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ABSTRACT

LLM-based multi-agent systems (MAS) extend the capabilities of single LLMs
by enabling cooperation among multiple specialized agents. However, most exist-
ing MAS frameworks rely on a single LLM to drive all agents, constraining the
system’s intelligence to the limit of that model. This paper explores the paradigm
of heterogeneous LLM-driven MAS, where agents are powered by diverse LLMs,
elevating the system’s potential to the collective intelligence of diverse LLMs. We
introduce X-MAS-Bench, a comprehensive testbed designed to evaluate the per-
formance of various LLMs across different domains and MAS-related functions.
As an extensive empirical study, we assess 27 LLMs across 5 domains (encompass-
ing 21 test sets) and 5 functions, conducting over 1.7 million evaluations to iden-
tify optimal model selections for each domain-function combination. Building on
these findings, we demonstrate that transitioning from homogeneous to heteroge-
neous LLM-driven MAS can significantly enhance system performance without
requiring structural redesign. Specifically, in a chatbot-only MAS scenario, the
heterogeneous configuration yields up to 8.4% performance improvement on the
MATH dataset. In a mixed chatbot-reasoner scenario, the heterogeneous MAS
could achieve a remarkable 47% performance boost on the AIME dataset. Our
results underscore the transformative potential of heterogeneous LLMs in MAS,
highlighting a promising avenue for advancing scalable, collaborative AI systems.

1 INTRODUCTION

Large language models (LLMs) such as GPT OpenAI (2023), Gemini Team et al. (2024),
Qwen Yang et al. (2024b), have been applied across various domains. However, despite their re-
markable capabilities, LLMs often struggle with multifaceted, complex, and real-world problems
due to inherent limitations such as hallucinations Zhang et al. (2023); Min et al. (2023).

In response to these limitations, LLM-based multi-agent systems (MAS) have emerged as a promis-
ing solution Ye et al. (2025); Qian et al. (2024); Gottweis et al. (2025). MAS involves the collabora-
tion of multiple agents, each specialized in specific functions, to address problems more effectively
than a single model could. his paradigm has been successfully applied across various scenarios, in-
cluding software development Qian et al. (2024); Hong et al. (2024), mathematics Lei et al. (2024);
Liu et al. (2024), and scientific discovery Boiko et al. (2023); Lu et al. (2024). For instance, Chat-
Dev Qian et al. (2024), MetaGPT Hong et al. (2024), and EvoMAC Hu et al. (2025b) utilize multiple
coding agents (e.g., coders and testers) to improve software programming, while AI co-scientist Got-
tweis et al. (2025) employs a MAS to enhance biomedical and scientific research.

Despite notable progress, most existing MAS frameworks rely on a single LLM to drive all
agents Hong et al. (2024); Qian et al. (2024); Liu et al. (2024); Ye et al. (2025); Hu et al. (2025b);
Du et al. (2024); Chen et al. (2024b). This manner inherently limits the systems intelligence to
that of the underlying model. For example, if a single LLM produces fundamental errors in certain
facts, these mistakes are unlikely to be corrected through the collaboration of agents powered by the
same model. Inspired by the advantages of diversity in collective intelligence Hong & Page (2004);
Kozhevnikov et al. (2014); Aggarwal et al. (2015), this paper explores MAS with heterogeneous
LLMs (X-MAS), pushing the systems capabilities beyond its previous limit to harness the collective
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Figure 1: Overview of our X-MAS-Bench and X-MAS-Design. X-MAS-Bench assesses the capa-
bilities of LLMs in MAS while X-MAS-Design focuses on transitioning a homogeneous MAS to a
heterogeneous one, gaining from the observations in X-MAS-Bench. Experiments on chatbot-only
and mixed chatbot-reasoner scenarios evidently show the benefits of heterogeneous MAS.

potential of LLMs trained on diverse corpora or by different teams Yang et al. (2024a); Dubey et al.
(2024); Yang et al. (2024c).

To provide a comprehensive evaluation of LLMs in MAS, we introduce X-MAS-Bench, a testbed
designed to assess the performance of various LLMs across different MAS-related functions and
domains. Specifically, we consider 5 representative functions of agents in MAS, including question-
answering Du et al. (2024); Hong et al. (2024), revise Hu et al. (2025b); Madaan et al. (2024),
aggregation Qian et al. (2025); Liang et al. (2024), planning Islam et al. (2024); Lei et al. (2024),
and evaluation Chen et al. (2024b); Qian et al. (2024); as well as 5 common domains, including
mathematics, coding, science, medicine, and financespanning 21 test sets. Each function is assessed
under controlled experimental conditions. For example, when assessing aggregation, each query is
input into several pre-defined LLMs, whose outputs are concatenated to be aggregated by the exam-
ined LLM. The aggregated responses of various LLMs are then evaluated and compared. Finally, we
assess 27 LLMs across these 5 functions and 5 domains, conducting over 1.7 million evaluations to
identify the optimal model selections for each domain-function combination. Our findings include
that (1) no single LLM excels across all scenarios, (2) a single LLM could have significant per-
formance variation across functions and domains, (3) different LLMs may show large performance
disparities within the same function and domain, (4) smaller LLMs can sometimes outperform larger
ones, highlighting the potential advantages of employing heterogeneous LLMs in MAS. These re-
sults provide valuable insights for researchers and practitioners in selecting the most appropriate
LLMs for their specific MAS applications.

Building on these observations, we explore the effects of transitioning from homogeneous to hetero-
geneous LLM-driven MAS (X-MAS-Design). As a proof of concept, given the implementation of a
MAS method, we simply assign agents with appropriate LLMs (taking seconds) by referring obser-
vations in X-MAS-Bench. To validate our idea, we examine three existing MAS frameworksLLM-
Debate Du et al. (2024), AgentVerse Chen et al. (2024b), and DyLAN Liu et al. (2024)as well as a
prototype MAS designed by us, which incorporates all five functions in one system. Our analysis
covers five domains with no sample overlap compared to X-MAS-Bench. In a chatbot-only scenario,
we observe consistent improvements in performance for heterogeneous MAS over homogeneous
configurations, achieving up to a 8.4% performance gain on the MATH Hendrycks et al. (2021b)
benchmark. Interestingly, while reasoner-only MAS often underperforms relative to chatbot-only
systems, combining chatbot and reasoner in a heterogeneous MAS leads to significant performance
improvements. Specifically, in the competition-level AIME-2024 benchmark, AgentVerse Chen
et al. (2024b) is improved from 20% to 50%, and DyLAN Liu et al. (2024) improved from 40%
to 63%. Our further experiments reveal that increasing the number of candidate LLMs for het-
erogeneous MAS results in a monotonic performance improvement, reinforcing the value of LLM
diversity in MAS. Based on our work, future research could explore more nuanced strategies for
selecting and integrating LLMs in heterogeneous MAS; investigate the scalability and adaptability
of heterogeneous MAS across different industries and other complex tasks.

Our contributions are as follows:
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1. X-MAS-Bench: We assess 27 LLMs across 5 MAS-related functions and 5 domains, conduct-
ing over 1.7 million evaluations to identify diverse optimal model selections for each domain-
function combination. These observations could benefit researchers and practitioners in building
MAS.

2. X-MAS-Design: Based on findings in X-MAS-Bench, we propose to transition existing MAS
methods from homogeneous to heterogeneous LLM-driven MAS. We conduct extensive experi-
ments, showing that heterogeneous MAS consistently outperforms homogeneous MAS.

3. Open Source: We release all data, code, and evaluation results to facilitate future MAS research.

2 RELATED WORK

LLM-based MAS. LLM-based multi-agent systems (MAS) leverage multiple LLM-based agents to
collaborate for better task solving than single LLM Chen et al. (2024b); Hong et al. (2024); Hu et al.
(2025a); Ye et al. (2025). ChatDev Qian et al. (2024), MetaGPT Hong et al. (2024), and EvoMAC Hu
et al. (2025b) use multiple coding agents (e.g., coders and testers) for software programming; while
MACM Lei et al. (2024) applies math agents for mathematics. Focusing on general tasks, debate-
based methods Du et al. (2024); Liang et al. (2024) enable multiple experts in debating for better
solutions; AgentVerse Chen et al. (2024b) and DyLAN Liu et al. (2024) dynamically adjust the
agent team for task solving; while MAS-GPT Ye et al. (2025) trains an LLM for generating MAS.
However, all of these methods rely on a single LLM to drive all agents, which inherently limits
the system’s intelligence to that of the underlying LLM. This paper proposes to push the limit by
harnessing the collective intelligence of heterogeneous LLMs from different sources.

Heterogeneous LLMs. In a general context of LLMs, there are several works related to using het-
erogeneous LLMs Chen et al. (2023); Venkatraman et al. (2024). LLM-Blender Jiang et al. (2023)
trains a model for ensembling outputs from multiple LLMs. MoA Wang et al. (2025) and ReC-
oncile Chen et al. (2024a) enable multiple LLMs for discussion, however, involving all candidate
LLMs without considering their appropriateness. MASRouter Yue et al. (2025) manually selects sev-
eral candidate LLMs for MAS and is optimized for their specific framework. In contrast, our paper
systematically assess the capabilities of LLMs across several MAS-related functions and domains,
aiming to universally benefit the design of heterogeneous MAS for various MAS methods.

Benchmarking LLMs. Many works benchmark the capabilities of LLMs in various domains
(such as math Hendrycks et al. (2021b), coding Jimenez et al. (2024), science Rein et al. (2023),
medicine OpenAI (2025), and finance Xie et al. (2023)) and functions (such as planning Valmeekam
et al. (2023) and evaluation Tan et al. (2025)). However, our paper for the first time benchmarks
LLMs for MAS, which assesses the capabilities of LLMs across 25 function-domain perspectives
related to MAS.

3 X-MAS-BENCH: EVALUATING LLMS FOR MAS

X-MAS-Bench is a testbed designed to assess the performance of various LLMs across different
MAS-related functions and domains. Specifically, we consider 5 representative functions of agents
in MASquestion-answering Du et al. (2024); Hong et al. (2024), revise Hu et al. (2025b); Madaan
et al. (2024), aggregation Qian et al. (2025); Liang et al. (2024), planning Islam et al. (2024); Lei
et al. (2024), and evaluation Chen et al. (2024b); Qian et al. (2024). Orthogonally, we investigate
behaviors in 5 domains, including mathematics, coding, science, medicine, and financespanning
21 test sets. Each function is assessed under controlled experimental conditions. In this section,
we demonstrate the details of experimental conditions in Section 3.1 and experimental results in
Section 3.2.

3.1 BENCHMARKING MAS-RELATED FUNCTIONS

To assess LLM capabilities in multi-agent systems (MAS), we decompose behaviors into five key
functions: question-answering, revise, aggregation, planning, and evaluation. Each uses a standard-
ized prompt protocol, with only the evaluated LLM varying. We detail each below.
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Figure 2: Benchmarking chatbot LLMs on 5 MAS-related functions and 5 domains. We see that no
single LLM excels across all scenarios, indicating the potential advantages of employing heteroge-
neous LLMs in MAS. All evaluation results will be open-sourced for future research.

Question-answering. QA evaluates a LLMs ability to understand a query and generate a correct
free-text answer. It underpins MAS like LLM-Debate Du et al. (2024) and MetaGPT Hong et al.
(2024). Assessment involves inputting a sampled query (e.g., from MATH Hendrycks et al. (2021b))
and comparing outputs to ground-truth for accuracy.ă

Revise. Revise tests revising a potentially flawed initial answer into a corrected one, as in Evo-
MAC Hu et al. (2025b) and Self-Refine Madaan et al. (2024). Given a query and pre-defined LLM-
generated answer, the examined LLM reasons and revises to a final answer. Prompts are identical
across LLMs; accuracy against ground-truth measures capability.

Aggregation. Aggregation combines multiple candidate answers into a coherent, improved final
one, key in MacNet Qian et al. (2025) and MAD Liang et al. (2024). For each query, fixed responses
from 3 pre-defined LLMs are provided in consistent format; the LLM synthesizes the final answer.
Accuracy against ground-truth evaluates performance.

Planning. Planning decomposes tasks into sub-tasks and assigns agent roles for collaborative solv-
ing, as in MACM Lei et al. (2024) and MapCoder Islam et al. (2024). The LLM generates a plan
with role descriptions and workflow in a predefined format. Extracted roles activate corresponding
candidate LLMs; fixed inputs ensure fairness. Final task accuracy proxies planning ability.

Evaluation. Evaluation assesses critiquing other agents outputs for quality or correctness, used
in AgentVerse Chen et al. (2024b) and ChatDev Qian et al. (2024). Presented with a query and
pre-defined LLM answer, the LLM judges correctness. Consistent inputs enable fair comparison;
judgments are scored against ground-truth.
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Table 1: Summary of top-3 LLMs for each function-domain combination (chatbot-only scenario).
All the assessed LLMs are instructed models (e.g., Qwen2.5-32B denotes Qwen2.5-32B-Instruct.).
We see that no single LLM excels across all scenarios. Meanwhile, the top models are not always
those with the largest sizes, indicating the potential of improving both performance and cost.

Function Rank Mathematics Coding Scienceă Medicine Finance

Qwen2.5-32B (69.2) Qwen2.5-32B (80.3) Qwen2.5-72B (60.7) Qwen2.5-72B (70.4) Qwen2.5-72B (74.0)
QA Qwen2.5-72B (68.8) Qwen2.5-72B (77.1) Qwen2.5-32B (60.0) Llama3-OpenBioLLM-70B (69.7) Qwen2.5-32B (71.0)

Qwen2.5-Math-72B (68.2) Qwen2.5-Coder-14B (72.3) Qwen2.5-Math-72B (57.1) Llama-3.1-70B (69.6) Qwen2.5-Coder-32B (70.3)

Qwen2.5-Coder-32B (68.4) Qwen2.5-7B (79.2) Qwen2.5-72B (60.6) Llama-3.1-70B (71.0) Qwen2.5-72B (70.9)
Revise Qwen2.5-14B (68.4) Qwen2.5-Coder-32B (77.7) Qwen2.5-32B (60.2) Qwen2.5-72B (69.3) Llama-3.1-70B (70.1)

Qwen2.5-32B (68.2) Qwen2.5-72B (77.3) Qwen2.5-Math-72B (60.2) Qwen2.5-Math-72B (68.1) Qwen2.5-32B (70.1)

Llama-3.1-70B (77.4) Qwen2.5-72B (85.5) Llama-3.1-70B (67.3) Llama3-OpenBioLLM-70B (73.4) Qwen2.5-14B (73.6)
Aggregation Qwen2.5-Coder-32B (77.1) Mistral-Small-3.1-24B (80.2) Qwen2.5-32B (66.7) Qwen2.5-7B (72.7) Mistral-Small-3.1-24B (73.2)

Qwen2.5-14B (76.2) Qwen2.5-Coder-32B (78.4) Qwen2.5-Coder-32B (66.5) Llama-3.1-70B (72.7) Qwen2.5-7B (72.8)

Qwen2.5-14B (65.0) Llama-3.1-70B (71.0) Qwen2.5-Coder-7B (55.5) Qwen2.5-Coder-14B (65.4) Qwen2.5-72B (64.7)
Planning Mistral-Small-3.1-24B (65.0) Qwen2.5-14B (70.5) Qwen2.5-32B (55.3) Qwen2.5-7B (65.3) Qwen2.5-Coder-14B (63.6)

Qwen2.5-32B (64.7) Qwen2.5-32B (70.1) Mistral-Small-3.1-24B (55.1) Qwen2.5-32B (65.2) Qwen2.5-14B (63.2)

Qwen2.5-32B (79.0) Qwen2.5-14B (55.4) Llama-3.1-70B (67.9) Llama-3.1-70B (70.5) Llama-3.1-70B (72.6)
Evaluation Qwen2.5-14B (78.1) Qwen2.5-Coder-32B (54.7) Mistral-Small-3.1-24B (66.1) Qwen2.5-72B (69.4) Qwen2.5-14B (72.6)

Mistral-Small-3.1-24B (77.9) Llama-3.1-70B (53.8) Qwen2.5-32B (65.3) Mistral-Small-3.1-24B (68.7) Qwen2.5-Math-72B (72.3)

3.2 EXPERIMENTS IN EVALUATING LLMS ACROSS FUNCTIONS AND DOMAINS

Following the above definitions of functions, this section assesses the capabilities of various LLMs
in different functions and domains, aiming at demonstrating the landscape of LLMs for MAS. The
reported results are expected to demonstrate the potential of leveraging heterogeneous LLMs for
MAS and facilitate future researchers in choosing appropriate LLMs for their MAS.

Experimental setups. We examine 27 LLMs, covering 20 chatbots (i.e., instructed LLMs) and 7
reasoners (i.e., reasoning LLMs). Among the 20 chatbots, we consider general chatbots trained by
different companies such as Llama Dubey et al. (2024), Qwen Yang et al. (2024a), Mistral Mistral
(2024b; 2025), and domain-specific chatbots including mathematics Yang et al. (2024c), coding Hui
et al. (2024), science Zhao et al. (2025); SciPhi (2023), medicine Duxiaoman-DI (2024); SYSU-
MUCFC-FinTech-Research-Center (2024), and finance Duxiaoman-DI (2024); SYSU-MUCFC-
FinTech-Research-Center (2024). The reasoners include LLMs from DeepSeek Guo et al. (2025),
Qwen Team (2025b), and others Team (2025a). We set each models maximum token limit to its
own capacity, 8192 tokens maxed, with a temperature of 0.5 by default. Specially, all LLMs instanti-
ated within the planning workflow are executed with their temperature fixed at 0 to guarantee as the
planning involves format-following. Our datasets cover domains including mathematics Hendrycks
et al. (2021b); Ling et al. (2017); Gao et al. (2023); Maxwell-Jia (2024); Hendrycks et al. (2021a);
Wang et al. (2024b), coding Chen et al. (2021a); Austin et al. (2021); Liu et al. (2023), science Rein
et al. (2023); Wang et al. (2024a); Sun et al. (2024); Feng et al. (2024), medicine Pal et al. (2022);
Jin et al. (2021; 2019), and finance Islam et al. (2023); Chen et al. (2021b); Malo et al. (2014),
where each dataset is randomly sampled up to 500 examples without replacement; see more details
in Section D.

No single LLM excels across all scenarios. We plot the size-performance values of each evaluated
chatbot LLM across 25 function-domain combinations in Figure 2 and report the summary of top-3
LLMs for each combination in Table 1; see results of all LLMs in Figure 5 and Table 5. From these
results, we see that (1) No single LLM excels universally across all scenarios. A heterogeneous
MAS can capitalize on these differences by assigning scenario-specialized models (e.g., Llama3-
OpenBioLLM for medicine) to specific agents, maximizing collective intelligence. (2) LLMs exhibit
varied performance across MAS-related functions, reinforcing the value of heterogeneity.

A single LLM could have significant performance variation across domains and functions. In-
dividual LLMs exhibit substantial performance disparities when evaluated across different domains
and functions, underscoring the limitations of relying on a single model in a homogeneous MAS.
For instance, in Figure 2, Qwen2.5-7B performs exceptionally well for revising in coding domain;
while dropping to a mid-tier level for revising in medicine domain and planning in coding domain.

There are large performance disparities across LLMs within the same domain and function.
For the function of revise or the domain of coding, we observe diverse behaviors on the examined
LLMs, as shown by disperse scatters in Figure 2 (second row and second column).
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Smaller LLMs can outperform larger ones in niche scenarios. While larger models like Qwen2.5-
72B-Instruct and Llama-3.1-70B-Instruct often lead, smaller models occasionally excel in specific
function-domain pairs. For example, in revise-coding pair, Qwen2.5-7B-Instruct (79.2) outperforms
Qwen2.5-72B-Instruct (77.3); while in aggregation-finance and evaluation-finance pairs, Qwen2.5-
14B achieves the best performance among all models. This indicates that heterogeneous MAS can
incorporate smaller, specialized models to optimize performance and computational efficiency, re-
ducing reliance on resource-intensive large models while maintaining or improving outcomes.

Low-performing models highlight the risk of homogeneous MAS. Some models consistently
underperform across domains and functions (e.g., BioMedGPT-LM-7B and SciPhi-Mistral-7B-32k).
A homogeneous MAS relying on such models would be severely limited, whereas a heterogeneous
setup can mitigate this by integrating appropriate and high-performing LLMs.

Consistent high performers enable robust heterogeneous configurations. Models like Qwen-2.5-
32B-Instruct, Qwen-2.5-72B-Instruct, and Llama-3.1-70B-Instruct frequently rank among the top
across domains and functions (e.g., 80.3 in QA-coding, 79.0 in evaluation-math for Qwen-2.5-32B-
Instruct). These models can serve as reliable anchors in a heterogeneous MAS, complemented by
specialized models for niche tasks (e.g., Llama3-OpenBioLLM-70B in medicine), ensuring robust
and scalable performance improvements.

4 X-MAS-DESIGN: LEVERAGING DIVERSITY FOR MAS

Based on the findings in X-MAS-Bench (Section 3.2), we explore the effects of transitioning from
homogeneous to heterogeneous LLM-driven MAS (X-MAS-Design). We show how a homogeneous
MAS is transformed into a heterogeneous MAS in Section 4.1. We provide experimental results in
a chatbot-only scenario (Section 4.2) and a mixed chatbot-reasoner scenario (Section 4.3).

4.1 TRANSITIONING FROM HOMOGENEOUS TO HETEROGENEOUS LLM-DRIVEN MAS

Transitioning existing MAS methods. As a proof of concept, we aim to show that a simple man-
ual modification of the LLM configurations can enhance the performance of MAS without any
structural improvement. For each target MAS method (e.g., AgentVerse Chen et al. (2024b), LLM-
Debate Du et al. (2024)), we retain the original agent roles and interaction topology but substitute
the single homogeneous LLM with several appropriate LLMs for the agents. Concretely, for each
domain-function pair in the original design (e.g., the evaluator for coding in AgentVerse), we replace
the uniform LLM driver with the top performer in the pool of available models based on observa-
tions from X-MAS-Bench (Section 3.2). By preserving the method’s interaction logic and prompt
templates, we ensure that any performance gains stem solely from LLM heterogeneity rather than
modifications of workflow. Please note that this modification is efficient as it only takes human
researchers less than one minute to accomplish and could be automated even if we replace humans
with LLMs with limited sizes (e.g., 7B Yang et al. (2024a)).

X-MAS-Proto. In addition to adapting existing MAS methods to heterogeneous ones, we implement
XMASProto, a prototype MAS that explicitly implements all five functions (QA, revise, aggregation,
planning, evaluation) in a single pipeline, serving as a proper object for investigation. The system
(see the MAS in Figure 1) first invokes a planning agent to generate several different high-level ideas
to the question; next, multiple QA agents concurrently answer the query based on its corresponding
ideas while one of the answers will be evaluated and revised to obtain a potentially better answer;
finally, an aggregation agent synthesizes across answers to get the final solution. With X-MAS-
Proto, we could straightforwardly assign appropriate LLMs for different functional agents, aiming
to clearly demonstrate the benefits of LLM heterogeneity in MAS.

4.2 EXPERIMENTS IN CHATBOT-ONLY SCENARIOS

Experimental setups. We experiment on X-MAS-Proto and three existing MAS methods includ-
ing AgentVerse Chen et al. (2024b), LLM-Debate Du et al. (2024), and DyLAN Liu et al. (2024).
Considering performances and efficiencies, we select four candidate chatbot LLMs: Qwen2.532B,
MistralSmall3.124B, Qwen2.5Coder32B, and Qwen2.5Math7B. We test MAS on a held-out test
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Table 2: Transitioning from homogeneous to heterogeneous LLM-driven MAS (X-MAS-Design).
There are four considered MAS methods and four candidate models. X-MAS-Design consistently
achieves top performances across 5 domains (3 are relatively out-of-domain for candidate LLMs).

MAS Method LLM Math Coding Science Medicine Finance Average

Qwen2.5-Math-7B 2.40 3.21 0.40 6.00 5.33 3.47
Qwen2.5-Coder-32B 75.20 72.69 32.00 47.60 64.00 58.30

Qwen2.5-32B 83.20 76.31 34.00 50.40 74.67 63.72
Mistral-3.1-24B 66.80 62.25 31.20 40.00 65.33 55.12

AgentVerse Chen et al. (2024b)

X-MAS-Design 88.40 77.51 41.20 51.20 72.00 66.06
Qwen2.5-Math-7B 79.20 40.96 29.60 35.20 30.67 43.13

Qwen2.5-Coder-32B 82.40 78.71 34.40 46.80 68.00 62.06
Qwen2.5-32B 85.20 75.50 32.80 50.80 77.33 64.33

Mistral-3.1-24B 76.80 66.67 33.60 52.00 66.67 59.15
LLM-Debate Du et al. (2024)

X-MAS-Design 88.40 79.92 39.20 51.60 77.33 67.29
Qwen2.5-Math-7B 0.00 13.25 15.20 13.20 5.33 9.40

Qwen2.5-Coder-32B 77.20 78.31 34.80 41.60 61.33 58.65
Qwen2.5-32B 81.60 74.70 38.00 46.00 73.33 62.73

Mistral-3.1-24B 75.20 61.85 32.80 41.60 72.00 56.69
DyLAN Liu et al. (2024)

X-MAS-Design 88.80 78.71 38.80 47.20 76.00 65.90
Qwen2.5-Math-7B 10.40 12.85 2.00 10.80 5.33 8.28

Qwen2.5-Coder-32B 82.00 76.71 33.60 46.80 58.67 59.56
Qwen2.5-32B 82.00 69.88 31.20 45.60 72.00 60.14

Mistral-3.1-24B 78.80 63.05 34.40 46.40 72.00 58.93
X-MAS-Proto

X-MAS-Design 90.40 78.71 40.00 46.80 73.33 65.85

splits of MATH500, MBPP, SciBench, PubMedQA, and FinanceBench, covering the examined 5
domains. See model selection in Section E.

Consistent performance gains of X-MAS-Design over homogeneous MAS. Table 2 reports the
performance comparisons of the homogeneous and heterogeneous versions of four MAS methods,
where four LLMs are selected as candidates. The table demonstrates that X-MAS-Design, the hetero-
geneous MAS configuration, consistently outperforms all homogeneous configurations on average
for four methods. In DyLAN, X-MAS-Design achieves an average performance of 65.90, surpass-
ing the best homogeneous model (Qwen2.5-32B, 62.73) by 3 points. There are only two outlier
casesLLM-Debate in medicine and Agentverse in financelikely due to the candidate LLMs not in-
cluding specialized models for these particular domains. These results validate the X-MAS-Bench
findings, which identified optimal model selections for domain-function combinations. By lever-
aging diverse and appropriate LLMs, X-MAS-Design harnesses collective intelligence, leading to
superior performance without requiring structural changes to existing MAS methods.

Method-agnostic benefits of heterogeneity. The performance improvements of X-MAS-Design
are consistent across all four MAS methods, despite their differing architectures and philosophies.
This method-agnostic nature of X-MAS-Designs improvements highlights its versatility, providing
strong evidence of our core idea in advocating X-MAS.

X-MAS-Design could leverage the strengths of weak models to offset their weaknesses. Ho-
mogeneous configurations show significant variability in performance across domains, with certain
models underperforming in specific areas. For example, Qwen2.5-Math-7B performs poorly in most
domains (e.g., 2.40 in Math, 0.40 in Science for AgentVerse), indicating its limited generalizability.
Even stronger models like Qwen2.5-32B and Mistral-3.1-24B show weaknesses, such as Mistral-3.1-
24Bs 31.2 in Science (AgentVerse) or Qwen2.5-32Bs 31.2 in Science (X-MAS-Proto). In contrast,
X-MAS-Design consistently achieves balanced performance. That is, X-MAS-Design mitigates the
limitations of individual LLMs by combining their strengths, indicating the benefits of collective
intelligence and that our X-MAS-Bench provides helpful guidance for the design of X-MAS.

4.3 EXPERIMENTS IN MIXED CHATBOT-REASONER SCENARIOS

Experimental setups. The examined MAS methods follow that in Section 4.2. As chatbots and
reasoners exhibit different behaviors, we consider two candidate LLMs: Qwen-2.5-72B-Instruct
and DeepSeek-R1-Distill-Qwen-32B. These methods are tested on AIME-2024 and held-out splits

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Effectiveness of X-MAS-Design in mixing chatbots and reasoners. While reasoner-based
homogeneous MAS performs worse than chatbot-based homogeneous MAS, incorporating chatbots
and reasoners into heterogeneous MAS contributing to large performance improvement.

MAS Method LLM Math Coding Science Medicine Finance Average

Chatbot 20.00 75.50 37.60 47.20 72.00 50.46
Reasoner 0.00 11.65 5.60 44.40 21.33 16.60AgentVerse Chen et al. (2024b)

X-MAS-Design 50.00 77.91 40.00 52.40 78.67 59.80
Chatbot 16.67 74.70 35.60 49.20 73.33 49.90

Reasoner 26.67 79.12 41.60 50.00 72.00 53.88LLM-Debate Du et al. (2024)
X-MAS-Design 56.67 81.12 44.40 54.40 80.00 63.32

Chatbot 20.00 74.70 34.00 44.00 70.76 48.67
Reasoner 40.00 76.31 42.40 45.60 68.00 54.46DyLAN Liu et al. (2024)

X-MAS-Design 63.33 80.32 42.80 46.80 76.00 61.85
Chatbot 23.33 72.69 34.80 44.80 68.00 48.72

Reasoner 0.00 71.49 23.20 49.20 56.00 39.98X-MAS-Proto
X-MAS-Design 70.00 79.12 47.20 52.80 76.00 65.02

of MBPP, SciBench, PubMedQA and FinanceBench, covering the five examined domains. We also
test the methods on entirely new (compared to X-MAS-Bench) test sets: AIME-2025 OpenCompass
(2024) (the latest AIME math competition) and MATH-MAS Zhou et al. (2025) (multi-step). See
model selection in Section F.

Mixing chatbots and reasoners in X-MAS-Design achieves superior performance across do-
mains and MAS methods. In Table 3, we explore the potential of mixing chatbot and reasoner
LLMs in X-MAS-Design. From the table, we see that (1) X-MAS-Design, combining chatbot
and reasoner agents powered by heterogeneous LLMs, consistently outperforms both standalone
chatbot and reasoner configurations across all five domains. (2) Standalone chatbot and reasoner
configurations show complementary strengths and weaknesses. The heterogeneous X-MAS-Design
mitigates individual role limitations by combining chatbot and reasoner strengths, as guided by
X-MAS-Benchs 1.7 million evaluations. This synergy enables robust performance across diverse
domains.

Table 4: Examination on entirely new
benchmarks. X-MAS-Design achieves
significantly best performance.

Benchmark AIME-25 MATH-M

Chatbot 13.33 14.18
Reasoner 10.00 5.97

X-MAS-Design 46.67 48.13

Mixing chatbots and reasoners leads to dramatic im-
provements in math domain (AIME). We addition-
ally evaluate homogeneous and heterogeneous MAS on
two entirely new benchmarks: AIME-2025 and MATH-
MAS in Table 4. From Table 3 and 4, we see that in
math domain (i.e., AIME-2024, AIME-2025, MATH-
MAS), X-MAS-Design contributes to substantial per-
formance boosts. Notably, for X-MAS-Proto, X-MAS-
Design scores 70% in AIME-2024, a 46.67%-point
gain over the second-best homogeneous MAS, indicat-
ing the potential of X-MAS in reasoning-intensive tasks. Meanwhile, X-MAS-Design outperforms
the second-best chatbot-based homogeneous MAS by 33% and 34% on the challenging AIME-2025
and MATH-MAS, respectively, indicating the generalization of our core idea. In the era where rea-
soning models prevail, our experiments point out a potential direction: further scaling compute with
X-MAS that mixes chatbots and reasoners.

4.4 ABLATION STUDY

Increasing the number of candidate models enhances the performance of X-MAS-Design. Fol-
lowing the setup in Section 4.2, we conduct experiments with X-MAS-Proto on three domains (math,
coding, and science) by tuning the number of candidate models. We use the full split for larger
sample numbers. From Figure 3, we observe that (1) X-MAS-Design consistently outperforms ho-
mogeneous MAS (i.e., 1 candidate model), indicating the benefits of X-MAS. (2) With the number
of candidate models increases, we can generally observe an increase of performance. One exception
is in the science domain, which can be attributed that the added model from 2 to 3 is not closely
related to science. This curve strongly indicates the benefits of including diverse LLMs in MAS.
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Figure 3: Diversity for the win. Experiments are conducted with X-MAS-Proto on three domains.
Increasing the number of candidate models generally enhances the system performance, strongly
indicating the benefits of LLM heterogeneity for MAS.

Figure 4: Comparing X-MAS with LLM selec-
tion guided by X-MAS-Bench and arbitrary se-
lection. X-MAS-Design, which is guided by X-
MAS-Bench, significantly performs the best.

Arbitrary model selection could lead to sub-
optimal performance: X-MAS-Bench offers
critical observations to guide the design of
X-MAS. To verify the effectiveness of the ob-
servations from X-MAS-Bench, we compare X-
MAS with LLM selection guided by X-MAS-
Bench to X-MAS with arbitrary selection. We
follow the setup in Section 2, where we exper-
iment on X-MAS-Proto on MATH-500. We ar-
bitrarily determine 5 reasonable sets of config-
urations for designing X-MAS (see details in
Section E.2), denoted by blue bars in Figure 4.
Homogeneous MAS driven by three different
LLMs is denoted by red bars. From the fig-
ure, we see that (1) X-MAS-Design, which is
designed based on observations from X-MAS-
Bench, significantly performs the best. (2) Among those 5 X-MAS without X-MAS-Bench’s guid-
ance, 3 of them achieve slightly better performance than homogeneous MAS, while 1 performs
slightly worse than the best homogeneous MAS and 1 even performs significantly worst (only
24.8%). This indicates that appropriate LLM selection is critical for ensuring the performance of
X-MAS and that results in X-MAS-Bench can provide valuable insights.

5 CONCLUSIONS

This paper advocates building LLM-based MAS with heterogeneous LLMs. We introduce X-MAS-
Bench, a comprehensive testbed designed to assess the capabilities of various LLMs in supporting
for MAS. We provide a systematic empirical study, which assesses 27 LLMs (both chatbots and
reasoners, both genralists and specialists) across 5 representative MAS-related functions and 5 com-
mon domains, highlighting the potential of employing heterogeneous LLMs in MAS. Based on the
insights from X-MAS-Bench, we examine the effects of transitioning from homogeneous to het-
erogeneous LLM-driven MAS (X-MAS-Design). Our experiments operating on 4 MAS methods
demonstrate that the performance of MAS can be significantly and consistently improved by lever-
aging heterogeneous MAS without any structural re-design, strongly supporting our advocacy. See
limitations in Section B.

Our work highlights an intriguing direction that leverages the collective intelligence of heteroge-
neous LLMs to achieve higher-level intelligence without additional training. Looking ahead, fu-
ture research could explore areas such as automated or dynamic model selection, the impact of fur-
ther scaling model candidates, optimizing the synergy between LLM selection and MAS, achieving
strong performance with weaker agents, and training agents specifically suited for MAS.
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A LLMS USAGE

In this work, we employed GPT-4 exclusively during the writing phase to enhance readability and
linguistic fluency through targeted polishing of the manuscript. Importantly, the LLM was not uti-
lized for generating core scientific content, such as hypotheses, methodologies, results, or analyses,
which were entirely developed by the authors. All outputs from the LLM underwent thorough
human review, revision, and validation to ensure alignment with our original intent and academic
integrity. We assume full responsibility for every aspect of the contributions, including those refined
with LLM assistance.

B LIMITATIONS

Despite being the most comprehensive evaluation of LLMs for MAS, there are still LLMs that have
not been included yet. When transitioning from homogeneous to heterogeneous MAS, we currently
rely on manual modification as a proof of concept. Despite that the modification is quite simple, it
is worthwhile to explore automated solutions.

C BROADER IMPACTS

This paper introduces X-MAS-Bench, aiming at assessing the capabilities of LLMs when being
incorporated in MAS. The assessed results and the corresponding findings could serve the com-
munity, facilitating appropriate model selections during the design of MAS. Our X-MAS-Design
aims to transition an existing homogeneous MAS to a heterogeneous one. Similar concept could be
extended to many existing MAS, making the overall system perform better.

The potential negative impacts of our approach mirror those associated with LLMs including risks
of misuse. However, these issues are intrinsic to LLM usage in general.

D EXPERIMENTAL SETUPS

We examine 27 LLMs, covering 20 chatbots (i.e., instructed LLMs) and 7 reasoners (i.e., reason-
ing LLMs). Among the 20 chatbots, we consider general chatbots trained by different companies:
Llama (Llama-3.1-8/70B-Instruct Dubey et al. (2024)), Qwen (Qwen2.5-7/14/32/72B-Instruct Yang
et al. (2024a), Mistral (Mistral-7B-Instruct-v0.3 Mistral (2024b), Mistral-Small-3.1-24B-Instruct-
2503 Mistral (2025)); we also include domain-specific chatbots including mathematics (Qwen2.5-
Math-7/72B-Instruct Yang et al. (2024c)), coding (Qwen2.5-Coder-7/14/32B-Instruct Hui et al.
(2024), Codestral-22B-v0.1 Mistral (2024a)), science (ChemDFM-v1.5-8B Zhao et al. (2025),
SciPhi-Mistral-7B-32k SciPhi (2023)), medicine (Llama3-OpenBioLLM-70B Ankit Pal (2024) and
BioMedGPT-LM-7B Luo et al. (2023)), and finance (Llama3-XuanYuan3-70B-Chat Duxiaoman-DI
(2024) and ZhiLu-2-8B-Instruct SYSU-MUCFC-FinTech-Research-Center (2024)) The reasoners
include LLMs from DeepSeek (DeepSeek-R1-Distill-Llama-8/70B and DeepSeek-R1-Distill-Qwen-
7/14/32B Guo et al. (2025)), Qwen (QwQ-32B Team (2025b)) , other (OpenThinker-32B Team
(2025a)) LLMs. We set each models maximum token limit to its own capacity, 8192 tokens
maxed, with a temperature of 0.5 by default. Specially, all LLMs instantiated within the plan-
ning workflow are executed with their temperature fixed at 0 to guarantee as the planning involves
format-following. Our datasets cover domains including mathematics (AIME-2024 Maxwell-Jia
(2024), AQUA-RAT Ling et al. (2017), GSM-Hard Gao et al. (2023), MATH Hendrycks et al.
(2021b), MMLU-Math Hendrycks et al. (2021a), MMLU-Pro-Math Wang et al. (2024b)), coding
(HumanEval Chen et al. (2021a), HumanEval-Plus Liu et al. (2023), MBPP Austin et al. (2021),
MBPP-Plus, MMLU-Coding, MMLU-Pro-coding), science (GPQA-Main Rein et al. (2023), GPQA-
Diamond, SciBench Wang et al. (2024a), SciEval Sun et al. (2024), SciKnowEval Feng et al. (2024),
MMLU-Sci, MMLU-Pro-Sci), medicine (MedMCQA Pal et al. (2022), MedQA Jin et al. (2021),
PubMedQA Jin et al. (2019), MMLU-Med, MMLU-Pro-Med), and finance (FinanceBench Islam
et al. (2023), FinQA Chen et al. (2021b), FPB Malo et al. (2014), MMLU-Finan, MMLU-Pro-
Finan), where each dataset is randomly sampled up to 500 examples without replacement (except
for SciKnowEval, from which we draw 800 instances to ensure sufficient coverage of its specialized
tasks).
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E EXPERIMENTS ON X-MAS IN CHATBOT-ONLY SCENARIOS

E.1 EXPERIMENTS SETUPS OF X-MAS-DESIGN IN CHATBOT-ONLY SCENARIOS

The available LLMs are Qwen-2.5-32B-Instruct, Qwen-2.5-Coder-32B-Instruct, Qwen-2.5-Math-
7B-Instruct and Mistral-Small-3.1-24B-Instruct-2503.

E.1.1 AGENTVERSE

Mathematics. The role assigner is Qwen-2.5-32B-Instruct, the solver is Qwen-2.5-Coder-32B-
Instruct and Qwen-2.5-Math-7B-Instruct, the critic is Qwen-2.5-Coder-32B-Instruct, the evaluator
is Qwen-2.5-32B-Instruct.

Coding. The role assigner is Qwen-2.5-32B-Instruct, the solver is Qwen-2.5-32B-Instruct, the critic
is Qwen-2.5-Coder-32B-Instruct, the evaluator is Qwen-2.5-Coder-32B-Instruct.

Science. The role assigner is Qwen-2.5-32B-Instruct, the solver is Qwen-2.5-32B-Instruct, the critic
is Qwen-2.5-32B-Instruct, the evaluator is Mistral-Small-3.1-24B-Instruct-2503.

Medicine. The role assigner is Qwen-2.5-32B-Instruct, the solver is Qwen-2.5-32B-Instruct, the
critic is Mistral-Small-3.1-24B-Instruct-2503, the evaluator is Mistral-Small-3.1-24B-Instruct-2503.

Finance. The role assigner is Mistral-Small-3.1-24B-Instruct-2503, the solver is Qwen-2.5-Coder-
32B-Instruct, the critic is Qwen-2.5-32B-Instruct, the evaluator is Mistral-Small-3.1-24B-Instruct-
2503.

E.1.2 LLM-DEBATE

Mathematics. The debate agent is Qwen-2.5-Coder-32B-Instruct and Qwen-2.5-Math-7B-Instruct,
the aggregator is Mistral-Small-3.1-24B-Instruct-2503.

Coding. The debate agent is Qwen-2.5-Coder-32B-Instruct, the aggregator is Mistral-Small-3.1-
24B-Instruct-2503.

Science. The debate agent is Qwen-2.5-32B-Instruct, the aggregator is Qwen-2.5-32B-Instruct.

Medicine. The debate agent is Qwen-2.5-32B-Instruct, the aggregator is Mistral-Small-3.1-24B-
Instruct-2503.

Finance. The debate agent is Qwen-2.5-Coder-32B-Instruct, the aggregator is Mistral-Small-3.1-
24B-Instruct-2503.

E.1.3 DYLAN

Mathematics. The node agent is Qwen-2.5-Coder-32B-Instruct and Qwen-2.5-Math-7B-Instruct,
the ranker is Mistral-Small-3.1-24B-Instruct-2503.

Coding. The node agent is Qwen-2.5-Coder-32B-Instruct, the ranker is Mistral-Small-3.1-24B-
Instruct-2503.

Science. The node agent is Qwen-2.5-32B-Instruct, the ranker is Qwen-2.5-32B-Instruct.

Medicine. The node agent is Mistral-Small-3.1-24B-Instruct-2503, the ranker is Mistral-Small-3.1-
24B-Instruct-2503.

Finance. The node agent is Qwen-2.5-Coder-32B-Instruct, the ranker is Mistral-Small-3.1-24B-
Instruct-2503.

E.1.4 X-MAS-PROTO

Mathematics. The planner is Qwen-2.5-32B-Instruct, the solver is Qwen-2.5-Coder-32B-Instruct
and Qwen-2.5-Math-7B-Instruct, the reviser is Qwen-2.5-Coder-32B-Instruct, the evaluator is
Qwen-2.5-32B-Instruct, the aggregator is Mistral-Small-3.1-24B-Instruct-2503.
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Coding. The planner is Qwen-2.5-32B-Instruct, the solver is Qwen-2.5-Coder-32B-Instruct, the
reviser is Qwen-2.5-Coder-32B-Instruct, the evaluator is Qwen-2.5-32B-Instruct, the aggregator is
Mistral-Small-3.1-24B-Instruct-2503.

Science. The planner is Qwen-2.5-32B-Instruct, the solver is Qwen-2.5-32B-Instruct, the reviser
is Qwen-2.5-32B-Instruct, the evaluator is Mistral-Small-3.1-24B-Instruct-2503, the aggregator is
Qwen-2.5-32B-Instruct.

Medicine. The planner is Qwen-2.5-32B-Instruct, the solver is Qwen-2.5-32B-Instruct, the reviser
is Mistral-Small-3.1-24B-Instruct-2503, the evaluator is Mistral-Small-3.1-24B-Instruct-2503, the
aggregator is Mistral-Small-3.1-24B-Instruct-2503.

Finance. The planner is Mistral-Small-3.1-24B-Instruct-2503, the solver is Qwen-2.5-Coder-32B-
Instruct, the reviser is Qwen-2.5-32B-Instruct, the evaluator is Mistral-Small-3.1-24B-Instruct-2503,
the aggregator is Mistral-Small-3.1-24B-Instruct-2503.

E.2 EXPERIMENTAL SETUPS OF X-MAS WITH NON-X-MAS-BENCH-GUIDED MODEL
SELECTIONS

We arbitrarily determine five reasonable manually designed model configurations to examine the
robustness and performance sensitivity of the X-MAS-Design under diverse agent choices. These
configurations are constructed without referring to the X-MAS-Bench, and are denoted as X-MAS1
through X-MAS5. Each configuration includes distinct combinations of planner, solver, evaluator,
reviser, and aggregator roles. For comparison, we also include the original X-MAS-Design configu-
ration guided by X-MAS-Bench selection.

The X-MAS-Bench-guided configuration, referred to as X-MAS-Design in chatbot-only scenarios,
adopts the following models for each agent role:

• Planner: Qwen-2.5-32B-Instruct

• Solver: Qwen-2.5-Coder-32B-Instruct

• Evaluator: Qwen-2.5-32B-Instruct

• Reviser: Qwen-2.5-Coder-32B-Instruct

• Aggregator: Mistral-Small-3.1-24B-Instruct-2503

This configuration reflects a well-balanced assignment with domain-specialized solvers (e.g., math)
and stronger general-purpose planning and evaluation agents.

In contrast, the five alternative configurations (X-MAS1 to X-MAS5) are constructed based on gen-
eral instruction-tuned LLMs without prior empirical optimization. These setups are:

X-MAS1

• Planner: Mistral-Small-3.1-24B-Instruct-2503

• Solver: Qwen-2.5-Math-7B-Instruct

• Evaluator: Qwen-2.5-Coder-32B-Instruct

• Reviser: Qwen-2.5-Math-7B-Instruct

• Aggregator: Qwen-2.5-32B-Instruct

X-MAS2

• Planner: Mistral-Small-3.1-24B-Instruct-2503

• Solver: Qwen-2.5-Coder-32B-Instruct

• Evaluator: Qwen-2.5-Math-7B-Instruct

• Reviser: Qwen-2.5-Coder-32B-Instruct

• Aggregator: Qwen-2.5-32B-Instruct
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X-MAS3

• Planner: Qwen-2.5-Math-7B-Instruct

• Solver: Mistral-Small-3.1-24B-Instruct-2503

• Evaluator: Qwen-2.5-32B-Instruct

• Reviser: Mistral-Small-3.1-24B-Instruct-2503

• Aggregator: Qwen-2.5-Coder-32B-Instruct

X-MAS4

• Planner: Qwen-2.5-Coder-32B-Instruct

• Solver: Qwen-2.5-32B-Instruct

• Evaluator: Qwen-2.5-Math-7B-Instruct

• Reviser: Qwen-2.5-32B-Instruct

• Aggregator: Mistral-Small-3.1-24B-Instruct-2503

X-MAS5

• Planner: Qwen-2.5-32B-Instruct

• Solver: Qwen-2.5-Coder-32B-Instruct

• Evaluator: Mistral-Small-3.1-24B-Instruct-2503

• Reviser: Qwen-2.5-Coder-32B-Instruct

• Aggregator: Qwen-2.5-Math-7B-Instruct

All configurations are evaluated on the MATH-500 subset following the X-MAS-Proto scheme. The
goal of this analysis is to understand the effect of heterogeneous agent assignments on final multi-
agent performance, as well as to validate the necessity and advantages of X-MAS-Bench-guided
agent selection. These baselines also serve to demonstrate the variance among manually configured
pipelines in the absence of systematic design guidance.

F EXPERIMENTS ON X-MAS IN MIXED CHATBOT-REASONER SCENARIOS

F.1 MODEL SELECTIONS

The available LLMs are Qwen-2.5-72B-Instruct and DeepSeek-R1-Distill-Qwen-32B.

F.1.1 AGENTVERSE

Mathematics. The role assigner is Qwen-2.5-72B-Instruct, the solver is DeepSeek-R1-Distill-
Qwen-32B, the critic is DeepSeek-R1-Distill-Qwen-32B, the evaluator is DeepSeek-R1-Distill-
Qwen-32B.

Coding. The role assigner is Qwen-2.5-72B-Instruct, the solver is DeepSeek-R1-Distill-Qwen-32B,
the critic is DeepSeek-R1-Distill-Qwen-32B, the evaluator is DeepSeek-R1-Distill-Qwen-32B.

Science. The role assigner is Qwen-2.5-72B-Instruct, the solver is DeepSeek-R1-Distill-Qwen-32B,
the critic is DeepSeek-R1-Distill-Qwen-32B, the evaluator is DeepSeek-R1-Distill-Qwen-32B.

Medicine. The role assigner is Qwen-2.5-72B-Instruct, the solver is Qwen-2.5-72B-Instruct, the
critic is Qwen-2.5-72B-Instruct, the evaluator is DeepSeek-R1-Distill-Qwen-32B.

Finance. The role assigner is Qwen-2.5-72B-Instruct, the solver is DeepSeek-R1-Distill-Qwen-32B,
the critic is DeepSeek-R1-Distill-Qwen-32B, the evaluator is DeepSeek-R1-Distill-Qwen-32B.
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F.1.2 LLM-DEBATE

Mathematics. The debate agent is DeepSeek-R1-Distill-Qwen-32B, the aggregator is DeepSeek-
R1-Distill-Qwen-32B.

Coding. The debate agent is DeepSeek-R1-Distill-Qwen-32B, the aggregator is Qwen-2.5-72B-
Instruct.

Science. The debate agent is DeepSeek-R1-Distill-Qwen-32B, the aggregator is DeepSeek-R1-
Distill-Qwen-32B.

Medicine. The debate agent is Qwen-2.5-72B-Instruct, the aggregator is DeepSeek-R1-Distill-
Qwen-32B.

Finance. The debate agent is DeepSeek-R1-Distill-Qwen-32B, the aggregator is DeepSeek-R1-
Distill-Qwen-32B.

F.1.3 DYLAN

Mathematics.The node agent is DeepSeek-R1-Distill-Qwen-32B, the ranker is Qwen-2.5-72B-
Instruct.

Coding. The node agent is DeepSeek-R1-Distill-Qwen-32B, the ranker is Qwen-2.5-72B-Instruct.

Science. The node agent is DeepSeek-R1-Distill-Qwen-32B, the ranker is Qwen-2.5-72B-Instruct.

Medicine. The node agent is Qwen-2.5-72B-Instruct, the ranker is Qwen-2.5-72B-Instruct.

Finance. The node agent is DeepSeek-R1-Distill-Qwen-32B, the ranker is Qwen-2.5-72B-Instruct.

F.1.4 X-MAS-PROTO

Mathematics. The planner is Qwen-2.5-72B-Instruct, the solver is DeepSeek-R1-Distill-Qwen-
32B, the reviser is DeepSeek-R1-Distill-Qwen-32B, the evaluator is DeepSeek-R1-Distill-Qwen-
32B, the aggregator is DeepSeek-R1-Distill-Qwen-32B.

Coding. The planner is Qwen-2.5-72B-Instruct, the solver is DeepSeek-R1-Distill-Qwen-32B, the
reviser is DeepSeek-R1-Distill-Qwen-32B, the evaluator is DeepSeek-R1-Distill-Qwen-32B, the ag-
gregator is Qwen-2.5-72B-Instruct.

Science. The planner is Qwen-2.5-72B-Instruct, the solver is DeepSeek-R1-Distill-Qwen-32B, the
reviser is DeepSeek-R1-Distill-Qwen-32B, the evaluator is DeepSeek-R1-Distill-Qwen-32B, the ag-
gregator is DeepSeek-R1-Distill-Qwen-32B.

Medicine. The planner is Qwen-2.5-72B-Instruct, the solver is Qwen-2.5-72B-Instruct, the re-
viser is Qwen-2.5-72B-Instruct, the evaluator is DeepSeek-R1-Distill-Qwen-32B, the aggregator
is DeepSeek-R1-Distill-Qwen-32B.

Finance. The planner is Qwen-2.5-72B-Instruct, the solver is DeepSeek-R1-Distill-Qwen-32B, the
reviser is DeepSeek-R1-Distill-Qwen-32B, the evaluator is DeepSeek-R1-Distill-Qwen-32B, the ag-
gregator is DeepSeek-R1-Distill-Qwen-32B.

Table 5: Top-3 Models per Function and Domain (reasoner and chatbot)
Function Rank Mathematics Coding Science Medicine Finance

QwQ-32B (80.5) DeepSeek-R1-Distill-Qwen-14B (82.0) QwQ-32B (69.4) DeepSeek-R1-Distill-Llama-70B (75.1) DeepSeek-R1-Distill-Qwen-32B (74.8)
QA DeepSeek-R1-Distill-Qwen-32B (79.0) Qwen2.5-32B (80.3) DeepSeek-R1-Distill-Llama-70B (69.4) QwQ-32B (73.8) QwQ-32B (74.6)

DeepSeek-R1-Distill-Qwen-14B (78.8) DeepSeek-R1-Distill-Qwen-32B (80.0) DeepSeek-R1-Distill-Qwen-32B (68.3) Qwen2.5-72B (70.4) DeepSeek-R1-Distill-Llama-70B (74.3)

QwQ-32B (78.6) DeepSeek-R1-Distill-Llama-70B (81.7) QwQ-32B (67.0) Llama-3.1-70B (71.0) QwQ-32B (76.6)
Revise DeepSeek-R1-Distill-Llama-70B (78.2) DeepSeek-R1-Distill-Qwen-32B (81.0) DeepSeek-R1-Distill-Llama-70B (66.3) DeepSeek-R1-Distill-Llama-70B (66.3) DeepSeek-R1-Distill-Llama-70B (73.9)

DeepSeek-R1-Distill-Qwen-32B (77.8) Qwen2.5-7B (79.2) DeepSeek-R1-Distill-Qwen-32B (65.9) DeepSeek-R1-Distill-Llama-70B (70.7) DeepSeek-R1-Distill-Qwen-32B (73.5)

QwQ-32B (83.2) Qwen2.5-72B (85.5) DeepSeek-R1-Distill-Llama-70B (71.7) DeepSeek-R1-Distill-Llama-8B (74.1) DeepSeek-R1-Distill-Qwen-32B (76.4)
Aggregation DeepSeek-R1-Distill-Qwen-32B (82.2) QwQ-32B (84.2) QwQ-32B (71.3) QwQ-32B (73.8) DeepSeek-R1-Distill-Llama-70B (76.4)

DeepSeek-R1-Distill-Qwen-14B (81.2) DeepSeek-R1-Distill-Llama-70B (83.1) DeepSeek-R1-Distill-Qwen-32B (70.3) DeepSeek-R1-Distill-Llama-70B (73.6) QwQ-32B (74.6)

Qwen2.5-14B (65.0) Llama-3.1-70B (71.0) Qwen2.5-Coder-7B (56.1) Qwen2.5-Coder-14B (65.4) Qwen2.5-72B (64.7)
Planning Mistral-Small-3.1-24B (65.0) Qwen2.5-14B (70.5) Qwen2.5-32B (55.6) Qwen2.5-7B (65.3) Qwen2.5-Coder-14B (63.6)

Qwen2.5-32B (64.7) Qwen2.5-32B (70.1) Qwen2.5-72B (55.6) Qwen2.5-32B (65.2) Qwen2.5-14B (63.2)

DeepSeek-R1-Distill-Llama-70B (85.9) DeepSeek-R1-Distill-Qwen-32B (56.2) DeepSeek-R1-Distill-Llama-70B (70.9) Llama-3.1-70B (70.5) OpenThinker-32B (76.6)
Evaluation QwQ-32B (84.2) Qwen2.5-14B (55.4) DeepSeek-R1-Distill-Qwen-32B (69.1) DeepSeek-R1-Distill-Llama-70B (70.2) QwQ-32B (73.8)

OpenThinker-32B (83.3) QwQ-32B (55.3) OpenThinker-32B (69.0) DeepSeek-R1-Distill-Qwen-14B (69.8) DeepSeek-R1-Distill-Llama-70B (73.1)
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Figure 5: Benchmarking LLMs on 5 MAS-related functions and 5 domains.

Our datasets cover domains including mathematics (AIME-2024 Maxwell-Jia (2024), AQUA-
RAT Ling et al. (2017), GSM-Hard Gao et al. (2023), MATH Hendrycks et al. (2021b), MMLU-
Math Hendrycks et al. (2021a), MMLU-Pro-Math Wang et al. (2024b)), coding (HumanEval Chen
et al. (2021a), HumanEval-Plus Liu et al. (2023), MBPP Austin et al. (2021), MBPP-Plus,
MMLU-Coding, MMLU-Pro-coding), science (GPQA-Main Rein et al. (2023), GPQA-Diamond,
SciBench Wang et al. (2024a), SciEval Sun et al. (2024), SciKnowEval Feng et al. (2024), MMLU-
Sci, MMLU-Pro-Sci), medicine (MedMCQA Pal et al. (2022), MedQA Jin et al. (2021), Pub-
MedQA Jin et al. (2019), MMLU-Med, MMLU-Pro-Med), and finance (FinanceBench Islam et al.
(2023), FinQA Chen et al. (2021b), FPB Malo et al. (2014), MMLU-Finan, MMLU-Pro-Finan),
where each dataset is randomly sampled up to 500 examples without replacement (except for Sci-
KnowEval, from which we draw 800 instances to ensure sufficient coverage of its specialized tasks).

G DATASET DETAILS AND SETTINGS

G.1 DATASET DETAILS AND SETTINGS ON X-MAS-BENCH

AIME-2024 Maxwell-Jia (2024). AIME-2024 comprises 30 challenging problems from the 2024
American Invitational Mathematics Examination (AIME), designed to evaluate advanced high
school mathematical problem-solving skills. We sampled 30 examples in this dataset.

AQUA-RAT Ling et al. (2017). AQUA-RAT is a large-scale dataset of approximately 100,000
algebraic word problems, each accompanied by natural language rationales, facilitating research in
program induction and explainable AI. We sampled 254 examples in this dataset.
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GSM-Hard Gao et al. (2023). GSM-Hard is a more challenging variant of the GSM8K dataset,
where numerical values are replaced with larger, less common numbers to test the robustness of
mathematical reasoning in language models. We sampled 500 examples in this dataset.

MATH Hendrycks et al. (2021b). The MATH dataset consists of 12,500 competition-level math-
ematics problems, each with detailed step-by-step solutions, aimed at evaluating and improving
mathematical problem-solving abilities in AI systems. We sampled 250 examples in this dataset
that were different from those in X-MAS-Design.

MMLU Hendrycks et al. (2021a). The Massive Multitask Language Understanding (MMLU)
benchmark includes multiple-choice questions across 57 subjects, assessing a model’s world knowl-
edge and problem-solving capabilities in zero-shot and few-shot settings. We sampled 500 examples
in this dataset.

MMLU-Pro Wang et al. (2024b). MMLU-Pro enhances the original MMLU by introducing more
challenging, reasoning-focused questions and increasing answer choices from four to ten, thereby
reducing the likelihood of correct guesses by chance. We sampled 500 examples in this dataset.

HumanEval Chen et al. (2021a). HumanEval is a benchmark of 164 hand-written Python program-
ming problems, each with a function signature, docstring, and unit tests, designed to evaluate the
functional correctness of code generated by language models. We sampled 164 examples in this
dataset.

HumanEval-Plus Liu et al. (2023). HumanEval-Plus extends the original HumanEval by providing
80 times more test cases per problem, enabling a more rigorous assessment of code generation
models’ correctness and reliability. We sampled 164 examples in this dataset.

MBPP Austin et al. (2021). The Mostly Basic Python Programming (MBPP) dataset comprises
around 1,000 crowd-sourced Python programming tasks, each with a problem description, code
solution, and test cases, targeting entry-level programming skills. We sampled 250 examples in this
dataset that were different from those in X-MAS-Design.

MBPP-Plus. MBPP-Plus builds upon MBPP by significantly increasing the number of test cases
per problem, offering a more stringent evaluation framework for assessing the correctness of code
generated by language models. We sampled 361 examples in this dataset.

GPQA-Main Rein et al. (2023). GPQA-Main is a dataset of 448 graduate-level, multiple-choice
questions in biology, physics, and chemistry, crafted to be "Google-proof" and challenging for both
humans and AI systems, thus serving as a benchmark for scalable oversight methods. We sampled
448 examples in this dataset.

GPQA-Diamond. GPQA-Diamond is an extension of the GPQA dataset, featuring even more chal-
lenging questions to further test the limits of AI models’ scientific reasoning and knowledge without
reliance on external resources. We sampled 198 examples in this dataset.

SciBench Wang et al. (2024a). SciBench is a benchmark comprising college-level scientific prob-
lems sourced from instructional textbooks, designed to evaluate the complex reasoning, domain
knowledge, and advanced calculation skills of large language models. We sampled 250 examples in
this dataset that were different from those in X-MAS-Design.

SciEval Sun et al. (2024). SciEval is a comprehensive benchmark with approximately 18,000 ques-
tions across chemistry, physics, and biology, assessing the capabilities of LLMs in basic knowledge,
application, scientific calculation, and research ability. We sampled 500 examples in this dataset.

SciKnowEval Feng et al. (2024). SciKnowEval evaluates large language models across five pro-
gressive levels of scientific knowledgestudying extensively, inquiring earnestly, thinking profoundly,
discerning clearly, and practicing assiduouslyreflecting a holistic assessment inspired by ancient Chi-
nese philosophy. We sampled 800 examples in this dataset.

MedMCQA Pal et al. (2022). MedMCQA is a multiple choice question-answering dataset designed
for medical domain evaluation, containing questions that assess a model’s understanding of medical
concepts and reasoning. We sampled 500 examples in this dataset.
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