the
offline error modeling, CEM defines the
feature difference between the current and
previous timesteps as the caching error,
based on which it builds the offline model-
ing and subsequent dynamic programming
process. For error formulation, we com-
pare three commonly used distance mea-
sures: L1, L2 and Cosine distance. As
shown in Fig. 6(a), the Cosine distance adopted in our method clearly outperforms the other two.
We attribute this advantage to the fact that Cosine distance ignores the scale variance of features
during computation, making it more robust to the sparse feature representations in DiT.

Offline modeling cost. Our offline error modeling is obtained through random content generation
before the actual inference, and it is performed only once for each generation model for permanent
use. We report the cost of the offline process in Tab. 5. As this modeling relies on random content
generation, which inherently requires time and memory resources, we first list the cost of generation
only and then the cost of our offline error modeling (OEM). For the three major generation models
reported in Tab. 5, the additional time overhead of OEM mainly comes from computing caching
errors across different timesteps and cache intervals. The extra memory overhead primarily arises
from storing the feature representations of previous timesteps for subsequent error computation.

It should be noted that this cost pertains solely to the offline modeling stage. During inference,
CEM only needs to load a precomputed error matrix (of size N×T, where N is the number of cache
intervals and T the number of timesteps) for dynamic programming. As shown in the lower part
of Tab. 5, CEM introduces negligible overhead in both time and memory. Moreover, the dynamic
programming solution is computed once for a given acceleration setting and can be reused across
multiple generations, further reducing batch-generation cost.

Effect of the number of random samples. Our offline error modeling is derived from the random
generation process and, as shown in Fig. 3, the estimated prior error remains consistent with that
observed during actual inference. We further analyze the influence of the number of offline samples
on model performance. As illustrated in Fig. 6(b) (more analysis in Appendix. B.3), the modeling
shows minimal sensitivity to sample count, the fidelity on FLUX.1-dev quickly converges once more
than 10 samples. This indicates that the error reflects a model-intrinsic sensitivity to caching, rather

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 6: Robustness of our CEM across different seeds, CFGs, resolutions, and frames. We
conduct all tests of TaylorSeer(N=6) on the FLUX.1-dev for consistency.

Seed Model IR
↑

CLIP
(G)↑ CFG Model IR

↑
CLIP
(G)↑ Size Model IR

↑
CLIP
(G)↑ Frames Model VBench

(%)↑

0
TaylorSeer 0.8760 32.17

3.5
TaylorSeer 0.8760 32.17

256
TaylorSeer 0.5756 30.97

33
TeaCache 77.88

+Ours 0.9205 32.66 +Ours 0.9205 32.66 +Ours 0.6792 31.40 +Ours 77.96

42
TaylorSeer 0.8625 32.38

5.5
TaylorSeer 0.6571 31.34

512
TaylorSeer 0.7495 31.80

49
TeaCache 77.81

+Ours 0.9405 32.86 +Ours 0.8867 32.76 +Ours 0.7700 32.31 +Ours 78.01

2025
TaylorSeer 0.8169 32.50

7.5
TaylorSeer 0.6924 31.75

1024
TaylorSeer 0.8760 32.17

65
TeaCache 77.56

+Ours 0.8875 32.69 +Ours 0.7336 32.29 +Ours 0.9205 32.66 +Ours 78.15

3407
TaylorSeer 0.8217 31.95

9.5
TaylorSeer 0.6794 31.20

2048
TaylorSeer 0.1552 31.26

129
TeaCache 76.21

+Ours 0.9118 32.99 +Ours 0.7935 32.17 +Ours 0.2564 31.31 +Ours 77.31

(a) (b) (c)

(a) (b) (c)

Error type Error type

FID↓ IS↑

Number of random samples ImageReward↑

Error↓

(a) (b) (c)
Figure 6: (a). Comparison of generation fidelity with different error construction methods on
DiT-XL/2. The Cosine distance adopted in our CEM achieves the best generation fidelity. (b). Ef-
fect of offline sample size on generation fidelity. The offline error modeling captures the intrinsic
sensitivity of the model to acceleration, which is content-agnostic and insensitive to the number of
offline samples. (c). Relationship between error and generation fidelity under different cache
strategies. Our quantitative analysis reveals a negative correlation between generation fidelity and
caching error, with the curvature of this relationship differing under various acceleration efficiencies.

than content dependence. Additional experiments in the Appendix. B.2, where offline samples are
drawn from different datasets but evaluated on the same benchmark, further validate this observation.

The robustness of our CEM. To further demonstrate the robustness of our CEM and the offline
error modeling, we extend the precomputed errors to various generation settings, as illustrated in
Tab. 6, including different seeds, CFG, resolutions and frames. It can be clearly observed that the
modeled errors are insensitive to such variations in generation settings, consistently exhibiting strong
robustness of our CEM across diverse configurations.

Relationship between error and generation fidelity. Finally, by constructing the errors of caching
strategies, we can quantitatively and intuitively analyze the relationship between caching strategies
and their generation fidelity under the same acceleration efficiency. As shown in Fig. 6(c), multiple
candidate caching strategies exist under same acceleration efficiency. We plot their corresponding
error and fidelity, and fit a relationship curve between them. We observe that as the error of caching
strategy increases, the generation fidelity tends to decrease, and the curvature of this relationship
varies with acceleration efficiency. This observation aligns with the empirical understanding, while
our CEM provides a quantitative perspective to validate and extend this intuition.

5 CONCLUSION

Summary. To optimize the caching strategy and fully leverage the potential of caching error cor-
rection methods, we propose a novel plug-in acceleration method, CEM. It leverages offline error
modeling and a dynamic programming algorithm to derive the optimal caching strategy that min-
imizes the caching error. By integrating the caching error correction method, we can significantly
improve generation fidelity while maintaining acceleration, without introducing any additional com-
putation. Extensive experiments on eight generation models and one quantized model across three
tasks demonstrate the plug-in effectiveness of our method on existing accelerated models.

Limitations. We provide training-free plug-and-play acceleration for DiT, with compatibility across
generation models, acceleration methods, and quantized models. However, our performance still
lags behind training-based methods and cannot be applied to one-step generation models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We affirm that the research and writing of this paper strictly adhere to the ICLR Code of Ethics,
and do not involve any issues related to human subjects, ethical concerns, or potential conflicts of
interest.

REPRODUCIBILITY STATEMENT

We affirm that all research presented in this paper is fully reproducible, including the error modeling
analysis in Sec. 3.1, the core implementation described in Sec. 3.2 and Appendix ??, and all results
and visualizations shown in figures and tables. The source code will be released publicly later.

REFERENCES

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for photore-
alistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Lei Chen, Yuan Meng, Chen Tang, Xinzhu Ma, Jingyan Jiang, Xin Wang, Zhi Wang, and Wenwu
Zhu. Q-dit: Accurate post-training quantization for diffusion transformers. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 28306–28315, 2025a.

Zhiyuan Chen, Keyi Li, Yifan Jia, Le Ye, and Yufei Ma. Accelerating diffusion transformer via
increment-calibrated caching with channel-aware singular value decomposition. In Proceedings
of the Computer Vision and Pattern Recognition Conference, pp. 18011–18020, 2025b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. arXiv preprint arXiv:2410.12557, 2024.

Youping Gu, Xiaolong Li, Yuhao Hu, and Bohan Zhuang. Video-blade: Block-sparse attention
meets step distillation for efficient video generation. arXiv preprint arXiv:2508.10774, 2025.

Xiaoliu Guan, Lielin Jiang, Hanqi Chen, Xu Zhang, Jiaxing Yan, Guanzhong Wang, Yi Liu, Zetao
Zhang, and Yu Wu. Forecasting when to forecast: Accelerating diffusion models with confidence-
gated taylor. arXiv preprint arXiv:2508.02240, 2025.

Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. Ptqd: Accurate post-
training quantization for diffusion models. arXiv preprint arXiv:2305.10657, 2023.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Zhanqiu Hu, Jian Meng, Yash Akhauri, Mohamed S Abdelfattah, Jae-sun Seo, Zhiru Zhang, and
Udit Gupta. Accelerating diffusion language model inference via efficient kv caching and guided
diffusion. arXiv preprint arXiv:2505.21467, 2025.

Yushi Huang, Zining Wang, Ruihao Gong, Jing Liu, Xinjie Zhang, Jinyang Guo, Xianglong Liu,
and Jun Zhang. Harmonica: Harmonizing training and inference for better feature caching in
diffusion transformer acceleration. arXiv preprint arXiv:2410.01723, 2024a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
video generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21807–21818, 2024b.

Kumara Kahatapitiya, Haozhe Liu, Sen He, Ding Liu, Menglin Jia, Chenyang Zhang, Michael S
Ryoo, and Tian Xie. Adaptive caching for faster video generation with diffusion transformers.
arXiv preprint arXiv:2411.02397, 2024.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint arXiv:2412.03603, 2024.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming
Cheng, and Jian Yang. Faster diffusion: Rethinking the role of unet encoder in diffusion models.
CoRR, 2023a.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 17535–17545, 2023b.

Zhiteng Li, Hanxuan Li, Junyi Wu, Kai Liu, Linghe Kong, Guihai Chen, Yulun Zhang, and Xi-
aokang Yang. Dvd-quant: Data-free video diffusion transformers quantization. arXiv preprint
arXiv:2505.18663, 2025.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Dong Liu, Jiayi Zhang, Yifan Li, Yanxuan Yu, Ben Lengerich, and Ying Nian Wu. Fastcache:
Fast caching for diffusion transformer through learnable linear approximation. arXiv preprint
arXiv:2505.20353, 2025a.

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
Qixiang Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion
model. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 7353–
7363, 2025b.

Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, and Linfeng Zhang. From reusing to fore-
casting: Accelerating diffusion models with taylorseers. arXiv preprint arXiv:2503.06923, 2025c.

Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
arXiv:2209.14577, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Xuewen Liu, Zhikai Li, and Qingyi Gu. Cachequant: Comprehensively accelerated diffusion mod-
els. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 23269–
23280, 2025d.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in neural
information processing systems, 35:5775–5787, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. Machine Intelligence Research, pp.
1–22, 2025.

Weijian Luo, Zemin Huang, Zhengyang Geng, J Zico Kolter, and Guo-jun Qi. One-step diffusion
distillation through score implicit matching. Advances in Neural Information Processing Systems,
37:115377–115408, 2024.

12

https://github.com/black-forest-labs/flux

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, and Kwan-Yee K
Wong. Fastercache: Training-free video diffusion model acceleration with high quality. arXiv
preprint arXiv:2410.19355, 2024.

Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating
diffusion transformer via layer caching. Advances in Neural Information Processing Systems, 37:
133282–133304, 2024a.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for
free. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 15762–15772, 2024b.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 14297–14306, 2023.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Junxiang Qiu, Lin Liu, Shuo Wang, Jinda Lu, Kezhou Chen, and Yanbin Hao. Accelerating diffusion
transformer via gradient-optimized cache. arXiv preprint arXiv:2503.05156, 2025.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Omid Saghatchian, Atiyeh Gh Moghadam, and Ahmad Nickabadi. Cached adaptive token merg-
ing: Dynamic token reduction and redundant computation elimination in diffusion model. arXiv
preprint arXiv:2501.00946, 2025.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-forward
caching in diffusion transformer acceleration. arXiv preprint arXiv:2407.01425, 2024.

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 1972–1981, 2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
models. arXiv preprint arXiv:2503.20314, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
Advances in Neural Information Processing Systems, 36:15903–15935, 2023.

Jingfeng Yao, Cheng Wang, Wenyu Liu, and Xinggang Wang. Fasterdit: Towards faster diffusion
transformers training without architecture modification. Advances in Neural Information Pro-
cessing Systems, 37:56166–56189, 2024.

Hancheng Ye, Jiakang Yuan, Renqiu Xia, Xiangchao Yan, Tao Chen, Junchi Yan, Botian Shi, and
Bo Zhang. Training-free adaptive diffusion with bounded difference approximation strategy. Ad-
vances in Neural Information Processing Systems, 37:306–332, 2024.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 6613–6623, 2024.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.
arXiv preprint arXiv:2412.20404, 2024.

Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion
transformers with token-wise feature caching. arXiv preprint arXiv:2410.05317, 2024a.

Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, and Linfeng Zhang.
Accelerating diffusion transformers with dual feature caching. arXiv preprint arXiv:2412.18911,
2024b.

Zhen Zou, Hu Yu, Jie Xiao, and Feng Zhao. Exposure bias reduction for enhancing diffusion trans-
former feature caching. arXiv preprint arXiv:2503.07120, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

This is the appendix for our submission titled Plug-and-Play Fidelity Optimization for Diffusion
Transformer Acceleration via Cumulative Error Minimization. This appendix supplements the main
paper with the following content:

• A The Use of Large Language Models

• B More Details of Offline Error Modeling

– B.1 Visualization for Error Distribution
– B.2 Impact of the Source of Offline Samples
– B.3 Impact of the Number of Offline Samples
– B.4 Offline Modeling Cost
– B.5 Robustness of Modeled Error
– B.6 Scalability of Error Modeling

• C More Details of Dynamic Caching Strategy

– C.1 Dynamic Programming Pseudocode
– C.2 Cumulative Error vs. Real Error
– C.3 Online Cost

• D More Experiments

– D.1 More implementation details
– D.2 Results Under Different Acceleration Efficiencies
– D.3 Higher Resolutions and Longer Frames
– D.4 Comparison with learning-based methods
– D.5 Comparison with one-step diffusion

• E More Visualization

– E.1 StableDiffusion1.5
– E.2 PixArt-α
– E.3 Hunyuan
– E.4 DiT-XL/2
– E.5 Visualization with Complex Prompts

A THE USE OF LARGE LANGUAGE MODELS

We only used GPT4 for minor writing polishing and grammar correction during the writing process.
We affirm that no large language model was involved in any other aspect of this work, including
idea, coding, experiments and main writing.

B MORE DETAILS OF OFFLINE ERROR MODELING

B.1 VISUALIZATION FOR ERROR DISTRIBUTION

As described in the main paper, we compute the differences between the hidden states stored from
previous timesteps in the cache and those computed at the current timestep to model the error dis-
tribution across various cache intervals and denoising steps. We present the corresponding error
distribution trends for all generation models. Fig. 7 illustrates the complete error distributions of the
models evaluated on three tasks. The results clearly show that the error distributions vary notably
across models, highlighting that previous fixed or linearly varying caching strategies lack sufficient
generalization capability.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

TimestepCache intervals

Error

FLUX1.0 dev

DiT-XL/2StableDiffusion1.5

PixArt-

Cache intervals

Cache intervals Cache intervals

Timestep

Timestep Timestep

Error

Error

Error

Caching error across timesteps Error distribution across cache intervals

Caching error across timesteps Error distribution across cache intervals

(a) FLUX1.0 dev

(b) Hunyuan

Cache intervalsTimestep

Error

Cache intervals
Timeste

p

Error

Cache intervalsTimestep

Error Error

Cache intervals Timestep

FLUX.1dev

DiT-XL/2StableDiffusion1.5

PixArt-

FLUX.1-dev

Hunyuan

(a)

(b)

(a) (b)

Cache intervalsTimestep

Error

Cache intervals
Timeste

p

Error

Cache intervalsTimestep

Error Error

Cache intervals Timestep

FLUX.1-dev

DiT-XL/2-DDIMStableDiffusion1.5

PixArt -

DiT-XL/2-DDPMHunyuanOpenSora DiT-XL/2-DDIM

Text-to-video generation Class-to-image generation

StableDiffusion1.5 PixArt - FLUX.1-dev

Text-to-image generation

Timestep

Timestep
Timestep Timestep

Timestep

Timestep
Timestep

Cache intervals

Cache intervals
Cache intervals

Cach
e i

nte
rva

ls

Cache intervalsCache intervals

Cache intervals

Figure 7: Offline error modeling. We model caching error based on the joint variation of cache
intervals and denoising timesteps, covering seven generation models across three tasks. In this
figure, the caching error is normalized.

Table 7: Results on DrawBench with Different Data Sources. We perform offline error modeling
on the FLUX.1-dev using prompts from DrawBench, COCO2017 Captions and GPT-Random, and
evaluate generation fidelity on the DrawBench benchmark.

Dataset of OEM/Actual inference Cosine distance of CLIP IR↑ CLIP(G)↑
Random from GPT / Drawbench 0.841 0.9205 32.66

COCO2017 captions / Drawbench 0.895 0.9205 32.66
Drawbench / Drawbench 0.000 0.9205 32.66

(a) (b) (c)

(a) (b) (c)

Error type Error type

FID↓ IS↑

Number of random samples ImageReward↑

Error↓

(a) (b) (c)

Figure 8: T-SNE visualization of prompt fea-
tures from different sources. The prompt fea-
tures from DrawBench, COCO2017 captions,
and GPT-Random exhibit clear separability, in-
dicating that their distinct data sources result in
substantially different feature distributions.

Beyond their variation across denoising
timesteps, caching errors exhibit non-uniform
scaling behaviors under different cache intervals.
For instance, on OpenSora, the caching error
at an interval of 7 is unexpectedly lower than
at smaller intervals. On Hunyuan and SD1.5,
the error distributions become progressively
more pronounced as the cache interval increases,
shifting from an approximately linear pattern
to a U-shaped curve. On FLUX.1-dev, an
anomalously high caching error occurs during
the middle denoising steps when the interval is
set to 10. These variations cannot be captured
by treating the cache error solely as a function
of denoising timesteps, underscoring the impor-
tance of incorporating the cache interval as a key
variable in error modeling.

This joint modeling approach enables us to si-
multaneously capture the influences of denois-
ing stages and caching strategies on the resulting
cache error. It naturally aligns with the dynamic
programming proposed later, allowing our CEM to account for variations across denoising stages
and scale differences across cache intervals, thereby deriving an optimal caching strategy that mini-
mizes the overall caching error.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Impact of OEM random sample size on generation fidelity (DiT-XL/2). We perform
offline error modeling on DiT-XL/2 using different numbers of samples and evaluate the generation
fidelity after acceleration on the DuCa baseline.

Sample Num 10 50 100 200 300 500 1000
Time of OEM 2.67m 12.71m 25.52m 51.04m 1.28h 2.13h 4.25h

FID↓ 2.84 2.83 2.80 2.80 2.80 2.80 2.80
IS↑ 235.44 235.42 235.20 235.20 235.20 235.20 235.20

Table 9: Impact of OEM random sample size on generation fidelity (FLUX.1-dev). We per-
form offline error modeling on FLUX.1-dev using different numbers of samples and evaluate the
generation fidelity after acceleration on the TaylorSeer baseline.

Sample Num 10 50 100 200 300 500 1000
Time of OEM 31.71m 1.05h 2.08h 4.15h 6.27h 10.38h 20.77h

IR↑ 0.9202 0.9205 0.9205 0.9205 0.9205 0.9205 0.9205
CLIP(G)↑ 32.62 32.66 32.66 32.66 32.66 32.66 32.66

B.2 IMPACT OF THE SOURCE OF OFFLINE SAMPLES

The offline error modeling captures the model’s intrinsic sensitivity to different acceleration oper-
ations, as revealed through a limited number of sample generation experiments. This sensitivity is
model-intrinsic and content-agnostic, indicating that the prompts used during modeling have negli-
gible impact on the results.

To validate this, we construct modeling prompt sets from three distinct data sources (random
prompts from GPT, captions of COCO2017, and prompts of DrawBench) and evaluate the accel-
erated generation quality on the DrawBench. As shown in Tab. 7, we quantify the distributional
differences among the three sources using Cosine distance with CLIP, and include a t-SNE visual-
ization in Fig. 8, which clearly highlights distributional variation. Nevertheless, the offline errors
derived from these three sources yield identical quality results on DrawBench, confirming that the
error modeling process is indeed content-agnostic.

B.3 IMPACT OF THE NUMBER OF OFFLINE SAMPLES

Our previous experiments have demonstrated that offline error modeling (OEM) reflects an intrinsic
model property independent of sample content. To further examine the modeling difficulty, we
evaluate the generation fidelity constructed from different offline sample sets on DiT-XL/2 and
FLUX.1-dev.

As shown in Tab. 8, for DiT-XL/2, generation fidelity remains largely unaffected by the number of
modeling samples when the sample size exceeds 50, indicating convergence of the modeled error
and resulting in consistent cache-interval configurations in the derived strategy. A similar trend
is observed on FLUX.1-dev: when more than 10 samples, the generation fidelity remains fully
consistent regardless of the number of offline samples. Collectively, the findings from both models
indicate that the caching error can be easily captured from a small set of random samples, thereby
reflecting the intrinsic sensitivity inherent to the model.

B.4 OFFLINE MODELING COST

In Tab. 5 of the main paper, we summarize the costs and analyses of the primary models across three
tasks. Here, we provide the costs for all models.

We report the time and memory overhead of offline error modeling for each generation model dis-
cussed in the paper, with the following clarifications:

• Offline error modeling is performed once per model, and the resulting error can be permanently
reused with strong generalization across configurations.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: Offline modeling cost of all models. This modeling is built upon random content gener-
ation, which introduces additional overhead beyond generation itself due to the need to store inter-
mediate results and compute feature errors.

Tasks Text2Image Text2Video Class2Image

Models FLUX.1-dev PixArt-α SD1.5 Hunyuan Wan21 OpenSora DiT-XL/2
Sample Num 100 100 100 10 10 10 100

Time w/o. OEM 1.92h 13.52m 38.88m 4.72h 2.73h 3.63h 19.63m
Time w/. OEM 2.08h(+8.3%) 14.71m(+8.8%) 43.83m(+12.7%) 5.21h(+10.4%) 4.15h(+52.0%) 4.65h(+28.1%) 25.52m(+30.0%)

Memory w/o. OEM 43.42GB 22.31GB 3.65GB 57.36GB 40.83GB 52.40GB 4.09GB
Memory w/. OEM 53.06GB(+22.2%) 22.65GB(+1.5%) 3.67GB(+0.5%) 72.62GB(+26.6%) 63.46GB(+55.4%) 52.40GB(+0.0%) 4.65GB(+13.7%)

• Random content generation inherently incurs overhead (see “w/o. OEM” in Tab. 10). Since our
modeling measures the sensitivity of these generations to acceleration, the additional cost beyond
content generation represents the true overhead of the modeling process.

• The offline modeling overhead does not reflect the inference cost. After modeling, invoking CEM
and performing cache-strategy optimization incur only negligible additional overhead (see Tab. 12,
DCS overhead).

The additional memory overhead primarily results from storing intermediate features during infer-
ence to compute differences across cache intervals. On average (including Wan21 we added), offline
error modeling introduces only a 15.8% increase in memory usage and a 16.8% increase in model-
ing time relative to random content generation, both well below 20%. Considering the performance
gains of CEM and its zero inference-time overhead, this cost is entirely acceptable.

B.5 ROBUSTNESS OF MODELED ERROR

We further evaluate the robustness of modeled error under varying conditions, based on Tab. 6
in Sec. 4.3. For each generation model, the caching error is modeled once and reused across all
experimental settings to assess the stability of the offline modeling.

Specifically, we evaluate CEM under variations in random seeds, CFG values, resolutions and
frames. As shown in Tab. 6, on FLUX.1-dev, CEM consistently improves the generation fidelity
of the baseline (TaylorSeer) at equal acceleration efficiency, regardless of changes in seed, CFG, or
resolution. Similarly, on Hunyuan, CEM also enhances generation fidelity across different frame
numbers.

Overall, the modeled error demonstrates strong robustness, remaining effective without re-modeling
when configurations vary. This confirms the practicality and ease of deployment of CEM as a
training-free solution for real-world generative applications.

B.6 SCALABILITY OF ERROR MODELING

The overhead of offline error modeling is influenced by the model scale. The time overhead mainly
depends on the model’s inherent inference speed, which varies with its stochastic generation pro-
cess, while our additional cost remains relatively small (averaging 16.8% from Tab. 10). Similarly,
the memory overhead is dominated by the model parameters themselves, with our caching and com-
putation contributing only about 15.8% (from Tab. 10) on average.

Overall, larger models generally incur higher absolute overhead. However, two points should be
noted:

• Most of the overhead originates from the model itself rather than from our modeling process.
• The relationship is not strictly monotonic, for example, SD15 is smaller than DiT-XL/2, yet its

modeling time is longer.

C MORE DETAILS OF DYNAMIC CACHING STRATEGY

C.1 DYNAMIC PROGRAMMING PSEUDOCODE

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 Dynamic Programming Strategy

Input: Total steps T , number of caching Nc, cache interval candidate setN , dynamic approximate
costs E∗(t, n)

Output: Cache interval set C
1: Initialize dp[t][j]←∞, dp[T][1]← 0, prev[t][j]← None, ∀t ∈ [T, 1], ∀j ∈ [1, Nc]
2: for j = 1 to Nc do
3: for t = T down to 1 do
4: if dp[t][j] <∞ then
5: for all n ∈ N do
6: if t > 0 then
7: if dp[t][j + 1] > dp[t+ n][j] + E∗(t, n) then
8: dp[t][j + 1]← dp[t+ n][j] + E∗(t, n)
9: prev[t][j + 1]← (t, n)

10: Backtracking: C ← {}, t← 1, j ← Nc

11: while j > 0 do
12: (tnext, n)← prev[t][j]
13: C ← C ∪ {t}
14: t← tnext, j ← j − 1
15: return C

We provide the pseudo-code of the dynamic programming algorithm in the appendix to clarify its
implementation details. Due to the approximate error introduced by cumulative integration, the cost
in our dynamic programming formulation is non-static—it varies across denoising timesteps ac-
cording to the selected cache interval. The algorithm is built upon the optimal substructure property
described in the main paper and ultimately identifies the minimal cumulative error for the entire
caching strategy. The optimal cache interval at each stage is obtained via backtracking from the
computed total error. Specifically, as shown in the last five lines of Alg. 1, we iteratively trace back
the timesteps associated with the previously minimized error and record their corresponding cache
intervals, thereby constructing the complete caching strategy.

C.2 CUMULATIVE ERROR VS. ACTUAL ERROR

The cumulative error approximation models the continuous accumulation of caching error during
accelerated denoising. To demonstrate its simplicity and effectiveness, we provide supporting evi-
dence from multiple perspectives.

(a) (b) (c)

Error type Error type

FID↓ IS↑

Number of random samples ImageReward↑

Error↓

(a) (b) (c)

Timesteps

Error Error Error

Cache intervals Timesteps(a) (b) (c)

Figure 9: Cumulative error vs. real error.
The cumulative error approximation captures
the trend of real-error variation during denois-
ing under different cache intervals on Hunyuan.

Additional analysis on cumulative error ap-
proximation. The cumulative error approxima-
tion simulates the progressive buildup of caching
errors during denoising, grounded in the offline
error modeling. Based on this foundation, our de-
sign motivations for this module are as follows:

• The offline error modeling omits the influence
of previously accumulated errors on the current
timestep, as directly modeling cumulative er-
rors would incur exponentially increasing com-
putational costs, rendering the process highly
inefficient.

• We aim to realize this approximation through a
simple operation, avoiding complex computa-
tions that could undermine the intended accel-
eration efficiency.

• We conduct quantitative experiments compar-
ing the cumulative-integration caching error
with the actual error and find that it effectively
meets our design objective.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 11: Cumulative Error vs. Real Error. Using a cache interval of 5 as an example, we report
the error comparison on FLUX.1-dev and Hunyuan.

Timestep 0 5 10 15 20 25 30 35 40 45 49

FLUX.1-dev GT error 0.000 0.004 0.279 0.434 0.603 0.682 0.714 0.840 0.893 1.025 1.233
Cumulative error 0.000 0.001 0.289 0.432 0.560 0.667 0.745 0.823 0.902 1.023 1.221

Hunyuan GT error 0.000 0.154 0.391 0.526 0.794 0.971 1.079 1.285 1.532 1.755 2.141
Cumulative error 0.000 0.082 0.363 0.552 0.748 0.934 1.101 1.272 1.490 1.747 2.182

Quantitative difference between cumulative error and actual error. Building on the above anal-
ysis, we conduct a quantitative evaluation to measure the difference between the cumulative error
and the actual error.

As shown in Fig. 3(c) of the main paper, the evolution of these differences on FLUX.1-dev under var-
ious acceleration efficiencies has already been illustrated. Here, we further report the key-timestep
error differences on FLUX.1-dev and Hunyuan, along with additional line-chart comparisons for
Hunyuan.

As presented in Tab. 11, the final difference between cumulative and ground-truth (GT) errors is only
0.80% on FLUX.1-dev and 2.89% on Hunyuan, indicating that the cumulative error closely approx-
imates the actual error. The Fig. 3(c) and Fig. 9 further show highly consistent trajectories between
cumulative and actual errors across cache intervals, confirming the accuracy and effectiveness of our
approximation.

Additional theoretical analysis. In addition to the experimental evaluation of the approximation
effect, we further provide a theoretical analysis of how the cumulative error approximates the real
error. Together, these theoretical and empirical results comprehensively validate the rationality and
effectiveness of our cumulative error approximation module.

The bound between the cumulative error and the actual error.

We obtained content-agnostic prior errors from the offline modeling and derived the estimated cu-
mulative error E∗ through integral accumulation. To better illustrate the difference between them,
we define the actual error under the same operation during formal inference as E (Unlike the E de-
fined in Eq. 1, the symbol here is introduced merely to distinguish notation within the current proof),
while the true propagated error of the cached latent during the denoising process is defined as Ê .

We assume the DiT is Lipschitz continuous (common in Diffusion models for bounded error propa-
gation), i.e., ∥D(x, t)−D(y, t)∥ ≤ L∥x− y∥ for some Lipschitz constant L > 0.

First, we need to establish the approximate relationship between the offline cumulative error E∗ and
the cumulative error E that occurs during actual inference. The offline E∗ is an empirical estimate of
the error distribution using Ns random samples, while E is computed for a specific inference sample.

Theorem 1. Under the assumption of unified error distribution, the difference |E∗(t, n) − E(t, n)|
is bounded by:

|E∗(t, n)− E(t, n)| ≤

√
log(2/δ)

2Ns
+ ϵvar, (4)

where δ ∈ (0, 1) is a confidence parameter, and ϵvar is a small variance term (empirically small, as
per Fig. 3(a)).

Proof. Since diffusion-generated content follows the same underlying distribution, we assume that
the caching error in DiT also follows the unified distribution.

Let µ(t, n) be the true population mean of the cosine error over all possible contents. Then, E(t, n)
for offline is the empirical mean µ̂(t, n) = 1

Ns

∑
i Ei(t, n), and for online it’s a single-sample esti-

mate (or small batch).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

By Hoeffding’s inequality (since cosine errors are bounded in [0,1]), with probability at least 1− δ:

|µ̂(t, n)− µ(t, n)| ≤

√
log(2/δ)

2Ns
. (5)

The online E(t, n) deviates from µ(t, n) by at most the empirical variance ϵvar (small, as per the
analysis: low variance across contents and intervals).

For cumulation: Since CUMSUM is a linear operator, the bound propagates:

|E∗(t, n)− E(t, n)| ≤
t∑

τ=1

|E∗(τ, n)− E(τ, n)| ≤ t

√
log(2/δ)

2Ns
+ ϵvar

 . (6)

(For total timesteps T , the worst-case bound is O(T/
√
Ns), but empirically tighter due to low ϵvar.)

This holds because extended experiments (Appendix. B.2) show consistency across prompt sources,
confirming the i.i.d. assumption. Thus, E∗ ≈ E with high probability (Appendix. C.2 supports this).

Theorem 2. Assuming DiT modules have high structural similarity (perturbations propagate near-
linearly, as observed in Fig. 3(c)), the difference |E(t, n)− Ê(t, n)| is bounded by:

|E(t, n)− Ê(t, n)| ≤ L ·
t∑

τ=1

E(τ, n) + ϵprop, (7)

where L is the Lipschitz constant of D, and ϵprop is a small propagation residual (empirically near-
zero, as the approximation matches GT).

Proof. In DiT, each timestep’s output isD(xt, t) = f(D(xt+1, t+1)+δ), where f is the transformer
layer, and δ is noise/caching perturbation. Caching introduces error E(t, n) at each step, which
propagates to future steps. The true propagated error Ê(t, n) satisfies a recurrence:

Ê(t, n) = E(t, n) + g(Ê(t+ 1, n)), (8)

where g models propagation (approximately linear due to DiT’s residual connections and atten-
tion linearity). The CUMSUM approximation assumes g ≈ Id (identity, i.e., direct summation),
which holds because of “high structural similarity between input and output” (as noted in Liu et al.
(2025b)).

By the Lipschitz assumption, propagation error is bounded: |g(e) − e| ≤ L · e + ϵprop, where ϵprop
captures non-linear residuals (small in DiT). Unrolling the recurrence over t steps yields the bound
via triangle inequality. For the caching strategy (DP-selected intervals), the bound extends to the
full sequence, as DP preserves substructure:

|E(t, n)− Ê(t, n)| ≤ L ·
t∑

τ=1

E(τ, n) + ϵprop. (9)

Thus, E ≈ Ê , with the bound tightening for smaller single-step errors.

Finally, by chaining Theorems 1 and 2 (triangle inequality):

|E∗(t, n)− Ê(t, n)| ≤ |E∗(t, n)− E(t, n)|+ |E(t, n)− Ê(t, n)| (10)

≤ t

√
log(2/δ)

2Ns
+ ϵvar

+ L ·
t∑

τ=1

E(τ, n) + ϵprop. (11)

This upper bound is O(T/
√
Ns + L · Etotal), where Etotal is total single-step error. Empirically, it’s

small, confirming the approximation.

Theoretical analysis of dynamic programming.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 12: Online cost of the DCS module across all models. During actual inference, DCS primar-
ily loads the prior error matrix into memory and solves a dynamic programming problem to obtain
the optimal caching strategy, which can be shared across batch generation for improved efficiency.

Tasks Text2Image Text2Video Class2Image

Models FLUX.1-dev PixArt-α SD1.5 Hunyuan Wan21 OpenSora DiT-DDPM DiT-DDIM
Time of DPS 1.10ms 0.12ms 0.80ms 0.71ms 0.85ms 0.27ms 6.96ms 1.13ms
Shape of error 50*9 20*9 50*9 50*9 50*9 30*9 250*9 50*9

Memory of error 0.88KB 0.35KB 0.88KB 0.88KB 0.88KB 0.53KB 4.39KB 0.88KB

Time Complexity: The DP table has O(T · Nc) entries (t ∈ [1, T], j ∈ [1, Nc]). For each entry
dp[t][j+1] (for j ≥ 0), we evaluate the min over |N | possible intervals n, each requiring O(1) time
to compute E∗(t, n) + dp[t+ n][j] (assuming E(t, n) is precomputed offline in O(T · |N |) time, as
it’s content-agnostic). Thus, filling the table takes O(T ·Nc · |N |) time. Backtracking: O(T) time
(traverse the path of Nc choices, each step O(1)).
Overall Time Complexity: O(T · Nc · |N |), which is efficient since T is small (e.g., 50), Nc < T
(budget-constrained), and |N | is small (e.g., 10 practical intervals). The analysis notes no additional
overhead during inference, as DP runs offline once per model. The actual time consumption of the
dynamic programming (DP) process can be found in Appendix. C.3 and Tab. 12.

Space Complexity: DP table: O(T · Nc) space (store floats for errors). Precomputed E∗(t, n):
O(T · |N |) space. Backtracking can use the table itself (no extra space) or a separate predecessor
array (O(T · Nc)). This complexity is polynomial and scalable, enabling ”optimal cache-interval
combination that can be shared across multiple generations without additional overhead” (Sec. 3.2
analysis).

Proof of Optimality: Suppose there exists an optimal strategy S∗ for dp[t][j + 1] that chooses
interval n, but the sub-strategy S′ for dp[t + n][j] is not optimal (i.e., there exists a better sub-
strategy S′′ with lower error for dp[t+ n][j]). Then, replacing S′ with S′′ in S∗ would yield a new
strategy with total error E∗(t, n) + error(S′′) < E∗(t, n) + error(S′), contradicting the optimality
of S∗. Thus, subproblems must be optimal.
This holds because: 1). The denoising process is sequential and acyclic (timesteps decrease from
T to 1). 2). Errors are additive E∗(t, n) is independent of future choices, depending only on the
current interval and offline modeling). 3). The budget Nc is fixed, and choices do not overlap (each
caching operation covers distinct timestep segments).

C.3 ONLINE COST

During inference, the computational overhead of CEM mainly stems from loading the pre-modeled
error distribution and solving the dynamic programming optimization.

The memory cost is negligible, as each model only stores an array of size N×T (where N is the
number of cache intervals and T the number of timesteps). The time overhead is similarly minimal,
the dynamic programming process involves at most T iterations, resulting in computation times on
the order of milliseconds. Moreover, the derived optimal caching strategy can be shared across
multiple generations with the same acceleration efficiency, further amortizing this minor cost.

D MORE EXPERIMENTS

D.1 MORE IMPLEMENTATION DETAILS

We conduct comprehensive experiments across three major generative tasks covering representa-
tive text-to-image, text-to-video, and class-to-image diffusion models, as well as multiple SOTA
acceleration techniques.

Generation models. Text-to-Image Generation: We evaluate three diffusion-based text-to-image
generation models: (1) Stable Diffusion v1.5 (SD1.5) Rombach et al. (2022), a latent diffusion
model (LDM) trained on LAION-5B, generating images at a resolution of 512×512. (2) PixArt-
α Chen et al. (2023), a transformer-based diffusion model that performs efficient pixel-space mod-

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

eling at 256×256 resolution. (3) FLUX.1-dev Labs (2024), a state-of-the-art diffusion transformer
trained at 1024×1024 resolution, capable of producing high-fidelity, photorealistic images.

Text-to-Video Generation: We include three representative video diffusion models: (1) Hunyuan-
Video Kong et al. (2024), generating 65 frames at 480p resolution, emphasizing realistic motion and
temporal coherence. (2) Wan2.1-1.3B Wan et al. (2025), a lightweight and efficient video diffusion
transformer generating 65 frames at 480p. (3) OpenSora Zheng et al. (2024), an open research model
producing 2-second clips at 480p, enabling temporally consistent text-conditioned generation.

Class-to-Image Generation: We adopt DiT-XL/2 Peebles & Xie (2023), a large diffusion transformer
trained on ImageNet, evaluated with both DDPM Ho et al. (2020) and DDIM Song et al. (2020)
samplers at a 256×256 resolution.

Acceleration Baselines. Our method (CEM) is integrated into six representative acceleration or effi-
ciency improvement approaches: FasterSD Li et al. (2023a) accelerates diffusion by reusing features
extracted from shallow network layers to reduce redundant computation in deeper ones; ToCa Zou
et al. (2024a) combines caching and pruning mechanisms to jointly optimize computational reuse
and step reduction; DuCa Zou et al. (2024b) integrates conservative and aggressive caching strate-
gies to maintain a balance between fidelity and acceleration; TaylorSeer Liu et al. (2025c) predicts
reusable features from historical cache states through a Taylor-series expansion rather than directly
reusing cached results; TeaCache Liu et al. (2025b) adaptively determines the caching policy based
on the relationship between input and output activations; and Q-DiT Chen et al. (2025a) is a training-
free quantized Diffusion Transformer that serves as our platform to validate the compatibility of
CEM with quantized models.

Evaluation and Metrics. For text-to-image generation, all models produce images conditioned on
captions from the MS-COCO 2017 dataset Lin et al. (2014). For text-to-video generation, evalua-
tions are conducted on VBench Huang et al. (2024b), a comprehensive benchmark of 16 sub-tasks
assessing spatial fidelity, motion consistency, and text–video alignment. For class-to-image gener-
ation, DiT-XL/2 is evaluated on ImageNet Deng et al. (2009) by generating images for its 1,000
labeled categories.

We employ standard metrics to assess fidelity, perceptual quality, diversity, and semantic alignment.
Fréchet Inception Distance (FID) Heusel et al. (2017) measures distributional similarity between
generated and real images; lower values indicate better fidelity. CLIPScore (CLIP) Hessel et al.
(2021) evaluates semantic alignment between text and images, and higher scores denote stronger
consistency. ImageReward (IR) Xu et al. (2023) reflects human aesthetic preference; higher is bet-
ter. Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) evaluate
pixel-level and structural fidelity, both maximized for better reconstruction quality. Learned Percep-
tual Image Patch Similarity (LPIPS) quantifies perceptual difference in deep feature space; lower
indicates higher similarity.

For video generation, VBench Huang et al. (2024b) jointly evaluates realism, temporal smoothness,
and motion–text consistency, with higher scores representing better video quality. In class-to-image
generation, we report Sliced FID (sFID) for image fidelity, Inception Score (IS) Salimans et al.
(2016) for diversity, and Precision (P) and Recall (R) to measure the trade-off between fidelity and
diversity.

Finally, generation efficiency is reported using both theoretical FLOPs and empirical latency. Image
models are tested on RTX 4090, while FLUX.1-dev and all video models are evaluated on A800
GPUs due to higher computational demands.

D.2 RESULTS UNDER DIFFERENT ACCELERATION EFFICIENCIES

Text-to-image generation. Tab. 13 presents a comprehensive quantitative comparison across di-
verse text-to-image generation settings, demonstrating the effectiveness and generality of our pro-
posed CEM when integrated into various acceleration frameworks.

On SD1.5, CEM consistently improves generation quality over all baselines. Under identical accel-
eration configurations (e.g., same FLOPs and latency as FasterSD), it reduces FID from 21.62 to
19.99 and increases perceptual scores such as CLIP and SSIM, indicating enhanced fidelity without
extra computational cost.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 13: Quantitative comparison on text-to-image generation under different acceleration
efficiencies. ↓/↑ denotes lower/higher values indicate superior performance. “-” denotes the absence
of reference results. “+Ours” indicates the baseline with our CEM. Bold font highlights our better
results.

SD1.5, MSCOCO2017 10K, DDIM 50 steps, 512×512, RTX4090
FLOPS(T)↓ Spe↑ Lat(s)↓ Spe↑ FID↓ CLIP(L)(%)↑ PSNR↑ SSIM↑ LPIPS↓

Origin 37.05 1.00× 1.44 1.00× 21.75 30.92 INF 1.00 0.00
50% steps 18.53 2.00× 0.73 1.97× 25.21 32.15 20.19 0.62 0.26

DeepCache - - 0.63 2.27× 21.53 30.80 - - -
FasterSD 27.35 1.35× 0.33 4.35× 21.62 32.54 16.42 0.56 0.36

+Ours 27.35 1.35× 0.33 4.35× 19.99 32.85 15.77 0.60 0.35
PixArt-α, MSCOCO2017 30K, DPM-Solver 20 steps, 256×256, RTX4090

FLOPS(T)↓ Spe↑ Lat(s)↓ Spe↑ FID↓ CLIP(L)(%)↑ PSNR↑ SSIM↑ LPIPS↓
Origin 11.18 1.00× 0.86 1.00× 28.06 16.29 INF 1.00 0.00

50% steps 5.59 2.00× 0.43 2.00× 37.41 15.82 18.67 0.70 0.20
FORA 5.66 1.98× 0.52 1.64× 29.67 16.40 - - -

DeepCache - - 0.62 1.39× 31.57 16.24 - - -
ToCa 4.26 2.62× 0.44 1.97× 29.73 16.45 - - -

DuCa(N=3) 6.19 1.81× 0.50 1.72× 28.39 16.44 17.79 0.63 0.24
+Ours 6.54 1.71× 0.53 1.62× 27.06 16.44 21.45 0.79 0.13

DuCa(N=4) 5.90 1.89× 0.49 1.76× 35.36 16.45 15.99 0.52 0.35
+Ours 5.94 1.88× 0.49 1.76× 27.20 16.42 20.94 0.78 0.14

DuCa(N=5) 4.79 2.33× 0.40 2.15× 41.56 16.46 14.96 0.46 0.42
+Ours 4.75 2.35× 0.39 2.20× 27.57 16.37 18.25 0.68 0.21

FLUX.1-dev, DrawBench, Rectified Flow 50 steps, 1024×1024, A800
FLOPS(T)↓ Spe↑ Lat(s)↓ Spe↑ IR↑ CLIP(G)(%)↑ PSNR↑ SSIM↑ LPIPS↓

Origin 3719.50 1.00× 35.63 1.00× 0.9649 32.57 INF 1.00 0.00
50% steps 1859.75 2.00× 17.82 2.00× 0.9874 32.77 17.23 0.67 0.32
25% steps 967.07 3.85× 8.91 4.00× 0.9310 32.72 14.71 0.58 0.46
∆-DiT 1686.76 2.21× 18.27 1.95× 0.8561 - - - -
FORA 1320.07 2.82× 14.66 2.43× 0.9227 - - - -

ToCa(N=4) 1263.22 2.94× 14.60 2.44× 0.9822 32.36 18.27 0.67 0.30
+Ours 1263.22 2.94× 14.13 2.52× 1.0151 32.67 17.72 0.67 0.31

TeaCache(l=0.4) 1413.41 2.63× 25.45 1.40× 0.7040 30.72 18.70 0.74 0.29
+Ours 1413.41 2.63× 23.60 1.51× 0.7545 31.34 17.24 0.69 0.34

TeaCache(l=0.6) 1115.85 3.33× 16.57 2.15× 0.7228 30.66 17.41 0.70 0.35
+Ours 1115.85 3.33× 16.05 2.22× 0.7362 31.13 17.89 0.71 0.33

TeaCache(l=0.8) 892.68 4.17× 12.33 2.89× 0.7136 30.74 16.50 0.66 0.40
+Ours 892.68 4.17× 12.08 2.95× 0.7139 30.77 16.96 0.67 0.39

TaylorSeer(N6O1) 744.81 4.99× 10.09 3.53× 0.9410 32.57 15.59 0.60 0.41
+Ours 744.81 4.99× 10.09 3.53× 0.9811 32.89 16.11 0.61 0.39

TaylorSeer(N7O1) 668.97 5.56× 8.61 4.14× 0.9233 32.55 14.94 0.57 0.46
+Ours 668.97 5.56× 8.59 4.15× 0.9449 32.59 15.71 0.58 0.42

TaylorSeer(N8O1) 595.12 6.25× 7.41 4.81× 0.8760 32.17 14.24 0.54 0.49
+Ours 595.12 6.25× 7.41 4.81× 0.9205 32.66 15.41 0.56 0.46

On PixArt-α, CEM achieves superior speed–quality trade-offs. Across different step-reduction lev-
els in DuCa (N=3–5), our method markedly lowers FID (e.g., from 41.56 to 27.57 at N=5) while
maintaining similar acceleration ratios. Perceptual metrics (SSIM/LPIPS) also improve consistently,
confirming CEM’s robustness across architectures and noise schedules.

On FLUX.1-dev, evaluated with DrawBench, CEM further enhances both image realism (IR) and
perceptual alignment (CLIP(G)) across all error correction baselines (ToCa, TeaCache, and Tay-
lorSeer). These gains come with no additional FLOPs or latency, showing that CEM mitigates
quality loss even under aggressive step reduction or caching.

Overall, across all diffusion backbones—from SD1.5 and PixArt-α to FLUX.1-dev—CEM con-
sistently boosts generation fidelity under equal or faster inference conditions. These results demon-
strate that our offline error modeling and dynamic programming framework offer a simple yet robust
enhancement that generalizes effectively across diverse text-to-image diffusion models.

Class-to-image generation. Tab. 14 summarizes the quantitative results for class-to-image gener-
ation using DiT-XL/2 under various acceleration and quantization settings. The results show that

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 14: Quantitative comparison on class-to-image generation with DiT-XL/2 and quan-
tized model under different acceleration efficiencies. W/A denotes the quantization bit-width of
weights and activations.

DiT-XL/2, ImageNet 50K, DDPM 250 steps, 256×256, RTX4090
FLOPS(T)↓ Spe↑ Lat(s)↓ Spe↑ FID↓ sFID↓ IS↑ P↑ R↑ PSNR↑ SSIM↑ LPIPS↓

Origin 118.68 1.00× 2.51 1.00× 2.23 4.57 275.64 0.83 0.58 INF 1.00 0.00
50% steps 59.34 2.00× 1.26 1.99× 2.42 5.04 270.40 0.82 0.57 8.55 0.14 0.78

FORA 39.95 2.97× 1.01 2.49× 2.80 6.21 - 0.80 0.59 - - -
ToCa(N=4) 43.42 2.73× 1.02 2.46× 2.59 5.73 255.93 0.80 0.59 22.61 0.77 0.17

+Ours 43.58 2.72× 0.99 2.54× 2.66 5.33 257.85 0.81 0.59 23.78 0.80 0.13
ToCa(N=5) 39.25 3.02× 0.92 2.73× 2.82 6.03 251.84 0.80 0.59 21.81 0.74 0.19

+Ours 39.39 3.01× 0.89 2.82× 2.82 5.82 252.47 0.80 0.59 23.04 0.78 0.15
ToCa(N=6) 36.30 3.27× 0.84 2.99× 3.08 6.58 246.59 0.79 0.59 20.92 0.71 0.21

+Ours 36.48 3.25× 0.82 3.06× 3.09 6.00 248.58 0.80 0.59 22.63 0.76 0.16
DiT-XL/2, ImageNet 50K, DDIM 50 steps, 256×256, RTX4090

FLOPS(T)↓ Spe↑ Lat(s)↓ Spe↑ FID↓ sFID↓ IS↑ P↑ R↑ PSNR↑ SSIM↑ LPIPS↓
Origin 23.74 1.00× 0.53 1.00× 2.25 4.33 239.93 0.80 0.59 INF 1.00 0.00

50% steps 11.87 2.00× 0.27 1.96× 2.87 4.58 231.05 0.79 0.58 9.05 0.16 0.80
33% steps 8.07 2.94× 0.18 2.94× 4.24 5.52 214.35 0.77 0.56 9.22 0.17 0.81
AdaCache - - 0.46 1.15× 4.64 - - - - - - -
TeaCache - - 0.32 1.66× 5.09 - - - - - - -
∆-DiT 16.14 1.47× 0.21 2.52× 3.75 5.70 207.57 - - - - -
FORA 8.58 2.77× 0.24 2.21× 3.55 6.36 229.02 - - - - -

LazyDiT 11.93 1.99× 0.28 1.89× 2.70 4.47 237.03 0.80 0.59 - - -
ToCa(N=4) 8.73 2.72× 0.25 2.12× 3.64 5.14 228.44 0.79 0.55 22.20 0.75 0.18

+Ours 8.70 2.73× 0.24 2.21× 3.19 5.12 229.59 0.79 0.57 23.57 0.79 0.14
ToCa(N=5) 7.44 3.19× 0.20 2.65× 6.37 7.09 199.48 0.74 0.53 16.56 0.53 0.40

+Ours 7.14 3.32× 0.18 2.94× 4.68 6.41 212.13 0.77 0.55 21.59 0.72 0.20
ToCa(N=6) 7.02 3.38× 0.18 2.94× 6.79 7.41 187.32 0.72 0.55 17.62 0.56 0.36

+Ours 6.72 3.53× 0.17 3.12× 5.38 6.84 205.52 0.76 0.55 20.83 0.69 0.23
DuCa(N=3) 9.58 2.48× 0.25 2.12× 3.05 4.66 233.11 0.80 0.57 24.62 0.82 0.12

+Ours 9.49 2.50× 0.25 2.12× 2.80 4.64 235.20 0.80 0.58 25.47 0.84 0.10
DuCa(N=4) 7.66 3.10× 0.20 2.65× 3.39 4.91 226.33 0.79 0.56 22.40 0.75 0.18

+Ours 7.40 3.21× 0.19 2.79× 3.36 5.15 226.59 0.79 0.57 23.69 0.79 0.14
DuCa(N=5) 6.32 3.76× 0.17 3.12× 6.07 6.64 199.64 0.74 0.52 16.63 0.53 0.39

+Ours 6.73 3.53× 0.17 3.12× 3.96 5.87 218.66 0.78 0.55 23.00 0.76 0.16
DuCa(N=6) 5.86 4.05× 0.15 3.53× 6.38 6.65 189.97 0.73 0.54 17.47 0.54 0.37

+Ours 5.69 4.17× 0.14 3.79× 5.06 6.75 206.03 0.77 0.54 21.62 0.70 0.21
TaylorSeer(N3O3) 8.55 2.78× 0.31 1.71× 2.34 4.69 238.42 0.80 0.59 35.13 0.96 0.02

+Ours 8.55 2.78× 0.30 1.77× 2.31 4.55 242.08 0.81 0.59 36.16 0.97 0.01
TaylorSeer(N4O4) 6.66 3.56× 0.27 1.96× 2.49 5.19 235.83 0.80 0.59 30.74 0.93 0.04

+Ours 6.66 3.56× 0.27 1.96× 2.46 4.80 238.28 0.80 0.59 31.76 0.94 0.03
TaylorSeer(N5O3) 5.34 4.45× 0.22 2.41× 2.65 5.36 231.59 0.80 0.59 28.48 0.90 0.07

+Ours 5.34 4.45× 0.22 2.41× 2.64 5.48 233.75 0.80 0.59 28.74 0.90 0.07
TaylorSeer(N6O1) 4.76 4.99× 0.14 3.79× 3.56 7.52 223.83 0.79 0.56 24.69 0.80 0.13

+Ours 4.76 4.99× 0.13 4.08× 3.08 6.43 231.10 0.80 0.57 25.64 0.83 0.10
DiT-XL/2, ImageNet 10K, DDIM 50 steps, 256×256, quantized, RTX4090

Size(MB)↓ Com↑ Lat(s)↓ Spe↑ FID↓ sFID↓ IS↑ P↑ R↑ PSNR↑ SSIM↑ LPIPS↓
Origin 1349 1.00× 0.62 1.00× 5.31 17.61 245.85 0.81 0.68 INF 1.00 0.00

Q-DiT(W6A8) 518 2.60× 0.45 1.38× 5.44 17.61 237.34 0.80 0.68 31.10 0.95 0.04
+Ours 518 2.60× 0.22 2.82× 5.51 17.49 240.36 0.80 0.68 31.06 0.93 0.05

Q-DiT(W4A8) 347 3.89× 0.39 1.59× 6.31 17.81 209.30 0.76 0.69 24.88 0.82 0.14
+Ours 347 3.89× 0.20 3.10× 6.20 17.62 213.50 0.76 0.69 24.99 0.82 0.14

integrating our proposed CEM consistently enhances both visual quality and efficiency across dif-
ferent diffusion configurations, sampling schedules, and precision levels.

Under the DDPM sampler, when combined with step-reduction and caching methods such as ToCa,
CEM improves quality while maintaining comparable computational cost. For example, at ToCa
(N=4), sFID decreases from 5.73 to 5.33 and PSNR increases from 22.61 to 23.78, with no notice-
able increase in FLOPs or latency. The stable Precision/Recall values further indicate that CEM
preserves generation diversity while improving fidelity.

Under the DDIM sampler, across multiple acceleration baselines (ToCa, DuCa, TaylorSeer), CEM
delivers consistent performance gains. Even in high-speed scenarios (over 3× acceleration), it ef-

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 16: Comparison with learning-based acceleration methods on DiT-XL/2.

Method Train FLOPS(T)↓ Spe↑ Lat(s)↓ Spe↑ FID↓ sFID↓ IS↑ P↑ R↑

Origin – 23.74 1.00× 0.53 1.00× 2.25 4.33 239.93 0.80 0.59
L2C Ma et al. (2024a) yes – – – 1.25× 2.62 4.50 233.26 0.79 0.59

HarmoniCa Huang et al. (2024a) yes – – – 1.30× 2.36 4.24 238.74 0.81 0.60
TaylorSeer+Ours no 11.87 2.00× 0.37 1.43× 2.27 4.42 242.45 0.81 0.59

fectively mitigates quality degradation, reducing FID from 3.64 to 3.19 (ToCa, N=4) and from 6.79
to 5.38 (ToCa, N=6). Perceptual quality is also enhanced, as evidenced by higher SSIM and lower
LPIPS scores, confirming that CEM accurately compensates for offline-modeled errors under ag-
gressive acceleration.

In low-bit quantization settings, CEM maintains comparable fidelity while further improving ef-
ficiency. For Q-DiT (W6A8), latency is reduced by more than 2× with nearly unchanged FID
(5.44→5.51), while for Q-DiT (W4A8), FID remains stable (6.31→6.20) as runtime improves from
1.59× to 3.10×. These results demonstrate that CEM and quantization are compatible, our method
effectively leverages hardware-level compression without introducing additional degradation.

Overall, CEM provides a lightweight and general enhancement for diffusion transformers, robustly
stabilizing the generation process across different acceleration ratios, sampling schedules, and quan-
tization precisions, thereby achieving a balanced improvement in both fidelity and efficiency.

D.3 HIGHER RESOLUTIONS AND LONGER FRAMES

Table 15: Improvement of our CEM on Hunyuan
under higher resolutions or longer frame settings.

Resolution/Frames Method VBench(%)↑

480P-65f TeaCache 77.56
+Ours 78.15

480P-129f TeaCache 76.21
+Ours 77.31

720P-65f TeaCache 78.13
+Ours 78.42

720P-129f TeaCache 77.22
+Ours 78.43

Experiments at 480p are conducted to en-
sure fair comparisons with the baselines.
We have additionally included compara-
tive experiments at 720p resolution and
with longer frame sequences.

According to the Tab. 15, our CEM en-
hances the VBench of the TeaCache base-
line across both 480p and 720p resolu-
tions, as well as for longer 129 frames.
These results further validate the effective-
ness and robustness of our approach under
more challenging generation settings.

D.4 COMPARISON WITH LEARNING-BASED METHODS

The two methods mentioned, L2C and HarmoniCa, are learning-based approaches with relatively
low acceleration ratios (below 2×). A direct comparison with our CEM would therefore be somewhat
inequitable, as our method is completely training-free. Nevertheless, to better illustrate the superior-
ity of our CEM, we adjust the acceleration efficiency to align with that of L2C and HarmoniCa and
conduct a comparative evaluation in terms of generation quality.

It can be observed that in Tab. 16 our CEM achieves higher acceleration efficiency and better fidelity
even under a training-free setting.

D.5 COMPARISON WITH ONE-STEP DIFFUSION

Both few-step diffusion and caching acceleration aim to speed up existing DiT by reducing the
number of denoising iterations. However, their motivations and focuses are fundamentally different
in Tab. 17:

Speed-quality trade-off. Few-step diffusion models achieve few-step generation through retraining,
leading to substantial acceleration but often at the expense of visual quality. In contrast, our CEM
provides training-free acceleration while preserving the original model’s generation fidelity.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 17: One-step diffusion vs. our CEM. Since direct comparison across models is not feasible,
we report the results in percentage form.

Model Method Fidelity↑(Method/Origin)(%) Speed↑ Training Costs↓

ImageNet
Origin 100.0 1.00× –

ShortCut(ICLR25) Frans et al. (2024) 42.9 ∼100 TPUv3 (1–2 days)
Ours 99.3 3.56 Free

PixArt-α
Origin 100.0 1.00× –

SIM(NIPS24) Luo et al. (2024) 81.2 ∼30 4 A100s (2 days)
Ours 100.1 2.35 Free

SD1.5
Origin 100.0 1.00× –

EDM(CVPR24) Yin et al. (2024) 76.4 28.7 72 A100s (36 hours)
Ours 108.8 4.35 Freeapp1 sd15

A cat sleeping
on a blanket
on someone's
bed.

A close up of
a pizza on a
wooden table.

A loan bike sits
by itself on a dirt
road on a bend
in a wooded area.

An image of a
truck with a
side trailer.

A beige teddy
bear is sitting
on a chair.

A bird is
flying against
a blue sky.

A bird that is
sitting down
on some water.

A airplane that
is flying
through the
sky.

A bright yellow
police motorcycle
parkd in the road.

A brown bear
shaking the
water off his
body.

A brown and
yellow commuter
train with
headlights on.

A beige cat
looking into a
big mirror.

O
ri

gi
n

+O
ur

s
Fa

st
er

SD

Figure 10: More sample visualizations on the text-to-image task with StableDiffusion1.5.

Cost of Acceleration. The computational costs of the two approaches differ significantly. Few-step
diffusion entails substantial retraining overhead (in above table). In contrast, we offer training-free
acceleration. Our CEM is plug-and-play, achieving a superior balance between acceleration and
generation quality without incurring additional computational cost.

Generalization. Few-step diffusion relies on complex, experience-driven modules and costly train-
ing, limiting its ability to generalize across model. In contrast, our CEM is plug-and-play and can
be directly applied to various visual generative DiT models, demonstrating strong generalization.

Hence, caching-based acceleration and few-step diffusion have remained independent research di-
rections.

Although this is beyond the scope of our current work, we propose a potential direction: our offline
error modeling can also be applied to capture pruning-induced errors, enabling adaptive pruning for
one-step diffusion to further improve efficiency.

E MORE VISUALIZATION

E.1 STABLEDIFFUSION1.5

We provide additional visual results and analyses for the text-to-image task, focusing on SD1.5
(Fig.10) and PixArt-α (Fig.11).

In SD1.5, integrating CEM into FasterSD effectively mitigates common generation artifacts such
as feature distortion (e.g., the bike in column 3, the bear’s head in column 10, and the commuter
train in column 11) and incomplete synthesis (e.g., the bird’s head in column 6). The optimized
FasterSD also shows improved structural consistency and fidelity with the original model (e.g., the
cat’s posture in column 1, the trailer in column 4, and the police motorcycle in column 9). Notably,
in some cases it even surpasses the original model (e.g., the restored teddy bear eyes in column 5
and the refined airplane in column 8), confirming the effectiveness of our proposed method.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026
app1 pixart

4 seagulls stand on
rusty rods with
people in a boat in
the background.

A city bus
with bikes on
the front of it.

A airplane that
is parked on a
runway.

A bag that is
filled with pens
and scissors.

A antique style
bedroom with
hardwood floors
and accessories.

A baseball cap
with sunglasses
sitting on top of a
baseball glove.

A baseball game
in progress with
the player
running the bases.

A basket filled with
donuts covered in
powdered sugar.

A bath room
with a toilet
and a shower.

A beached
sailboat in the
sand with a chair
next to it.

A beer can and
mug are
shown with a
rib plate.

A bed with a
blanket underneath
a window.

O
ri

gi
n

D
uC

a
+O

ur
s

Figure 11: More sample visualizations on the text-to-image task with PixArt-α.
app2 hunyuan

A banana on the bottom of an apple, front view.

A baseball bat.

A car and a motorcycle. A cell phone and a book. A clock on the left of a vase, front view.

A bicycle gliding through a snowy field. A bird building a nest from twigs and leaves.A black suitcase.

O
ri

gi
n

T
ay

lo
rS

ee
r

+O
ur

s
O

ri
gi

n
T

ay
lo

rS
ee

r
+O

ur
s

Figure 12: More sample visualizations on the text-to-video task with Hunyuan.

E.2 PIXART-α

In PixArt-α, our method significantly enhances the visual fidelity of the DuCa model, particularly
in recovering fine-grained details. With CEM applied, DuCa produces outputs more consistent with
those of the original model—for example, the seagull in column 1, the donuts in column 8, and the
soda can in column 11. Furthermore, our method effectively reduces generation failures, including
visual artifacts (e.g., the distorted handle in column 4 and the inaccurate mirror in column 9) and
blurry regions (e.g., the tree in column 2).

These visualizations further support the quantitative findings in Tab. 1, providing clear evidence
that our method, when used as a plug-in, enhances caching strategies and improves the fidelity of
existing acceleration approaches.

E.3 HUNYUAN

For the text-to-video task, we primarily present visual comparisons on the advanced Hunyuan model.
Although the original TaylorSeer achieves up to 5× acceleration, the visualizations in Fig. 12 reveal
noticeable quality degradation, including blurriness (e.g., the bird in row 1, column 4, and the apple
in row 2, column 1), undesired viewpoint shifts (e.g., the person in row 1, column 2), and temporal
inconsistencies (e.g., the car in row 2, column 2).

After integrating our method, these artifacts are effectively alleviated. For instance, in row 1, column
2, the viewpoint discrepancy is significantly reduced, yielding a result much closer to the original.
In row 2, column 1, the apple appears markedly clearer, and in row 1, column 3, our method better
preserves suitcase details, achieving higher consistency with the original output.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

app2 dit

O
ri

gi
n

T
oC

a
+O

ur
s

O
ri

gi
n

T
ay

lo
rS

ee
r

+O
ur

s

D
iT

-D
D

PM
D

iT
-D

D
IM

Figure 13: More sample visualizations on the class-to-image task with DiT-XL/2.

(a) (b) (c)

Error type Error type

FID↓ IS↑

Number of random samples ImageReward↑

Error↓

(a) (b) (c)

Timesteps

Error Error Error

Cache intervals Timesteps(a) (b) (c)

Sn
ow

 ro
ck

y
m

ou
nt

ai
ns

 p
ea

ks
 c

an
yo

n.
 sn

ow
bl

an
ke

te
d

ro
ck

y
m

ou
nt

ai
ns

 su
rr

ou
nd

 a
nd

 sh
ad

ow
de

ep
 c

an
yo

ns
. t

he
 c

an
yo

ns
 tw

is
t a

nd
 b

en
d

th
ro

ug
h

th
e

hi
gh

 e
le

va
te

d
m

ou
nt

ai
n

pe
ak

s,
oi

l p
ai

nt
in

g

Sn
ow

 ro
ck

y
m

ou
nt

ai
ns

 p
ea

ks
 c

an
yo

n.
 sn

ow
 b

la
nk

et
ed

ro
ck

y
m

ou
nt

ai
ns

 su
rr

ou
nd

 a
nd

 sh
ad

ow
 d

ee
p

ca
ny

on
s.

th
e

ca
ny

on
s t

w
is

t a
nd

 b
en

d
th

ro
ug

h
th

e
hi

gh
 e

le
va

te
d

m
ou

nt
ai

n
pe

ak
s,

bl
ac

k
an

d
w

hi
te

A
n

IT
-g

uy
 tr

yi
ng

 to
 fi

x
ha

rd
w

ar
e

of
 a

 P
C

 to
w

er
 is

be
in

g
ta

ng
le

d
by

 th
e

PC
 c

ab
le

s l
ik

e
La

ok
oo

n.
M

ar
bl

e,
 c

op
y

af
te

r H
el

le
ni

st
ic

 o
rig

in
al

 fr
om

 c
a.

20
0

B
C

. F
ou

nd
 in

 th
e

B
at

hs
 o

f T
ra

ja
n,

 1
50

6.

A
 ty

pe
 o

f d
ig

ita
l c

ur
re

nc
y

in
 w

hi
ch

 a
 re

co
rd

 o
f

tra
ns

ac
tio

ns
 is

 m
ai

nt
ai

ne
d

an
d

ne
w

 u
ni

ts
 o

f
cu

rr
en

cy
 a

re
 g

en
er

at
ed

 b
y

th
e

co
m

pu
ta

tio
na

l
so

lu
tio

n
of

 m
at

he
m

at
ic

al
 p

ro
bl

em
s,

an
d

w
hi

ch
op

er
at

es
 in

de
pe

nd
en

tly
 o

f a
 c

en
tra

l b
an

k.

A
 la

rg
e

ke
yb

oa
rd

 m
us

ic
al

 in
st

ru
m

en
t w

ith
 a

w
oo

de
n

ca
se

 e
nc

lo
si

ng
 a

 so
un

db
oa

rd
 a

nd
 m

et
al

st
rin

gs
, w

hi
ch

 a
re

 st
ru

ck
 b

y
ha

m
m

er
s w

he
n

th
e

ke
ys

 a
re

 d
ep

re
ss

ed
. T

he
 st

rin
gs

' v
ib

ra
tio

n
is

st
op

pe
d

by
 d

am
pe

rs
 w

he
n

th
e

ke
ys

 a
re

 re
le

as
ed

an
d

ca
n

be
 re

gu
la

te
d

fo
r l

en
gt

h
an

d
vo

lu
m

e
by

tw
o

or
 th

re
e

pe
da

ls
.

A
n

in
st

ru
m

en
t u

se
d

fo
r c

ut
tin

g
cl

ot
h,

 p
ap

er
, a

nd
ot

he
r t

hi
n

m
at

er
ia

l,
co

ns
is

tin
g

of
 tw

o
bl

ad
es

 la
id

on
e

on
 to

p
of

 th
e

ot
he

r a
nd

 fa
st

en
ed

 in
 th

e
m

id
dl

e
so

 a
s t

o
al

lo
w

 th
em

 to
 b

e
op

en
ed

 a
nd

 c
lo

se
d

by
 a

th
um

b
an

d
fin

ge
r i

ns
er

te
d

th
ro

ug
h

rin
gs

 o
n

th
e

en
d

of
 th

ei
r h

an
dl

es
.

Origin TaylorSeer +Ours Origin TaylorSeer +Ours

O
rig

in
Ta

yl
or

Se
er

+O
ur

s

Figure 14: More sample visualizations with complex prompts on FLUX.1-dev and Hunyuan.

E.4 DIT-XL/2

Finally, we provide additional visualizations in Fig. 14 based on both the DDPM and DDIM sam-
pling strategies using the DiT-XL/2 model. It is worth noting that we also conduct extensive experi-
ments on the quantized model Q-DiT. In this case, our method directly apply the caching strategy to
quantized model, resulting in an additional 2× acceleration while maintaining comparable or even
better generation quality. The primary contribution of our method on Q-DiT lies in further improv-
ing acceleration efficiency and demonstrating compatibility with quantization techniques. However,
since the fidelity improvements are not particularly significant in this setting, we do not include
additional visualizations of Q-DiT here.

DiT-XL/2 is trained using the 1,000 class IDs from ImageNet, which provides more structured and
less ambiguous prompts than those in text-to-image models. This simple prompt constraint reduces
the complexity of the generation task and enables a more direct and interpretable analysis of the role
of self-attention during the synthesis process.

Under the DDPM sampling, the generation results of the ToCa model combined with our method be-
come more aligned with those of the original model when combined with our method. For instance,
the keyboard in column 1, the bird in column 3, and the dog in column 4 are all more faithfully
reproduced. Additionally, we observe that our method unexpectedly suppresses the generation of
undesired artifacts to some extent, for example, the watermark on the pants in column 9 is noticeably
reduced. Under the DDIM sampling strategy, our method also significantly improves generation fi-
delity. It demonstrates stronger capability in preserving fine-grained details, rather than suffering
from distortions caused by the omission of timesteps or tokens during acceleration. For example,
the dog’s face in column 1, the dog’s mouth in column 4, and the polar bear in column 9 all illustrate
the effectiveness of our method in restoring detailed features.

In summary, the visual results across various tasks and models, together with the quantitative results
presented in the main paper, collectively demonstrate the effectiveness of our method.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E.5 VISUALIZATION WITH EXTREMELY COMPLEX PROMPTS

We further evaluate the CEM using complex prompts to examine its performance in challenging
scenarios. As illustrated, CEM enhances the overall visual style and color consistency after accel-
eration (e.g., Example 1), producing results closer to the original video. It also better preserves fine
details, such as the textures on the snow mountain (e.g., Example 2). These results demonstrate that
CEM effectively improves the generation fidelity of accelerated models, even in complex scenes.

30

	Introduction
	Related Work
	Methodology
	Offline Error Modeling
	Dynamic Caching Strategy
	Plug-and-Play Deployment

	Experiment
	Experiment Settings
	Main Results
	Ablation Studies

	Conclusion
	The Use of Large Language Models
	More Details of Offline Error Modeling
	Visualization for Error Distribution
	Impact of the Source of Offline Samples
	Impact of the Number of Offline Samples
	Offline Modeling Cost
	Robustness of Modeled Error
	Scalability of Error Modeling

	More Details of Dynamic Caching Strategy
	Dynamic Programming Pseudocode
	Cumulative Error vs. Actual Error
	Online Cost

	More Experiments
	More Implementation Details
	Results Under Different Acceleration Efficiencies
	Higher Resolutions and Longer Frames
	Comparison with learning‑based methods
	Comparison with one-step diffusion

	More Visualization
	StableDiffusion1.5
	PixArt-
	Hunyuan
	DiT-XL/2
	Visualization with Extremely Complex Prompts

