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Abstract

Many decision processes in artificial intelligence
and operations research are modeled by paramet-
ric optimization problems whose defining param-
eters are unknown and must be inferred from ob-
servable data. The Predict-Then-Optimize (PtO)
paradigm in machine learning aims to maximize
downstream decision quality by training the para-
metric inference model end-to-end with the sub-
sequent constrained optimization. This requires
backpropagation through the optimization prob-
lem using approximation techniques specific to the
problem’s form, especially for nondifferentiable
linear and mixed-integer programs. This paper ex-
tends the PtO methodology to optimization prob-
lems with nondifferentiable Ordered Weighted Av-
eraging (OWA) objectives, known for their ability
to ensure properties of fairness and robustness in
decision models. Through a collection of training
techniques and proposed application settings, it
shows how the optimization of OWA functions can
be effectively integrated with parametric prediction
for fair and robust optimization under uncertainty.

1 INTRODUCTION

The Predict-Then-Optimize (PtO) framework models
decision-making processes as optimization problems with
unspecified parameters c, which must be estimated by a
machine learning (ML) model, given correlated features z.
An estimation of c completes the problem’s specification,
whose solution defines a mapping:

x⋆(c) = argmax
x∈S

f(x, c) (1)

The goal is to learn a model ĉ =Mθ(z) from observable
features z, such that the objective value f(x⋆(ĉ), c) under
ground-truth parameters c is maximized on average.

This setting is common to many real-world applications re-
quiring decision-making under uncertainty, such as planning
the fastest route through a city with unknown traffic delays,
or determining optimal power generation schedules based
on demand forcasts. A classic example is the Markowitz
portfolio problem, wherein the optimization model (1) may
regard f as the total return due to asset allocations x under
predicted prices c, while S includes constraints on price
covariance as a measure of risk Markowitz [1991]. Mod-
ern approaches are based on end-to-end learning, and train
ĉ =Mθ(z) to maximize f(x⋆(ĉ), c) directly as loss func-
tion. This requires backpropagation through x⋆(ĉ), which is
especially challenging when (1) defines a nondifferentiable
mapping, as further elaborated in Section 2.

Within this context, optimizing multiple objectives becomes
crucial, requiring a balance of competing goals. This is
especially important when the objectives need to be opti-
mized fairly, a common requirement in engineering settings
such as energy systems [Terlouw et al., 2019], urban plan-
ning [Salas and Yepes, 2020], and multi-objective portfolio
optimization [Iancu and Trichakis, 2014, Chen and Zhou,
2022]. A prevalent approach in this setting is the optimiza-
tion of a scalar aggregation of all objectives using Ordered
Weighted Averaging (OWA) [Yager, 1993]. This approach
results in Pareto-optimal solutions that fairly balance the val-
ues of each objective. However, employing optimization of
an OWA objective in Predict-Then-Optimize is challenged
due to its nondifferentiability, which prevents backpropaga-
tion of its constrained optimization mapping x⋆(c) within
machine learning models trained by gradient descent. To
the best of our knowledge, no prior PtO models encounter a
non-differentiable objective, making this challenge novel.

This paper aims to address this challenge and facilitate the
integration of learning and optimization for novel applica-
tions such as fair learning-to-rank models based on OWA
optimization of rankings and Markowitz prediction models
based on multi-scenario portfolio optimization. By leverag-
ing modern techniques in OWA optimization and Predict-
Then-Optimize (PtO) learning, this paper shows how the
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optimization of OWA functions can be effectively backprop-
agated in machine learning models, enabling end-to-end
trainable prediction and decision models for applications
requiring fair and robust decision-making under uncertainty.

Contributions. In particular, the paper makes the following
contributions: (1) It proposes novel techniques for differ-
entiating OWA optimization models with respect to their
uncertain parameters, allowing their integration in end-to-
end trainable ML models. (2) It is the first to show how
loss functions based on OWA aggregation can be effectively
used for supervising such end-to-end training. (3) Based on
these contributions, it proposes several effective modeling
strategies for combining parametric prediction with OWA
optimization and evaluates them in novel application set-
tings where optimal decisions must be fair or robust to multi-
ple uncertain objective criteria. The experiments conducted
serve to underscore the practical significance of integrat-
ing predictive modeling with OWA optimization, yielding
promising results across diverse application settings.

2 PRELIMINARIES

Prior to discussing the paper’s contribution, this section
provides an overview of the concepts of optimizing OWA
functions and implementing end-to-end training methods
for both prediction and optimization.

2.1 OWA AND ITS OPTIMIZATION

The Ordered Weighted Average (OWA) operator [Yager,
1993] is a class of functions used for aggregating multiple
independent values in settings requiring multicriteria eval-
uation and comparison [Yager and Kacprzyk, 2012]. Let
y ∈ Rm be a vector of m distinct criteria, and τ : Rm →
Rm be the sorting map for which τ(y) ∈ Rm holds the
elements of y in increasing order. Then for any w satisfying
{w ∈ Rm :

∑
i wi = 1,w ≥ 0}, the OWA aggregation

with weights w is defined as a linear functional on τ(y):

OWAw(y) = wT τ(y), (2)

which is piecewise-linear in y [Ogryczak and Śliwiński,
2003].

Fair OWA. This paper focuses on a specific instance of
OWA, commonly known as Fair OWA Ogryczak et al.
[2014], characterized by weights arranged in descending
order: w1 > w2 . . . > wn > 0. Note that with monotonic
weights, Fair OWA is also concave. Fair OWA objectives
are increasingly popular in optimization as fairness gains
attention in decision-making processes.

The following three properties of Fair OWA functions are
crucial for their use in fairly optimizing multiple objectives:
(1) Impartiality ensures that Fair OWA treats all criteria
equally. This means that for any permutation σ ∈ Pm,

where Pm is the set of all permutations of [1, . . . ,m], the
OWA aggregation with weights w yields the same result
for any permutation of the input vector y. (2) Equitability
guarantees that marginal transfers from a criterion with a
higher value to one with a lower value increase the OWA
aggregated value. This condition holds that OWAw(yϵ) >
OWAw(y), where yϵ = y except at positions i and j where
(yϵ)i = yi − ϵ and (yϵ)j = yj + ϵ, assuming yi > yj + ϵ.
(3) Monotonicity ensures that OWAw(y) is an increasing
function of each element of y. This property implies that
solutions optimizing the OWA objectives (2) are Pareto Ef-
ficient solutions of the underlying multiobjective problem,
thus no single criteria can be raised without reducing an-
other Ogryczak and Śliwiński [2003]. This aspect is crucial
in optimization, where Pareto-efficient solutions are always
preferred over those that do not possess this attribute. Taken
together, these properties define a notion of fairness in opti-
mal solutions known as equitable efficiency Ogryczak and
Śliwiński [2003]. Intuitively, OWA objectives lead to fair
optimal solutions by always assigning the highest weights of
w to the objective criteria in order of lowest current value.

2.2 PREDICT-THEN-OPTIMIZE LEARNING

The problem setting of this paper can be viewed within the
framework of Predict-Then-Optimize. In general, a paramet-
ric optimization problem (1) models an optimal decision
x⋆(c) with respect to unknown parameters c drawn from a
distribution c ∼ C. Although the true value of c is unknown,
correlated feature values z ∼ Z can be observed. The goal
is to learn a predictive modelMθ : Z → C from features z
to estimate problem parameters ĉ =Mθ(z). This estima-
tion aims to maximize the empirical objective value of the
resulting solution under ground-truth parameters. That is,

argmax
θ

E(z,c)∼Ω f (x⋆(Mθ(z)), c) , (3)

where Ω represents the joint distribution between Z and C.

The above training goal is often best realized by maximizing
empirical Decision Quality as a loss function Mandi et al.
[2023], defined as:

LDQ(ĉ, c) = f (x⋆(ĉ), c) . (4)

Gradient descent training of (3) with LDQ requires a model
of gradient ∂LDQ

∂ĉ , either directly or through chain-rule com-
position ∂LDQ

∂ĉ = ∂x⋆(ĉ)
∂ĉ · ∂LDQ

∂x⋆ . Here, left-multiplication
by the Jacobian is equivalent to backpropagation through the
optimization mapping x⋆. When x⋆ is not differentiable, as
in the case of OWA optimizations, smooth approximations
are required, such as those developed in the next section.
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Figure 1: Predict-Then-Optimize for OWA Optimization.

3 END-TO-END LEARNING WITH FAIR
OWA OPTIMIZATION

This paper’s proposed methodology and settings focus on
the scenarios where the objective function f consists of an
ordered weighted average of m linear objective functions,
with each function parametrized by one row of a matrix
C ∈ Rm×n, so that f(x,C) = OWAw(Cx) and

x⋆(C) = argmax
x∈S

OWAw(Cx). (5)

Note that the methodology of this paper naturally extends
to cases where the OWA objective above is combined with
additional smooth objective terms. For simplicity, the ex-
position primarily focuses on the pure OWA objective as
shown in equation (5), wherever applicable.

The goal is to learn a prediction model Ĉ =Mθ(z) that
maximizes decision quality through gradient descent on
problem (3), which requires obtaining its gradients w.r.t. Ĉ:

∂LDQ(Ĉ,C)

∂Ĉ
=

∂x⋆

∂Ĉ︸︷︷︸
J

· ∂OWAw(Cx⋆)

∂x⋆︸ ︷︷ ︸
g

, (6)

where x⋆ is evaluated at Ĉ. The primary strategy for mod-
eling this overall gradient involves initially determining the
OWA function’s gradient g, followed by computing the
product Jg by backpropagation of g through x⋆.

While nondifferentiable, the class of OWA functions is sub-
differentiable, with subgradients as follows:

∂

∂y
OWAw(y) = w(σ−1) (7)

where σ are the sorting indices on y [Do and Usunier, 2022].
Based on this formula, computing an overall subgradient
g = ∂/∂x OWAw(Cx) is a routine application of the chain
rule (via automatic differentiation). The use of subgradients
(7) in training ML models has been previously explored in
the context of reinforcement learning Siddique et al. [2020].
This work also leverages subgradients to incorporate the
fairness aspect of OWA optimization into end-to-end learn-
ing. A schematic illustration highlighting the forward and

backward steps required for this process is provided in Fig-
ure 1.

As outlined next, the main technical contribution of the pa-
per is to propose differentiable models of OWA optimization
(5), through which backpropagation of g can effectively ap-
proximate the decision quality gradient Jg for end-to-end
training of (3). The following sections propose alternative
models of differentiable OWA optimization, each taylored
to address problem-specific technical challenges.

First, Section 4 demonstrates how the OWA optimization
(5) with continuous variables can be effectively smoothed to
yield differentiable approximations that can be backpropa-
gated in end-to-end training (3). Next, Section 5 focuses on
a special form of optimization mapping with a nonparamet-
ric OWA term as an additional parametric objective term,
showing how backpropagation can be implemented using
only a blackbox solver for the underlying problem, without
smoothing. Finally, Section 6 outlines a method involving
surrogate solvers for cases where OWA-aggregation of ob-
jectives makes optimization too difficult to solve directly.

4 DIFFERENTIABLE APPROXIMATE
OWA OPTIMIZATION

This section develops two alternative differentiable approxi-
mations of the OWA optimization mapping (5). Prior works
[Wilder et al., 2019b, Amos et al., 2019] show that when
an optimization mapping (1) is discontinuous, as is the case
when f and S define a linear program (LP), differentiable
approximations to (1) can be formed by regularization of its
objective by smooth functions. Section 4.1 will demonstrate
how linear programming models of OWA optimization can
be combined with smoothing techniques for LP, yielding
effective differentiable approximations of (5).

However, this model becomes computationally intractable
for more than a few criteria m. An efficient alternative is
proposed in Section 4.2, where the mapping (5) is made dif-
ferentiable by replacing the OWA objective with its smooth
Moreau envelope approximation. To the best of the author’s
knowledge, this is the first time that objective smoothing
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via the Moreau envelope is used (and shown be an effective
technique) for approximating nondifferentiable optimization
programs in end-to-end learning. As approximations of the
true mapping (5), both smoothed models are used employed
in training and replaced by (5) at test time, similarly to a
softmax layer in classification.

4.1 OWA LP WITH QUADRATIC SMOOTHING

The mainstay approach to solve problem (5) when x ∈ S
is linear is to transform the problem into a linear program
without OWA functions, and solve it with a simplex method
[Ogryczak and Śliwiński, 2003]. Our first approach to dif-
ferentiable OWA optimization combines this transformation
with the smoothing technique of Wilder et al. [2019b], which
forms differentiable approximations to linear programs

x⋆(c) = argmaxAx≤b cTx (8)

by adding a scaled euclidean norm term ϵ∥x∥2 to the objec-
tive function, resulting in a continuous mapping x⋆(c) =
argmaxAx≤b cTx + ϵ∥x∥2, a quadratic program (QP)
which can be differentiated implicitly via its KKT condi-
tions as in [Amos and Kolter, 2017].

We adapt a version of this technique to OWA optimiza-
tion (5) by first forming an equivalent LP problem. It is
observed in [Ogryczak and Śliwiński, 2003] that OWAw

can be expressed as the minimum weighted average among
all permutations of the OWA weights w:

OWAw(r) = maxz z s.t. z ≤ wσ · r, ∀σ ∈ P, (9)

which allows the OWA optimization (5) to be expressed as

x⋆(C) = argmaxx∈S,y,z z (10a)

s.t.: y = Cx (10b)
z ≤ wτ · y ∀τ ∈ Pm. (10c)

When the constraints x ∈ S are linear, problem (10) is a LP.
However, its constraints (10c) grow factorially as m!, where
m is the number of individual objective criteria aggregated
by OWA. Smoothing by the scaled norm of joint variables
x,y, z leads to a differentiable QP approximation, viable
when m is small. This optimization can be solved and differ-
entiated using techniques from Amos and Kolter [2017] or a
generic differentiable optimization solver such as Agrawal
et al. [2019a]:

x⋆(C) = argmax
x∈S,y,z

z + ϵ
(
∥x∥22 + ∥y∥22 + z2

)
(11a)

subject to: (10b), (10c). (11b)

While problem (10) does not fit the exact form (8) due to
its parameterized constraints (10b), the need for quadratic
smoothing (11a) is illustrated experimentally in Section
7.1.1. The main disadvantage of this method is poor scala-
bility in the number of criteria m, due to constraints (10c).

Another disadvantage is that the transformed QP is much
harder to solve than its original associated LP problems,
since quadratic smoothing increases the difficulty of an
OWA-equivalent LP problem. These drawbacks motivate
the next smoothing method, which yields a tractable op-
timization problem by replacing the OWA objective itself
with a smooth approximation.

4.2 MOREAU ENVELOPE SMOOTHING

In light of the efficiency challenges faced by (11), we pro-
pose an alternative smoothing technique to form more scal-
able differentiable approximations of the optimization map-
ping (5). Instead of adding a quadratic term as in (11), we
replace the piecewise linear function OWAw in (5) with its
Moreau envelope, defined for a convex function f as:

fβ(x) = min
v

f(v) +
1

2β
∥v − x∥2. (12)

Moreau envelopes of concave functions are defined analo-
gously. Compared to its underlying function f , the Moreau
envelope is 1

β smooth while sharing the same optima [Beck,
2017]. The Moreau envelope-smoothed OWA optimization
problem is

x⋆(C) = argmaxx∈S OWAβ
w(Cx). (13)

With its smooth objective function, problem (13) can be
solved by gradient-based optimization methods, such as
projected gradient descent, or more likely a Frank-Wolfe
method if x ∈ S is linear (see Section 7.1.1). Additionally,
it can be effectively backpropagated in end-to-end learning.

Backpropagation of (13) is nontrivial since its objective
function lacks a closed form. To proceed, we first note from
[Do and Usunier, 2022] that the gradient of the Moreau
envelope OWAβ

w is equal to a Euclidean projection:

∂

∂x
OWAβ

w(x) = projC(w̃)

(
x

β

)
, (14)

where w̃ = −(wm, . . . , w1) and the permutahedron C(w̃)
is the convex hull of all permutations of w̃. It’s further
shown in [Blondel et al., 2020] how such a projection can
be computed and differentiated in O(m logm) time using
isotonic regression. To leverage the differentiable gradient
function (32) for backpropagation of the smoothed opti-
mization (13), we model its Jacobian by differentiating the
fixed-point conditions of a gradient-based solver.

Letting U(x,C) = projS(x−α · ∂
∂xOWAβ

w(x,C)), a pro-
jected gradient descent step on (13) is xk+1 = U(xk,C).
Differentiating the fixed-point conditions of convergence
where xk = xk+1 = x⋆, and rearranging terms yields a
linear system for ∂x⋆

∂C :
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I − ∂U(x⋆,C)

∂x⋆︸ ︷︷ ︸
Φ

 ∂x⋆

∂C
=

∂U(x⋆,C)

∂C︸ ︷︷ ︸
Ψ

(15)

The partial Jacobian matrices Φ and Ψ above can be found
given a differentiable implementation of U . This is achieved
by computing the inner gradient ∂

∂xOWAβ
w(x,C) via the

differentiable permutahedral projection (32), and solving
the outer projection mapping projS using a generic differ-
entiable solver such as cvxpy [Agrawal et al., 2019a]. As
such, applying U at a precomputed solution x⋆(C) allows
Φ and Ψ to be extracted in PyTorch, in order to solve (15);
this process is efficiently implemented via the fold-opt
library [Kotary et al., 2023].

5 BLACKBOX METHODS FOR
NONPARAMETRIC OWA OBJECTIVE

This section proposes a special class of techniques for cases
where the OWA term of an objective function is specified
with known coefficients B ∈ Rm×n, and uncertainty lies
instead in an additional parametrized linear objective term:

x⋆(c) = argmaxx∈S cTx+ λOWAw(Bx). (16)

This form is taken by the optimization mapping within the
fair learning to rank model proposed in Section 7.2. By
employing the reformulation (10), (16) transforms into:

(x⋆,y⋆, z⋆) (c) =argmaxx∈S,y,z cTx+ λz (17a)

s.t.: y = Bx (17b)
z ≤ wτ · y ∀τ ∈ P, (17c)

which as discussed in Subsection 4.1 grows intractable with
increasing m since the constraints (17c) number (m!).

We observe that the optimization problem 17 fits the partic-
ular form v⋆(γ) = argmaxv∈C γTv, as treated in several
works [Elmachtoub and Grigas, 2021, Berthet et al., 2020,
Pogančić et al., 2020], where an uncertain linear objective
is paired with nonparametric constraints. These works pro-
pose differentiable solvers based on blackbox solvers of the
underlying optimization problem, without smoothing. This
is generally accomplished by modeling the gradient as a
combination of solutions induced by perturbed input param-
eters. As shown next, this allows us to compute a gradient
formula for (17) without solving it directly. Instead, we use
a black-box solver for the underlying problem (16).

We illustrate the idea using the "Smart Predict-Then-
Optimize" scheme [Elmachtoub and Grigas, 2021], which
trains to maximimize LDQ by equivalently minimizing the
suboptimality (called regret) via a convex subdifferentiable
upper bounding function named LSPO+. By construction,
it admits a formula for subgradients directly with respect to

ĉ:

∂/∂γ̂ LSPO+(γ̂,γ) = v⋆(2γ̂ − γ)− v⋆(γ). (18)

Given any efficient method that provides optimal solutions
x⋆(C) to the OWA optimization (16), the auxiliary vari-
ables of problem (17) can be recovered as y⋆ = Cx⋆

and z⋆ = OWAw(y⋆). Defining the variables v⋆ =
(x⋆,y⋆, z⋆) and noting that γ = (c,0, λ) in problem (17),
its SPO+ loss subgradient can be now computed directly us-
ing formula (18). This approach leverages the problem form
(17) to derive a backpropagation model while avoiding its
direct solution as a linear program. Section 7.1.1 will show
how this can be combined with an efficient Frank-Wolfe
solution of (16) to design a scalable fair learning-to-rank
model.

6 DIFFERENTIABLE SURROGATE
OPTIMIZATION MAPPINGS

OWA optimization problems (5) can be challenging to solve,
even with modern methods, unless special problem-specific
structures are exploited. In such cases, an alternative to the
differentiable approximations of (5) proposed in Section 4
involves generating feasible candidate solutions x⋆ ∈ S
from a simpler differentiable model without OWA objec-
tives.

For example, a linear surrogate model proves useful when
(5) represents fair OWA optimization of multiple objec-
tives in a linear program (such as shortest path or bipartite
matching) which depends on total unimodularity to maintain
integral solutions x⋆ ∈ {0, 1}n:

x⋆(c) = argmaxx∈S cTx (19)

As illustrated in Section 7.1.2 on a parametric shortest path
problem, this surrogate approach is essential to avoid arising
an intractable OWA mixed-integer program, since integrality
of solutions is guaranteed only under linear objectives.

The main disadvantage inherent to the proposed surrogate
models is that they do not directly approximate the true
OWA problem (5). Thus, the learned modelMθ(z) = ĉ ∈
Rn does not fit the form prescribed in ((3),(5)) as writ-
ten, and it cannot supply parametric estimates Ĉ ∈ Rm×n

to an external solver of problem (5). Despite this, using
OWAw(Cx(ĉ)) as a loss function trains the surrogate
model to learn solutions to (5) with high decision quality.

7 EXPERIMENTS

This section leverages the differentiable elements introduced
in Sections 4-6 to develop end-to-end trainable prediction
and OWA optimization models. Three experimental settings
are proposed for evaluation across two primary application
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Figure 2: Percentage OWA regret (lower is better) on test set, on robust portfolio problem over 3,5,7 scenarios.

settings. The first application setting is Fair Multiobjective
Prediction and Optimization, extending the Predict-Then-
Optimize framework of Section 2.2 to scenarios where multi-
ple uncertain objective functions must be jointly learned and
fairly optimized through OWA aggregation, as defined in (5).
Within this setting,Robust Markowitz Portfolio Optimization
focuses on comparatively evaluating the differentiable ap-
proximations proposed in Section 4 against various baseline
methods. Then, Multi-Species Warcraft Shortest Path serves
as a case study demonstrating how a differentiable surrogate
model can enable learning with OWA optimization of inte-
ger variables. The second application setting presents a Fair
Learning-to-Rank model. Here, the OWA-aggregated objec-
tives are known with certainty, corresponding to problem
(16), as detailed in Section 5.

7.1 FAIR MULTIOBJECTIVE
PREDICT-AND-OPTIMIZE

This setting employs a prediction model Ĉ = Mθ(z) to
jointly estimate, from features z, the coefficients C ∈
Rm×n of m linear objectives, taken together as Cx ∈ Rm.
Its training goal is to maximize empirical decision qual-
ity with respect to their Fair OWA aggregation f(x,C) =
OWAw(Cx):

LDQ(Ĉ,C) = OWAw

(
Cx⋆(Ĉ)

)
. (20)

Any descending OWA weights w can be used to specify
(20); we choose the squared Gini indices wj =

(
n−1+j

n

)2
.

Evaluation. In this section, each model is evaluated on
the basis of its ability to train a model Ĉ =Mθ(z) to attain
high decision quality (20) in terms of the OWA-aggregated
objective. Results are reported in terms of the equivalent
regret metric of suboptimality, whose minimimum value 0
corresponds to maximum decision quality:

regret(Ĉ,C) = OWA⋆
w (C)− OWAw

(
Cx⋆(Ĉ)

)
(21)

where OWA⋆
w (C) is the true optimal value of problem

(5). This experiment is designed to evaluate the proposed

differentiable approximations (11) and (13) of Section 4;
for reference they are named OWA-QP and OWA-Moreau.

Baseline Models. In addition to the newly proposed mod-
els, the evaluations presented in this section include two
main baseline methods: (1) The two-stage method is the
standard baseline for comparison against proposed meth-
ods for Predict-Then-Optimize training (3) [Mandi et al.,
2023]. It trains the prediction model Ĉ =Mθ(z) by MSE
regression, minimizing LTS(Ĉ,C) = ∥Ĉ −C∥2 without
considering the downstream optimization model, which is
employed only at test time. In addition, (2) the unweighted
sum (UWS) of the objective criteria results in an LP mapping
x⋆(C) = argmaxx∈S 1T (Cx) which can be employed in
end-to-end training by using quadratic smoothing [Wilder
et al., 2019b] in 7.1.1 and blackbox differentiation [Pogančić
et al., 2020] in 7.1.2; this baseline (denoted as Sum-QP)
leverages end-to-end learning but without incorporating the
OWA objective.

7.1.1 Differentiable OWA Optimization: Robust
Markowitz Portfolio Problem

The classic Markowitz portfolio problem is concerned with
constructing an optimal investment portfolio, given future re-
turns c ∈ Rn on n assets, which are unknown and predicted
from exogenous data. A common formulation maximizes
future returns subject to a risk limit, modeled as a quadratic
covariance constraint. Define the set of valid fractional allo-
cations ∆n = {x ∈ Rn : 1Tx = 1,x ≥ 0}, then :

x⋆(c) = argmax
x∈∆n

cTx s.t.: xTΣx ≤ δ. (22)

where Σ ∈ Rn×n are the price covariances over n assets.
The optimal portfolio allocation (22) as a function of fu-
ture returns c ∈ Rn is differentiable using known methods
[Agrawal et al., 2019a], and is commonly used in evaluation
of Predict-Then-Optimize methods [Mandi et al., 2023].

An alternative approach to risk-aware portfolio optimization
views risk in terms of robustness over alternative scenarios.
In [Cajas, 2021], m future price scenarios are modeled by a
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matrix C ∈ Rm×n whose ith row holds per-asset prices in
the ith scenario. Thus an optimal allocation is modeled as

x⋆(C) = argmax
x∈∆n

OWAw(Cx). (23)

This experiment integrates robust portfolio optimization (23)
end-to-end with per-scenario price prediction Ĉ =Mθ(z).

Settings. Historical prices of n = 50 assets are obtained
from the Nasdaq online database [Nasdaq, 2022] years 2015-
2019, and N = 5000 baseline asset price samples ci are gen-
erated by adding Gaussian random noise to randomly drawn
price vectors. Price scenarios are simulated as a matrix of
multiplicative factors uniformly drawn as U(0.5, 1.5)m×n,
whose rows are multiplied elementwise with ci to obtain
Ci ∈ Rm×n. While future asset prices can be predicted on
the basis of various exogenous data including past prices or
sentiment analysis, this experiment generates feature vectors
zi using a randomly generated nonlinear feature mapping
as described in Appendix A. The experiment is replicated
in three settings which assume m = 3, 5, and 7 scenarios.

The predictive modelMθ is a feedforward neural network.
At test time,Mθ is evaluated over a test set for the distribu-
tion (z,C) ∈ Ω, by passing its predictions to a projected
subgradient solver of (23). Complete details in Appendix A.

Results. Figure 2 shows percent regret in the OWA objec-
tive attained on average over the test set (lower is better).
The end-to-end trained unweighted sum baseline outper-
forms the two-stage approach. However, both OWA-QP and
OWA-Moreau achieve substantially higher decision quality.
While OWA-QP performs slightly better, it cannot scale past
5 scenarios, highlighting the importance of the proposed
Moreau envelope smoothing technique (Section 4.2).

OWA-LP represents a baseline method where the OWA’s
equivalent linear program (LP) is used as a differentiable op-
timization without smoothing. For comparison, the grey bars
indicate the results from a non-smoothed OWA LP (9) im-
plemented with implicit differentiation in cvxpylayers
[Agrawal et al., 2019a]. This comparison highlights the im-
provement in accuracy due to applying quadratic smoothing
in OWA-QP. The poor performance of the OWA subgradient
training under the non-smoothed OWA-LP demonstrates
that the proposed approximations in Section 4 are indeed
necessary for accurate training.

Runtimes of the smoothed models (11) and (13) are com-
pared in Figure 6 (Appendix A.1). These results show that
the Moreau envelope smoothing maintains low runtimes
as m increases, while the QP approximation suffers past
m = 5 and causes memory overflow beyond m = 6.

7.1.2 Surrogate Learning for OWA Optimization:
Multi-species Warcraft Shortest Path

This experiment illustrates how a surrogate model can fa-
cilitate end-to-end training (3) when the full OWA prob-
lem (5) is too challenging to solve directly. he Warcraft
Shortest Path (WSP) dataset is commonly used for bench-
marking Predict-Then-Optimize (PtO) methods [Pogančić
et al., 2020, Berthet et al., 2020]. In this dataset, observ-
able features z are RGB images of 12× 12 tiled Warcraft
maps. A character’s movement speed varies based on the
terrain type of each tile, and the goal is to predict the node-
weighted shortest path from the top-left to the bottom-right
corner, where nodes represent tiles and weights correspond
to movement speeds.

This experiment is a multi-objective variation inspired by
[Tang and Khalil, 2023], where multiple species have dis-
tinct node weights determined by their movement speeds on
each terrain type. The objective is for all species to traverse
each map together along a single path as quickly as possible.
To achieve this, we aim to minimize their OWA-aggregated
path lengths.

Noting that node weights can readily be converted to edge
weights, the shortest path problem as a linear program reads

x⋆(c) = argmaxAx=b, 0≤x≤1 − cTx (24)

where A is a graph incidence matrix, b indicates source and
sink nodes, and c holds the graph’s edge weights. A classic
result states that due to total unimodularity in A, solutions
x⋆ to (24) are guaranteed to take on integer values, so that
x⋆(c) ∈ {0, 1}n form valid paths [Cormen et al., 2022].

Replacing the linear objective of (24) with an OWA ag-
gregation over Cx (where rows of C ∈ Rm×n hold edge
weights per species) breaks this property, so that additional
integer constraints x ∈ {0, 1}n are required, leading to an
intractable OWA integer program:

x⋆(C) = argmaxAx=b, x∈{0,1}n OWAw(−Cx) (25)

Rather than training a predictor of Ĉ ∈ Rm×n together
with (25), we predict ĉ ∈ Rn with (24) as a differentiable
LP surrogate model using [Pogančić et al., 2020], along
with the OWA aggregated path length OWAw(−Cx⋆(ĉ))
as a loss function. This ensures integrality of x⋆(c) while
maintaining an efficient training procedure which requires
only to solve (24) at each training iteration and at inference.

Settings. Three species’ node weights are derived by re-
assigning the movement speeds of each terrain type in the
WSP dataset: Humans are fastest on land, Naga on water,
and Dwarves on rock, to generate ground-truth C ∈ Rm×n.
Mθ is a ResNet18 CNN trained to map 12× 12 tiled War-
craft maps to node weights of a shortest path problem (24).
Blackbox differentiation [Pogančić et al., 2020] is used

7



25 50 100
# Training Samples

15

20

Re
gr

et
(%

)

Two-Stage MSE Loss
DQ UWS Loss
DQ OWA Loss

Figure 3: Multi-species OWA path length regret on WSP.

to backpropagate its solution by Dijkstra’s method. See
Appendix C for an example of the input feature data z.
ResNet18 is strong enough to enable competitive perfor-
mance by the two-stage given enough data. Following [Tang
and Khalil, 2023], we focus on the limited-data regime,
where the advantage of end-to-end learning is best revealed,
using 25, 50 or 100 training samples and 1000 for testing.

Results. Figure 3 records percentage regret due to two-
stage and unweighted sum baseline models, along with the
proposed differentiable LP surrogate trained under OWA
loss. Notice how, in each case, the OWA-trained model
shows a clear advantage in minimization of OWA regret.

Table 3 (Appendix C) shows the per-species regret in terms
of path length, and reveals that OWA training significantly
improves the highest path length among species, which is
intuitive to provide fairness and the main contributor to the
aggregated OWA value.

7.2 NONPARAMETRIC OWA WITH BLACKBOX
SOLVER: FAIR LEARNING TO RANK

The final application setting studies the fair learning-to-rank
problem, where a prediction model ranks n web search
results based on their relevance to a user query while ensur-
ing fairness of exposure across protected groups within the
search results. The proposed model learns relevance scores
c end-to-end with a fair ranking optimization module:

Π⋆(c) = argmaxΠ∈B (1−λ)·cTΠ b+λ·OWAw(EG(Π)),
(26)

wherein B is the set of all bistochastic matrices, Π ∈ Rn×n

represents a ranking policy whose (i, j)th element is the
probability item i takes position j in the ranking, c mea-
sures relevance of each item to a user query, b are position
bias factors measuring the exposure of each ranking po-
sition, and cTΠ b is the expected Discounted Cumulative
Gain, a common measure of user utility. This primary ob-
jective is combined with OWA aggregation of the exposure
vector EG(Π), whose elements Eg(Π) = 1T

g Π b measure
the exposures attained by each of several protected groups
g ∈ G where 1g hold binary indicators of item inclusion

in group g. The factor λ controls a tradeoff between user
utility and group fairness of exposure.

Since b and 1g in EG(Π) are known and not modeled para-
metrically, the problem (26) is an instance of (16) and its
SPO+ subgradient can be modeled as per Section 5. Solu-
tions Π⋆(c) are obtained for any c by an adaptation of the
Frank-Wolfe method with smoothing proposed in [Do and
Usunier, 2022], as detailed in Appendix B.

Settings. A feedforward networkMθ is trained to predict
for n items, given features z, their relevance scores c ∈ Rn.
The SPO+ training scheme of Section 5 is used to minimize
regret in (26) due to error in ĉ = Mθ(z). The Microsoft
Learning to Rank (MSLR) dataset is used, where z are fea-
tures of items to be ranked and c are their relevance scores.
Protected item groups are assigned as evenly spaced quan-
tiles of its Quality Score feature. Each method is evaluated
on the basis of mean utility cTΠ b and fairness violation
1
|G|

∑
g∈G

∣∣ 1
n1

TEG(Π)− Eg(Π)
∣∣, and their relative trade-

offs over the full range of its fairness parameter.

Baseline Models. The model proposed in this section is
called Smart OWA Optimization for Fair Ranking (SOFaiR).
Selected baseline methods from the fair learning to rank do-
main include FULTR [Singh and Joachims, 2019], DELTR
[Zehlike and Castillo, 2020], and SPOFR [Kotary et al.,
2022], futher details are provided in Appendix B.

Results. Figure 9 shows that by enforcing fairness via
an embedded optimization, SoFaiR achieves order-of-
magnitude lower fairness violations than FULTR or DELTR,
which rely on loss function penalties to drive down viola-
tions. However, it is Pareto-dominated over a small regime
by those methods. Its fairness-utility tradeoff is compara-
ble to SPOFR, which also uses constrained optimization.
Notably though, SoFaiR demonstrates order-of-magnitude
runtime advantages over SPOFR in Appendix B.

Figure 5 shows the analogous result over datasets with
3-7 protected groups. None of the baseline methods are
equipped to handle multiple groups on this dataset, but
SOFaiR accomodates more groups naturally by OWA opti-
mization over their expected group exposures.

8 RELATED WORK

Modern approaches to the Predict-Then-Optimize setting,
formalized in Section 2.2, typically maximize decision qual-
ity as a loss function, enabled by backpropagation through
the mapping c → x⋆(c) defined by (1). When this map-
ping is differentiable, backpropagation can be performed
using differentiable optimization libraries Amos and Kolter
[2017], Agrawal et al. [2019a,b], Kotary et al. [2023].

However, many important classes of optimization are non-
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differentiable, including linear and mixed-integer programs.
Effective training techniques are typically based on forming
continuous approximations of (1), whether by smoothing the
objective function Amos et al. [2019], Wilder et al. [2019a],
Mandi and Guns [2020], introducing random noise Berthet
et al. [2020], Paulus et al. [2020], or estimation by finite
differencing Pogančić et al. [2019]. This paper falls into that
category, due to nondifferentiability of the OWA objective,
requiring approximation of (1) by differentiable functions.

9 CONCLUSIONS

This work has presented a comprehensive methodology for
integrating Fair OWA optimization seamlessly with predic-
tive modeling within the Predict-then-Optimize paradigm.
Our paper provides the tools to incorporate objective func-
tions with robust fairness properties into integrated predic-
tion and decision models. It contributes novel modeling
techniques tailored to this context and illustrates how ex-
isting Predict-then-Optimize techniques can be adapted in
nontrivial ways to maximize OWA effectiveness in this set-
ting. Starting with innovative differentiable approximations
to OWA programs, our proposed toolset includes specialized
techniques to exploit problem-specific structures encoun-
tered in practical applications, such as nonparametric OWA
objectives and totally unimodular constraints. These devel-
opments showcase the potential of Fair OWA optimization
in data-driven decision-making, achieving results that were

previously unattainable for significant problems like robust
resource allocation and fair learning-to-rank. We believe
that this work could pave the way for the utilization of Fair
OWA in learning pipelines, enabling a wide range of criti-
cal multi-optimization problems across various engineering
domains.
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1Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA

A PORTFOLIO OPTIMIZATION EXPERIMENT

A.1 EFFICIENCY OF DIFFERENTIABLE OWA SOLVERS

Figure 6 depicts the running times of two differentiable optimization models applied to the Portfolio problem. It is evident
that for the OWA-LP model, the running time scales factorially with the number of scenarios due to the number of constraints,
while for the OWA-Moreau model, it scales linearly. It is noteworthy that the OWA-LP model cannot run with more than 7
scenarios due to memory constraints (requiring over 300GB+).

A.2 EFFECT OF ADDING MSE LOSS

Figure 7 illustrates the impact of combining the Mean Squared Error loss LMSE in a weighted combination with the decision
quality loss LDQ. With the exception of OWA-LP, which exhibited instability, and Two-Stage, already trained with MSE
Loss, the addition of MSE resulted in slight enhancements to the regret performance.

A.3 MODELS AND HYPERPARAMETERS

A neural network (NN) with three shared hidden layers following by one separated hidden layer for each species is trained
using Adam Optimizer and with a batch size of 64. The size of each shared layer is halved, the output dimension of the
separated layer equal to the number of assets. Hyperparameters were selected as the best-performing on average among
those listed in Table 1). Results for each hyperparameter setting are averaged over five random seeds. In the OWA-Moreau
model, the forward pass is executed using projected gradient descent for 300, 500, and 750 iterations, respectively, for
scenarios with 3, 5, and 7 inputs. The update step size is set to γ = 0.02.

Table 1: Hyperparameters

Hyperparameter Min Max Final Value

OWA-LP Two-Stage Sum-QP OWA-QP OWA-Moreau Sur-QP

learning rate 1e−3 1e−1 1e−2 5e−3 1e−2 1e−2 1e−2 1e−2

smoothing parameter ϵ 0.1 1.0 N/A N/A 1.0 1.0 N/A 1.0
smoothing parameter β0 0.005 10.0 N/A N/A N/A N/A 0.05 N/A

MSE loss weight λ 0.1 0.5 0.4 N/A 0.3 0.4 0.1 0.3
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A.4 SOLUTION METHODS

The OWA portfolio optimization problem (23) is solved at test time, for each compared method, by projected subgradient
descent using OWA subgradients (7) and an efficient projection onto the unit simplex ∆ as in Martins and Astudillo [2016]:

xk+1 = proj∆

(
xk − α

∂

∂x
OWAw(Cx)

)
(27)

For the Moreau-envelope smoothed OWA optimization (13) proposed for end-to-end training, the main difference is that its
objective function is differentiable (with gradients (32)), which allows solution by a more efficient Frank-Wolfe method
Beck [2017], whose inner optimization over ∆ reduces to the simple argmax function which returns a binary vector with
unit value in the highest vector position and 0 elsewhere, which can be computed in linear time:

xk+1 =
k

k + 2
xk +

2

k + 2
argmax

(
∂

∂x
OWAw(Cxk)

)
(28)

B FAIR LEARNING TO RANK EXPERIMENT

B.1 FAIR RANKING OPTIMIZATION BY FRANK-WOLFE WITH SMOOTHING

This section explains the adaptation of a Frank-Wolfe method with objective smoothing, due to Do and Usunier [2022], to
solve the fair ranking optimization mapping (26) proposed for end-to-end fair learning to rank in this paper.

Frank-Wolfe methods solve a convex constrained optimization problem argmaxx∈S f(x) by computing the iterations

x(k+1) = (1− α(k))x(k) + α(k) argmax
y∈S

⟨y,∇f(x(k))⟩. (29)

Convergence to an optimal solution is guaranteed when f is differentiable and with α(k) = 2
k+2 [Beck, 2017]. However, the

main obstruction to solving (26) by the method (29) is that f in our case includes a non-differentiable OWA function. A path
forward is shown in [Lan, 2013], which shows convergence can be guaranteed by optimizing a smooth surrogate function
f (k) in place of the nondifferentiable f at each step of (29), in such a way that the f (k) converge to the true f as k →∞.

It is proposed in [Do and Usunier, 2022] to solve a two-sided fair ranking optimization with OWA objective terms, by the
method of [Lan, 2013], where f (k) is chosen to be a Moreau envelope hβk of f , a 1

βk
-smooth approximation of f defined as

[Beck, 2017]:

hβ(x) = min
y

f(y) +
1

2β
∥y − x∥2. (30)

When f = OWAw, let its Moreau envelope be denoted∇OWAβ
w; it is shown in [Do and Usunier, 2022] that its gradient can

be computed as a projection onto the permutahedron induced by modified OWA weights w̃ = −(wm, . . . , w1). By definition,
the permutahedron C(w̃) = CONV({wσ : ∀σ ∈ Pm}) induced by a vector w̃ is the convex hull of all its permutations. In
turn, it is shown in [Blondel et al., 2020] that the permutahedral projection∇OWAβ

w(x) = projC(w̃)(x/β) can be computed
in m logm time as the solution to an isotonic regression problem using the Pool Adjacent Violators algorithm. To find the
overall gradient of OWAβ

w with respect to optimization variables Π, a convenient form can be derived from the chain rule:

∇Π OWAβ
w(E(Π)) = µbT . (31)

where µ = projC(w̃)(E(Π)/β) and E(Π) is the vector of all item exposures [Do and Usunier, 2022]. For the case where
group exposures EG(Π)Eg(Π) = 1T

g Π b are aggregated by OWA, EG(Π) = AΠb, where A is the matrix composed of
stacking together all group indicator vectors 1g ∀g ∈ G. Since E(Π) = Πb, this implies EG(Π) = E(AΠ), thus

∇Π OWAβ
w(EG(Π)) = (AT µ̃) bT . (32)

by the chain rule, and where µ̃ = projC(w̃)(EG(AΠ)/β). It remains now to compute the gradient of the user relevance term
u(Π, ŷq) = ŷT

q Π b in Problem 26. As a linear function of the matrix variable Π, its gradient is ∇Π u(Π, ŷq) = ŷq bT ,

which is evident by comparing to the equivalent vectorized form ŷT
q Π b =

−−−→
ŷq bT ·

−→
Π. Combining this with (32), the total
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Algorithm 1: Frank-Wolfe with Moreau Envelope Smoothing to solve (26)
Input: predicted relevance scores ŷ ∈ Rn, group mask A, max iteration T, smooth seq. (βk)
Output: ranking policy Π(T ) ∈ Rn×n

1 Initialize Π(0) as P ∈ P which sorts ŷ in decreasing order;
2 for k = 1, . . . , T do
3 µ̃← projC(w̃)(EG(AΠ)/βk);
4 µ̂← (1− λ) · ŷq + λ · (AT µ̃);
5 σ̂ ← argsort(−µ̂);
6 Let P (k) ∈ P such that P (k) represents σ̂;
7 Π(k) ← k

k+2Π
(k−1) + 2

k+2P
(k);

8 Return Π(T );

gradient of the objective function in (26) with smoothed OWA term is (1− λ) · ŷq bT + λ · (AT µ̃) bT , which is equal to(
(1− λ) · ŷq + λ · (AT µ̃)

)
bT . Therefore the SOFaiR module’s Frank-Wolfe linearized subproblem is

argmax
Π∈B

〈
Π,

(
(1− λ) · ŷq + λ · (AT µ̃)

)
bT

〉
(33)

To implement the Frank-Wolfe iteration (29), this linearized subproblem should have an efficient solution. To this end, the
form of each gradient above as a cross-product of some vector with the position biases b can be exploited. Note that as the
expected DCG under relevance scores y, the function yTΠ b is maximized by the permutation matrix P ∈ Pn which sorts

the relevance scores y decreasingly. But since yTΠ b =
−−→
y bT ·

−→
Π, we identify yTΠ b as the linear function of

−→
Π with

gradient
−−→
y bT . Therefore problem (33) can be solved in O(n log n), simply by finding P ∈ Pn as the argsort of the vector

((1− λ) · ŷq + λ · (AT µ̃)) in decreasing order. A more formal proof, cited in [Do et al., 2021], makes use of [Hardy et al.,
1952].

B.2 RUNNING TIME ANALYSIS

Our analysis begins with a runtime comparison between SOFaiR and other LTR frameworks, to show how it overcomes
inefficiency at training and inference time. Figure 8 shows the average training and inference time per query for each
method, focusing on the binary group MSLR dataset across various list sizes. First notice the drastic runtime reduction of
SOFaiR compared to SPOFR, both during training and inference. While SPOFR’s training time exponentially increases
with the ranking list size, SOFaiR’s runtime increases only moderately, reaching over one order of magnitude speedup over
SPOFR for large list sizes. Notably, the number of iterations of Algorithm 1 required for sufficient accuracy in training to
compute SPO+ subgradients are found to less than those required for solution of (26) at inference. Thus the reported results
use 100 iterations in training and 500 at inference. Importantly, reported runtimes under-estimate the efficiency gained by
SOFaiR, since its PyTorch [Paszke et al., 2017] implementation in Python is compared against the highly optimized code
implementation of Google OR-Tools solver [Perron, 2011]. DELTR and FULTR, being penalty-based methods, demonstrate
competitive runtime performance. However, this efficiency comes at the expense of their ability to ensure fairness in every
generated policy.

B.3 MODELS AND HYPERPARAMETERS

Models and hyperparameters. A neural network (NN) with three hidden layers is trained using Adam Optimizer with a
learning rate of 0.1 and a batch size of 256. The size of each layer is halved, and the output is a scalar item score. Results of
each hyperparameter setting is are taken on average over five random seeds.

Fairness parameters, considered as hyperparameters, are treated differently. LTR systems aim to offer a trade-off between
utility and group fairness, since the cost of increased fairness results in decreased utility. In DELTR, FULTR, and SOFaiR,
this trade-off is indirectly controlled through the fairness weight, denoted as λ in (26). Larger values of λ indicate more
preference towards fairness. In SPOFR, the allowed violation of group fairness is specified directly. Ranking utility and
fairness violation are assessed using average DCG and fairness violation, respectively. The metrics are computed as averages
over the entire test dataset.
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Figure 8: Running time benchmark on MSLR-Web10k dataset

Table 2: Hyperparameters

Hyperparameter Min Max Final Value

SOFaiR SPOFR FULTR DELTR

learning rate 1e−5 1e−1 1e−1 1e−1 2.5e−4 2.5e−4

violation penalty λ 1e−5 400 * N/A * *
allowed violation δ 0 0.01 N/A * N/A N/A

entropy regularization decay 0.1 0.5 N/A N/A 0.3 N/A
batch size 64 512 256 256 256 256

smoothing parameter β0 0.1 100 * N/A N/A N/A
sample size 32 64 N/A 64 64 N/A

Hyperparameters were selected as the best-performing on average among those listed in Table 1. Final hyperparameters for
each model are as stated also in Table 2, and Adam optimizer is used in the production of each result. Asterisks (*) indicate
that there is no option for a final value, as all values of each parameter are of interest in the analysis of fairness-utility
tradeoff, as reported in the experimental setting Section.

For OWA optimization layers, w is set as wj =
n−1+j

n , T = 100 during training , and T = 500 during testing.

B.4 ADDITIONAL RESULTS

This section includes additional results for fair learning to rank on MSLR, in which list sizes to be ranked are increased
to 100 items. This allows runtimes to be compared as a function of list size, which determines the size of the fair ranking
optimization problem. It also reveals how penalty-based methods DELTR and FULTR suffer in their ability to satisfy fairness
accurately.
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Figure 9: Fairness-utility tradeoffs on MSLR
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Figure 10: Fairness-utility tradeoffs on MSLR Multi-group

Figure 11: Shortest paths for each species in a Warcraft map

Model Human Naga Dwarf

25 50 100 25 50 100 25 50 100

Two-Stage MSE Loss 44.4 44.6 46.3 34.2 34.1 33.9 44.1 41.6 42.8
End2End Sum Loss 51.5 49.0 47.9 35.2 33.6 34.6 43.8 43.8 43.4
End2End OWA Loss 43.8 31.8 33.6 34.2 37.6 34.8 41.3 43.1 43.1

Table 3: Regret (%) per species

C MULTI-SPECIES WARCRAFT SHORTEST PATH

Figure 11 showcases the Warcraft map featuring the shortest paths for three distinct species. The paths for Humans, Naga,
and Dwarves are depicted in green, red, and blue, respectively. Humans excel on land, Naga traverse water most efficiently,
while Dwarves navigate rocky terrain with the greatest speed.

Table 3 presents the regrets for each species across three models with different number of training data. It is notable that
the model trained with OWA Loss significantly outperforms the two-stage model by more than 10% for the Human race.
Conversely, the two-stage model exhibits slightly better performance for the Dwarf, albeit by a very small margin (<3%).
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