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Abstract
Objectives: Given substantial obstacles surrounding health data acquisition, high-quality synthetic health data are needed to meet a growing 
demand for the application of advanced analytics for clinical discovery, prediction, and operational excellence. We highlight how recent advan
ces in large language models (LLMs) present new opportunities for progress, as well as new risks, in synthetic health data generation (SHDG).
Materials and Methods: We synthesized systematic scoping reviews in the SHDG domain, recent LLM methods for SHDG, and papers inves
tigating the capabilities and limits of LLMs.
Results: We summarize the current landscape of generative machine learning models (eg, Generative Adversarial Networks) for SHDG, 
describe remaining challenges and limitations, and identify how recent LLM approaches can potentially help mitigate them.
Discussion: Six research directions are outlined for further investigation of LLMs for SHDG: evaluation metrics, LLM adoption, data efficiency, 
generalization, health equity, and regulatory challenges.
Conclusion: LLMs have already demonstrated both high potential and risks in the health domain, and it is important to study their advantages 
and disadvantages for SHDG.

Lay Summary
There is growing interest in the application of machine learning models and advanced analytics to various healthcare processes and operations, 
including the generation of new clinical discoveries, development of high-quality predictions, and optimization of administrative processes. 
Machine learning models for prediction and classification rely on extensive and robust datasets, particularly for deep learning models common 
in health, creating an urgent need for large health datasets. Yet datasets can be insufficiently large due to the rapid evolution of diseases, such 
as coronavirus disease 2019 (COVID-19), rarity of disease, or the myriad obstacles to sharing and acquiring existing health data, including ethi
cal, legal, political, economic, cultural, and technical barriers. Synthetic data provide a unique opportunity for health dataset expansion or crea
tion by addressing privacy concerns and other barriers. In this paper, we review prior literature and discuss the landscape of machine learning 
models used for synthetic health data generation (SHDG), outlining challenges and limitations. We build on existing research on the state of the 
art in SHDG and prior broad explorations of the potential risks and opportunities for large language models (LLMs) in healthcare. We contribute 
to the literature with a focused assessment of LLMs for SHDG, including a review of early research in the area and recommendations for future 
research directions. Six promising research directions are identified for further investigation of LLMs for SHDG: evaluation metrics, LLM adop
tion, data efficiency, generalization, health equity, and regulatory challenges.
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Introduction
The recent release of generative large language models 
(LLMs), such as OpenAI’s GPT models1 and Google’s 
PaLM2 has generated both robust enthusiasm as well as sig
nificant concern related to the use of generative artificial 
intelligence (AI) in healthcare.3–5 Numerous potential appli
cations for healthcare have been documented, including proc
essing of administrative data, such as discharge summary 
generation, interfacing as a chatbot with doctors for diagno
sis or treatment determination, interfacing as a chatbot with 
patients for mental healthcare delivery, producing clinical 

trial documentation, intelligent tagging of patient images (eg, 
radiology or pathology images), and creation of educational 
health material.6–14 General-purpose LLMs have been found 
to achieve high performance on clinical licensing exams and 
comprehensive medical Q&A benchmarks,15–17 and LLMs 
trained on medical data have successfully augmented clini
cian diagnostic performance.18

In this perspective, we focus on 1 particularly promising 
avenue for LLMs: the creation of synthetic health data. There 
is a significant need for augmented datasets, as health data 
are often limited in size, may be costly to collect, not 
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representative of diverse populations, and privacy concerns 
limit its sharing.19,20 Machine learning models for prediction 
and classification often require large datasets, particularly for 
deep learning models common in health.21 Yet datasets can 
be insufficiently large due to the rapid evolution of diseases, 
such as COVID-19,22 rarity of disease,23 or the myriad 
obstacles to sharing and acquiring existing health data, 
including ethical, legal, political, economic, cultural, and 
technical barriers.24,25 Synthetic data provide a unique 
opportunity for health dataset expansion or creation, by 
addressing privacy concerns and other barriers. We build on 
existing research on the state of the art in synthetic health 
data generation (SHDG)20,23,26–32 and broad exploration of 
the potential risks and opportunities for LLMs in healthcare.6

We contribute to the literature with a focused assessment of 
LLMs for SHDG, including a review of early research in the 
area and recommendations for future research directions (see  
Figure 1 for a summary of the paper’s key concepts).

Synthetic health data generation
Synthetic data can be characterized by a combination of their 
resemblance to and distance from real data—they aim to 
mimic the statistical distribution and usability of real data 
while restricting reidentification of original data points (ie, 
individuals). Common characteristics for assessing synthetic 
datasets include data realism, the extent to which the syn
thetic datasets resemble and reflect patterns in real datasets, 
utility, measured by the performance on predictive tasks, and 
privacy, evaluated by the risk of identification of patients or 
attributes in the original data.20

Non-LLM approaches and unresolved challenges
Standard synthetic data generation methods seek to simulate 
the generating process of the original data through an estima
tion of the original data distributions. Classical statistical 

approaches include kernel density estimation33 and Markov 
Chain Monte Carlo.34 However, these methods often impose 
limiting assumptions on the data distribution, which pre
cludes estimation of the complex correlation structure typi
cally found in medical data.20 Popular state-of-the-art 
methods include Generative Adversarial Networks (GANs)35

and variational autoencoders.36 GANs are composed of 2 
neural networks, a “generator” and a “discriminator,” 
trained in tandem. The generator’s objective is to create syn
thetic data indistinguishable from the real data, and the dis
criminator’s objective is to differentiate between the 
generated and real data. Variational autoencoders are also 
composed of 2 neural network models: the “encoder” aims 
to compress an original dataset into a latent representation 
and the “decoder” aims to decompress the latent representa
tion back to the original data. The decoder can then be used 
to generate synthetic data. These methods have been used to 
generate a variety of health data types, including both snap
shot and longitudinal electronic health record (EHR) data, 
sociodemographic data, lab/measurement data, and image 
data.30,37–41 We provide illustrative applications of these 
methods with recent examples from the literature.

Li et al42 developed a GAN-based model to simultaneously 
generate multiple types of clinical time series data. After 
training on 141 488 unique patients’ intensive care unit 
(ICU) data, they were able to synthesize sequences of 
patients’ health indicators, including oxygen level, blood 
pressure, and heart rate. They demonstrate that augmenting 
their real training data with synthetic data to increase train
ing data size improves performance on a downstream task of 
predicting patients’ need for mechanical ventilation or vaso
pressors. However, this is achieved through significant data 
pre-processing, including imputation, smoothing, and trunca
tion of time series. Biswal et al43 proposed a variational 
autoencoder model to generate patients’ clinical encounters 

Figure 1. An overview of the concepts and research directions discussed in the article.
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and their corresponding features, including diagnoses, medi
cations, and procedures. The authors were able to generate 
longitudinal encounter sequences for a chosen disease. The 
paper highlighted that complex longitudinal clinical interac
tions can be generated, but with the limitation of not being 
able to account for comorbidities from more than 1 disease. 
Collectively, the literature suggests that previous approaches 
can generate a wide variety of health data types, can focus on 
generation for specific health conditions, and incorporate pri
vacy into model training.44 A variety of other models have 
also been developed to handle varying time periods between 
clinical visits,45 missing or incomplete original data,46 and 
incorporation of disease-specific domain knowledge.47 How
ever, these models each have their drawbacks, such as their 
limited focus on 1 data modality or on 1 disease, or their 
inflexible data pre-processing requirements.

However, many technical challenges remain. Hernandez 
et al26 and Ghosheh et al31 observe that current GAN-based 
approaches are tailored to specific data structures and con
texts, making generalization and transfer between contexts 
difficult. Ghosheh et al31 also point out GAN’s lack of ability 
to generate complex multimodal data, which has been shown 
to improve predictive performance.48 Augmentation of real 
data with synthetic data has the potential to improve multi
modality models’ performance, yet current methods cannot 
generate data across data types. Murtaza et al20 similarly 
point out that while existing methods have shown proficiency 
at synthesizing disease-specific longitudinal EHR data, 
“generating comprehensive longitudinal records with co- 
morbidities remains an open challenge.” Another issue is the 
difficulty of incorporating expert knowledge into generation 
methods, whether in the form of disease progression models 
or constraints on clinical knowledge violation.20 Yan et al49

found in their benchmarking study that all tested models 
made mistakes in assigning gender-specific disease codes to 
varying degrees. LLMs have the potential to overcome these 
current limitations.

Application of LLMs for SHDG
Although several studies have explored the use of LLMs for 
SHDG, both in the context of text-based tasks, such as gener
ation or augmentation of clinical language,50,51 and tabular 
EHR data tasks,52–54 developments in this area are still nas
cent, focusing largely on proof-of-concept rather than field 
applications. Table 1 summarizes key recent studies investi
gating SHDG with LLMs. One of these studies, Yuan et al, 50

addressed the issue of matching patients, based on their EHR 
data, to clinical trials, accounting for the trials’ inclusion and 

exclusion criteria. Existing models generally have had limited 
success due to terminology discordance across the datasets, 
which renders matching more challenging. Thus, Yuan et al50

used ChatGPT to augment inclusion and exclusion criteria 
descriptions for clinical trials in order to facilitate improved 
matching. Tang et al51 focused on the challenge of acquiring 
labeled data for 2 text classification tasks: recognition of bio
medical vocabulary, or “entities,” and extraction of relation
ships between those entities. They used ChatGPT to generate 
a synthetic dataset for these 2 tasks, incorporating a combi
nation of prompt engineering (prompt engineering is the 
process of optimizing prompts given to interactive LLMs, 
such as ChatGPT, to achieve a certain task without having to 
further train the LLM) and human-labeled seed examples 
into their workflow. Borisov et al52 investigated the ability of 
LLMs to generate tabular data. They converted rows of het
erogeneous features (both categorical and numerical) into 
sentence-like textual representation, fine-tuned (fine-tuning 
refers to a strategy of adapting pre-trained models to specific 
tasks, by using a dataset of labeled examples to update either 
the whole model, or by adding and training a relatively small 
number of additional layers) GPT-2 to generate similar syn
thetic text data, and then converted the synthesized text back 
into tabular data. Borisov et al,52 however, considered just 1 
tabular health dataset, and did not evaluate privacy preserva
tion characteristics. Seedat et al53 examined the capabilities 
of GPT4 to generate tabular data out-of-the-box, using a 3- 
section prompt with data context, data examples, and gener
ation instructions and post-generation filtering for data qual
ity. They found that GPT4 generates high-utility data from 
few examples, holding promise for health applications with 
low data availability (eg, rare diseases). Finally, Kim et al54

focus on synthetic data generation with LLMs in settings of 
outcome class imbalance, common in health settings. Using 
out-of-the-box generation with GPT4, Llama 2 58 and Mis
tral,59 they find that prompts specifically identifying and par
titioning examples from each class produce synthetic data 
that boost model performance for a minority class. Collec
tively, these studies highlight the potential of LLMs for multi
modal synthetic data generation and generation from few 
training examples.

Open research directions
Given the limited research to date on LLMs for SHDG, many 
important questions remain around the potential opportuni
ties and risks. Building on and extending systematic reviews 
of synthetic data generation in healthcare20,23,32–36 and 

Table 1. Summary of current research applying LLMs to synthetic data generation.

Modality Downstream application LLM(s) used Reference(s)

Text Clinical trial-patient matching GPT3 Yuan et al50

Biomedical term comprehension GPT3 Tang et al51

Radiology report generation GPT4 Xie et al55

Alzheimer’s detection from EHR notes GPT4 Li et al56

Clinical NLP tasks (general purpose) GPT3.5 Xu et al57

Tabular Binary classification (general purpose) GPT2 Borisov et al52

GPT3.5, GPT4 aSeedat et al53

GPT3.5, LLaMa-2-7b, Mistral-7b aKim et al54

a Not currently peer reviewed.
Abbreviation: LLM, large language model.
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benchmarking studies,49,60–63 we describe useful avenues for 
further research below.

Evaluation metrics
To fully understand the value potential of LLMs, it is impor
tant to establish a portfolio of metrics to evaluate the quality 
of the generated data and to compare synthetic data generat
ing LLMs to the current state of the art. There is already a 
lack of standardization of metrics in the broader field of 
health data generation20,26,28 and metrics for LLM perform
ance on clinical prediction tasks.64 Dimensions that are crit
ical to measure include the aforementioned data realism, 
utility, and privacy, token usage, computational cost (includ
ing power consumption), and diversity. Researchers should 
aim to present results on benchmark datasets and metrics, as 
well as assessments specific to a potential deployment 
context.

Some evaluation criteria have established metrics, such as 
the predictive performance of a downstream machine learn
ing (ML) model after augmentation with synthetic data, 
which is both common28 and considers a likely setting for 
EHR data use. Computational cost metrics have recently 
become more prevalent26 and are particularly important in 
the LLM context, given the high costs of training and 
prompting, whether monetary or environmental.65 Efficiency 
metrics, such as generation time, algorithmic complexity, and 
computing power required, can help organizations make eco
nomic assessments of synthetic data generation alternatives. 
When evaluating privacy, metrics should focus on risks spe
cific to healthcare data, such as re-identification, using meas
urements like the ability to predict whether a real data point 
belonged to the generator’s training set.28 One must also con
sider unique vulnerabilities of the LLMs. For example, 
ChatGPT is vulnerable to prompt injection, where users 
design prompts to reveal sensitive data that ChatGPT is 
intended not to expose.66 Thus, a new privacy metric could 
evaluate whether the generating LLMs reveal private medical 
information across a range of prompts. Furthermore, given 
the breadth of LLM training data, new categories of risks 
must be anticipated, including inadvertent infringement of 
intellectual property or generation of toxic or harmful 
language.67

Given existing research questioning the value of general- 
purpose models over tailored clinical models,68 a comprehen
sive comparison of LLM-based methods to tailored methods 
for synthetic data generation across a portfolio of relevant 
metrics is critical.

LLM adoption
Choices related to the specific LLM model to be deployed as 
well as the generation approach are critical to understand. In 
the context of synthetic data, both prompt engineering and 
fine-tuning have already been applied.51,52 Prompt engineer
ing can involve a variety of prompt templates and include 
either few or zero examples as part of the prompt69—an 
example of a zero-example prompt is shown in Figure 2. Sim
ilarly, one can explore or develop multiple different fine- 
tuning approaches.70 Furthermore, there are many existing 
LLMs, each of which may be more appropriate for certain 
approaches—fine-tuning may be easier with “smaller” LLMs 
such as Llama71 whereas prompt engineering is better suited 
for “larger” LLMs such as GPT-4. These choices can also be 
framed in the tradeoff between “buy” versus “build”—do the 

benefits of fine-tuning LLM models over direct application of 
out-of-the-box models outweigh the fine-tuning development 
cost? Extensive exploration of such strategic choices in adop
tion is necessary to make informed decisions for a specific 
context and task.

Data efficiency
While the promise of synthetic data is clear, the practical fea
sibility of creating quality data must address the question of 
how much real data are necessary to generate high-fidelity 
synthetic observations. Given the large number of rare dis
eases and conditions (McDuff et al., 2023),23 well- 
documented difficulties of acquiring health data, the privacy 
risks involved with sharing increasing patient data with mod
els, and the potential costs of fine-tuning LLMs with increas
ing data,72 there is great interest in maximizing the data 
efficiency of synthetic data generating LLMs. However, pro
viding fewer examples can lead to decreased generating abil
ity,42 particularly of rare real cases that are all the more 
important to have represented in synthetic data. Yet, LLMs 
have a crucial advantage in this environment. As shown by 
Seedat et al,53 LLMs can leverage prior knowledge from 
training to generate synthetic tabular data from very few 
examples. Application of their and related methods to health 
data holds great promise for the many low data contexts in 
healthcare, that should be explored.

Generalization
As previously noted, non-LLM-based models for synthetic 
data generation struggle to generalize, whether in handling 
multiple data modalities, transferring between health con
texts, or incorporating domain knowledge.26,31 Because 
LLMs are general purpose models trained on diverse knowl
edge bases, they are well-equipped to handle each of these 
challenges. Borisov et al52 showed that LLMs can simultane
ously generate different data modalities with little tailoring, 
whether discrete, continuous, or categorical text data. Gruver 
et al73 demonstrated that LLMs can generate time series fore
casts, while also handling missing data and creating textual 
explanations of predictions. Additionally, there are many 
existing LLMs trained specifically on medical text corpuses 
such as ClinicalBERT, Med-PaLM, and GatorTron which 
have the potential to automatically incorporate their domain 
knowledge into data generation.74–76 Thus, an important 
question for future work is a deeper understanding of if and 
how LLMs can convert knowledge from their training data 
into generalization across data modalities and contexts.

Health equity
Another critical area that warrants further research is the 
risks and opportunities of synthetic data generation with 
LLMs in the domain of health equity. One clear risk is the 
perpetuation of existing biases in the data used to train LLMs 
and biases in health data77,78—Bhanot et al79 have docu
mented violations of fairness metrics in existing synthetic 
data generation methods. For instance, they found that the 
realism of synthetic sleep data was not equal across age 
groups.

However, as noted by McDuff et al,23 synthetic data gener
ation also provides opportunities to correct existing health 
equity issues. For instance, machine learning models often 
underperform for minority groups due to a lack of training 
data.80 Racial minorities are underrepresented in clinical 
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trials and in health data81—synthetic data generation can 
help increase representation of smaller groups in augmented 
datasets and boost performance of these models for underre
presented groups. Thus, 1 valuable research direction is to 
compare the boost in performance for minority groups that 
LLM-based synthetic data provide over other common ML 
fairness methods aimed at improving performance for small 
groups.

Regulatory challenges
Moving forward, the regulatory environment for generative 
AI will likely evolve rapidly. Regulation of LLMs in general, 
and synthetic health data in particular, is not clearly 
delineated in current data protection guidelines (eg, The Gen
eral Data Protection Regulation [GDPR]).82 However, pri
vacy preservation is a key policy requirement in emerging 
legislation on AI such as the EU AI Act83 and the Executive 
Order issued in the United States.84 Giuffr�e et al85 discuss the 
difficulty of proving whether synthetic data are fully anony
mized, as required by GDPR, as recent methods claiming to 
achieve de-identification were shown to retain vulnerability 
to re-identification attacks. One must also consider the pri
vacy policies of LLM providers. For example, OpenAI’s poli
cies around storing user data, training future models on user 
data, and sharing data with third parties may preclude 
researchers from providing sensitive patient data in input 
prompts.86 There are also considerations for the data used to 
validate the performance and safety of medical devices, which 
regulators must consider; relatedly, the Food and Drug 
Administration (FDA) and the Advanced Research Projects 
Agency for Health (ARPA-H) recently launched a program to 
help facilitate access to broader diversity in training and test 
data to better empower FDA pre-market submissions.87 The 
intersection between the regulatory landscape and the use of 
LLMs for SHDG represents a final opportunity for further 
work.

Conclusion
LLMs have already shown great promise in a variety of 
healthcare applications, and SHDG is a logical next high- 
impact application area of LLMs. These methods can provide 

opportunities to address persistent challenges such as fairness 
in health modeling. However, we must ensure that potential 
drawbacks to LLM-based models are carefully examined as 
well. Each of these concerns—privacy, data efficiency, or bias 
perpetuation—is an important area of research as we develop 
new LLM-based synthetic health generation approaches.
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