Graph Scattering beyond Wavelet Shackles

Christian Koke Gitta Kutyniok
Technical University of Munich & Ludwig Maximilian University Munich &
Ludwig Maximilian University Munich University of Tromsg
christian.koke@tum.de kutyniok@math.lmu.de
Abstract

This work develops a flexible and mathematically sound framework for the design
and analysis of graph scattering networks with variable branching ratios and generic
functional calculus filters. Spectrally-agnostic stability guarantees for node- and
graph-level perturbations are derived; the vertex-set non-preserving case is treated
by utilizing recently developed mathematical-physics based tools. Energy propaga-
tion through the network layers is investigated and related to truncation stability.
New methods of graph-level feature aggregation are introduced and stability of
the resulting composite scattering architectures is established. Finally, scattering
transforms are extended to edge- and higher order tensorial input. Theoretical
results are complemented by numerical investigations: Suitably chosen scattering
networks conforming to the developed theory perform better than traditional graph-
wavelet based scattering approaches in social network graph classification tasks
and significantly outperform other graph-based learning approaches to regression
of quantum-chemical energies on QM7.

1 Introduction

Euclidean wavelet scattering networks [22} 4] are deep convolutional architectures where output-
features are generated in each layer. Employed filters are designed rather than learned and derive
from a fixed (tight) wavelet frame, resulting in a tree structured network with constant branching ratio.
Such networks provide state of the art methods in settings with limited data availability and serve
as a mathematically tractable model of standard convolutional neural networks (CNNs). Rigorous
investigations — establishing remarkable invariance- and stability properties of wavelet scattering
networks — were initially carried out in [22]]. The extensive mathematical analysis [38]] generalized
the term ’scattering network’ to include tree structured networks with varying branching rations and
frames of convolutional filters, thus significantly narrowing the conceptual gap to general CNNs.

With increasing interest in data on graph-structured domains, well performing networks generalizing
Euclidean CNNs to this geometric setting emerged [[18} 15, 9]]. If efficiently implemented, such graph
convolutional networks (GCNs) replace Euclidean convolutional filters by functional calculus filters;
i.e. scalar functions applied to a suitably chosen graph-shift-oprator capturing the geometry of the
underlying graph [[18} 14} 9]]. Almost immediately, proposals aimed at extending the success story of
Euclidean scattering networks to the graph convolutional setting began appearing: In [48]], the authors
utilize dyadic graph wavelets (see e.g. [14]) based on the non-normalized graph Laplacian resulting
in a norm preserving graph wavelet scattering transform. In [10], diffusion wavelets (see e.g. [8]) are
used to construct a graph scattering transform enjoying spectrum-dependent stability guarantees to
graph level perturbations. For scattering transforms with NV layers and K distinct functional calculus
filters, the work [[11]] derives node-level stability bounds of O(K™N/?) and conducts corresponding
numerical experiments choosing diffusion wavelets, monic cubic wavelets [14] and tight Hann
wavelets [35] as filters. In [12] the authors, following [8]], construct so called geometric wavelets and
establish the expressivity of a scattering transform based on such a frame through extensive numerical
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experiments. A theoretical analysis of this and a closely related wavelet based scattering transform is
the main focus of [28]. Additionally, graph-wavelet based scattering transforms have been extended
to the spatio-temporal domain [27], utilized to overcome the problem of oversmoothing in GCN’s
[25] and pruned to deal with their exponential (in network depth) increase in needed resources [[15].

Common among all these contributions is the focus on graph wavelets, which are generically
understood to derive in a scale-sampling procedure from a common wavelet generating kernel
function g : R — R satisfying various properties [[14]. Established stability or expressivity properties
— especially to structural perturbations — are then generally linked to the specific choice of the
wavelet kernel g and utilized graph shift operator [10, [28]]. This severely limits the diversity of
available filter banks in the design of scattering networks and draws into question their validity as
models for more general GCNs whose filters generically do not derive from a wavelet kernel.

A primary focus of this work is to provide alleviation in this situation: After reviewing the graph signal
processing setting in Section[2] we introduce a general framework for the construction of (generalized)
graph scattering transforms beyond the wavelet setting in Section[3] Section @]establishes spectrum-
agnostic stability guarantees on the node signal level and for the first time also for graph-level
perturbations. To handle the vertex-set non-preserving case, a new ’distance measure’ for operators
capturing the geometry of varying graphs is utilized. After providing conditions for energy decay
(with the layers) and relating it to truncation stability, we consider graph level feature aggregation
and higher order inputs in Sections [5] and [6] respectively. In Section[7] we then provide numerical
results indicating that general functional calculus filter based scattering is at least as expressive as
standard wavelet based scattering in graph classification tasks and outperforms leading graph neural
network approaches to regression of quantum chemical energies on QM?7.

2 Graph Signal Processing
Taking a signal processing approach, we consider signals on graphs as opposed to graph embeddings:

Node-Signals: Given a graph (G, E), we are primarily interested in node-signals, which are
functions from the node-set G to the complex numbers, modelled as elements of C!!. We equip this
space with an inner product according to {f, g) = lecjl figipi (with all vertex weights z; > 1) and
denote the resulting inner product space by ¢?(G'). We forego considering arbitrary inner products on
CI%l solely in the interest of increased readability.

Functional Calculus Filters: Our fundamental objects in investigating node-signals will be func-
tional calculus filters based on a normal operator A : ¢?(G) — ¢?(G). Prominent examples include

the adjacency matrix W, the degree matrix D, normalized (1 — D’%WD’%) or un-normalized

(L := D—W) graph Laplacians Writing normalized eigenvalue-eigenvector pairs of A as ()\;, ¢i)£|1,

the filter obtained from applying g : C — C is given by g(A)f = Zlﬁ‘l g(\i){Pi, [rez(vy @i The
operator we utilize in our numerical investigations of Section@ is given by & := L/ Anax(L). We

divide by the largest eigenvalue to ensure that the spectrum o (%) is contained in the interval [0, 1],
which aids in the choice of functions from which filters are derived.

Generalized Frames: We are most interested in filters that arise from a collection of functions
adequately covering the spectrum of the operator to which they are applied. To this end we call a
collection {g;(+)}ics of functions a generalized frame if it satisfies the generalized frame condition
A < Y,crl9:(c)]? < B for any c in C for constants A; B > 0. As proved in Appendix [B| this
condition is sufficient to guarantee that the associated operators form a frame:

Theorem 2.1. Let A : ¢*(G) — (?(G) be normal. If the family {g;(-)}:c; of bounded functions
satisfies A < Y., _; |gi(c)|* < B for all ¢ in the spectrum o (A), we have (Vf € £%(G))

AHfH?Q(G) < Z ng‘(A)f”z%(G) < B||f\|32(a)~

iel

Notably, the functions {g; };c; need not be continuous: In fact, in our numerical implementations, we
will — among other mappings — utilize the function &y (+), defined by §5(0) = 1 and dp(c) = 0 for
¢ # 0 as well as a modified cosine, defined by ¢6s(0) = 0 and ¢os(c) = cos(c) for ¢ # 0.



3 The Generalized Graph Scattering Transform

A generalized graph scattering transform is a non-linear map ® based on a tree structured multilayer
graph convolutional network with constant branching factor in each layer. For an input signal
f € £%(G), outputs are generated in each layer of such a scattering network, and then concatenated to
form a feature vector in a feature space .%. The network is built up from three ingredients:

Connecting Operators: To allow intermediate signal representations in the *hidden’ network
layers to be further processed with functional calculus filters based on varying operators, which might
not all be normal for the same choice of node-weights, we allow these intermediate representations
to live in varying graph signal spaces. In fact, we do not even assume that these signal spaces are
based on a common vertex set. This is done to allow for modelling of recently proposed networks
where input- and ’processing’ graphs are decoupled (see e.g. [1}[36]), as well as architectures
incorporating graph pooling [20]. Instead, we associate one signal space ¢?(G,,) to each layer
n. Connecting operators are then (not necessarily linear) operators P, : ¢*(G,,_1) — (*(G,)
connecting the signal spaces of subsequent layers. We assume them to be Lipschitz continuous
(IP(f) = P92y < RY|f = glez(c,)) and triviality preserving (P(0) = 0). For our original
node-signal space we also write /2(G) = (?(Gy) .

Non-Linearities: To each layer, we also associate a (possibly) non-linear function p,, : C — C
acting poinwise on signals in £?(G,,). Similar to connecting operators, we assume p,, preserves zero
and is Lipschitz-continuous with Lipschitz constant denoted by ;7. This definition allows for the
absolute value non-linearity, but also ReLu or — trivially — the identity function.

Operator Frames: Beyond these ingredients, the central building block of our scattering
architecture is comprised of a family of functional calculus filters in each layer. That is, we
assume that in each layer, the node signal space ¢?(G,,) carries a normal operator A,, and an
associated collection of functions comprised of an output generating function y,(-) as well
as a filter bank {g., (-)},,cr, indexed by an index set I',. As the network layer n varies (and
in contrast to wavelet-scattering networks) we allow the index set I',, as well as the collection
{xn ()} U{9~, (-)}y.er, of functions to vary. We only demand that in each layer the functions in the
filter bank together with the output generating function constitute a generalized frame with frame
constants A,,, B, = 0.

We refer to the collection of functions Qn = (pn, {xn(-)} U{gy. ()}rner. )1 as a mod-
ule sequence and call Iy = (P,, An)nNzl our operator collection. The generalized scattering

transform is then constructed iteratively:

To our initial signal f € ¢2(G) we first apply
the connecting operator P, yielding a signal rep-
B - resentation in (G }). Subsequently, we apply
B2 the pointwise non-linearity p;. Then we apply
our graph filters {x1 (A1)} Ufgs, (A1)}ner,

(*(Gy) mapping f = gy, (An)pn(Pa(f))
as well as the output generating operator

o PO Vi i A(Gn_1) — ¢*(G,) mapping f to
xa(an) ") “—31_‘<: Xn(An)pn(Pu(f)).  Upon defining the set
Xa(Ba) I'N=1 .= TI'y_; x ... x I'; of paths of length

(N — 1) terminating in layer N — 1 (with I'®
taken to be the one-element set) and iterating the
Figure 1: Schematic Scattering Architecture ~ above procedure, we see that the outputs gener-
ated in the N'"-layer are indexed by paths TV !
terminating in the previous layer.

3 s - to p1(Pi(f)) yielding the output Vi(f) :=

o ) i xl(A%)pl(Pl(f)) as well as the intermedi-

D et <— ate hidden representations {Uj[v1](f) :=

f p1(PL()) /g6, (A1) p2(Pa()) 92> I [ (Al)pl (P1 (f))},ylerl obtained in the first

om BT pa(Pa()) - layer. Here we have introduced the one-step

2(G) o ) <E- . D2 _
D —5 |_I - scattering propagator U, [v,] : ¢*(G,,—1)

p2(Pa()) 9

< 5 p3(Ps(1)) |_1<

—— B(G1) ———— (Gy) ——— L(G3) —



Outputs generated in the N layer are thus given by {VyoU [yn—1]0...oU[V1](f)}(yy 1., y1)ern—1.
Concatenating the features obtained in the various layers of a network with depth /V, our full feature
vectors thus live in the feature space

7 N 2 ot
TN =Dy (1(Gr)) : (1)
The associated canonical norm is denoted | - | &, . For convenience, a brief review of direct sums of
spaces, their associated norms and a discussion of corresponding direct sums of maps is provided in
Appendix [A] We denote the hence constructed generalized scattering transform of length N, based
on a module sequence {2 and operator collection Zx by @ .

In our numerical experiments in Section[7] we consider two particular
instantiations of the above general architecture. In both cases the
utilized shift-operator is . := L£/Anax(L), node weights satisfy
w; = 1, the branching ratio in each layer is chosen as 4 and the
depth is set to N = 4 as well. The connecting operators are set to the
identity and non-linearities are set to the modulus (||). The two archi-
tectures differ in the utilized filters, which are repeated in each layer
and depicted in Fig. [2| Postponing a discussion of other parameter-
choices, we note here that the filters {sin(7/2-), cos(w/2-)} provide
a high and a low pass filter on the spectrum o(.Z) < [0, 1], while
{sin(7-), cos(m-)} provides a spectral refinement of the former two
filters. The inner two elements of the filter bank in Architecture II
thus separate an input signal into high- and low-lying spectral
components. The outer two act similarly at a higher spectral scale. Additionally Architecture I —
utilizing ¢os and dy as introduced Section [2|— prevents the lowest lying spectral information from
propagating. Instead it is extracted via do(-) in each layer. Note that Id arises from applying the
constant-1 function to .. Normalizations are chosen to generate frames with upper bounds B < 1.

Architecture I Architecture 11

Figure 2: Filters of tested Ar-
chitectures

4 Stability Guarantees

In order to produce meaningful signal representations, a small change in input signal should produce
a small change in the output of our generalized scattering transforms. This property is captured in the
result below, which is proved in Appendix [C|

Theorem 4.1. With the notation of Section[3| we have for all f, h € £2(G):

1

N n—1 3

[N (f) —@n(h)|zy < (1 + > max{[B, — 1], [Bn(LF RF)* = 11,0} [ | Bk) If = hlee
n=1 k=1

In the case where upper frame bounds B,, and Lipschitz constants L;" and R are all smaller than or

equal one, this statement reduces to the much nicer inequality:

[Pn(f) = @n(h)|zy < f = hlez(e)- 2)

Below, we always assume R}, L7 < 1 as this easily achievable through rescaling. We will keep B,
variable to demonstrate how filter size influences stability results. As for our experimentally tested
architectures (cf. Fig. , we note for Architecture I that B,, = 1/2 for all n, so that (2) applies. For
Architecture II we have B,, = 3, which yields a stability constant of v/1 +2-3 +2-32 +2-33 = 9,
Similar to other constants derived in this section, this bound is however not necessarily tight.

Operators capturing graph geometries might only be known approximately in real world tasks; e.g. if
edge weights are only known to a certain level of precision. Hence it is important that our scattering
representation be insensitive to small perturbations in the underlying normal operators in each layer,
which is captured by our next result, proved in Appendix [D] Smallness here is measured in Frobenius
norm || - |7, which for convenience is briefly reviewed in Appendix [A).

Theorem 4.2. Let & and ® ~ be two scattering transforms based on the same module sequence

Qn and operator sequences Zy, éN with the same connecting operators (P, = }5") in each
layer. Assume R}, L} < 1and B, < B for some B and n < N. Assume that the respective

n?

normal operators satisfy |A, — A, | < & for some § > 0. Further assume that the functions



{9+, }yner,. and x, in each layer are Lipschitz continuous with associated Lipschitz constants

satisfying L2 =+ er, L; < D?foralln < N and some D > 0. Then we have

[Bx(f) ~ en (Nl zy <4/22Y — 1)/ (max{B, 1/2)¥1- D5 | flexcey

forall f € (2(G). If B < 1/2, the stability constant improves to 4/2(1 — BN)/(1— B)-D < 2- D.

The condition B < % is e.g. satisfied by our Architecture I, but —strictly speaking— we may not
apply Theorem [4.2] since not all utilized filters are Lipschitz continuous. Remark [D.3]in Appendix
however shows, that the above stability result remains applicable for this architecture as long as we

demand that A and A are (potentially rescaled) graph Laplacians. For Architecture I we note that

D = 74/10/2 and thus the stability constant is given by 4/2(2% — 1) - v/33 - 11/10/2 = 457.

We are also interested in perturbations that change the vertex set of the graphs in our architecture.
This is important for example in the context of social networks, when passing from nodes representing
individuals to nodes representing (close knit) groups of individuals. To investigate this setting, we
utilize tools originally developed within the mathematical physics community [29]]:

Definition 4.3. Let 2 and H be two finite dimensional Hilbert spaces. Let A and A be normal

operators on these spaces. Let J : H — H and J : H — H be linear maps — called identification
operators. We call the two spaces §-quasi-unitarily-equivalent (with § > 0) if for any f € H and

u € H we have

17715 <20fle 17 = 7)< 01l
£ =TT Fl < S\J 17, + <F A Poree = Tl < 84/ Jul, + G |B] w)y.

If, for some w € C the resolvent R := (A — w)~ satisfies |(BJ — JR) fllz < 6| fl3 forall feH,
we say that A and A are w-d-close with identification operator J.

Absolute value |A| and adjoint J* of operators are briefly reviewed in
Appendix [A] While the above definition might seem fairly abstract at
first, it is in fact a natural setting to investigate structural perturbations
as Figure [3] exemplifies. In our current setting, the Hilbert spaces
in Definition 4.3| are node-signal spaces H = (2(G), H = (*(G)
of different graphs. The notion of w-d-closeness is then useful, as
it allows to compare filters defined on different graphs but obtained
from applying the same function to the respective graph-operators:

Lemma 4.4. In the setting of Definition let A and A be w-4-

close and satisfy | A, ||AH,,,, < K forsome K > 0.Ifg: C - C
is holomorphic on the disk Bx1(0) of radius (K + 1), there is a

constant Cy > 0 so that @ — vertex-weight 1

. = vertex-weight 2

~

lg(A)J = Jg(A)|op < Cg -6 mmm = edge-weight 1/62

with Cy depending on g, w and K. Figure 3: Prototypical Exam-

An explicit characterization of C'y together with a proof of this result ple of J-unitary-equivalent
is presented in Appendix [F] Lemmad.4]is our main tool in establish- Node Signal Spaces with
ing our next result, proved in Appendix [G} which captures stability (—1)-12d-close Laplacians.
under vertex-set non-preserving perturbations: Details in Appendix [E}

Theorem 4.5. Let Oy, d ~ be scattering transforms based on a common module sequence 2 and
differing operator sequences Zy, @N. Assume R} L} < 1and B,, < B for some B and n > 0.
Assume that there are identification operators J,, : (2(Gy,) — (2(Gr), Jn : (2(G) — (2(Gy)
(0 < n < N) so that the respective signal spaces are J-unitarily equivalent, the respective normal
operators A, ﬁn are w-d-close as well as bounded (in norm) by K > 0 and the connecting
operators satisfy H]—Njn In—1f — JnPnf]| (@) = 0. For the common module sequence 2 assume
that the non-linearities satisfy |p,(Jnf) — Jnpn ()| ¢2(&,) = 0 and that the constants C'y, and



{Cy. }y.ery associated through Lemmato the functions of the generalized frames in each layer
satisfy C2 + 2T CgQM < D? for some D > 0. Denote the operator that the family {.J,, },, of

identification operators induce on % through concatenation by Zn : #ny — § ~. Then, with
Ky =+/(2N =1)2D%2 - BN-1if B> 1/2and Ky = /2D%- (1 — BN)/(1 - B)if B < 1/2:

|28 (Jof) = InON(Hl 5, < En-8-|flee Vfe (@)

The stability result persists with slightly altered stability constants, if identification operators only
almost commute with non-linearities and/or connecting operators, as Appendix [G] further elucidates.
Theorem @] is not applicable to Architecture I, where filters are not all holomorphic, but is directly
applicable to Architecture II. Stability constants can be calculated in terms of D and B as before.

Beyond these results, stability under truncation of the scattering transform is equally desirable: Given
the energy Wy =3 . epw [U[yn] 000 U[Ayl](f)H?Q(GN) stored in the network at layer IV,
it is not hard to see that after extending ®  (f) by zero to match dimensions with ® 51 (f) we have
[®n(f) — ‘I)N+1(f)H29N+1 < (1[31‘\*,+1L;\”,+1)2 Bn+1 - Wi (see Appendix [H| for more details). A
bound for Wy is then given as follows:

Theorem 4.6. Let @, be a generalized graph scattering transform based on a an operator sequence
Do = (Pn, A,)%_; and a module sequence 2o, with each p,,(-) = 0. Assume in each layer n > 1
that there is an eigenvector v,, of A,, with solely positive entries; denote the smallest entry by m,, :=
min;eq, ¥n[i] and the eigenvalue corresponding to v, by \,,. Quantify the *spectral-gap’ opened up
at this eigenvalue through neglecting the output-generating function by 7, := > [+, (An) |2

and assume B,,m,, > n,. We then have (with C%, := ]_[fil max {1, B;(L{ R}")?})

(- (me3))

The product in decays if C; — C* converges and Z,]Ll(mn — 1n/Bn) — oo diverges as
N — o0. The positivity-assumptions on the eigenvectors v,, can e.g. always be ensured if they are
chosen to lie in the lowest lying eigenspace of a graph Laplacian or normalized graph Laplacian
(irrespective of the connectedness of the underlying graphs). As an example, we note that if we extend
our Architecture I to infinite depth (recall from Section [3|that we are using the same filters, operators,
etc. in each layer) we have upon choosing \,, = 0 and ,, to be the constant normalized vector that
My, =0, Cy = 1and m,, = 1/4/|G|, for a graph with |G| vertices. On a graph with 16 vertices, we
then e.g. have Wy < (3/4)V | |2 ;) and thus [® (f) = D1 (/)| onss < B/ - |12 ) /2-
As detailed in Appendix [H]} Theorem {.6|also 1rnphes that under the given assumptions the scattering
transform has trivial "kernel’ for N — oo, mapping only 0 to 0.

Wn(f) <Cy - N fl76)- 3)

5 Graph-Level Feature Aggregation

To solve tasks such as graph classification or regression over multiple graphs, we need to represent
graphs of varying sizes in a common feature space. Given a scattering transform ®,, we thus
need to find a stability preserving map from the feature space .%x to some Euclidean space that is
independent of any vertex set cardinalities. Since .7 is a large direct sum of smaller spaces (cf. (1)),
we simply construct such maps on each summand independently and then concatenate them.

General non-linear feature aggregation: Our main tool in passing to graph-level features is a
non-linear map Nf : 12(G) — RP given as

1
NS (f) = %(Hf“@l(G)/’\/ﬂGa 1 fllezcys I flezays o I lercay) T “
with pug := 3 i and | flla(ay = (Xieq | fi1944:)/4. Our inspiration to use this map stems from
the standard case where all j; = 1: For p > |G/, the vector |f| = ((|f1],...,|fc|) T can then be

recovered from NE (f) up to permutation of indices [23]. Hence, employing Nf (withp > |G|) to
aggregate node-information into graph-level information, we lose the minimal necessary information



about node permutation (clearly N5 (f) = NS (ILf) for any permutation matrix IT) and beyond that
only information about the complex phase (respectively the sign in the real case) in each entry of f.

Given a scattering transform ® 5 mapping from ¢2(G) to

the feature space Fn = @, (EQ(GTL))‘F ' ‘, we ob-

tain a corresponding map ¥ mapping from ¢%(G) to
n—1

- Zn = ®)_; (Re)IT | by concatenating the feature

map ® with the operator that the family of non-linear
l maps {Ng:’ N_ induces on .Zy by concatenation. Simi-

piL(Pi())

Wb

QQ

n=1

e\ eP() g b2 larly we obtain the map Uy KQ(C:‘) — 2N by concatenat-
~ ~ ~ ‘1—\7171 ‘

>, ing the map @y : /2(G) — ®)_, (62(6’”)) with

x2(A2) the operator induced by the family { N g" N_,. The feature

— £(Gy) ¢(G) —f space Zy is completely determined by path-sets TV and
NG NG: used maximal p-norm indices p,. It no longer depends

RP BP2 on cardinalities of vertex sets of any graphs, allowing to
compare (signals on) varying graphs with each other. Most

Figure 4: Graph Level Scattering  of the results of the previous sections then readily transfer

to the graph-level-feature setting (c.f. Appendix [L.T).

Low-pass feature aggregation: The spectrum-free aggregation scheme of the previous paragraph
is especially adapted to settings where there are no high-level spectral properties remaining constant
under graph perturbations. However, many commonly utilized operators, such as normalized and
un-normalized graph Laplacians, have a somewhat ’stable’ spectral theory: Eigenvalues are always
real, non-negative, the lowest-lying eigenvalue equals zero and simple (if the graph is connected). In

this section we shall thus assume that each mentioned normal operator A,, (A,,) has these spectral
properties. We denote the lowest lying normalized eigenvector (which is generically determined up

to a complex phase) by ¥, and denote by M‘GgﬂN : 12(G,,) — C the map given by M|C§W>| (f) =
|<¥a, s [)e(c,)|- The absolute value around the inner product is introduced to absorb the phase-
ambiguity in the choice of 1A, . Given a scattering transform ® ;- mapping from £2(G) to the feature

space %y, we obtain a corresponding map \Il‘]ff'"N mapping from ¢%(G) to €n = (—Bﬁf:l(DW"*ll by
concatenating the feature map ® y with the operator that the family of maps { M, g;ﬁ‘ N_| induces on
Zn by concatenation. As detailed in Appendix this map inherits stability properties in complete

analogy to the discussion of Section[4]

6 Higher Order Scattering

Node signals capture information about nodes in isolation. However, one might be interested in
binary, ternary or even higher order relations between nodes such as distances or angles in graphs
representing molecules. In this section we focus on binary relations — i.e. edge level input — as this is
the instantiation we also test in our regression experiment in Section /] Appendix |J.2]provides more

details and extends these considerations beyond the binary setting. We equip the space of edge inputs
|G|

i,j=1
space by /2(E) with E = G'x G the set of edges. Setting e.g. node-weights z; and edge weights /1, to
one, the adjacency matrix W as well as normalized or un-normalized graph Laplacians constitute self-
adjoint operators on £2(E), where they act by matrix multiplication. Replacing the G,, of Section
by E,,, we can then follow the recipe laid out there in constructing 2"¢-order scattering transforms; all
that we need are a module sequence (5 and an operator sequence 2% := (P2, A2)N_, where now
P2 (*(E,_1) — (?(E,) and A2 : (?(E,) — (*(E,). We denote the resulting feature map by ®3;

and write .7 % for the corresponding feature space. The map NE introduced in @) can also be adapted

with an inner product according to {f, gy = >’ ijgij ;5 and denote the resulting inner-product

to aggregate higher-order features into graph level features: With || f{lg := (X, e [ fi5]? i)/ and
a
KE = ZL]’LI pig, we define NE(f) = (I fle ey /vie 1 flew) | floay, - 1 led) /b

. . rm-t . .
Given a feature map ®%; with feature space .#2, = @_; (62 (En)) | l, we obtain a corresponding



map V% mapping from (2(E) to Zn = ®)_, (Rp“')‘rnil‘ by concatenating ®%, with the map that
the family of non-linear maps {N[ié N_, induces on .Z y by concatenation. The stability results of

the preceding sections then readily translate to ®3; and U3, (c.f. Appendix .

7 Experimental Results

We showcase that even upon selecting the fairly simple Architectures I and II introduced in Section
[3|(c.f. also Fig. ), our generalized graph scattering networks are able to outperform both wavelet-
based scattering transforms and leading graph-networks under different circumstances. To aid visual
clarity when comparing results, we colour-code the best-performing method in green, the second-best
performing in yellow and the third-best performing method in orange respectively.

Social Network Graph Classification: To facilitate contact between our generalized graph scat-
tering networks, and the wider literature, we combine a network conforming to our general theory
namely Architecture I in Fig. 2] (as discussed in Section 3] with depth N = 4, identity as connect-
ing operators and | - |-non-linearities) with the low pass aggregation scheme of Section [5|and a
Euclidean support vector machine with RBF-kernel (GGSN+EK). The choice N = 4 was made
to keep computation-time palatable, while aggregation scheme and non-linearities were chosen
to facilitate comparison with standard wavelet-scattering approaches. For this hybrid architecture
(GGSN+EK), classification accuracies under the standard choice of 10-fold cross validation on five
common social network graph datasets are compared with performances of popular graph kernel
approaches, leading deep learning methods as well as geometric wavelet scattering (GS-SVM) [12].
More details are provided in Appendix [K] As evident from Table [T} our network consistently achieves
higher accuracies than the geometric wavelet scattering transform of [12]], with the performance gap
becoming significant on the more complex REDDIT datasets, reaching a relative mean performance
increase of more than 10% on REDDIT-12K. This indicates the liberating power of transcending
the graph wavelet setting. While on comparatively smaller and somewhat simpler datasets there is
a performance gap between our static architecture and fully trainable networks, this gap closes on
more complex datasets: While P-Poinc e.g. outperforms our method on IMDB datasets, the roles
are reversed on REDDIT datasets. On REDDIT-B our approach trails only GIN; with difference in
accuracies insignificant. On REDDIT-5K our method comes in third, with the gap to the second best
method (GIN) being statistically insignificant. On REDDIT-12K we generate state of the art results.

Table 1: Classification Accuracies on Social Network Datasets

Method Classification Accuracies [%]

COLLAB IMDB- B IMDB-M REDDIT-B  REDDIT-5K  REDDIT-12K
WL [33] 77.82+1.45 71.60+5.16 N/A 78.52+2.01 50.77 £2.02  34.57 +£1.32
Graphlet [34] 73.42+2.43 65.40+5.95 N/A 77.26+2.34 39.75+1.36 25.98 +1.29
DGK [42] 73.00£0.20 66.90£0.50 44.50£0.50 78.00+0.30 41.20 £0.10  32.20 £ 0.10
DGCNN [46] 73.76+0.49 70.03+£0.86 47.83+0.85 N/A 48.70 £4.54 N/A
PSCN [26] 72.60+2.15 71.00+2.29 45.23+2.84 86.30+1.58 49.10+0.70  41.32 + 0.42
P-Poinc [19] N/A 81.86+£4.26° 5731F£427 79.78+3.21 51.71+3.01 42.16 +3.41
S2S-N2N-PP [16] 81.75£0.80 73.80+£0.70 51.194£0.50 86.504+0.80 52.28 £ 0.50  42.47 + 0.10
GSN-e [3] 85.5+1.2 77.8 £3.3 543 £33 N/A N/A N/A
WKPI-kC[47] N/A 751+ 1.1 49.5 + 0.4 N/A 59.5+ 0.6 48.4+ 0.5
GIN [41] 80.20+1.90 | 75.10%£5.10 52:30£2:80°  92:40£2:50° 57.50 + 1.50 N/A
GS-SVM [12] 79.94+1.61 71.20+3.25 48.73+2.32 | 89.65+1.94 | 53.33 + 1.37 | 45.23 + 1.25
GGSN+EK [OURS] ['80:34£1.68" 73.20+3.76 49.47+2.27 91.60+1.97 [56:89 £ 2.24 " 49.03 + 1.58

Regression of Quantum Chemical Energies:

In order to showcase the prowess of both our higher

order scattering scheme and our spectrum-agnostic aggregation method of Section[5} we combine
these building blocks into a hybrid architecture which we then apply in combination with kernel
methods (2GGST + EK) to the task of atomization energy regression on QM7. This is a comparatively
small dataset of 7165 molecular graphs, taken from the 970 million strong molecular database GDB-
13 [2]]. Each graph in QM7 represents an organic molecule, with nodes corresponding to individual
atoms. Beyond the node-level information of atomic charge, there is also edge level information
characterising interaction strengths between individual nodes/atoms available. This is encoded into so
called Coulomb matrices (see e.g. [31]] or Appendix [K) of molecular graphs, which for us serve a dual
purpose: On the one hand we consider a Coulomb matrix as an edge-level input signal on a given graph.



On the other hand, we also treat it as an adjacency matrix from which we build up a graph Laplacian
L. Our normal operator is then chosen as . = L/\.:(£) again. Connecting operators are set to
the identity, while non-linearities are fixed to p,>1(-) = | - |. Filters are chosen as (sin(7/2 - &),
cos(m/2 - L), sin(w - L), cos(m - .£)) acting through matrix multiplication. Output generating
functions are set to the identity and depth is IV = 4, so that we essentially recover Architecture II of
Fig. [2} now applied to edge-level input.
Graph level features are aggregated via the
map N¥ of Section We chose p = 5
%% [ (and not p » 5) for Np to avoid overfitting.

keal /mol
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Figure 5: Atomization Energy as a Function of pri- g features are able to aptly resolve the atom-

mary Principal Components of Scattering Features ization energy of the molecules. This aptitude
is also reflected in Table 2} comparing our

approach with leading graph-based learning methods trained with ten-fold cross validation on node
and (depending on the model) edge level information. Our

method is the best performing. We significantly outperform  yple 2: Comparison of Methods
the next best model (DTNN), producing less than half of its

mean absolute error (MAE). Errors of other methods are at  Method MAE [kcal/mol]
least one — sometimes two — orders of magnitude greater. In — AttentiveFP [40] 66.2 £ 2.8
part, this performance discrepancy might be explained by the g?ﬁgﬁgj“” 51;025_§ ;—F913~2
hightened suitability of our scattering transform for environ- GraphConv [T8] 118.9 4 20.2

ments with somewhat limited training-data availability. Here  GROVER (base)[30]  72.5 + 5.9

we speculate that the additional performance gap might be ex-  MPNN [I3] 113.0 +17.2
plained by the fact that our graph shift operator A carries the ~ N-GRAM[21] 125.6 £ 1.5
same information as the Coulomb matrix (a proven molecular ~ PAGTN (global) [6]  47.8 & 3.0

X .. .. . PhysChem [45] 59.6 +£ 2.3
graph descriptor in itself [31]). Additionally, our filters being ¢ e 32) 749+ 6.0

infinite series’ in powers of the underlying normal operator  weave [17] 59.6 + 2.3
allows for rapid dispersion of information across underlying ~ GGST+EK [OURS] [FII3 106
molecular graphs, as opposed to e.g. the filters in GraphConv ~_2GGST+EK [OURS] [13.4 0.3

or SchNet, which do not incorporate such higher powers. To quantify the effect of including second
order scattering coefficients, we also include the result of performing kernel-regression solely on
first order features generated through Architecture II of Fig. 2](GGST + EK). While results are still
better than those of all but one leading approach, incorporating higher order scattering improves
performance significantly.

8 Discussion

Leaving behind the traditional reliance on graph wavelets, we developed a theoretically well founded
framework for the design and analysis of (generalized) graph scattering networks; allowing for
varying branching rations, non-linearities and filter banks. We provided spectrum independent
stability guarantees, covering changes in input signals and for the first time also arbitrary normal
perturbations in the underlying graph-shift-operators. After introducing a new framework to quantify
vertex-set non-preserving changes in graph domains, we obtained spectrum-independent stability
guarantees for this setting too. We provided conditions for energy decay and discussed implications
for truncation stability. Then we introduced a new method of graph-level feature aggregation and
extended scattering networks to higher order input data. Our numerical experiments showed that
a simple scattering transform conforming to our framework is able to outperform the traditional
graph-wavelet based approach to graph scattering in social network graph classification tasks. On
complex datasets our method is also competitive with current fully trainable methods, ouperforming
all competitors on REDDIT-12K. Additionally, higher order graph scattering transforms significantly
outperform current leading graph-based learning methods in predicting atomization energies on QM7.
A reasonable critique of scattering networks as tractable models for general graph convolutional



networks is their inability to emulate non-tree-structured network topologies. While transcending
the wavelet setting has arguably diminished the conceptual gap between the two architectures, this
structural difference persists. Additionally we note that despite a provided promising example, it is
not yet clear whether the newly introduced graph-perturbation framework can aptly provide stability
guarantees to all reasonable coarse-graining procedures. Exploring this question is the subject of
ongoing work.

Broader Impact

We caution against an over-interpretation of established mathematical guarantees: Such guarantees
do not negate biases that may be inherent to utilized datasets.
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