Under review as submission to TMLR

Convolutional Layers Are Not Translation Equivariant

Anonymous authors
Paper under double-blind review

Abstract

The purpose of this paper is to correct a misconception about convolutional neural networks
(CNNs). CNNs are made up of convolutional layers which are shift equivariant due to weight
sharing. However, contrary to popular belief, convolutional layers are not translation equiv-
ariant, even when boundary effects are ignored and when pooling and subsampling are absent.
This is because shift equivariance is a discrete symmetry while translation equivariance is
a continuous symmetry. That discrete systems do not in general inherit continuous equivari-
ances is a fundamental limitation of equivariant deep learning. We discuss two implications
of this fact. First, CNNs have achieved success in image processing despite not inheriting
the translation equivariance of the physical systems they model. Second, using CNNs to
solve partial differential equations (PDEs) will not result in translation equivariant solvers.

1 Introduction

A convolution C is a linear operator of two functions a and b. In one dimension, C is

Cla,b](z) = / " a(r)b(z — ) dr . (1)
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An operator f is equivariant to a transformation g if (Cohen & Welling} 2016)
flg-z)=g- f(x). (2)

C is equivariant to the transformation x — x + J; this is called translation equivariance.

Convolutional layers are the building blocks of convolutional neural networks (CNNs) (Zhang et al.| [1990;
LeCun et al., |1989)). Convolutional layers perform a discrete convolution C” followed by a nonlinearity N
(LeCun et al.l [1995]). We denote discrete operators and functions with the superscript h and indices with a
subscript. The discrete convolution can be written as

Crla", b =) apbl . (3)
k

A discrete convolution is equivariant to the transformation j — j -+ [; this is called shift equivariance
(Fukushima & Miyake, [1982; Bronstein et al. [2021; |Cohen & Welling, [2016). If the nonlinearity ™ is also
shift equivariant, then the convolutional layer A" (Ch [a", bh]) will be shift equivariant, ignoring boundary
effects (Azulay & Weiss| [2018; Kayhan & Gemert|, 2020).

The objective of equivariant deep learning is to design networks that inherit the invariances and equivariances
of the physical systems they model (Cohen & Welling), 2016); networks that contain these symmetries should
generalize better than networks that do not. In image recognition, the properties of an object may be invariant
to translation z — x + §. In the physical sciences, many partial differential equations (PDEs) are translation
invariant (Wang et al. |2020; Wang & Yu, 2021)). Thus, it is worth asking: are convolutional layers translation
equivariant? Do CNNs preserve the translation symmetry of the continuous systems that they model?

In section [2], we will see that convolutional layers are not translation equivariant. Convolutional layers are
equivariant to a translation of integer grid spacing z — = + nAx where n € Z and Ax is the grid spacing,
but not translation equivariant in general. In section [3] we will discuss implications of this result for deep
learning of images and PDEs.
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2  Continuous vs Discrete Equivariance

As discussed earlier, convolutional layers are shift equivariant under the discrete transformation j — j+1. We
now show that these layers are not translation equivariant. The essence of the argument is that translation
equivariance is a property of continuous systems, while convolutional layers operate on discrete models that
do not have a continuous symmetry.

When studying discrete models of continuous systems, it is important to differentiate between properties of the
continuous system and the discrete model. The data from the real-world system f(z) is a continuous function.
To map from the continuous system to the discrete model, we introduce a discretization operator D", where
D"[f(x)] = f". In general, it is not possible to map from the discrete model back to the continuous system.

where N is the nonlinearity and a” is the convolutional kernel. By the definition of equivariance in eq. (2,
the convolutional layer is translation equivariant if

Applying a convolutional layer to the continuous data f(x) can thus be written as N (Ch[ah,Dh[f(x)a)
(

N [ah, D [f(g - 2)]]) = g- N"(C"[a", D"[f(2)])) (4)

where ¢ is the transformation x — = + § for § € R. The left hand side of eq. is well-defined; it involves
translating f(x) by ¢, discretizing f(x + 0), then performing the convolution and nonlinearity. However, the
right hand side of eq. is not well-defined; it requires translating a discrete quantity by a continuous amount.
Therefore, eq. cannot possibly be true, meaning that convolutional layers are not translation equivariant.

Strictly speaking, it is possible to define a discrete translation ¢ which translates discrete data by a non-
integer number of pixels. A discrete translation ¢ could be defined, for example, by interpolating the discrete
data between gridpoints, translating the interpolated data, then discretizing the result. Nevertheless, it is not
possible to design ¢g" to commute with the discretization operator

D"[f(g- )] #¢" D"[f(x)] ()

because information about the continuous function f(x) is lost in the discretization process. Equation
implies that g™ cannot be translation equivariant.

3 Implications

Deep Learning for Images: Deep learning methods for
images use networks which are made up of convolutional — ] (1‘)

layers. This choice is motivated by the intuition that the -—— H(z-— A:r,)
properties of an object do not depend on the position
of that object in space. Convolutional layers encode this
intuition via weight sharing (LeCun et al., |1989), which
is an inductive bias on the model parameters. As we have

1 .
1 Continuous
I image
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learned, such networks do not ensure translation equiv- pixels
ariance. This means that CNNs have achieved success

in image processing despite not inheriting the translation ' '
equivariance of the physical systems they model. Convolutional

To demonstrate this lack of equivariance, we consider a layer output
simple example of an image in 1D. Suppose our image

domain is z € [-1, 1] and our 1D image is the Heaviside

step function H(z) where -1 0 1
Figure 1: While the convolutional layer detects an
H(z) = {1 ifz>0 edge in the original image H (z), it does not detect
0 ifz<0. an edge in the translated image H(x — Az/2).

Now suppose we discretize (i.e., ‘take a picture of’) our image H () using a discretization operator which
computes the average value of the image H jh inside the jth pixel for j = 0,... N — 1. This means that
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H! = D}MH(z)] = [/*" H(z)dx, where ; = —1 + jAx are the pixel boundaries and Az = £. The image
J

has N = 4 pixels. Suppose also that our convolutional layer performs a convolution with kernel a’kf =1[2,-2]

and bias —1 followed by a ReLU nonlinearity; this layer is designed to detect edges in the image.

Now, let us compare the output of the convolutional layer between the image H(x) and a translated image
H(z — 4%). The original image pixels are D"[H(z)] = [0,0,1,1], while the translated image pixels are
DMH(x — %)] =10,0,0.5,1]. As illustrated in fig. |1, the output of the convolutional layer on the original
image is [0,1,0,0] while the output of the convolutional layer on the translated image is [0,0,0,0]. The
convolutonal layer detects an edge in the first image, but does not detect an edge in the translated image.
This example demonstrates the main result of this paper: convolutional layers are equivariant to discrete

shifts in pixels, but not equivariant to continuous translations in images.

Deep Learning for PDEs: Many PDEs are translation invariant, i.e., the PDE does not change under
the transformation x — x + §. The solutions to such PDEs remain solutions after translation, meaning that
spatial translation is a Lie point symmetry (Brandstetter et al., |2022)). Deep equivariant networks have
been proposed as tools for solving PDEs; by designing such networks to be equivariant to the invariant
transformations of the PDE, they will generalize automatically across such transformations (Wang et al.,
2020; [Wang & Yul 2021} |Smets et al.| 2020)E| However, because convolutional layers (and thus convolutional
networks) are not translation equivariant, they will not generalize automatically to translated solutions.

To demonstrate why convolutional networks will not

generalize to translations in the solution of a PDE, we 1A f(z.0)
look at a simple example, the 1D advection equation: — f(=, %—f)
e A J
5 +c D 0. (6)

—_— (5
The exact solution to the advection equation with initial

condition f(z,0) = fo(x) is f(x,t) = fo(x — ct). In other
words, the advection equation translates f to the left or
right with speed c¢. Suppose that we solve eq. @ on the

domain x € [0, L] and that we discretize the domain into ~ _7 -
N cells where the solution in the jth cell is [') ' L
f;z(t) _ /xﬁl/z Fla,t) da (7) Figure 2: The (%liscrete Soh.ltion f(t) changes
T 1y shape as the continuous solution f(z,t) translates.

This implies that using CNNs to solve PDEs will

for j € 0,...,N =1 where z; = (j + Y/2)Az, Tj11» = 10t result in translation equivariant solvers.

xj£Az/2, and Az = L/N. Suppose the initial condition is
fo(z) = sin27z/r. In this case, because we know the solution to eq. @ exactly, we can compute f”(t) exactly:

L . 2n(e—ct), . @A
£t = 5 sin (=D (T2,

Figure [2| illustrates the discrete solution f"(t) for t = 0 and t = Az/2c. As the continuous solution f(z,t) is
translated, f"(¢) changes shape. A CNN-based solver would need to learn to generalize across the different
shapes of f"(t), which implies that using CNNs to solve PDEs will not result in translation equivariant solvers.

A limitation of equivariant deep learning is the inability of discrete models to be translation equivariant. As ap-
plied to PDE solving, this means that convolutional solvers can be shift equivariant by construction and can use
data to learn approximate translation equivariance, but cannot not be translation equivariant by construction.
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