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ABSTRACT

Vision Transformers (ViTs) have revolutionized computer vision tasks with their
exceptional performance. However, the introduction of privacy regulations such
as GDPR and CCPA has brought new challenges to them. These laws grant users
the right to withdraw their data, necessitating not only the deletion of data but also
the complete removal of its influence from trained models. Machine unlearning
emerges as a critical solution, with exact unlearning being computationally pro-
hibitive and approximate methods offering a more practical approach. This work
addresses the particularly challenging scenario of random data forgetting in ViTs,
where the model must forget specific samples while retaining others, even within
the same class. We first reveal the core characteristics of ViTs through selective
masking experiments: when high-attention areas are masked, the model retains its
recognition capability but significantly weakens its memorization ability. Based
on the above insights, we propose LetheViT, a contrastive unlearning method tai-
lored for ViTs. LetheViT uses masked image inputs to generate positive logits
and original image inputs to generate negative logits, guiding the model to forget
specific details while retaining the general cl category outlines. Experimental re-
sults demonstrate that LetheViT achieves state-of-the-art performance, effectively
balancing privacy compliance with model efficacy.

1 INTRODUCTION

Privacy regulations such as the General Data Protection Regulation (GDPR) (Hoofnagle et al., 2019)
and the California Consumer Privacy Act (CCPA) (Nguyen, 2022) have introduced new challenges
for Vision Transformers (ViTs) (Dosovitskiy et al., 2020). These laws grant users the right to with-
draw their personal data, a withdrawal that requires not only erasing the data from all storage systems
but also eliminating every trace of its influence on the model’s training. Machine Unlearning (MU)
(Tong et al., 2025a; Fan et al., 2024a; Liu et al., 2024) using a reverse-learning process to erase
the impact of specific data points on the model and thereby safeguard user privacy emerges as a
promising solution. The most direct and effective method of MU is Exact Unlearning (Bourtoule
et al., 2021), which retrains a new model from scratch using the remaining training set. However,
this approach requires a substantial amount of computational resources. To address this challenge,
Approximate Unlearning has been proposed, which can eliminate the impact of specific data without
retraining from scratch (Chien et al., 2022).

Based on the degree of forgetting, MU can be divided into two types: 1) Class-wise Forgetting
(Liu et al., 2024), which removes all data of a specific class from the model. For example, if
a law bans recognizing a particular political symbol on a social media platform using a ViT for
content moderation, the model must forget all images labeled with that symbol to comply. In this
case, most existing approximate unlearning methods can achieve performance comparable to exact
unlearning. 2) Random Data Forgetting (Tong et al., 2025a), which involves forgetting randomly
selected samples from one or more classes. For example, on the same social media platform, users
may request the removal of their specific images (e.g., pictures of their pet “cat”) from the training
data due to privacy concerns. The model must forget these images while still recognizing other
users’ content in the same class. This is more common in real-world applications. Our work pioneers
advancements in the more demanding Random Data Forgetting.
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However, compared with class-wise forgetting, random data forgetting significantly increases the
complexity, resulting in a substantial performance gap between existing approximate unlearning
methods and exact unlearning. The core challenge lies in the need to precisely “erase” individual
samples within the same class while retaining other highly similar samples. For example, in the
“cat” class, if two nearly indistinguishable images are present—one in the forget set and the other in
the retain set—directly performing a forgetting operation on the model will weaken the forgetting
effect. More critically, existing methods (Golatkar et al., 2020; Liu et al., 2024) generally overlook
the unique characteristics of the self-attention mechanism in ViTs.

To address these challenges, we first explore the recognition and memorization capabilities of ViT
models through systematic experiments on selective patch masking. Specifically, we mask the
highest-attention patches identified via self-attention scores and evaluate the model’s test accuracy
(TA) and membership inference attack (MIA) success rate (The lower the MIA success rate, the
more difficult it is for the model to distinguish whether a data sample was used in training). Our key
observation reveals a critical phenomenon: masking 5% of top-attended patches with zero pixels
preserves recognition capability (TA increases by 0.01%) while significantly degrading memoriza-
tion (MIA drops by 14.33%). This indicates that ViTs retain class-level abstraction when critical
details are obscured, yet lose sample-specific memory traces.

Based on the above insights, we propose LetheViT, a novel contrastive unlearning method specif-
ically designed for ViT models. Specifically, samples from the forget set are first passed through
the original model to obtain the logits of the negative set. Then, after masking the key information
(First, the most important tokens are identified, and then the corresponding image pixels of these
tokens are set to 0) in these samples, they are forwarded through the original model again to obtain
the logits of the positive set. Meanwhile, the samples in the forget set are also passed through the
unlearned model to obtain the logits of the anchor. During the unlearning training process, the goal
is to adjust the logits of the anchor so that they are closer to the logits of the positive set, while being
farther away from the logits of the negative set. This type of contrastive unlearning enables the ViT
model to forget the specific details of certain samples within a class while retaining a general outline
of the category. In this way, it achieves selective forgetting of particular samples. We summarize
our contributions below:

• We analyze the challenges of ViT models in random forgetting scenarios and explore the Recog-
nition and Memorization capabilities of ViT models.

• We propose LetheViT, a machine unlearning method specifically designed for ViT models, which
achieves the forgetting of specific samples while retaining the model’s performance on the retain
set.

• We conduct extensive experiments to verify our method. Experiments demonstrate that LetheViT
surpasses existing state-of-the-art methods. For instance, for DeiT-T on Tiny-ImageNet, LetheViT
achieves the smallest Average Gap of 2.79% relative to Retrain.

2 PRELIMINARIES

In this section, we revisit the basic concepts of Vision Transformer, machine unlearning, and con-
trastive learning.

Revisiting Vision Transformer. In a typical vision transformer, the input is processed as a se-
quence of vectors. The process begins by dividing the input image into a fixed number of uniformly
sized patches. Each patch is then linearly transformed into a vector. These vectors, referred to
as tokens, are input into the vision transformer as X . The token vectors X pass through several
transformer blocks, each consisting of a multi-head self-attention (MSA) module followed by a
multi-layer perceptron (MLP) module. For each attention head, the attention weights are calculated
using Qi = XWQ

i , Ki = XWK
i , and Vi = XWV

i , with the attention mechanism defined as:

Atti(Qi,Ki, Vi) = softmax
(
QiK

T
i /

√
d
)
Vi, (1)

where d represents the hidden dimension of each head. The outputs from all heads are combined
through concatenation to form the MSA output:

MSA(X) = concat(Att1,Att2, . . . ,Atti)W, (2)
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Table 1: TA and MIA under different masking
ratios.

Ratio Zero Noise Gaussian Noise

TA MIA TA MIA

0% 81.24 24.49 81.24 24.49
5% 81.25↑0.01 10.16↓14.33 83.59↑2.35 14.06↓10.43

10% 79.69↓1.55 18.75↓5.74 81.25↑0.01 19.53↓4.96

20% 68.75↓12.49 38.24↑13.75 69.53↓11.71 37.50↑13.01

30% 53.91↓27.33 52.34↑27.85 57.81↓23.43 56.25↑31.76

Figure 1: Visualization of the original image
and the masked image (with 5% masking). The
class is “rocket.”

where i denotes the number of heads. The MSA output is then fed into the MLP.

Revisiting Machine Unlearning. Let the complete training dataset be D = {(xi, yi)}Ni=1, con-
sisting of N samples, where xi denotes the i-th sample and yi ∈ {1, 2, . . . , n} is its associated
class label. The forget set Df ⊆ D represents a subset of D that needs to be removed from the
trained model, while its complement, the retain set Dr, contains the data to be preserved, satisfying
Df ∩Dr = ∅ and Df ∪Dr = D. Machine unlearning (MU) in image classification can be catego-
rized based on the composition of Df : class-wise forgetting and random data forgetting. In class-
wise forgetting, Df comprises solely samples from a single class, with the objective of eliminating
the influence of that entire class on the model. In random data forgetting, Df includes randomly
selected samples from one or multiple classes, aiming to remove their impact on the model. Prior
to unlearning, the original model is denoted as fθo . In MU, the retrained model fθr , trained from
scratch on Dr, is considered the “gold standard” (Nguyen et al., 2022; Tong et al., 2025a). However,
retraining incurs significant computational overhead. To address this, approximate unlearning aims
to produce an unlearned model fθu by removing the influence of Df from fθo , thereby approximat-
ing fθr with reduced computational cost.

Revisiting Contrastive Learning. Contrastive learning aims to learn effective representations by
comparing pairs of samples in a dataset D. The dataset D contains samples xi, each associated with
a class label yi ∈ {1, 2, . . . , k}. The objective is to train a model f to map samples into a feature
space where positive pairs, typically formed by augmenting a sample xi to create x+

i , are positioned
closely together, while negative pairs, derived from samples x−

i of different classes or unrelated data,
are placed far apart. The model f optimizes a loss function that maximizes the similarity between
logits Z = f(xi) and Zp = f(x+

i ) for positive pairs, while minimizing similarity with logits
Zn = f(x−

i ) for negative pairs. A similarity metric, such as cosine similarity, and a temperature
parameter are used to control the distribution’s softness, enhancing the model’s ability to distinguish
between similar and dissimilar samples in the feature space.

3 EXPLORING THE MEMORIZATION AND RECOGNITION ABILITIES OF VITS

To systematically investigate the memorization and recognition capabilities of ViTs, we conducted
a series of experiments where we selectively masked the most attended image patches—identified
through the highest attention scores—and evaluated the model’s performance in terms of test accu-
racy (TA) and the success rate of membership inference attacks (MIA). The memory and recognition
capabilities of ViTs are defined as follows:
Definition 1 (Recognition Capability of ViTs). In the task of image classification, the recognition
capability of a Vision Transformer (i.e., its ability to accurately identify and classify visual patterns
in unseen data) is typically reflected by the model’s Top-1 classification accuracy on the test set (test
accuracy, TA).
Definition 2 (Memorization Capability of ViTs). The memory capability of a Vision Transformer
reflects its degree of memorization of training data. In image classification tasks, this ability can
be quantitatively evaluated through the success rate of Membership Inference Attacks (MIA) — that
is, the probability that the model successfully identifies the true training status (whether or not it
belongs to the training data) of data samples on the forget set.

Specifically, we conduct experiments on the CIFAR-100 dataset using the DeiT-T model, with a
forgetting scenario of randomly forgetting 10% of the data. We first train a retrain model using
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Figure 2: The overview of LetheViT.

the retained data. Subsequently, we apply different masking ratios to the images in the test set and
the forget set. We then measure the model’s Top-1 classification accuracy on the test set (i.e., test
accuracy, TA) and the success rate of membership inference attacks (MIA) on the forget set. As
shown in Table 1, we employ two masking methods: setting pixels to zero and applying Gaussian
noise. When the masking ratio is 5%, we find that setting pixels to zero actually increases the TA
by 0.01% compared to using the original images. This indicates that even after masking the pixels
corresponding to the highest-attention patches, the model can still recognize the class of the image,
and its recognition ability remains intact. Moreover, the success rate of MIA drops from 24.49% to
10.16%, suggesting that the model finds it more difficult to determine whether the masked image
was used for training, indicating a significant reduction in the model’s memory of the image.

We present the masked images and the original images in Figure 1. Taking the “rocket” class as an
example, the masked patches mainly cover the detailed parts of the rocket, while the main outline of
the rocket is still preserved. As a result, the model can still correctly identify the class of the masked
image. However, due to the introduction of a small amount of noise, the model finds it difficult to
determine whether the masked image was used for training. Based on the above insights, we will
introduce our method LetheViT in the next section.

4 METHODOLOGY

We propose LetheViT, a novel contrastive unlearning approach tailored for Vision Transformers
(ViTs). As shown in Figure 2, it enables selective forgetting of designated samples while preserving
performance on retained samples. Our method leverages the attention mechanism to identify and
mask critical image regions, guiding the model to forget targeted information through a contrastive
learning framework.

4.1 ATTENTION-GUIDED MASKING

For a given input image x, we extract the attention maps from the last attention layer of the original
pre-trained model. These attention maps, denoted as A ∈ RB×H×(N+1)×(N+1), where B is the
batch size, H is the number of attention heads, and N is the number of patches (with an additional
class token), represent the pairwise attention weights between tokens.

To identify the most informative patches, we compute the attention weight from the class token to
each patch:

ai =
1

H

H∑
h=1

Ah,0,i+1, (3)

for each patch i (1 ≤ i ≤ N ), where Ah,0,i+1 is the attention weight from the class token (position
0) to patch token i (position i+ 1) in head h. We select the top k patches with the highest attention
scores ai, where k = ⌊ρ ·N⌋, and ρ is the masking ratio. The masked image xm is created by setting
the pixel values of these selected patches to zero.

4
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Algorithm 1 The Overall Pipeline of Unlearning
Input: Pre-trained ViT model fθo with parameters θo, Forget set Df = {(xf , yf )}, Retain set Dr =
{(xr, yr)},Forget Set Training Epochs Ef , Retain Set Training Epochs Er , Learning rate η.
Output: Unlearned model fθu .
1: Initialize θu ← θo
2: for t ∈ [0, ..., Ef − 1] do
3: Mask image (xf , yf ) in forget set following Eq.(3)
4: Compute Z,Zp,Zn following Eq.(4)
5: Compute LCL following Eq.(5)
6: Update θu ← θu − η∇LCL

7: end for
8: for t ∈ [0, ..., Er − 1] do
9: Compute Cross-Entropy loss LCE = CE(fθu(xr), yr)

10: Update θu ← θu − η∇LCE

11: end for
12: Return Unlearned model fθu with parameters θu

4.2 CONTRASTIVE UNLEARNING LOSS

In the previous section, we explored the recognition and memorization capabilities of ViT: after
masking the patch with the highest attention score in an image, ViT can still identify the class of
the image, but has difficulty determining whether the image was used for training. Based on these
insights, we can implement selective forgetting through contrastive learning. Specifically, we denote
fθu as the current model being unlearned and fθo as the original pre-trained model. For an input
image x, we first compute the anchor and the positive and negative sets as follows:

Z = fθu(x),Zp = fθo(xm),Zn = fθo(x), (4)

where Z is the logit of the original image on the current model, Zp is the logit of the masked image
on the original model, and Zn is the logit of the original image on the original model. The contrastive
loss is defined as:

LCL = − log
exp(sim(Z,Zp)/τ)

exp(sim(Z,Zp)/τ) + exp(sim(Z,Zn)/τ)
, (5)

where sim(·, ·) is the cosine similarity, and τ is a temperature parameter. This loss encourages the
current model’s logit Z to be closer to Zp and farther from Zn. By optimizing this loss function,
the model can remember class-level features while forgetting detailed features, thereby achieving
selective forgetting of specific samples.

4.3 THE OVERALL PIPELINE OF UNLEARNING

We present the overall pipeline of unlearning in Algorithm 1. The unlearning process of LetheViT
involves training the model by processing the forget and retain sets. Specifically, during the forget
set training phase, for each batch in the forget set, we compute the contrastive loss LCL and update
the model parameters θu to achieve selective forgetting of specific samples. During the retain set
training phase, for each batch in the retain set, we compute the classification loss LCE and update
the model parameters θu to maintain the model’s performance on the retain set. Training iterations
on the forget and retain sets is predetermined before training.

4.4 THEORETICAL ANALYSIS

We analyze the convergence of the LetheViT method under the Lipschitz smoothness assumption.

Assumption 1. The contrastive unlearning loss LCL is L-smooth, i.e., there exists a constant L > 0
such that for any model parameters θ, θ′:

∥∇θLCL(θ)−∇θLCL(θ
′)∥ ≤ L∥θ − θ′∥. (6)

5
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This assumption is mild and is commonly satisfied in practice for deep models with Lipschitz-
activated layers and bounded inputs; consequently, it is widely adopted in convergence analy-
ses(Tong et al., 2025b).

Theorem 1. Under Assumption 1, if the learning rate satisfies η < 1
L , then the gradient descent

update θt+1 = θt − η∇LCL(θt) ensures:

min
0≤t≤T

∥∇LCL(θt)∥2 ≤ 2[LCL(θ0)− L∗
CL]

ηT
. (7)

where L∗
CL is the global minimum value of the loss.

The proof can be found in the Appendix A.2. This theorem guarantees that LetheViT converges to a
stationary point at a rate of O(1/T ), ensuring stable and efficient unlearning in practice.

In LetheViT’s unlearning process, the forgetting stage needs only a handful of epochs for the model
to converge. The method uses an attention-guided masking mechanism to create a positive sample
(a masked image that keeps the class-level outline) and a negative sample (the original image that
retains certain details). A contrastive loss quickly pulls the anchor logits toward the positive sample
while pushing them away from the negative one, efficiently erasing the influence of the forget-set
samples without drastically altering the overall model parameters.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Networks. The datasets used in the experiments are CIFAR-10 (Krizhevsky et al.,
2009), CIFAR-100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and Tiny-Imagenet (Le &
Yang, 2015). To validate LetheViT, we select various popular vision transformer models, including
ViT-T/S/B, DeiT-T/S/B, and Swin-T/S. For faster convergence and better overall performance, we
use the pre-trained models.

Baselines. To evaluate our method comprehensively, we select multiple baselines, including: (1)
Retrain: The most effective but computationally expensive method, retraining a model from scratch
solely on the retained data. (2) Fine-Tuning (FT) (Warnecke et al., 2021; Golatkar et al., 2020): A
less intensive alternative requiring only minor adjustments to the original model via a few epochs on
the retained data. (3) Gradient Ascent (GA) (Graves et al., 2021; Thudi et al., 2022): Updates the
model parameters in the direction opposite to gradient descent, specifically using the forget dataset.
(4) Influence Unlearning (IU) (Koh & Liang, 2017; Izzo et al., 2021): Estimates the impact of
the forget set Df on model M0 using influence functions, then performs a Newton-step parameter
update to negate it. (5)Random Labels (RL) (Golatkar et al., 2020): Trains on the full dataset after
randomizing the labels of the forget set instances. (6) ℓ1-sparse (Liu et al., 2024): Induces weight
sparsity through model pruning to achieve approximate unlearning. (7) SalUn (Fan et al., 2024b):
Combines the RL approach with a gradient-based weight saliency map.

Evaluation Metrics. Aligning with prior works ℓ1-sparse and SalUn, we adopt the following suite
of evaluation metrics: Forget Accuracy (FA): Measures model accuracy on the forget set post-
unlearning. Retain Accuracy (RA): Measures model accuracy on the retain set post-unlearning.
Test Accuracy (TA): Measures model accuracy on a holdout test set, reflecting its generalization
ability after unlearning. Membership Inference Attack (MIA) (Shokri et al., 2017): A method
assessing whether specific data points can be inferred as belonging to the original training set; used
to detect residual information about supposedly forgotten data. The MIA we use is exactly the same
as that in ℓ1-sparse (Liu et al., 2024) and SalUn(Fan et al., 2024b). Crucially, the ideal values for
FA, RA, TA, and MIA are not simply maximizing or minimizing them; instead, they should exhibit
minimal deviation from those achieved by the Retrain baseline (representing the unlearning gold
standard) (Fan et al., 2024b; Liu et al., 2024; Tong et al., 2025a). To quantify overall performance,
we introduce the Average Gap (AG), computed as the mean absolute difference between each base-
line method and the Retrain baseline across these four metrics after unlearning. A lower AG value
indicates better unlearning efficacy, with zero representing ideal performance.
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Table 2: Performance of various MU methods on Tiny-Imagenet. Bold indicates the best perfor-
mance and underline indicates the runner-up. A performance gap against Retrain is provided in (•).
The proportion of forgotten data samples is 10%.

Method

ViT-T ViT-S

FA RA TA MIA AG↓ FA RA TA MIA AG↓

Retrain 78.89 95.77 79.58 35.78 0 86.52 99.57 86.32 24.15 0
FT 80.43(1.54) 87.57(8.26) 80.68(1.10) 37.78(2.00) 3.23 84.18(2.24) 99.00(0.57) 82.42(3.90) 30.13(5.58) 3.07
GA 76.10(2.79) 76.98(18.79) 74.87(4.71) 47.72(11.94) 9.56 96.76(10.24) 96.93(2.64) 87.62(1.30) 12.57(11.58) 6.44
IU 71.35(7.54) 73.49(22.28) 71.07(8.51) 46.62(10.84) 12.29 96.27(9.75) 96.71(2.86) 87.34(1.02) 13.29(10.86) 6.12
RL 79.50(0.61) 87.20(8.57) 80.16(0.58) 36.93(1.15) 2.73 90.99(4.47) 98.75(0.82) 86.80(0.48) 33.72(9.57) 3.84

ℓ1-sparse 80.54(0.56) 89.00(6.77) 80.72(1.14) 36.37(0.59) 2.27 84.10(2.42) 98.98(0.59) 82.22(4.10) 30.79(6.64) 3.43
SalUn 79.45(0.56) 89.38(6.39) 80.04(0.46) 38.63(2.85) 2.56 88.01(1.49) 98.72(0.85) 86.28(0.04) 35.07(10.92) 3.33

LetheViT 80.09(1.20) 91.55(4.22) 80.26(0.68) 36.81(1.03) 1.78 91.14(4.62) 98.79(0.78) 85.92(0.40) 22.04(2.11) 2.00

ViT-B DeiT-T

Retrain 87.62 99.98 87.92 23.89 0 76.53 91.65 76.92 40.06 0
FT 83.05 (4.57) 99.74 (0.24) 81.02(6.90) 30.51 (6.62) 4.58 86.55(10.02) 96.48(4.83) 75.76(1.16) 30.93(9.13) 6.29
GA 99.99(12.37) 99.96(0.02) 88.62(0.70) 1.87(22.02) 8.78 93.40(16.87) 93.27(1.62) 77.46(0.54) 22.90(17.16) 9.05
IU 99.99(12.37) 99.95(0.03) 88.22(0.30) 2.35(21.54) 8.56 90.64(14.11) 91.58(0.07) 75.70(1.22) 22.44(17.62) 8.26
RL 94.50(6.88) 99.97(0.01) 86.74(1.18) 51.01(27.12) 8.80 85.26(8.73) 95.79(4.14) 76.24( 0.68) 36.18(3.88) 4.36

ℓ1-sparse 83.07(4.55) 99.72(0.26) 80.82 (7.10) 29.48(5.59) 4.38 86.55(10.02) 96.50(4.85) 75.90(1.02) 30.79(9.27) 6.29
SalUn 96.94(9.32) 99.95(0.03) 87.12(0.80) 38.20(14.31) 6.12 84.05(7.52) 95.18(3.53) 75.66(1.26) 35.79(4.27) 4.15

LetheViT 86.03(1.59) 99.19(0.79) 82.54(5.35) 25.06(1.17) 2.23 80.90(4.37) 94.09(2.44) 75.04(1.88) 37.60(2.46) 2.79

DeiT-S DeiT-B

Retrain 85.00 99.34 85.58 25.83 0 90.54 99.95 90.60 19.95 0
FT 89.96(4.96) 98.71(0.63) 86.12(0.54) 22.17(3.66) 2.45 93.02(2.48) 99.51(0.44) 90.70(0.10) 17.01(2.94) 1.49
GA 93.42(8.42) 93.69(5.65) 87.02(1.44) 22.20(3.63) 4.79 95.06(4.52) 95.50(4.45) 91.62(1.02) 16.32(3.63) 3.41
IU 92.48(7.48) 93.21(6.13) 86.42(0.84) 23.76(2.07) 4.13 94.82(4.28) 95.40(4.55) 91.38(0.78) 16.92(3.03) 3.16
RL 85.16(0.16) 98.41(0.93) 85.70(0.12) 40.73(14.90) 4.03 90.22(0.32) 99.04(0.91) 91.20(0.60) 25.41(5.46) 1.82

ℓ1-sparse 82.17(2.83) 99.14(0.20) 80.78(4.80) 31.97(6.14) 3.49 88.15(2.39) 99.74(0.21) 87.70(2.90) 24.59(4.64) 2.54
SalUn 85.77(0.77) 97.82(1.52) 85.32(0.26) 33.32(7.49) 2.51 90.31(0.23) 98.86(1.09) 91.00(0.40) 23.25(3.30) 1.26

LetheViT 87.87(2.87) 98.31(1.03) 85.34(0.24) 25.56(0.27) 1.10 90.70(0.16) 99.40(0.55) 89.38(1.22) 20.28(0.33) 0.57

Swin-T Swin-S

Retrain 84.89 99.13 85.56 26.36 0 88.22 99.92 88.72 21.08 0
FT 78.92(5.97) 96.99(2.14) 78.68(6.88) 35.15(8.79) 5.95 81.74(6.48) 98.50 (1.42) 80.36(8.36) 30.87(9.79) 6.51
GA 96.38(11.49) 96.41(2.72) 87.18(1.62) 14.35(12.01) 6.96 98.94(10.72) 99.02(0.90) 89.42(0.70) 5.94(15.14) 6.87
IU 90.13(5.24) 91.42(7.71) 82.80(2.76) 23.08(3.28) 4.75 98.80(10.58) 98.91(1.01) 88.80(0.08) 6.63(14.45) 6.53
RL 88.64(3.75) 98.40 (0.73) 86.74(1.18) 38.65 (12.29) 4.49 83.12(5.10) 99.52(0.40) 86.00(2.72) 54.35(33.27) 10.37

ℓ1-sparse 80.85 (4.04) 97.90 (1.23) 79.82(5.74) 33.05(6.69) 4.43 81.55(6.67) 98.37(1.55) 80.82 (7.90) 31.14(10.06) 6.55
SalUn 87.76(2.87) 98.11(1.02) 85.64(0.08) 38.29(11.93) 3.98 88.06(0.16) 99.37(0.55) 87.10(1.62) 35.00(13.92) 4.06

LetheViT 88.53(3.64) 98.16 (0.97) 84.66 (0.90) 25.12 (1.24) 1.69 91.50(3.28) 99.27(0.65) 86.14(2.58) 19.74(1.34) 1.96

5.2 MAIN RESULTS

Table 2 compares the effectiveness of various Machine Unlearning (MU) methods on different Vi-
sion Transformer models (ViT-T/S/B, DeiT-T/S/B, Swin-T/S) using the Tiny-ImageNet dataset. The
evaluation metrics include FA, RA, TA, MIA, and AG. LetheViT demonstrates significant advan-
tages compared to existing methods such as FT, GA, IU, RL, and ℓ1-sparse, achieving the best
forgetting effect. Specifically, in larger models like ViT-B and DeiT-B, LetheViT shows outstanding
performance in the FA metric, reaching 86.03% and 90.70% respectively (with gaps of 1.59% and
0.16% compared to Retrain), showing the smallest gap with retraining. In terms of RA, LetheViT
performs relatively stably. For example, in ViT-T, LetheViT achieves 91.55% (4.22% lower than
Retrain), while SalUn only reaches 89.38% (6.39% lower than Retrain). This indicates that Lethe-
ViT can maintain the recognition ability for retained data while forgetting specific samples. In terms
of TA, although LetheViT’s gap is slightly higher than SalUn, its AG is significantly lower than
all existing methods, achieving the best forgetting effect. More importantly, LetheViT achieves the
smallest gap in Membership Inference Attack success rate (MIA) in each model series (ViT, DeiT,
Swin), highlighting its excellent ability to suppress sensitive information leakage. For example, in
ViT-B, LetheViT’s MIA is 25.06% (with a gap of 1.17% compared to Retrain), while FT’s MIA is
30.51% (with a gap of 6.62%), indicating that LetheViT is very effective in minimizing information
leakage.

LetheViT also performs well on the Swin series. For example, in the Swin-T model, LetheViT’s AG
is only 1.69%, significantly better than SalUn’s 3.98% and ℓ1-sparse’s 4.38%. Its MIA is 25.12%
(with a gap of 1.24% compared to Retrain), which is much better than ℓ1-sparse’s 33.05% (with a
gap of 6.69%). In the Swin-S model, LetheViT’s AG is only 1.96%, significantly better than SalUn’s
4.06% and ℓ1-sparse’s 6.55%. Its MIA is 19.74% (with a gap of 1.34% compared to Retrain), which
is much better than SalUn’s 35.00% (with a gap of 13.92%). Overall, LetheViT achieves the optimal
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forgetting effect on various Vision Transformer models by employing attention-guided contrastive
learning to guide the model to forget specific samples while maintaining its recognition ability for
the retained samples.

Additional experimental results are provided in the Appendix A.3and A.4 .

5.3 ABLATION STUDIES

Effect of Masking Ratio. As shown in Table 3, we demonstrate the impact of different masking
rates. When the masking ratio is 5%, the average gap reaches its minimum value of 2.79%, which
is lower than those of other ratios (3.21% for 10%, 3.10% for 20%, and 3.19% for 30%). This
indicates that 5% is the optimal masking ratio, achieving the best forgetting effect. This finding
is also consistent with the experimental results in Table 1: the 5% masking ratio can preserve the
model’s recognition ability while reducing its memorization ability. However, higher ratios will
disrupt the category outlines, leading to a decline in the forgetting effect.

Table 3: LetheViT under different masking types
and ratios (DeiT-T, Tiny-ImageNet).

Type FA RA TA MIA AG↓

Retrain 76.53 91.65 76.92 40.06 0

Zero 80.90(4.37) 94.09(2.44) 75.04(1.88) 37.60(2.46) 2.79
Gaussian 82.27(5.74) 94.64(2.99) 75.24(1.68) 36.27(3.79) 3.55

Ratio FA RA TA MIA AG↓

Retrain 76.53 91.65 76.92 40.06 0

5% 80.90(4.37) 94.09(2.44) 75.04(1.88) 37.60(2.46) 2.79
10% 81.47(4.94) 94.55(2.90) 75.52(1.40) 36.45(3.61) 3.21
20% 81.56(5.03) 94.42(2.77) 75.16(1.76) 37.24(2.82) 3.10
30% 81.72(5.19) 94.24(2.59) 74.99(1.93) 37.02(3.04) 3.19

Effect of Masking Type. In Table 3, we show
the impact of different masking Types. Specif-
ically, when using Zero masking, the model
achieves a FA of 80.90%, which is 4.37% higher
than that of Retrain. RA increases to 94.09%,
representing an improvement of 2.44%. TA,
however, decreases slightly to 75.04%, a drop
of 1.88%. Meanwhile, the MIA is reduced to
37.60%. The AG remains at a low level of
2.79%. In contrast, Gaussian masking improves
FA to 82.27% and RA to 94.64%. However, TA
slightly drops to 75.24% and the MIA is even
lower at 36.27%. Meanwhile, the AG increases
to 3.55%. This indicates that Gaussian masking
introduces more noise compared to Zero mask-
ing, thereby reducing the forgetting effect.

Figure 3: Visualization of Attention Maps.

Visualization of Attention Maps. Figure 3
presents the visualization of attention maps. The
first row displays the input images. The second
row shows the visualization results of the atten-
tion maps from the original model, highlighting
its focus on class-discriminative regions. The
third row shows the results after forgetting. For
the pickup truck class (first three columns), the
original model captures key structural features
such as wheels, lights, and the truck bed. After
forgetting, the attention is weakened or shifted
toward irrelevant backgrounds. For the oak tree
class (last three columns), the original model at-
tends to distinctive regions like trunks and foliage, while the model after forgetting loses this fo-
cus, indicating effective forgetting. These consistent changes across multiple samples validate our
method’s ability to selectively forget class-specific patterns while preserving the model’s capacity to
recognize other categories.

Efficiency Analysis. Figure 4 shows the efficiency of different methods. Specifically, the Re-
train method requires 59.67 minutes, which is significantly longer than the approximate unlearning
methods. Among the approximate unlearning methods, GA and IU achieve the highest efficiency.
However, their average gaps are 9.05% and 8.26%, respectively, which are much higher than that
of the Retrain method. This indicates that their forgetting effects are not satisfactory. In contrast,
methods such as RL, FT, and SalUn improve the forgetting effect but at the cost of significantly in-
creased time overhead. Compared to these methods, LetheViT not only achieves the best forgetting
effect but also maintains a relatively low time cost.

8
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6 RELATED WORK

In this section, we review three research directions related to our work: Vision Transformer, Machine
Unlearning, and Contrastive Learning.

Vision Transformer. The Transformer (Vaswani et al., 2017) architecture, initially popular in nat-
ural language processing, has become dominant in computer vision. Unlike CNNs, it captures
long-range visual relationships via self-attention. Vision Transformers (ViTs) (Dosovitskiy et al.,
2020; Tong et al., 2025c) divide images into 16×16 patches as tokens, with a unique class token
for classification. DeiT (Touvron et al., 2021) enhances ViT’s practicality through efficient training
with limited data using knowledge distillation and data augmentation. Swin Transformer (Liu et al.,
2021) uses a sliding window and hierarchical structure to capture local and global features efficiently
while reducing computation. As ViTs become foundational in computer vision, privacy protection
for ViTs is an important research direction. This paper focuses on privacy protection of ViTs.

Retrain FT GA IU RL `1-sparse SalUn LetheViT0
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Figure 4: Efficiency and performance compar-
ison. The results are from DeiT-T on Tiny-
Imagenet.

Machine Unlearning. Machine unlearning
(Ginart et al., 2019; Bourtoule et al., 2021;
Sekhari et al., 2021; Golatkar et al., 2020) can
remove the impact of specific samples on a
model to protect privacy. The most effective
method is to retrain the model from scratch
using the retain set after removing the data
points (Fan et al., 2024b), but this is compu-
tationally expensive, especially for large mod-
els. Thus, researchers are developing approx-
imate unlearning methods (Tong et al., 2025a;
Liu et al., 2024) to reduce costs while maintain-
ing model performance after unlearning. How-
ever, existing methods such as SalUn have not fully considered the characteristics of ViTs, espe-
cially their attention mechanisms. Meanwhile, recent works specifically targeting ViTs, such as
NOVO (Roy et al., 2025) and Low-rank (Poppi et al., 2024) which focus on class-wise forgetting,
and FRAMU (Shaik et al., 2024) which targets federated unlearning scenarios, are not directly ap-
plicable to random data forgetting. Unlike these methods, we propose an attention-based forgetting
method specifically designed for the random data forgetting scenario.

Contrastive Learning. Contrastive learning brings similar samples closer and pushes dissimilar
ones farther to capture data structure and features. For example, SimCLR (Chen et al., 2020) con-
structs positive pairs from augmented images and optimizes consistency via a contrastive loss. Sup-
Con (Khosla et al., 2020) extends this to supervised settings using labels for intra-class compactness
and inter-class separability. MoCo (He et al., 2020) uses a momentum-based queue to scale neg-
atives and maintain consistency with a key encoder. kyu Lee et al. (2024) propose a contrastive
unlearning method for CNNs, without taking into account the characteristics of ViTs. These meth-
ods excel at representation learning but are not directly suitable for machine unlearning in ViTs. To
address this, we propose a novel method using contrastive learning for unlearning specific samples
while preserving model performance.

7 CONCLUSIONS

In this paper, we propose LetheViT, a Machine Unlearning method for ViTs. To achieve the for-
getting of specific samples, we first explored the impact of masked images on the recognition and
memory capabilities of ViT and found that zeroing out the patch with the highest attention score in
the image and then performing inference does not degrade ViT’s recognition ability, but weakens its
memory of that image. Based on the above insights, we propose a contrastive Unlearning method
for ViTs. Specifically, we input the masked image to generate positive logits and the original image
to generate negative logits, guiding the model to forget specific details while preserving the general
category outlines. The experiments demonstrate that LetheViT can achieve better forgetting effects
than existing methods.

9
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A APPENDIX

The organization of the appendix is as follows:

• Appendix A.1: Implementation Details ;
• Appendix A.2: Proof of Theorem 1;
• Appendix A.3: ViT-T/S on CIFAR-10/CIFAR-100;
• Appendix A.4: DeiT-T/S on SVHN;
• Appendix A.5: t-SNE Analysis.
• Appendix A.6: LLM Usage Statement.

A.1 IMPLEMENTATION DETAILS

We follow the experimental settings of SalUn and ℓ1-sparse for the baseline methods. All experi-
ments are conducted using the SGD optimizer. For Retrain, we train each model for 45 epochs with
learning rates sampled from the range [1e-5, 1e-3]. For FT and RL, we train each model for 10
epochs with learning rates sampled from the range [1e-4, 1e-2]. For GA, we train for 5 epochs with
learning rates between [1e-7, 1e-5]. For IU,we vary the parameter α, which relates to the Woodfisher
Hessian Inverse approximation, within the range [1,20]. For ℓ1-sparse, we search for the optimal γ
value in the range [1e-6, 1e-4],and explore learning rates between [1e-5, 1e-3]. For SalUn , we train
for 10 epochs with learning rates sampled from [1e-4, 1e-2] and sparsity ratios in the range [0.1,
0.9]. For LetheViT, we apply the SGD optimizer with a batch size of 128. For ViT-T/S/B, we train
for 10 epochs with learning rates in the range [1e-5,1e-3]. For Swin-T/S/B, we train for 10 epochs
with learning rates in the range [1e-5,1e-3]. For DeiT-T/S/B, we train for 10 epochs with learning
rates in the range [1e-4,1e-2]. We set the masking ratio to 5%, the number of training epochs for the
forget set to 2, and the number of training epochs for the retain set to 8. Temperature parameter τ is
0.07. All experiments are conducted on a single NVIDIA RTX 4090 GPU.

A.2 PROOF OF THEOREM 1

Proof. From the L-smoothness of LCL, we have the quadratic upper bound:

LCL(θt+1) ≤ LCL(θt) +∇LCL(θt)
⊤(θt+1 − θt) +

L

2
∥θt+1 − θt∥2,

Substituting the update rule θt+1 − θt = −η∇LCL(θt) yields:

LCL(θt+1) ≤ LCL(θt)− η∥∇LCL(θt)∥2 +
Lη2

2
∥∇LCL(θt)∥2,

Rearranging terms gives:

LCL(θt+1) ≤ LCL(θt)− η

(
1− Lη

2

)
∥∇LCL(θt)∥2,

Since η < 1
L , we have 1− Lη

2 > 1
2 , and thus:

LCL(θt+1) ≤ LCL(θt)−
η

2
∥∇LCL(θt)∥2,

Summing from t = 0 to T − 1:
T−1∑
t=0

∥∇LCL(θt)∥2 ≤ 2

η
[LCL(θ0)− LCL(θT )] ≤

2

η
[LCL(θ0)− L∗

CL] ,

Therefore, the minimum gradient norm up to iteration T satisfies:

min
0≤t≤T

∥∇LCL(θt)∥2 ≤ 2[LCL(θ0)− L∗
CL]

ηT
.

which completes the proof.
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A.3 VIT-T/S ON CIFAR-10/CIFAR-100

We report the experimental results of ViT-T and ViT-S on CIFAR-10 and CIFAR-100 in Tables 4,
5, 6, and 7. For ViT-T on CIFAR-10, LetheViT shows average performance gaps from the Re-
train model of 1.44%, 1.58%, and 1.78% at different forgetting ratios. Compared with the best-
performing baseline, these gaps are reduced by 0.15%, 0.05%, and 0.20%, respectively. On CIFAR-
100 with ViT-T, LetheViT achieves either the best or second-best results. The average performance
gaps from Retrain are 2.64%, 2.13%, and 2.09%, which are 0.37%, 1.07%, and 2.60% smaller than
those of the previous state-of-the-art methods. For ViT-S on CIFAR-100, LetheViT yields average
gaps from Retrain of 0.66%, 0.95%, and 1.74%, indicating strong performance across all forgetting
ratios.

A.4 DEIT-T/S ON SVHN

We summarize the results of DeiT-T and DeiT-S on the SVHN dataset in Tables 8 and 9. Lethe-
ViT delivers either the best or second-best performance for DeiT-T. For DeiT-S, LetheViT achieves
average gaps from Retrain of 0.47%, 0.68%, and 1.12%, demonstrating excellent forgetting effects
under varying forgetting settings.

Figure 5: t-SNE of original model (left) and unlearned model (right). The experimental setup is
ViT-T on CIFAR-10.

A.5 T-SNE ANALYSIS

Figure 3 presents the t-SNE visualization. Specifically, the features of the forget data in the un-
learned model tend to move away from those of the retain data, as indicated by the red circles.
Within the same class, the specific forget data is notably separated from the retain data, demonstrat-
ing the model’s ability to effectively forget specific samples.

A.6 LLM USAGE STATEMENT

In the preparation of this manuscript, we utilized Large Language Models (LLMs) as a language
polishing tool. Specifically, LLMs were employed to refine the grammar, style, and clarity of certain
sentences and paragraphs. The use of LLMs was limited to language enhancement and did not
involve any contribution to the research ideation, experimental design, data analysis, or the scientific
content of the manuscript. All ideas, results, and interpretations remain the sole responsibility of
the human authors. We confirm that the use of LLMs in this context does not qualify them for
authorship, and we take full responsibility for the final content of the paper.
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Method CIFAR-10 (ViT-T)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 10%

Retrain 96.87 99.91 97.59 6.11 0
FT 99.44(2.57) 99.94(0.03) 97.70(0.11) 1.93(4.18) 1.72
GA 99.46(2.59) 99.58(0.33) 97.63(0.04) 1.91(4.20) 1.79
IU 98.76(1.89) 99.21(0.70) 97.12(0.47) 2.80(3.31) 1.59
RL 96.76(0.11) 99.39(0.52) 96.66(0.93) 14.24(8.13) 2.42

ℓ1-sparse 99.42(2.55) 99.94(0.03) 97.71(0.12) 1.93(4.18) 1.72
SalUn 96.53(0.34) 99.18(0.73) 96.49(1.10) 15.13(9.02) 2.80

LetheViT 96.62(0.25) 97.20(2.71) 95.43(2.16) 5.49(0.62) 1.44

Method CIFAR-10 (ViT-T)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 30%

Retrain 96.09 99.92 97.19 6.09 0
FT 99.54(3.45) 99.94(0.02) 97.74(0.55) 1.70(4.39) 2.10
GA 99.54(3.45) 99.56(0.36) 97.61(0.42) 1.52(4.57) 2.20
IU 97.93(1.84) 98.33(1.59) 96.39(0.80) 3.81(2.28) 1.63
RL 95.33(0.76) 98.39(1.53) 95.42(1.77) 16.99(10.90) 3.74

ℓ1-sparse 99.53(3.44) 99.94(0.02) 97.64(0.55) 1.73(4.36) 2.09
SalUn 98.09(2.00) 98.32(1.60) 95.52(1.67) 15.57(9.48) 3.69

LetheViT 96.99(0.90) 97.33(2.59) 95.57(1.62) 4.87(1.22) 1.58

Method CIFAR-10 (ViT-T)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 50%

Retrain 95.67 99.87 96.86 7.04 0
FT 99.56(3.89) 99.96(0.09) 97.67(0.81) 1.72(5.32) 2.53
GA 99.45(3.78) 99.52(0.35) 97.58(0.72) 1.74(5.30) 2.54
IU 97.96(2.29) 98.34(1.53) 95.83(1.03) 3.99(3.05) 1.98
RL 94.25(1.42) 97.02(2.85) 93.64(3.22) 16.82(9.78) 4.32

ℓ1-sparse 99.38(3.71) 99.97(0.10) 97.62(0.76) 2.50(4.54) 2.28
SalUn 91.41(4.26) 93.74(6.13) 91.09(5.77) 18.48(11.44) 6.40

LetheViT 95.53(0.14) 95.83(4.04) 94.17(2.69) 6.78(0.26) 1.78

Table 4: Performance of various MU methods for ViT-T on CIFAR-10. The unlearning scenarios
include 10%, 30%, and 50% forgetting rates. Bold indicates the best performance and underline
indicates the runner-up. A performance gap against Retrain is provided in (•).
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Method CIFAR-10 (ViT-S)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 10%

Retrain 98.49 99.99 98.65 2.96 0
FT 98.40(0.09) 99.99(0.00) 98.53(0.12) 3.20(0.24) 0.11
GA 99.77(1.28) 99.84(0.15) 98.47(0.18) 0.62(2.34) 0.99
IU 99.71(1.22) 99.84(0.15) 98.49(0.16) 0.75(2.21) 0.94
RL 97.69(0.80) 99.85(0.14) 97.86(0.79) 11.17(8.21) 2.49

ℓ1-sparse 98.56(0.07) 99.99(0.00) 98.38(0.27) 2.84(0.12) 0.12
SalUn 97.64(0.85) 99.79(0.20) 97.59(1.06) 8.04(5.08) 1.80

LetheViT 98.64(0.15) 99.99(0.00) 98.54(0.11) 3.49(0.53) 0.20

Method CIFAR-10 (ViT-S)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 30%

Retrain 98.40 99.98 98.54 3.01 0
FT 98.82(0.42) 99.99(0.01) 98.34(0.20) 2.89(0.12) 0.19
GA 99.82(1.42) 99.83(0.15) 98.49(0.05) 0.52(2.49) 1.03
IU 99.41(1.01) 99.49(0.49) 98.05(0.49) 1.35(1.66) 0.91
RL 97.44(0.96) 99.71(0.27) 97.38(1.16) 9.24(6.23) 2.16

ℓ1-sparse 98.76(0.36) 99.98(0.00) 98.38(0.16) 2.91(0.10) 0.16
SalUn 97.24(1.16) 99.31(0.67) 96.87(1.67) 10.07(7.06) 2.64

LetheViT 98.58(0.18) 99.98(0.00) 98.35(0.19) 3.41(0.45) 0.21

Method CIFAR-10 (ViT-S)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 50%

Retrain 98.24 99.97 98.17 3.69 0
FT 98.76(0.52) 99.98(0.01) 98.06(0.11) 3.17(0.52) 0.29
GA 99.80(1.56) 99.83(0.14) 98.49(0.32) 0.57(3.12) 1.29
IU 99.15(0.91) 99.28(0.69) 97.79(0.38) 1.79(1.90) 0.97
RL 96.92(1.32) 99.35(0.62) 96.45(1.72) 10.16(6.47) 2.53

ℓ1-sparse 98.79(0.55) 99.98(0.01) 98.17(0.00) 3.04(0.65) 0.30
SalUn 97.29(0.95) 99.38(0.59) 96.91(1.26) 12.53(8.84) 2.91

LetheViT 98.44(0.20) 99.99(0.02) 98.04(0.13) 4.12(0.43) 0.20

Table 5: Performance of various MU methods for ViT-S on CIFAR-10. The unlearning scenarios
include 10%, 30%, and 50% forgetting rates. Bold indicates the best performance and underline
indicates the runner-up. A performance gap against Retrain is provided in (•).
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Method CIFAR-100 (ViT-T)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 10%

Retrain 85.82 97.01 84.71 21.42 0
FT 83.24(2.58) 99.60(2.59) 80.83(3.88) 31.88(10.46) 4.88
GA 95.29(9.47) 96.05(0.96) 85.58(0.87) 9.08(12.34) 5.91
IU 96.09(10.27) 96.90(0.11) 86.33(1.62) 8.80(12.62) 6.16
RL 94.04(8.22) 98.42(1.41) 86.05(1.34) 30.87(9.45) 5.11

ℓ1-sparse 87.76(1.94) 99.42(2.41) 86.51(1.80) 24.00(2.58) 2.18
SalUn 94.67(8.85) 97.90(0.89) 85.70(0.99) 22.73(1.31) 3.01

LetheViT 89.75(3.93) 99.75(2.74) 86.36(1.65) 23.67(2.25) 2.64

Method
CIFAR-100 (ViT-T)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 30%

Retrain 82.93 96.17 83.12 25.99 0
FT 79.88(3.05) 99.66(3.49) 79.51(3.61) 35.25(9.26) 4.85
GA 97.44(14.51) 97.66(1.49) 87.10(3.98) 7.93(18.06) 9.51
IU 93.45(10.52) 94.90(1.27) 84.56(1.44) 10.90(15.09) 7.08
RL 93.97(11.04) 97.19(1.02) 85.10(1.98) 30.50(4.51) 4.64

ℓ1-sparse 93.67(10.74) 99.93(3.76) 87.46(4.34) 19.00(6.99) 6.46
SalUn 93.90(10.97) 96.34(0.17) 84.76(1.64) 25.96(0.03) 3.20

LetheViT 86.65(0.83) 99.70(3.57) 84.91(1.79) 28.33(2.34) 2.13

Method
CIFAR-100 (ViT-T)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 50%

Retrain 80.96 95.37 81.16 29.85 0
FT 78.92(2.04) 99.87(4.50) 78.40(2.76) 38.49(8.64) 4.48
GA 97.53(16.57) 97.57(2.20) 87.00(5.84) 8.37(21.48) 11.52
IU 88.16(7.20) 89.88(5.49) 80.41(0.75) 15.70(14.15) 6.90
RL 93.11(12.15) 95.52(0.15) 84.45(3.29) 29.61(0.24) 3.96

ℓ1-sparse 93.95(12.99) 99.93(4.56) 87.36(6.20) 20.18(9.67) 8.36
SalUn 92.36(11.40) 94.27(1.10) 83.60(2.44) 26.03(3.82) 4.69

LetheViT 81.84(0.88) 99.23(3.86) 80.89(0.27) 33.21(3.36) 2.09

Table 6: Performance of various MU methods for ViT-T on CIFAR-100. The unlearning scenarios
include 10%, 30%, and 50% forgetting rates. Bold indicates the best performance and underline
indicates the runner-up. A performance gap against Retrain is provided in (•).
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Method CIFAR-100 (ViT-S)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 10%

Retrain 92.02 99.75 90.99 15.47 0
FT 90.73(1.29) 99.92(0.17) 89.53(1.46) 19.98(4.51) 1.86
GA 98.67(6.65) 98.41(1.34) 91.10(0.11) 5.27(10.20) 4.58
IU 97.82(5.80) 98.16(1.59) 90.85(0.14) 6.58(8.89) 4.11
RL 91.49(0.53) 99.49(0.26) 90.48(0.51) 33.96(18.49) 4.95

ℓ1-sparse 89.71(2.31) 99.90(0.15) 88.59(2.40) 21.31(5.84) 2.68
SalUn 97.95(5.93) 98.07(1.68) 90.05(0.94) 9.04(6.43) 3.75

LetheViT 92.38 (0.36) 99.91 (0.16) 90.31 (0.68) 16.91 (1.44) 0.66

Method CIFAR-100 (ViT-S)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 30%

Retrain 90.26 99.76 90.40 18.27 0
FT 94.08 (3.82) 99.95 (0.19) 90.58 (0.18) 15.68 (2.59) 1.70
GA 98.27 (8.01) 98.50 (1.26) 91.09 (0.69) 5.57 (12.70) 5.66
IU 97.14 (6.88) 97.66 (2.10) 89.99 (0.41) 7.36 (10.91) 5.08
RL 94.32 (4.06) 99.23 (0.53) 89.80 (0.60) 36.46 (18.19) 5.85

ℓ1-sparse 94.24 (3.98) 99.97(0.21) 90.72 (0.32) 15.42 (2.85) 1.84
SalUn 97.75 (7.49) 98.04 (1.72) 90.41 (0.01) 10.96 (7.31) 4.13

LetheViT 90.95 0.69 99.90 (0.14) 89.49 (0.91) 20.31 (2.04) 0.95

Method CIFAR-100 (ViT-S)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 50%

Retrain 89.68 99.68 89.69 20.93 0
FT 94.17 (4.49) 99.95 (0.27) 90.49 (0.80) 15.95(4.98) 2.64
GA 98.41 (8.73) 98.45 (1.23) 91.09 (1.40) 5.82 (15.11) 6.62
IU 96.32 (6.64) 97.12 (2.56) 89.51 (0.18) 7.67 (13.26) 5.66
RL 96.19 (6.51) 98.74 (0.94) 90.06(0.37) 44.92 (23.99) 7.95

ℓ1-sparse 94.31 (4.63) 99.96 (0.28) 90.47 (0.78) 15.99 (4.94) 2.66
SalUn 90.33 (0.65) 91.00 (8.68) 83.63 (6.06) 24.38 (3.45) 4.71

LetheViT 88.65 (1.03) 99.83 (0.15) 87.74 (1.95) 24.76 (3.83) 1.74

Table 7: Performance of various MU methods for ViT-S on CIFAR-100. The unlearning scenarios
include 10%, 30%, and 50% forgetting rates. Bold indicates the best performance and underline
indicates the runner-up. A performance gap against Retrain is provided in (•).
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Method SVHN (DeiT-T)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 10%

Retrain 95.37 98.54 95.86 7.25 0
FT 96.29(0.92) 99.83(1.29) 97.21(1.35) 6.96(0.29) 0.96
GA 97.66(2.29) 97.66(0.88) 95.93(0.07) 5.98(1.27) 1.13
IU 96.71(1.34) 97.12(1.42) 95.61(0.25) 8.21(0.96) 0.99
RL 95.06(0.31) 98.47(0.07) 95.37(0.49) 15.64(8.39) 2.32

ℓ1-sparse 96.25(0.88) 99.62(1.08) 96.52(0.66) 6.58(0.67) 0.82
SalUn 93.10(2.27) 96.22(2.32) 93.93(1.93) 13.04(5.79) 3.08

LetheViT 96.28 (0.91) 99.20 (0.66) 96.55 (0.69) 7.04 (0.21) 0.62

Method SVHN (DeiT-T)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 30%

Retrain 94.23 98.38 95.38 9.33 0
FT 96.18 (1.95) 99.66 (1.28) 96.29 (0.91) 7.46 (1.87) 1.50
GA 97.19 (2.96) 97.39 (0.99) 95.62 (0.24) 7.35 (1.98) 1.54
IU 92.80 (1.43) 93.38 (5.00) 92.36 (3.02) 14.91 (5.58) 3.76
RL 93.67 (0.56) 97.03 (1.35) 93.56 (1.82) 15.47(6.14) 2.47

ℓ1-sparse 96.16 (1.93) 99.66 (1.28) 96.33 (0.95) 7.59 (1.74) 1.48
SalUn 93.42 (0.81) 96.14 (2.24) 93.15 (2.23) 17.04 (7.71) 3.25

LetheViT 96.12 (1.89)) 99.16 (0.78) 96.57 (1.19) 7.56 (1.77) 1.40

Method SVHN (DeiT-T)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 50%

Retrain 93.79 97.93 94.58 11.43 0
FT 96.10 (2.31) 99.69 (1.76) 96.20 (1.62) 7.60 (3.83) 2.38
GA 96.45 (2.66) 96.46 (1.47) 94.91 (0.33) 8.37(3.06) 1.88
IU 90.00 (3.79) 90.38 (7.55) 89.68 (4.90) 19.72 (8.29) 6.14
RL 91.18 (2.61) 93.05 (4.88) 90.81 (3.77) 23.40(11.97) 5.81

ℓ1-sparse 96.11 (2.32) 99.69 (1.76) 96.21 (1.63) 7.69 (3.74) 2.36
SalUn 83.13 (10.66) 86.09 (11.84) 82.41 (12.17) 31.38 (19.95) 13.66

LetheViT 96.00 (2.21) 99.25 (1.32) 96.48 (1.90) 7.81 (3.62)) 2.26

Table 8: Performance of various MU methods for DeiT-T on SVHN. The unlearning scenarios
include 10%, 30%, and 50% forgetting rates. Bold indicates the best performance and underline
indicates the runner-up. A performance gap against Retrain is provided in (•).
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Method SVHN (DeiT-S)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 10%

Retrain 95.57 99.64 96.54 7.28 0
FT 96.50(0.93) 99.86(0.22) 97.09(0.55) 6.69(0.59) 0.57
GA 97.97(2.40) 97.91(1.73) 96.00(0.54) 5.52(1.76) 1.61
IU 97.44(1.87) 97.96(1.68) 95.94(0.60) 6.22(1.06) 1.30
RL 96.72(1.15) 99.77(0.13) 97.34(0.80) 12.88(5.60) 1.92

ℓ1-sparse 96.41(0.84) 99.87(0.23) 97.00(0.46) 7.04(0.24) 0.44
SalUn 97.06(1.49) 99.54(0.10) 97.26(0.72) 12.26(4.98) 1.82

LetheViT 96.51(0.94) 99.66(0.02) 96.96(0.42) 6.80(0.48) 0.47

Method SVHN (DeiT-S)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 30%

Retrain 95.10 99.58 96.14 8.30 0
FT 96.08(0.98) 99.86(0.28) 96.91(0.77) 7.72(0.58) 0.65
GA 95.78(0.68) 96.00(3.58) 94.38(1.76) 9.09(0.79) 1.70
IU 93.95(1.15) 94.46(5.12) 93.68(2.46) 12.64(4.34) 3.27
RL 96.14(1.04) 99.31(0.27) 96.18(0.04) 11.31(3.01) 1.09

ℓ1-sparse 95.98(0.88) 99.89(0.31) 96.97(0.83) 7.41(0.89) 0.75
SalUn 96.44(1.34) 99.17(0.41) 96.46(0.32) 10.69(2.39) 1.12

LetheViT 96.01(0.91) 99.63(0.05) 96.88(0.74) 7.30(1.00) 0.68

Method SVHN (DeiT-S)

FA RA TA MIA AG↓
The proportion of forgotten data samples to all samples is 50%

Retrain 94.38 99.55 95.61 9.23 0
FT 96.03(1.65) 99.89(0.34) 96.64(1.03) 7.66(1.57) 1.15
GA 93.03(1.35) 98.05(1.50) 93.10(2.51) 11.56(2.33) 1.92
IU 90.35(4.03) 90.93(8.62) 90.61(5.00) 17.11(7.88) 6.38
RL 93.47(0.91) 97.57(1.98) 93.51(2.10) 19.65(10.42) 3.85

ℓ1-sparse 96.07(1.69) 99.89(0.34) 96.65(1.04) 7.80(1.43) 1.13
SalUn 93.78(0.60) 96.61(2.94) 94.19(1.42) 31.00(21.77) 6.68

LetheViT 96.02(1.64) 99.65(0.10) 96.84(1.23) 7.73(1.50) 1.12

Table 9: Performance of various MU methods for DeiT-S on SVHN. The unlearning scenarios
include 10%, 30%, and 50% forgetting rates. Bold indicates the best performance and underline
indicates the runner-up. A performance gap against Retrain is provided in (•).
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