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ABSTRACT

Understanding and developing optimal representations has long been founda-
tional in machine learning (ML). While disentangled representations have shown
promise in generative modeling and representation learning, their downstream
usefulness remains debated. Recent studies re-defined disentanglement through
a formal connection to symmetries, emphasizing the ability to reduce latent do-
mains (i.e., ML problem spaces) and consequently enhance data efficiency and
generative capabilities. However, from an information theory viewpoint, assign-
ing a complex attribute (i.e., features) to a specific latent variable may be infea-
sible, limiting the applicability of disentangled representations to simple datasets.
In this work, we introduce α-TCVAE, a variational autoencoder optimized using
a novel total correlation (TC) lower bound that maximizes disentanglement and
latent variables informativeness. The proposed TC bound is grounded in informa-
tion theory constructs, generalizes the β-VAE lower bound, and can be reduced
to a convex combination of the known variational information bottleneck (VIB)
and conditional entropy bottleneck (CEB) terms. Moreover, we present quan-
titative analyses and correlation studies that support the idea that smaller latent
domains (i.e., disentangled representations) lead to better generative capabilities
and diversity. Additionally, we perform downstream task experiments from both
representation and RL domains to assess our questions from a broader ML per-
spective. Our results demonstrate that α-TCVAE consistently learns more dis-
entangled representations than baselines and generates more diverse observations
without sacrificing visual fidelity. Notably, α-TCVAE exhibits marked improve-
ments on MPI3D-Real, the most realistic disentangled dataset in our study, con-
firming its ability to represent complex datasets when maximizing the informative-
ness of individual variables. Finally, testing the proposed model off-the-shelf on
a state-of-the-art model-based RL agent, Director, significantly shows α-TCVAE
downstream usefulness on the loconav Ant Maze task. Implementation available
at https://github.com/Cmeo97/Alpha-TCVAE

1 INTRODUCTION

The efficacy of machine learning (ML) algorithms is intrinsically tied to the quality of data repre-
sentation (Bengio et al., 2013). Such representations are useful not only for standard downstream
tasks such as supervised learning (Alemi et al., 2017) and reinforcement learning (RL) (Li, 2017),
but also for tasks such as transfer learning (Zhuang et al., 2020) and zero-shot learning (Sun et al.,
2021). Unsupervised representation learning aims to identify semantically meaningful represen-
tations of data without supervision, by capturing the generative factors of variations that describe
the structure of the data (Radford et al., 2016; Locatello et al., 2019b). According to Bengio et al.
(2013), disentanglement learning holds the key to understanding the world from observations, gen-
eralizing knowledge across different tasks and domains while learning and generating compositional
representations (Higgins et al., 2016; Kim & Mnih, 2018).

Problem Formulation. The goal of disentanglement learning is to identify a set of independent
generative factors z that give rise to the observations x via p(x|z). However, from an information
∗Work done while doing a research internship at Mila, Quebec AI Institute.
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theory perspective, the amount of information retained by every latent variable may be insufficient
to represent realistic generative factors (Kirsch et al., 2021; Do & Tran, 2020), limiting the applica-
bility of disentangled representations to simple problems. What is more, Friedman & Dieng (2022)
recently introduced the Vendi score, a new metric for gauging generative diversity, showing that en-
tangled generative models, such as the Very Deep VAE (Child, 2020), consistently produce samples
with less diversity compared to ground truth. This is indicative of their limited representational and
generative prowess. In contrast, Higgins et al. (2019; 2022) re-defined disentangled representations
through the lens of symmetries, linking disentanglement to computational problem spaces (e.g., dis-
entangled representations inherently reduce the problem space (Arora & Barak, 2009)), suggesting
that disentangled models should be able to explore and traverse the latent space more efficiently,
leading to enhanced generative diversity.

Previous Work. Most existing disentangled models optimize lower bounds that only impose an
information bottleneck on the latent variables, and while this can result in factorized representa-
tions (Higgins et al., 2016), it does not directly optimize latent variable informativeness (Do & Tran,
2020). As a result, while several approaches have been proposed to learn disentangled represen-
tations by optimizing different bounds (Chen et al., 2018; Kim & Mnih, 2018), imposing sparsity
priors (Mathieu et al., 2019), or isolating source of variance (Rolinek et al., 2019), none of the pro-
posed models successfully learned disentangled representations of realistic datasets. Moreover, to
the best of our knowledge, no systematic and quantitative analyses have been proposed to assess to
what extent disentanglement and generative diversity (Friedman & Dieng, 2022) are correlated.

Proposed method. In this work, we propose α-TCVAE, a VAE optimized using a novel convex
lower bound of the joint total correlation (TC) between the learned latent representation and the
input data. The proposed bound, through a convex combination of the variational information bot-
tleneck (VIB) Alemi et al. (2017) and the conditional entropy bottleneck (CEB) Fischer & Alemi
(2020), maximizes the average latent variable informativeness, improving both representational and
generative capabilities. The effectiveness of α-TCVAE is especially prominent in the MPI3D-Real
Dataset (Gondal et al., 2019), the most realistic dataset in our study that is compositionally built
upon distinct generative factors. Figure 1 illustrates a comparison of the latent traversals between
α-TCVAE, Factor-VAE and β-VAE, showing that α-TCVAE leads to the best visual fidelity and
generative diversity (i.e., higher Vendi Score). Interestingly, the proposed TC bound is grounded in
information theory constructs, generalizes the β-VAE (Higgins et al., 2016) lower bound, and can
be reduced to a convex combination of the known variational information bottleneck (VIB) (Alemi
et al., 2017) and conditional entropy bottleneck (CEB) (Fischer & Alemi, 2020) terms.

Experimental Evaluation In order to determine the effectiveness of α-TCVAE and the down-
stream usefulness of the learned representations, we measure the diversity and quality of generated
images and disentanglement of its latent representations. Then, we perform a correlation study
between the considered downstream scores across all models, analyzing how generative diversity
and disentanglement are related across different datasets. This analysis substantiates our claim that
disentanglement leads to improved diversity. Finally, we conduct experiments to assess the down-
stream usefulness of the proposed method from a broader ML perspective. Notably, the proposed
method consistently outperforms the related baselines, showing a significant improvement in the RL
Ant Maze task when applied off-the-shelf in Director, a hierarchical model-based RL agent (Hafner
et al., 2022).

2 RELATED WORK

Generative Modelling and Disentanglement Recently Locatello et al. (2019b) demonstrated that
unsupervised disentangled representation learning is theoretically impossible, nonetheless disentan-
gled VAEs, acting as both representational and generative models, Kingma & Welling (2013); Hig-
gins et al. (2016); Chen et al. (2018); Kim & Mnih (2018) achieve practical results by leveraging
implicit biases within the data and learning dynamics Burgess & Kim (2018); Higgins et al. (2019);
Mathieu et al. (2019). On the generation side, they have been widely used to generate data such as
images (Chen et al., 2019), text (Shi et al., 2019), speech (Sun et al., 2020; Li et al., 2023) and music
(Wang et al., 2020). Various extensions to the base VAE model have been presented to improve
generation quality in terms of visual fidelity (Peng et al., 2021; Vahdat & Kautz, 2020; Razavi et al.,

2



Published as a conference paper at ICLR 2024

Figure 1: Ground truth (first row), reconstructions (second row) and latent traversals comparison of
α-TCVAE, Factor-VAE, and β-VAE on the MPI3D-Real Dataset. Notably, α-TCVAE showcases
superior visual fidelity and generative diversity, as indicated by a higher Vendi Score.

2019). On the representational side, aiming for explainable and factorized representations, Hig-
gins et al. (2016) proposed β-VAE, which inspired a number of following disentangled VAE-based
models, such as Factor-VAE (Kim & Mnih, 2018), β-TCVAE Chen et al. (2018), and β−Annealed
VAE (Burgess et al., 2018). Both β-VAE and Factor-VAE aim to learn disentangled representations
by imposing a bottleneck on the information flowing through the latent space. While β-VAE does
this by introducing a β hyperparameter that increases the strength of the information bottleneck,
Factor-VAE introduces a TC regularization term. Chen et al. (2018) proposed β-TCVAE, which
minimizes the total correlation of the latent variables using Monte-Carlo and importance sampling.
Roth et al. (2023) proposed the Hausdorff Factorized Support (HFS) criterion, a relaxed disentangle-
ment criterion that encourages only pairwise factorized support, rather than a factorial distribution,
by minimizing a Hausdorff distance. This allows for arbitrary distributions of the factors over their
support, including correlations between them. Our model, namely α-TCVAE is optimized by a TC
lower bound as well, however we do not make use of any trick or expensive sampling strategy. In
contrast, we derive a TC lower bound that does not require any extra network or sampling strategy
and is theoretically grounded in the Deep Information Bottleneck framework Alemi et al. (2017).

Disentanglement and Deep Information Bottleneck In the last few years, a link between the la-
tent space capacity and disentanglement of the learned variables (Bengio et al., 2013; Shwartz-Ziv &
Tishby, 2017; Goyal et al., 2021) has been identified, showing that decreasing the capacity of a net-
work induces disentanglement on the learned representations. This relationship has been explained
by the information bottleneck (IB) principle, introduced by Tishby et al. (2001) as a regularization
method to obtain minimal sufficient encoding by constraining the amount of information captured
by the latent variables from the observed variable. Variational IB (VIB) (Alemi et al., 2017) has
extended the IB framework by applying it to neural networks, which results in a simple yet effec-
tive method to learn representations that generalize well and are robust against adversarial attacks.
Furthermore, (Alemi et al., 2017; Kirsch et al., 2021) outlined the relationship between VIB, VAE
(Kingma & Welling, 2013) and β-VAE (Higgins et al., 2016), providing an information theoretical
interpretation of the Kullback-Leibler (KL) divergence term used in these models as a regularizer.
Despite the advantages introduced by the VIB framework, imposing independence between every
latent variable may be too strong an assumption (Roth et al., 2023). For this reason, Fischer & Alemi
(2020) introduced the conditional entropy bottleneck (CEB), which assumes conditional indepen-
dence between the learned latent variables, providing the ability to learn more expressive and robust
representations (Kirsch et al., 2021). Recently, a generalization of the mutual Information (MI),
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namely total correlation (TC), has been used to learn disentangled representations as well (Kim &
Mnih, 2018). Following Hwang et al. (2021), who propose a similar TC bound for a multi-view
setting, we derive a novel TC lower bound for the unsupervised representational learning setting. As
a result, the proposed bound is able to learn expressive and disentangled representations.

Disentanglement and Diversity The ideal generative model learns a distribution that well ex-
plains the observed data, which can then be used to draw a diverse set of samples. Diversity is thus
an important desirable property of generative models (Friedman & Dieng, 2022). We desire the
ability to produce samples that are different from each other and from the samples we already have
at train time, while still coming from the same underlying distribution. The benefits of diversity
have been advocated in a number of different contexts, such as image synthesis (Mao et al., 2019),
molecular design (Lin et al., 2021; Wu et al., 2021), natural language text (McCoy et al., 2023),
and drug discovery (Kim & Mnih, 2018). Motivated by the benefits of generative diversity, sev-
eral VAE-based models have aimed to show increased diversity in their generated samples (Razavi
et al., 2019). Some works have also noted improvements in diversity due to disentanglement. Lee
et al. (2018) adversarially disentangle style from content and show enhanced diversity of image-to-
image translations. Kazemi et al. (2019) also perform style-content disentanglement, this time in
the context of text generation, and again observe an increase in diversity. Li et al. (2020) shows
that disentangling pose, shape, and texture leads to greater diversity in generated images. Collec-
tively, these studies emphasize that diversity is often a valuable indicator of effectiveness in various
applications, and suggest that diversity and disentanglement are intertwined aspects of generative
models. Yet, to the best of our knowledge, no quantitative analyses that support this claim have been
presented. In this work, we present a correlation study, showing how downstream metrics of disen-
tanglement (e.g., DCI (Eastwood & Williams, 2018)) and diversity (e.g., Vendi Score (Friedman &
Dieng, 2022)) are correlated across several models and datasets.

3 α-TCVAE FRAMEWORK DERIVATION

Motivation. In contrast to most existing methods, which only impose an information bottleneck
to learn disentangled representations, we seek to maximize the informativeness of individual latent
variables as well. The total joint correlation (TC) can be explicitly expressed in terms of mutual
information between the observed data and the latent generative factors, as shown in equation 4,
allowing us to link disentanglement to latent variables informativeness. As a result, leveraging
the TC formulation, we can derive a lower bound that not only promotes disentanglement but also
maximizes the information retained by individual latent variables.

Derivation. In this section, we formally derive the novel TC bound. Let D = {X,V } be the
ground-truth set that consists of images x ∈ RN×N , and a set of conditionally independent ground-
truth data generative factors v ∈ RM , where log p(v|x) =

∑
k log p(vk|x). The goal is to develop

an unsupervised deep generative model that can learn the joint distribution of the data x, while
uncovering a set of generative latent factors z ∈ RK , K ≥ M , such that z can fully describe the
data structure of x and generate data samples that follow the underlying ground-truth generative
factors v. Since directly optimizing the joint TC is intractable, we are going to maximize a lower
bound of the joint total correlation TC(z,x) between the learned latent representations z and the
input data x, following the approach proposed by Hwang et al. (2021). The total correlation is
defined as the KL divergence between the joint distribution and the factored marginals. In our case:

TCθ(z) =
∆ DKL

[∫
qθ(z|x)pD(x)dx∥

K∏
k=1

qθ(zk)

]
, (1)

where the joint distribution is qθ(z) =
∫
qθ(z|x)pD(x)dx, pD(x) is the data distribution, qθ(zk) =∫

qθ(z|x)dz̸=k and z̸=k indicates that the k-th component of z is not considered. Since we aim
to find the encoder qθ(z|x) that disentangles the learned representations z, we can formulate the
following objective:

TCθ(z,x) =
∆ TCθ(z)− TCθ(z|x), (2)

where the conditional TC(z|x) can be expressed as:

TCθ(z|x) =∆ Eqθ(z)

[
DKL

[
qθ(z|x)∥

K∏
k=1

qθ(zk|x)

]]
, (3)
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which is the expected KL divergence of the joint conditional from the factored conditionals. Intu-
itively, we can see that minimizing TCθ(z|x), TCθ(z,x) will be maximized, enhancing the disen-
tanglement of the learned representation z. Moreover, decomposing equation 2 we can express the
TC in terms of MI (Gao et al., 2019):

TCθ(z,x) =

K∑
k=1

Iθ(zk,x)− Iθ(z,x), (4)

where Iθ(z,x) is the mutual information between z and x and is known as the VIB term Alemi
et al. (2017). Additionally, we can also express it in terms of Conditional MI:

TCθ(z,x) =
1

K

K∑
k=1

[(K − 1)Iθ(zk,x)− Iθ(z̸=k,x|zk)] , (5)

where Iθ(z̸=k,x|zk) is known as the CEB term (Fischer & Alemi, 2020). Equation 4 and equation 5
illustrate the link of the designed objective to both VIB and CEB frameworks. A complete derivation
of them can be found in Appendices A.1 and A.2, respectively. While the VIB term promotes
compression of the latent representation, the CEB term promotes balance between the information
contained in each latent dimension. Since we want to promote both disentanglement and individual
variable informativeness of the learned latent representation we propose a lower bound that convexly
combines the found VIB and CEB terms. We define the bound as follows:

TC(z,x) ≥ Eqθ(z|x) [log pϕ(x|z)]−
Kα

K − α
DKL(qθ(z|x)∥rp(z|x))︸ ︷︷ ︸

CEB

− (1− α)

(1− α
K
)
DKL(qθ(z|x)∥r(z))︸ ︷︷ ︸

VIB

,

(6)
where α is a hyperparameter that trades off VIB and CEB terms. Following Hwang et al. (2021),

we define rp(z|x) = N(µp,σpI) and r(z) = N(0, I), respectively, where σp =∆
(∑K

k=1
1
σ2

k

)−1

and µp =∆ σp ·
∑K

k=1
µk

σ2
k

while µk and σk are the mean and standard deviation used to compute
zk using the reparametrization trick as in Kingma & Welling (2013). A full derivation of the bound
defined in equation 6 can be found in Appendix A.

Practical Implications. Disentangled models with M generative factors and K latent dimensions
usually have (K − M) noisy latent dimensions Do & Tran (2020), but our CEB term induces an
inductive bias on the information flowing through every individual latent variable, pushing otherwise
noisy dimensions to be informative. The derived TC lower bound generalizes the structure of the
widely used β-VAE (Higgins et al., 2016) bound. Indeed, for α = 0, the TC bound reduces to
β-VAE one. A comparison of α-TCVAE, β-VAE, β-TCVAE, HFS and Factor-VAE lower bounds
can be found in Tab. A.3.

4 EXPERIMENTS

In this section, we design empirical experiments to understand the performance of α-TCVAE and its
potential limitations by exploring the following questions: (1) Does maximising the informativeness
of latent variables consistently lead to an increase in representational power and generative diversity?
(2) Do disentangled representations inherently present higher diversity than entangled ones? (3)
How are they correlated with other downstream metrics (i.e., FID (Heusel et al., 2017) and unfairness
(Locatello et al., 2019a))? (4) To what extent does maximising the latent variables’ informativeness
in disentangled representations improve their downstream usefulness?

Experimental Setup. In order to assess the performance of both proposed and baseline models,
we validate the considered models on the following datasets. Teapots (Moreno et al., 2016) con-
tains 200, 000 images of teapots with features: azimuth and elevation, and object colour. 3DShapes
(Burgess & Kim, 2018) contains 480, 000 images, with features: object shape and colour, floor
colour, wall colour, and horizontal orientation. MPI3D-Real (Gondal et al., 2019) contains 103, 680
images of objects at the end of a robot arm, with features: object colour, size, shape, camera height,
azimuth, and robot arm altitude. Cars3D (Reed et al., 2015) contains 16, 185 images with features:
car-type, elevation, and azimuth. CelebA (Liu et al., 2015) contains over 200, 000 images of faces
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under a broad range of poses, facial expressions, and lighting conditions, totalling 40 different fac-
tors. All datasets under consideration consist of RGB images with dimensions 64 × 64. Among
them, CelebA stands out as the most realistic and complex dataset. On the other hand, MPI3D-Real
is considered the most realistic among factorized datasets, which we define as those compositionally
generated using independent factors. To assess the generated images, we use the FID score (Heusel
et al., 2017) to measure the distance between the distributions of generated and real images, and
the Vendi score (Friedman & Dieng, 2022) to measure the diversity of sampled images. Both Vendi
and FID use the Inception Network (Szegedy et al., 2017) to extract image features and compute the
related similarity metrics. Since DCI (Eastwood & Williams, 2018) scores can produce unreliable
results in certain cases, (Mahon et al., 2023; Cao et al., 2022; Do & Tran, 2020), we measure dis-
entanglement using also single neuron classification SNC (Mahon et al., 2023). Further details on
used datasets and metrics are given in Appendix C.

Baseline Methods. We compare α-TCVAE to four other VAE models: β-VAE (Higgins et al.,
2016), β-TCVAE (Chen et al., 2018), β-VAE+HFS (Roth et al., 2023) and FactorVAE (Kim &
Mnih, 2018), all of which are described in Section 2, as well as a vanilla VAE (Kingma & Welling,
2013). To assess diversity and visual fidelity beyond VAE-based models, we also compare to a
generative adversarial network model, StyleGAN (Karras et al., 2019).

Generation Faithfulness and Diversity Analyses. We present image generation results from our
model alongside baseline models, evaluating performance on the FID and Vendi metrics across
datasets. For image generation using VAE-models, we adopt two strategies: (1) Sampling a noise
vector from a multivariate standard normal and decoding it. (2) Encoding an actual image, then
selecting a latent dimension. The value of this chosen dimension is adjusted by shifts of +/−
1, 2, 4, 6, 8, or 10 standard deviations. Subsequently, we decode the adjusted representation. In
Figures 2 and 3 the two sampling strategies are labeled as ‘Sampled from Noise’ and ‘Sampled from
Traversals’ respectively. Figures 2 and 3 show that α-TCVAE consistently generates more diverse
(higher Vendi) and more faithful (lower FID) images than baseline VAE models.
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Figure 2: Diversity of generated images, as measured by Vendi score. Two different sampling strate-
gies are considered: sampled from white noise and from traversals. The diversity of the images of
our model, α-TCVAE, is consistently higher than baseline VAE models, and on par with StyleGAN.
The green dashed line represents ground truth dataset diversity. Traversals produce significantly
more diverse images than samples.

The Vendi score of α-TCVAE is comparable to that of Style-GAN, and its FID score is only
slightly worse. Moreover, Style-GAN takes 15x the training time (∼ 2hrs vs. > 30hrs on a single
Nvidia Titan XP) and learns only a generative model, whereas VAEs learn both a generative model
and a representational model. Noticeably, all VAE-based models perform poorly in terms of both
diversity and reconstruction quality when sampling from white noise, highlighting the benefit of a
structured sampling strategy when using VAE-based models for generative tasks. Another finding
is that traversal-generated images are superior to those obtained from the prior, i.e. sampling from
a standard normal and decoding. This is in keeping with prior work showing that drawing latent
samples from a distribution other than the standard normal, e.g. a GMM, often leads to higher
quality generated images Chadebec et al. (2022), and it supports the claim that disentangled models
allow more systematic exploration of the latent space leading to more diverse images. This claim is
also supported by noting that all disentangled VAEs give higher diversity than the vanilla VAE.
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Figure 3: Faithfulness of generated images to the data distribution, as measured by FID score. Two
different sampling strategies are considered: sampled from white noise and from traversals. The
scores for the images of our model, α-TCVAE, are consistently better than baseline VAE models
(lower FID is better), and only slightly worse than StyleGAN. Traversals produce significantly more
faithful images than samples.

Disentanglement Analyses and Downstream Metrics Correlation Study In this section we ex-
amine the disentanglement capabilities of α-TCVAE and the related VAE baselines, and how it
relates, statistically, with the diversity and quality of generated images, as measured in Section 4.
Figures 4, 5 and 6 show that α-TCVAE consistently achieves comparable or better DCI, SNC and
unfairness scores. The improvement of α-TCVAE over the baselines is most significant on the most
realistic factorized dataset, namely MPI3D-Real. Interestingly, while there is a significant gap be-
tween the DCI scores of disentangled and entangled models across every factorized dataset, SNC
shows that in terms of single neuron factorization, for both Cars3D and MPI3D-Real, α-TCVAE
is the only model that significantly improves over the entangled VAE. This is perhaps due to the
tendency of DCI to sometimes overestimate disentanglement Mahon et al. (2023); Cao et al. (2022).
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Figure 4: Comparison of DCI scores of our model
with those of baseline models.
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Figure 5: Comparison of SNC scores of our model
with those of baseline models.
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Figure 6: Comparison of unfairness scores of our
model with those of baseline models.

Furthermore, as illustrated in Figure 4, no
model has been successful in learning dis-
entangled representations from the CelebA
dataset. To meaningfully encode CelebA im-
ages, we used high-dimensional latent repre-
sentations (e.g., 48 dimensions). However,
as highlighted by Do & Tran (2020), dis-
entangling and measuring disentanglement in
high-dimensional representations are notori-
ously challenging tasks. Indeed, while DCI
and unfairness present unrealistic results, SNC
gave all models a score of zero, and so we
do not display the figures here. Figure 10 il-
lustrates a significant correlation between the
Vendi, unfairness, and DCI metrics. There is a
compelling correlation between Vendi and DCI
scores, underscoring that diversity and disen-
tanglement are statistically related. This res-
onates with the understanding that disentangled
latent spaces naturally exhibit superior genera-
tive diversity (Higgins et al., 2019). Addition-
ally, Vendi and DCI both exhibit a negative cor-
relation with unfairness. This observation is
consistent with Locatello et al. (2019a)’s find-
ings, implying that the fairness of downstream
prediction tasks is deeply associated with the
diversity and disentanglement of the represen-
tations being learned. Further correlations re-
sults are given in Appendix D, along with ex-
amples of latent traversals.

Attribute Classification Task In this exper-
iment, we train a multilayer perceptron (MLP)
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Figure 7: Correlations between diversity (Vendi score), generation faithfulness (FID score), unfair-
ness and DCI. Correlations are computed using the results from all models across 5 different seeds.

to classify sample attributes using the models’ encoded latent representations. Figure 8 reveals that
α-TCVAE either matches or surpasses the baseline models in terms of attribute classification ac-
curacy. The improvement is minor on 3DShapes and Teapots, but more significant on Cars3D and
MIP3D-Real. Interestingly, the only dataset where all VAEs exhibit commendable performance is
CelebA, where high-dimensional representations are used. This suggests that, for this particular
downstream task, the dimensionality of the representation may be the main constraining factor. In
fact, this downstream task inherently favours high-dimensional attributes, considering that a MLP is
employed for the attribute classification.
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Figure 8: Comparison of α-TCVAE and baseline
models on the Downstream Attribute Classifica-
tion Task. Our proposed model either matches or
surpasses the baseline models in terms of attribute
classification accuracy

Loconav Ant Maze Reinforcement Learning
Task. In this experiment, a model-based RL
agent has to learn its proprioceptive dynami-
cal system while escaping from a maze. Re-
cently, Hafner et al. (2022) introduced Direc-
tor, a hierarchical model-based RL agent. Di-
rector employs a hierarchical strategy with a
Goal VAE that learns and generates sub-goals,
simplifying the planning task. The first hierar-
chy level represents the agent’s internal states,
while in the second one, the Goal VAE en-
codes the agent’s state and infers sub-goals. As
a result, the Goal VAE generates sub-goals to
guide the agent through the environment. Given
the enhanced generative diversity of α-TCVAE,
we postulated that integrating our proposed TC
bound could improve Director’s exploration. In
this experiment, we replaced the beta-VAE objective, used to train Director’s Goal VAE, with our
TC-bound, expecting a richer diversity in sub-goals, thus expediting environment exploration and
enhancing overall learning behaviour. Figure 9 compares the performance of Director and Alpha-
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Figure 9: Performance of Director, a model-based hierarchical RL agent, and Alpha-Director on the
Antmaze task. While director samples sub-goals using the original β-VAE, Alpha-Director samples
sub-goals using the proposed α-TCVAE. Sampling using α-TCVAE gives more diverse goals (b),
better exploration (c) and significantly higher mean return (a).
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Director, which replaces β-VAE objective with the proposed TC-bound instead, the results are av-
eraged across three seeds. Figure 9-(a) presents the mean return, which scores the performances of
the agent on the given task (i.e., finding the exit of the maze while learning proprioceptive dynam-
ics), showing that Alpha-Director significantly outperforms Director, learning faster and to a higher
final high mean reward. Figure 9-(b) illustrates the Vendi score of sampled goals across batch and
sequence length, showing that α-TCVAE generates sub-goals with a higher diversity score. As a
result, Alpha-Director has a better exploration, as shown in Figure 9-(c), leading to faster learning.
Collectively, these findings highlight that α-TCVAE enables the agent to sample a broader range of
sub-goals, fostering efficient exploration and ultimately enhancing task performance.

5 DISCUSSION AND FUTURE WORK

Through comprehensive quantitative analyses, we answer the defined research questions while de-
lineating the advantages and limitations of the proposed model relative to the evaluated baselines.
Our findings resonate with the hypothesis posited by Higgins et al. (2019), emphasizing a strong
correlation between disentanglement and generative diversity. Notably, disentangled representa-
tions consistently showcase enhanced visual fidelity and diversity compared to the entangled ones.
This correlation persists across all datasets rendered using disentangled representations. Intrigu-
ingly, traversal analyses of α-TCVAE, illustrated in Figures 1 and 16 in Appendix C, reveal that
it is able to discover novel generative factors, such as object positioning and vertical perspectives,
which are absent from the training dataset. We hypothesize that the CEB term is responsible for
this phenomenon. Most existing models optimize only the information bottleneck, and while this
can result in factorized representations, it does not directly optimize latent variable informativeness.
Our proposed bound also includes a CEB term, and so maximizes the average informativeness as
well, which may push otherwise noisy variables to learn new generative factors. Future research
will delve deeper into comprehending this phenomenon and exploring its potential applications.

In accordance with the literature, the main limitation of α-TCVAE is that, akin to other disentangled
VAEs, it is difficult to scale efficiently. This scaling challenge permeates the entire disentanglement
paradigm. In high-dimensional spaces, not only do disentangled VAE-based models struggle to pro-
duce disentangled representations, but also the metrics used to measure disentanglement tend not
to be useful. (e.g., DCI and SNC(Eastwood & Williams, 2018; Mahon et al., 2023)). On the other
hand, disentangled representations have a number of desirable properties, as already showcased in
the literature (Higgins et al., 2022). In particular, their impact is undeniable in the Ant Maze RL
experiment from Figure 9. Reinforcing this observation, our correlation study underscores the rela-
tionship between disentanglement and diversity, leading to the following question: can we leverage
diversity as a surrogate for measuring disentanglement in complex and high-dimensional scenarios?
We leave the answer to this question as a future work.

6 CONCLUSION

We introduce α-TCVAE, a VAE optimized through a convex lower bound on the joint total cor-
relation (TC) between the latent representation and the input data. This proposed bound naturally
reduces to a convex combination of the known variational information bottleneck (VIB) (Alemi
et al., 2017) and the conditional entropy bottleneck (CEB) (Fischer & Alemi, 2020). Moreover, it
generalizes the widely adopted β-VAE bound. By maximizing disentanglement and average infor-
mativeness of the latent variables, our approach enhances both representational and generative ca-
pabilities. A comprehensive quantitative evaluation indicates that α-TCVAE consistently produces
superior representations. This is evident from its performance across key downstream metrics: dis-
entanglement (i.e., DCI and SNC), generative diversity (i.e., Vendi score), visual fidelity (i.e., FID),
and its demonstrated downstream usefulness. In particular, our α-TCVAE showcases significant
improvements on the MPI3D-Real dataset, the most realistic factorized dataset in our evaluation,
and in a downstream reinforcement learning task. This highlights the strength of maximizing the
average informativeness of latent variables, offering a pathway to address the inherent challenges of
disentangled VAE-based models.
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A TOTAL CORRELATION LOWER BOUND DERIVATION

In this section we are going to derive the TC lower bound defined in equation 6. Since it is defined
as a convex combination of marginal log-likelihood, VIB, and CEB terms, we are going to split the
derivation into two subsections. First, we will derive a first TC bound that introduces the VIB term.
Then, we will derive another TC bound, which explicitly shows the CEB term. Finally, we will
define the TC bound shown in equation 6 as a convex combination of the two bounds.

A.1 TC BOUND AND THE VARIATIONAL INFORMATION BOTTLENECK

Unfortunately, direct optimization of mutual information terms is intractable Alemi et al. (2017).
Therefore, we first need to find a lower bound of equation 4. Following the approach used in Hwang
et al. (2021), we can expand it as:

TCθ(z,x) =

K∑
k=1

Iθ(zk,x)− Iθ(z,x), (7)

=

K∑
k=1

[
Eqθ(x,zk)

[
log

qθ(x|zk)
pD(x)

]]
− Eqθ(x,z)

[
log

qθ(x|z)
pD(x)

]
,

=

K∑
k=1

[
Eqθ(x,zk)

[
log

qθ(x|zk)
pD(x)

pϕ(x|zk)
pϕ(x|zk)

]]
− Eqθ(z,x)

[
log

qθ(z|x)
qθ(z)

r(z)

r(z)

]
.

Let’s expand these two terms:

Eqθ(x,zk)

[
log

qθ(x|zk)
pD(x)

pϕ(x|zk)
pϕ(x|zk)

]
=

∫ ∫
qθ(zk,x) log

qθ(x|zk)
pD(x)

pϕ(x|zk)
pϕ(x|zk)

dzkdx, (8)

=

∫ ∫
qθ(zk|x)pD(x)

(
log

(
qθ(x|zk)
pϕ(x|zk)

)
+ log pϕ(x|zk)− log pD(x)

)
dzkdx,

= H(x) + Eqθ(zk)[DKL(qθ(x|zk)∥pϕ(x|zk))] + Eqθ(zk,x)[log pϕ(x|zk)].

Eqθ(z,x)

[
log

qθ(z|x)
qθ(z)

r(z)

r(z)

]
, (9)

=

∫
qθ(x, z) log

(
qθ(z|x)
qθ(z)

r(z)

r(z)

)
dzdx,

=

∫
qθ(z|x)pD(x)

((
log

qθ(z|x)
r(z)

)
+ log

(
r(z)

qθ(z)

))
dzdx,

= EpD(x)[DKL(qθ(z|x)∥r(z))]− Eqθ(x|z)[DKL(qθ(z)∥r(z))].

As a result, we can write:
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TCθ(z,x) =

K∑
k=1

[
H(x) + Eqθ(zk)[DKL(qθ(x|zk)∥pϕ(x|zk))] + Eqθ(zk,x)[log pϕ(x|zk)]

]
,

(10)
− EpD(x)[DKL(qθ(z|x)∥r(z))] + Eqθ(x|z)[[DKL(qθ(z)∥r(z))],

≥
K∑

k=1

[
H(x) + Eqθ(zk,x)[log pϕ(x|zk)

]
− EpD(x)[DKL(qθ(z|x)∥r(z))],

=

K∑
k=1

[
H(x) +

∫ (∫
qθ(z,x)dz̸=k

)
log pϕ(x|zk)dzkdx

]
− EpD(x)[DKL(qθ(z|x)∥r(z))],

=

K∑
k=1

[
H(x) + Eqθ(z,x)[log pϕ(x|zk)

]
− EpD(x)[DKL(qθ(z|x)∥r(z))],

= KH(x) + Eqθ(z,x)[log

K∏
k=1

pϕ(x|zk)]− EpD(x)[DKL(qθ(z|x)∥r(z))],

= KH(x) + Eqθ(z,x)[log pϕ(x|z) + log pD(x)K−1]− EpD(x)[DKL(qθ(z|x)∥r(z))],
= Eqθ(z|x)[log pϕ(x|z)]− EpD(x)[DKL(qθ(z|x)∥r(z))︸ ︷︷ ︸

VIB

] =: L(z,x).

Maximizing L(z,x) not only maximizes the original objective TC(z,x), but at the same time
minimize the gap produced by upper bounding equation 10. As a result,

K∑
k=1

[
Eqθ(zk)[DKL(qθ(x|zk)∥pϕ(x|zk))]

]
+ Eqθ(x|z)[[DKL(qθ(z)∥r(z))], (11)

will be minimized, leading to: r(z) ≈ qθ(z) and pϕ(x|zk) ≈ qθ(x|zk).

Moreover, since H(x) and log pD(x)K−1 do not depend on θ, we can drop them from L(z,x).
Finally, to avoid using a heavy notation, we will denote the VIB term as DKL(qθ(z|x)∥r(z)),
leading to the first TC bound which introduces the VIB term:

TCθ(z,x) ≥ Eqθ(z|x)[log pϕ(x|z)]−DKL(qθ(z|x)∥r(z))︸ ︷︷ ︸
VIB

. (12)

A.2 TC BOUND AND THE CONDITIONAL VARIATIONAL INFORMATION BOTTLENECK

Expanding Eq. equation 2, we can reformulate TC(z,x) as follow:

TCϕ(z,x) =

K∑
k=1

Iϕ(zk,x)− Iϕ(z,x), (13)

=

K∑
k=1

[
K − 1

K
Iϕ(zk,x) +

1

K
Iϕ(zk,x)−

1

K
Iϕ(z,x)

]
,

=

K∑
k=1

[
K − 1

K
Iϕ(zk,x) +

1

K
(Iϕ(zk,x)− Iϕ(z,x))

]
.

(14)
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Interestingly, can write the last term of Eq. equation 14 as:

Iϕ(zk,x)− Iϕ(z,x) = Epϕ(x,zk)

[
log

pϕ(x|zk)
pD(x)

]
− Epϕ(x,z)

[
log

pϕ(x|z)
pD(x)

]
, (15)

=

∫ (∫
pϕ(x|z)p(z)dz̸=zk

)
log

pϕ(x|zk)
pD(x)

dzkdx,

−
∫

pϕ(x|z)p(z) log
pϕ(x|z)
pD(x)

dzdx,

=

∫
pϕ(x|z)p(z) log

pϕ(x|zk)
p(x|z)

dzdx,

= −
∫

pϕ(x|z)p(z) log
p(x|z)
pϕ(x|zk)

dzdx,

= −
∫

pϕ(x|z)p(z) log
p(x|z ̸=k, zk)

pϕ(x|zk)
dzdx,

= −Iϕ(z̸=k,x|zk).

We can now write equation 5:

TCθ(z,x) =
1

K

K∑
k=1

[(K − 1)Iθ(zk,x)− Iθ(z̸=k,x|zk)] .

Interestingly, the second IB term in Eq. (8) can now be expressed as multiple conditional MIs
between the observation and K−1 other latent variables given the k-th latent representation variable,
penalizing the extra information of the observation not inferable from the given latent representation
variable. Moreover, we can further expand the TC as:

TCθ(z,x) =
1

K

K∑
k=1

[(K − 1)Iθ(zk,x)− Iθ(z̸=k,x|zk)] , (16)

=
1

K

K∑
k=1

[
(K − 1)

[
Eqθ(zk,x)

[
log

qθ(x|zk)
pD(x)

pϕ(x|zk)
pϕ(x|zk)

]]

− Eqθ(x,z)

[
log

qθ(z|x)
qθ(zk|x)

rp(z|x)
rp(z|x)

]
+ Eqθ(x,z) [log qθ(z̸=k)]

]
,

=
1

K

K∑
k=1

[
(K − 1)

[
Eqθ(zk,x)

[
log

qθ(x|zk)
pD(x)

pϕ(x|zk)
pϕ(x|zk)

]]

− EpD(x)[DKL(qθ(z|x)∥rp(z|x))]− Eqθ(x,z)

[
log

rp(zk|x)rp(z̸=k|x)
qθ(zk|x)qθ(z ̸=k)

]]
,

=
K − 1

K

K∑
k=1

[
H(x) + Eqθ(zk,x)[log pϕ(x|zk)]

]
− 1

K

K∑
k=1

[
EpD(x)[DKL(qθ(z|x)∥rp(z|x))]

]
+

K − 1

K

K∑
k=1

[
Eqθ(zk)[DKL(qθ(x|zk)∥pϕ(x|zk))]

]
+

1

K

K∑
k=1

Eqθ(z ̸=k,x)[DKL(qθ(zk|x)∥rp(zk|x)]

(17)

+

∫
DKL(qθ(z ̸=k)∥rp(z̸=k|x))dx,

≥ K − 1

K

K∑
k=1

[
H(x) + Eqθ(zk|x)[log pϕ(x|zk)]

]
− 1

K

K∑
k=1

[
EpD(x)[DKL(qθ(z|x)∥rp(z|x))]

]
︸ ︷︷ ︸

CEB

.

(18)
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Maximizing Eq. 18 not only maximizes the original objective TC(z,x) but at the same time min-
imizes the gap produced by upper bounding Eq. equation 17, leading to: rp(zk|x) ≈ qθ(zk|x),
qθ(z̸=k) ≈ rp(z̸=k|x) and qθ(x|zk) ≈ pϕ(x|zk). Moreover, since H(x) does not depend on θ, we
can drop it from Eq. equation 18. Finally, to avoid using a heavy notation, we will denote the CEB
term as DKL(qθ(zk|x)∥rp(z|x)), leading to the second TC bound which introduces the CEB term:

TCθ(z,x) ≥
K − 1

K
Eqθ(z|x)[log pϕ(x|z)]−DKL(qθ(z|x)∥rp(z|x))︸ ︷︷ ︸

CEB

. (19)

A.3 FINAL TC BOUND

In order to obtain the final expression of the derived TC bound, we can compute a convex combina-
tion of the two bounds defined in Eq. equation 12 and equation 19.

TC(z,x) = (1− α)

(
K∑

k=1

Iθ(zk,x)− Iθ(z,x)

)
(20)

+ α

(
K∑

k=1

[
K − 1

K
Iθ(zk,x) +

1

K
Iθ(zk,x)−

1

K
Iθ(z,x)

])
, (21)

=
K(1− α) + α(K − 1)

K

K∑
k=1

Iθ(zk,x)−
α

K

K∑
k=1

(Iθ(z,x)− Iθ(zk,x))− (1− α)Iθ(z,x),

≥ K − α

K
Eqθ(z|x) [log pϕ(x|z)]− αDKL(qθ(z|x)∥rp(z|x))− (1− α)DKL(pθ(z|x)∥r(z)),

= Eqθ(z|x) [log pϕ(x|z)]−
Kα

K − α
DKL(qθ(z|x)∥rp(z|x))︸ ︷︷ ︸

CEB

− (1− α)

(1− α
K )

DKL(qθ(z|x)∥r(z))︸ ︷︷ ︸
VIB

.

where α is a hyperparameter that balances the effects of VIB and CEB terms. Table A.3 illustrates
the lower bounds defined for β-VAE Higgins et al. (2016), FactorVAE Kim & Mnih (2018), HFS
Roth et al. (2023) and β-TCVAE Chen et al. (2018) comparing them to the derived TC bound. We
can see that the three bounds present a similar structure, presenting a marginal log-likelihood term
and either one or two KL regularizers that impose some kind of information bottleneck.
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Model Lower Bound
β-VAE Eqθ(z|x)[log pϕ(x|z)]− βDKL(qθ(z|x)∥p(z))

FactorVAE Eqθ(z|x)[log pϕ(x|z)]− βDKL(qθ(z|x)∥p(z))− γDKL(qθ(z)∥
∏K

k=1 qϕ(zk))

β-TCVAE Eq(z|n)p(n)[log p(n|z)− αIq(z;n)− βDKL(q(z)∥
∏

j q(zj))− γ
∑

j DKL(q(zj)∥p(zj))
HFS Eqθ(z|x)[log pϕ(x|z)]− γ[

∑K−1
i=1

∑K
j=i+1 maxz∈Z:,1×Z:,2×···×Z:,K

minz′∈Z:,(i,j)
d(z, z′)]

α-TCVAE Eqθ(z|x) [log pϕ(x|z)]− Kα
K−αDKL(qθ(z|x)∥rp(z|x))− (1−α)

(1− α
K )DKL(qθ(z|x)∥r(z))

Table 1: This table compares the lower bound objective functions of β-VAE, β-TCVAE, Factor-
VAE and HFS-VAE. The lower bound objective function of β-VAE is composed of the expected
log-likelihood of the data given the latent variables and the KL divergence between the approximate
posterior and the prior of the latent variables (i.e., VIB term). The FactorVAE model further adds
a KL divergence term between the approximate posterior and the factorized prior of the latent vari-
ables, which approximates the total correlation of the latent variables, and HFS-VAE further adds
a Monte-Carlo approximation of Hausdorff distance. α-TCVAE, on the other hand, uses a con-
vex combination of VIB term and KL divergence between the approximate posterior and the prior
of the latent variables conditioned on the k-th latent variable (i.e., CEB term). K represents the
dimensionality of the latent variables, while β, γ and α are hyperparameters of the models.

B ARCHITECTURES AND HYPERPARAMETERS DETAILS

The hyperparameters used for the different experiments are shown in Table 2.

Table 2: Comparison of the different hyperparameters used across the Datasets
Dataset β γ α latent dim K Training Epochs
Teapots 2 10 0.25 10 50

3DShapes 3 10 0.25 10 50
Cars3D 4 10 0.25 10 50

MPI3D-Real 5 10 0.25 10 50
Celeba 5 10 0.25 48 50

All encoder, decoder and discriminator architectures are taken from Roth et al. (2023).

C FURTHER DETAILS ON DATASETS AND METRICS

C.1 DATASETS

We test on five datasets. Teapots (Moreno et al., 2016) contains 200, 000 images of size 64 × 64.
Each image features a rendered, camera-centered teapot with 5 uniformly distributed generative
factors of variation: azimuth and elevation (sampled between 0 and 2π), along with three RGB
colour channels (each sampled between 0 and 1). 3DShapes (Burgess & Kim, 2018) consists of
480, 000 images of size 64 × 64. Every image displays a rendered, camera-centered object with 6
uniformly distributed generative factors of variation: shape (sampled from [cylinder, tube, sphere,
cube]), object colour, object hue, floor colour, wall colour, and horizontal orientation, all determined
using linearly spaced values. MPI3D-Real (Gondal et al., 2019) comprises 103, 680 images of size
64×64. Each image captures objects at a robot arm’s end, characterized by 6 factors: object colour,
size, shape, camera height, azimuth, and robot arm altitude. Cars3D (Reed et al., 2015) is made up
of 16, 185 images of size 64×64. Each image portrays a rendered, camera-centered car, categorized
by 3 factors: car-type, elevation, and azimuth. CelebA (Liu et al., 2015) encompasses over 200, 000
images of size 64 × 64. Every image presents a celebrity, highlighted by a broad range of poses,
facial expressions, and lighting conditions, which sum up to 40 different factors. Every model is
trained using a subset containing the 80% of the selected dataset images in a fully unsupervised way.
The models are evaluated on the remaining images using the following downstream scores. While
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CelebA is the most complex dataset, MPI3D-Real is the most realistic among the ones usually used
in the disentanglement community.

C.2 METRICS

When using the FID score to assess image quality, we compare the distribution of generated images
to that of the real images. Specifically, FID (Heusel et al., 2017) measures the distance between
two distributions of images, and we apply it to measure the distance between the generated images
and the real ones. A lower distance is better, indicating that the generated images belong to the
distribution of ground truth images.

The Vendi score (Friedman & Dieng, 2022), which we use to measure the diversity of the generated
images, is computed with respect to a similarity measure. Specifically, it is calculated as the expo-
nential of the entropy of the eigenvalues of the similarity matrix, i.e. the matrix whose (i, j)th entry
is the similarity between the ith and jth data points. It can be interpreted as the effective number of
distinct elements in the set.

To assess the quality of encoded latent representations, we use DCI, SNC/NK (Mahon et al., 2023)
and the unfairness measure of Locatello et al. (2019a).

DCI, the first disentanglement metric we compute, first trains a regressor to predict the generative
factors from the latent representation, and from this regressor extracts a matrix of feature impor-
tances, where the (i, j)th entry is the import of the ith latent dimension to predicting the jth gen-
erative factor. It then takes (a normalized version of) the entropy of rows and columns to compute
‘disentanglement’ and ‘completeness’, respectively. The accuracy of the regressor is taken as the
‘informativeness’ score. The average of these three scores, across all factors and neurons, is the final
DCI score.

SNC/NK, the second disentanglement metric we compute, works by first aligning neurons to latent
factors using the Kuhn-Munkres algorithm to enforce uniqueness. Then each aligned neuron is
used as a classifier for the corresponding factor, by binning its values. A higher accuracy of this
single-neuron classifier (SNC) is better, indicating that the factor is well-represented by a single
unique neuron. Neuron knockout (NK) is calculated as the difference between an MLP classifier
that predicts the generative factor from all neurons, and one that predicts using all neurons but the
one that factor was aligned to. A high NK is also better, indicating that no neurons, other than
the one it was aligned to, contain information about the given factor. SNC/NK measures a slightly
different and stronger notion of disentanglement than DCI, as it explicitly assumes an inductive bias
that enforces each factor to be represented by a single latent variable.

MIG, is a disentanglement metric that quantifies the degree of separation between the latent vari-
ables and the generative factors in a dataset. It calculates the mutual information between each latent
variable and each generative factor, identifying the variable that shares the most information with
each factor. The gap, or difference, in mutual information between the top two variables for each
generative factor is then computed. A larger gap indicates that one latent variable is significantly
more informative about a generative factor than the others, signifying a higher degree of disentan-
glement. This metric is particularly useful in scenarios where a clear and distinct representation of
generative factors is desired in the latent space. MIG thus complements DCI and SNC/NK by pro-
viding a measure of how well-separated the representations of different generative factors are within
the model’s latent space.

D EXTENDED RESULTS

Here, we present further results, in addition to those from Section 4. Figure 10 extended Fig. 7,
reporting the correlations also with SNC, NK and the attribute classification accuracy as shown in
Figure 8. Unsurprisingly, there is a strong correlations between the three metrics designed to mea-
sure disentanglement: DCI, SNC and NK. This, to some extent, verifies the reliability of these dif-
ferent disentanglement metrics. SNC and NK also correlate strongly with Vendi, as DCI does. This
further supports the finding in our paper of a relationship between disentanglement and diversity.
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Figure 10: Correlations between all metrics we measure, both for the generated images and the
representations.

Figure 11 shows the results for neuron knockout (NK), the second metric introduced by Mahon et al.
(2023) alongside SNC, which is shown in Figure 5. Similar to SNC, the NK score for α-TCVAE
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Figure 11: Comparison of the neuron-knockout score of α-TCVAE with that of baseline models. As
with other metrics presented in the main paper, the improvement of α-TCVAE is minor on 3DShapes
and Teapots, but more substantial on Cars3D and MPI3D-Real.
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Figure 12: Comparison of the MIG score of α-TCVAE with that of baseline models. As with other
metrics presented in the main paper, the improvement of α-TCVAE is minor on 3DShapes and
Teapots, but more substantial on Cars3D and MPI3D-Real.
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Figure 13: Comparison of the DCI-C completeness score of α-TCVAE with that of baseline models.
As with other metrics presented in the main paper, the performance of α-TCVAE is comparable on
3DShapes, CelebA and Teapots, and better on Cars3D and MPI3D-Real.

is higher than that for baseline VAE models and, while the errorbars often overlap, the superiority
of α-TCVAE is consistent across all five datasets and is most substantial on MPI3D-Real. Figure
12 shows the results for mutual information gap (MIG), which follows the same trend of NK, SNC
and DCI scores. Figures 13, 14 and 15 present the results of Completeness, Disentanglement and
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Figure 14: Comparison of the DCI-D disentanglement score of α-TCVAE with that of baseline mod-
els. As with other metrics presented in the main paper, the performance of α-TCVAE is comparable
on 3DShapes, CelebA and Teapots, and better on Cars3D and MPI3D-Real.
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Figure 15: Comparison of the DCI-I informativeness score of α-TCVAE with that of baseline mod-
els. As with other metrics presented in the main paper, the performance of α-TCVAE is comparable
on 3DShapes, CelebA and Teapots, and better on Cars3D and MPI3D-Real.

Informativeness metrics (DCI-C, DCI-D and DCI-I, respectively). The final DCI scores shown in
fig. 4 is computed as geomtric mean of the three scores.
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E DISCOVERING NOVEL FACTOR OF VARIATIONS

Figure 16 presents α-TCVAE traversals across 3DShapes, Teapots and MPI3D-Real datasets. The
red boxes indicate the discovered novel generative factors, that are not present within the train
dataset, namely object position and vertical camera perspective. While we do not have a compre-
hensive explanation of why such an intriguing phenomenon is shown, we believe that the intuition
behind can be explained considering the effects of VIB and CEB terms in the defined bound. Indeed,
while VIB pushes individual latent variables to represent different generative factors, CEB pushes
them to be informative. As a result, the otherwise noisy dimensions, are pushed to be informative
(i.e., CEB) and to represent a distinct generative factor (i.e., VIB), resulting in the discovery of novel
generative factors.

(a) 3DShapes Traversals (b) Teapots Traversals (c) MPI3D-Real Traversals

Figure 16: α-TCVAE generated latent traversals the 3DShapes, Teapots and MPI3D-Real datasets.
The generated latent traversals reveal that α-TCVAE can learn and represent generative factors that
are not present in the ground-truth dataset, namely vertical perspective and object position. The
discovered generative factors are indicated with a red box.

F RELATIONSHIP BETWEEN CEB AND DIVERSITY

F.1 FISHER’S DEFINITION OF CONDITIONAL ENTROPY BOTTLENECK

Fisher’s approach to the Conditional Entropy Bottleneck Fischer & Alemi (2020) is an extension
of the Information Bottleneck (IB) principle Alemi et al. (2017), aimed at finding an optimally
compressed representation of a variable X that remains highly informative about another variable
Y , under the influence of a conditioning variable Z. The CEB objective, according to Fisher, is
formalized as a trade-off between two competing conditional mutual information terms:

min
p(z|x)

[I(X;Z|C)− βI(Y ;Z|C)]

Here, I(X;Z|C) quantifies the amount of information that the representation Z shares with X ,
conditioned on C. Simultaneously, I(Y ;Z|C) measures how much information Z retains about Y ,
also under the condition of C. The parameter β serves as a crucial tuning parameter, balancing these
two aspects.

F.2 ADAPTING CEB TO VAES WITHOUT CONDITIONING VARIABLES

In the realm of Variational Autoencoders, where the training strategy is to reconstruct the input
data X using a latent representation Z without any external conditioning C, the CEB framework
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undergoes a significant simplification. Given that X = Y in a typical VAE setup, the CEB objective
reduces to a form where the focus shifts to optimizing the mutual information between X and its
latent representation Z:

min
p(z|x)

[(1− β)I(X;Z)]

This objective can be further broken down as (1− β)(H(X)−H(X|Z)), where H(X) represents
the entropy of the input data, and H(X|Z) is the conditional entropy of the input given its latent
representation. This formulation underscores the trade-off between compressing the input data in
the latent space and retaining essential information for accurate reconstruction.

F.3 INCORPORATING DIVERSITY INTO THE CEB OBJECTIVE

Following Friedman & Dieng (2022), Diversity can be quantitatively expressed as the exponential
of the entropy of the latent space distribution q(Z|X):

Diversity = exp(H(Z|X))

To understand how the CEB framework relates to this notion of diversity, we utilize the entropy
chain rule H(Y |X) = H(X,Y ) − H(X) , which allows to decompose H(X|Z) in terms of the
joint entropy H(X,Z) and the conditional entropy H(Z). Consequently, the CEB objective evolves
into a more comprehensive form that explicitly accounts for the diversity of the latent space:

min
q(z|x)

[(1− β)(H(X)−H(X,Z) +H(Z))]

min
q(z|x)

[(1− β)(−H(Z|X) +H(Z))]

The latter one, makes clear the connection between the CEB term and Diversity as defined in Fried-
man & Dieng (2022). Indeed, we can see that when minimizing the CEB term the Diversity term is
maximized.

G DISENTANGLEMENT AND VARIATIONAL INFORMATION BOTTLENECK

Disentanglement in VAEs, following Higgings’ β-VAE framework, seeks to learn representations
where individual latent variables capture distinct, independent factors of variation in the data. This
is achieved by modifying the traditional VAE objective to apply a stronger constraint on the latent
space information bottleneck, controlled by a hyperparameter β. The β-VAE, introduced by Higgins
et al. (2016), represents a seminal approach to disentanglement, promoting the learning of factorized
and interpretable latent representations.

On a related front, the Variational Information Bottleneck (VIB) method, formulated by Alemi et al.
(2017), extends the Information Bottleneck principle to deep learning. The VIB approach seeks to
find an optimal trade-off between the compression of input data and the preservation of relevant
information for prediction tasks. By employing a variational approximation, VIB efficiently learns
compressed representations that are predictive of desired outcomes. Interestingly, Alemi formulates
a VIB objective that is equivalent to Higgins’ β-VAE one. Such result makes evident how imposing
a higher information bottleneck leads to higher disentanglement.

H SENSITIVITY ANALYSIS OF α

In this section we present a sensitivity analysis of how α affects Vendi and FID results across the
considered datasets. To be consistent and analyze how Alpha influences disentanglement scores, we
also report a sensitivity analysis of the DCI metric and a correlation study showing how alpha is
statistically correlated with FID, Vendi, and DCI metrics.
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H.1 DIVERSITY AND VISUAL FIDELITY SENSITIVITY ANALYSIS WITH RESPECT TO α

To analyse how α influences the presented results, we performed an evaluation of FID, Vendi and
DCI using α ∈ [0.00, 0.25, 0.50, 0.75, 1.00], where for α = 0.00 we obtain β-VAE model, while
for α = 0.25 we get the results presented in the main paper. Figures 17 and 18 show that, when α ∈
[0.25, 0.50] α-TCVAE presents the highest diversity scores, while keeping a FID score comperable
to β-VAE.
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Figure 17: Sensitivity Analysis of the Diversity of generated images with respect to α. Only one
sampling strategy is considered: sampled from traversals. The green dashed line represents ground
truth dataset diversity. It can be seen that the higher alpha the higher will be the Vendi Score.
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Figure 18: Sensitivity Analysis of the Faithfulness of generated images to the data distribution, as
measured by FID score, with respect to α. Only one sampling strategy is considered: sampled from
traversals. It can be seen that for α ∈ [0.25, 0.50] the model presents higher visual fidelity.

Interestingly, the two sensitivity analyses show two main trends:

• Diversity increases when using higher values of Alpha.

• FID score improves when using smaller values of Alpha.

Indeed, when using higher values of α , we increase the contribution of the CEB term in equation 6,
which enhances diversity at the cost of visual fidelity. As a result, the higher the value of α, the more
diverse the generated batch of images, and the lower will be the generation quality. However, it can
be noticed that when using values of α between 0.25 and 0.50, we get a set of generated images that
are more diverse and still have a better or comparable visual fidelity than β-VAE (i.e., α=0).

H.2 DISENTANGLEMENT SENSITIVITY ANALYSIS WITH RESPECT TO α

Here, we present a sensitivity analysis of the DCI metric. Figure 19 shows that the interval [0.25-
0.50] presents higher values of disentanglement, following Diversity and Visual Fidelity analyses
that show the best results in the same range. Such a trend can be explained by considering that α
weights the contributions of VIB and CEB terms. While the CEB term enhances diversity, the VIB
term encourages disentanglement. As a result, we can see that DCI scores decrease when α gets
closer to 1. Interestingly, when α is in [0.25,0.50], the combination of CEB and VIB terms produces
a better bound for the Total Correlation objective than when using , which results in higher DCI
scores.
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Figure 19: DCI scores sensitivity analysis with respect to α. On average when α ∈ [0.25, 0.50]
α-TCVAE presents the best DCI scores.

H.3 CORRELATION STUDY: HOW IS α CORRELATED WITH VENDI, FID, AND DCI METRICS?

Here, we present correlation matrices for all the considered datasets. We computed them using the
models trained for the alpha sensitivity analyses. The correlation matrices in fig. 20 confirm the
trends observed in the other sensitivity analyses (i.e., Vendi, FID, and DCI). Indeed, α has a strong
positive correlation with both FID and Vendi, showing that when α increases, diversity increases and
FID deteriorates. On the other hand, α has a strong negative correlation with DCI for all datasets
besides the Cars 3D dataset, showing that, on average, the higher the value of α, the lower the
disentanglement.
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Figure 20: Correlations between α, diversity (Vendi score), generation faithfulness (FID score),
and disentanglement (DCI). Correlations are computed using the results from all models across 5
different seeds.
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