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ABSTRACT

Detection Transformer (DETR) relies on one-to-one assignment for end-to-end
object detection and lacks the capability of exploiting multiple positive object
queries. We present a novel DETR training approach, named Group DETR, to
support one-to-many assignment in a group-wise manner. To achieve it, we make
simple modifications during training: (i) adopt K groups of object queries; (ii)
conduct decoder self-attention on each group of object queries with the same pa-
rameters; (iii) perform one-to-one assignment for each group, leading to K pos-
itive object queries for each ground-truth object. In inference, we only use one
group of object queries, making no modifications to model architectures and in-
ference processes. Group DETR is a versatile training method and is applicable
to various DETR variants. Our experiments show that Group DETR significantly
speeds up the training convergences and improves the performances of various
DETR-based methods.

1 INTRODUCTION

Detection Transformer (DETR) (Carion et al., 2020) achieves end-to-end detection without the need
of non-maximum suppression (NMS) (Hosang et al., 2017). There are several designs: (i) adopt
an encoder-decoder architecture based on transformer layers (Vaswani et al., 2017), (ii) introduce
object queries, and (iii) perform one-to-one assignment1 by conducting bipartite matching (Kuhn,
1955) between object predictions and ground-truth objects.

The original DETR suffers from the slow convergence issue and needs 500 training epochs to achieve
good performance. Various solutions have been developed to accelerate the training from different
aspects. For example, sparse transformers (Zhu et al., 2020b; Gao et al., 2021; Chen et al., 2022c;
Roh et al., 2022) are adopted to replace dense transformers. Additional spatial modulations are
introduced into object queries (Zhu et al., 2020b; Meng et al., 2021; Wang et al., 2022b; Yao et al.,
2021; Liu et al., 2022a; Gao et al., 2022). Denoising modules are presented for stabilizing the object
query and group-truth matching in the assignment process (Li et al., 2022; Zhang et al., 2022b).

In this paper, we propose a novel training approach Group DETR to accelerate DETR training con-
vergence. Group DETR introduces group-wise one-to-many assignment. It assigns each ground-
truth object to many positive object queries (one-to-many assignment2), and separate them into
multiple independent groups, keeping only one positive object query per object (one-to-one assign-
ment) in each group. To achieve it, we make simple modifications during training: (i) adopt K
groups of object queries; (ii) conduct decoder self-attention on each group of object queries with the
same parameters; (iii) perform one-to-one assignment in each group, leading to K positive object
queries for each ground-truth object. The design achieves fast training convergence, maintaining the
key DETR property: enabling end-to-end object detection without NMS. We only use one group
of object queries in inference, and we do not modify either architectures or processes, bringing no
extra cost compared with the original method.

Group DETR is a versatile training method and can be applied to various DETR-based models.
Extensive experiments prove that our method is effective in achieving fast training convergence

1One-to-one assignment: one ground-truth object is only assigned to one object query.
2One-to-many assignment: each ground-truth object can be assigned to one or more positive object queries.
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Figure 1: Comparisons on training convergence curves. We show the training convergence curves
of various DETR-based models. All experiments are conducted on MS COCO (Lin et al., 2014) with
ResNet-50 (He et al., 2016) as the backbone. More results and comparisons can be found in Table 1
and Table 2. Here, we use different colors to distinguish different models in the figure and apply
dashed curves and bold curves to highlight the comparisons between baseline models and their
Group DETR counterparts. Best view in color.

(convergence curves are shown in Figure 1). Group DETR obtains consistent improvements on vari-
ous DETR-based methods (Meng et al., 2021; Liu et al., 2022a; Li et al., 2022; Zhang et al., 2022b).
With a 12-epoch (1×) training schedule on MS COCO (Lin et al., 2014), Group DETR significantly
improves Conditional DETR-C5 by 5.0 mAP. The non-trivial improvements hold when we adopt
longer training schedules (e.g., 36 epochs or 50 epochs). Moreover, Group DETR can easily out-
perform baseline models when applied to multi-view 3D object detection (Liu et al., 2022b;c) and
instance segmentation (Cheng et al., 2021).

2 RELATED WORKS

Acceleraing DETR training convergence. The success of DETR (Carion et al., 2020) in object
detection validates the potential to achieve elegant designs with transformers in computer vision.
Since DETR (Carion et al., 2020) was proposed, its slow convergence issue has been a critical
problem that many researchers (Bar et al., 2022; Wang et al., 2022a; Song et al., 2022; Roh et al.,
2022) try to address.

Many works provide their solutions and achieve a 10× speed up for DETR. They mainly focus
on proposing better transformer layers (Zhu et al., 2020b; Gao et al., 2021; Meng et al., 2021;
Dai et al., 2021; Roh et al., 2022; Cao et al., 2022; Zhang et al., 2022a; Chen et al., 2022d) and
designing new types of object queries (Zhu et al., 2020b; Meng et al., 2021; Wang et al., 2022b;
Yao et al., 2021; Liu et al., 2022a; Gao et al., 2022). DN-DETR (Li et al., 2022) and DINO (Zhang
et al., 2022b) attribute the slow convergence issue to the instability of bipartite matching (Kuhn,
1955).They present auxiliary query denoising tasks to speed up the DETR training convergence.
Unlike previous approaches, we show that assignment methods are critical to fast DETR training
convergence. We propose Group DETR to support one-to-many assignment in a group-wise manner,
which can be achieved by simple modifications during training compared with DETR.

One-to-many assignment and one-to-one assignment. One-to-many assignment is widely
adopted in modern detectors (Redmon et al., 2016; Ren et al., 2015; Liu et al., 2016; He et al.,
2017; Lin et al., 2017; Cai & Vasconcelos, 2018; Chen et al., 2019; Tian et al., 2019; Zhang et al.,
2020; Zhu et al., 2020a; Kim & Lee, 2020; Bochkovskiy et al., 2020; Chen et al., 2021; Ge et al.,
2021). It produces duplicate predictions and needs NMS (Hosang et al., 2017; Bodla et al., 2017)
for post-processing. DETR (Carion et al., 2020) explores an alternative way (one-to-one assign-
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ment) and achieves end-to-end detection, removing the need for NMS. Recent studies (Wang et al.,
2021; Sun et al., 2021b;a) show that one-to-one assignment is a key factor in achieving end-to-end
detection. Differently, we find that the one-to-one assignment impacts the training convergence of
DETR-based methods (Carion et al., 2020) and we focus on exploiting assignment methods to speed
up DETR training in this paper.
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Figure 2: Decoder architectures of DETR and Group DETR for training. The key differences
from DETR include: Group DETR feeds K groups of queries to the decoder, conducts self-attention
on each group of object queries with the shared parameters, and makes one-to-one assignment for
each group.

Group DETR is a training approach for accelerating the DETR training convergence. We make
simple modifications during training and adopt the same architecture and inference process for in-
ference. Figure 2 illustrates the decoder parts of DETR (Carion et al., 2020) and our Group DETR
for training.

3.1 DETR

DETR has three key designs: (i) adopt a transformer encoder-decoder architecture (Vaswani et al.,
2017), (ii) introduce object queries, and (iii) perform one-to-one assignment by conducting bipartite
matching between object predictions and ground-truth objects.

DETR architecture. The DETR architecture consists of a backbone (e.g., ResNet (He et al.,
2016), Swin Transformer (Liu et al., 2021), or others (Dosovitskiy et al., 2021; Liu et al., 2022d;
Chen et al., 2022a; He et al., 2022; Chen et al., 2022b)), a transformer encoder, a transformer de-
coder, and object class and box position predictors (Carion et al., 2020). Figure 2 (a) shows the
architecture of the transformer decoder in DETR. The image features are extracted by the backbone
and the transformer encoder layers. The transformer decoder takes N object queries {q1, . . . ,qN}
as input. It performs self-attention on object queries, aggregates the image features to refine the
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query embeddings by conducting cross-attention, and adds an FFN to get the output query embed-
dings. The output query embeddings are fed into detection heads to produce N object predictions.

One-to-one assignment. In model training, DETR perform one-to-one assignment to find the
learning target for each object prediction. It employs the Hungarian algorithm (Kuhn, 1955) to find
an optimal bipartite matching σ̂ between the predictions and the ground-truth objects:

σ̂ = argmin
σ∈ξN

N∑
i=1

Cmatch(yi, ŷσ(i)), (1)

where ξN is the set of permutations of N elements and Cmatch(yi, ŷσ(i)) is the matching cost (Carion
et al., 2020) between the ground truth yi and the prediction with index σ(i).

3.2 GROUP DETR

Group DETR makes simple modifications during training compared with DETR (Figure 2 (b)): (i)
adopt K groups of object queries; (ii) conduct decoder self-attention on each group of object queries
with the same parameters; (iii) perform one-to-one assignment in each group (group-wise one-to-
many assignment), leading to K positive object queries for each ground-truth object.

Algorithm 1 Pseudocode of one Group DETR decoder
layer in python-style

# self_atten: self-attention in decoder
# cross_atten: cross-attention in decoder
# ffn: FFN in decoder
# X: output image features of the encoder
# Q: object queries, with size (KxN, B, C)
# N, K, B, C: object query number, group number,

batch size, feature dimension

# Group DETR
if training:

# split object queries to K groups
Q_list = Q.split(N, dim=0) # a list of K tensors
group_Q = cat(Q_list, dim=1) # (N, KxB, C)

# group-wise self-attention
out = self_atten(group_Q) # (N, KxB, C)
# concat all groups: (KxN, B, C)
out = cat(out.split(B, dim=1), dim=0)

# cross-attention and ffn
out = ffn(cross_atten(out, X))

else:
# in inference, only one group is kept
Q = Q[:N] # (N, B, C)

# self-attention, cross-attention, and ffn
out = self_atten(Q)
out = ffn(cross_atten(out, X))

K groups of object queries. There
are K groups of queries in the pro-
posed Group DETR:

G1 = {q1
1, . . . ,q

1
N}, (2)

· · · · · ·
GK = {qK

1 , . . . ,qK
N}. (3)

The total K×N object queries are con-
catenated and fed to transformer de-
coder layers (as shown in Figure 2 (b)).

Group-wise decoder self-attention.
We perform group-wise self-attention
in the transformer decoder layers. This
leads to that the object queries do not
interact with the queries across groups.
The pseudocode of group-wise self-
attention is in Algorithm 1.

Group-wise one-to-many assign-
ment. We apply one-to-one assign-
ment to each group independently and
we could get K matching results:

σ̂1 = argmin
σ∈ξN

N∑
i=1

Cmatch(yi, ŷ
1
σ(i)), (4)

· · · · · ·

σ̂K = argmin
σ∈ξN

N∑
i=1

Cmatch(yi, ŷ
K
σ(i)), (5)

where σ̂K and ŷKσ(i) are the optimal matching result and the prediction of the K-th group, respec-
tively. During training, each group will calculate the loss (Carion et al., 2020) independently in
Group DETR. The final training loss is the average of K groups.

Model inference. We adopt the same architectures and processes as the baseline models in in-
ference. According to our experiments, every group can achieve similar results in Group DETR
(Table 5). We simply use the first group of object queries.

4



Under review as a conference paper at ICLR 2023

Model w/ Group DETR mAP APs APm APl

Conditional DETR-C5 32.6 14.7 35.0 48.3

Conditional DETR-C5 ✓ 37.6 (+5.0) 18.2 40.7 55.9

Conditional DETR-DC5 36.4 18.0 39.6 52.5

Conditional DETR-DC5 ✓ 41.2 (+4.8) 21.4 45.0 58.7

DAB-DETR-C5 35.2 16.7 38.6 51.6

DAB-DETR-C5 ✓ 39.1 (+3.9) 19.7 42.5 56.8

DAB-DETR-DC5 37.5 19.4 40.6 53.2

DAB-DETR-DC5 ✓ 41.9 (+4.4) 23.3 45.6 58.4

DN-DETR-C5 38.6 17.9 41.6 57.7

DN-DETR-C5 ✓ 40.6 (+2.0) 19.8 43.9 59.4

DN-DETR-DC5 41.9 22.2 45.1 59.8

DN-DETR-DC5 ✓ 44.5 (+2.6) 25.9 48.2 62.2

DAB-Deformable-DETR 44.2 27.5 47.1 58.6

DAB-Deformable-DETR ✓ 45.7 (+1.5) 28.1 49.0 60.6

DINO-Deformable-DETR 49.4 32.3 52.5 63.2

DINO-Deformable-DETR ✓ 50.1 (+0.7) 32.4 53.2 64.7

Table 1: Results with a 12-epoch training schedule on MS COCO. All experiments adopt ResNet-
50 (He et al., 2016) as the backbone. We highlight the improvements brought by Group DETR on
various DETR-based methods. Note that we do not use multiple patterns (Wang et al., 2022b) in
our experiments. For DN-DETR in the table, we use the improved version of DN (dynamic DN
groups (Zhang et al., 2022b)) and set the DN number to 100 (more results about the DN number can
be found in Appendix B Table 8). Thus, the baseline results of DN-DETR are slightly different from
the ones (with 3 patterns) reported in the original paper (Li et al., 2022). For DINO-Deformable-
DETR, we adopt the 4scale version (Zhang et al., 2022b).

4 EXPERIMENTS

We demonstrate the effectiveness of our Group DETR on object detection, instance segmentation
and multi-view 3D object detection. We adopt the training settings and hyper-parameters same as
the baseline models, including learning rate, optimizer, pre-trained model, initialization methods,
and data augmentations3. The number of queries in each group is the same as the baselines.

4.1 OBJECT DETECTION

We verify our approach over object detection on MS COCO (Lin et al., 2014) and make comparison
with representative DETR-based methods, including Conditional DETR (Meng et al., 2021), DAB-
DETR (Liu et al., 2022a), DN-DETR (Liu et al., 2022a; Zhu et al., 2020b), and DINO-Deformable-
DETR (Zhang et al., 2022b; Zhu et al., 2020b). We report the results with 12-epoch (1×) and
50-epoch training schedules, as well as the comparison in terms of convergence curve.

Results with a standard 1× schedule. Table 1 report the results. Group DETR gives consistent
improvements over all baseline models. In comparison to query design methods, Group DETR
significantly boosts detection performance when applied to Conditional DETR (+5.0 mAP for C5
and +4.8 mAP for DC5) (Meng et al., 2021), DAB-DETR (+3.9 mAP for C5 and +4.4 mAP for
DC5) (Liu et al., 2022a), and DAB-Deformable-DETR (+1.5 mAP for multiple levels of feature
maps) (Liu et al., 2022a; Zhu et al., 2020b).

In comparison to the matching stabilization methods, Group DETR can also give non-trivial
gains over DN-DETR (+2.0 mAP for C5 and +2.6 mAP for DC5) (Li et al., 2022) and DINO-
Deformable-DETR (+0.7 mAP for multiple levels of feature maps) (Zhang et al., 2022b; Zhu et al.,

3We may adjust the batch size according to the GPU memory. Note that we will retrain the baseline model
with the same batch size to make fair comparisons when conducting experiments.
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Model w/ Group DETR mAP APs APm APl

Conditional DETR-C5 40.9 20.5 44.2 59.6

Conditional DETR-C5 ✓ 43.4 (+2.5) 23.0 47.3 62.3

Conditional DETR-DC5 43.7 23.9 47.6 60.1

Conditional DETR-DC5 ✓ 45.8 (+2.1) 26.8 49.7 63.1

DAB-DETR-C5 42.2 21.5 45.7 60.3

DAB-DETR-C5 ✓ 44.5 (+2.3) 24.2 48.5 63.2

DAB-DETR-DC5 44.5 25.3 48.2 62.3

DAB-DETR-DC5 ✓ 46.7 (+2.2) 27.6 50.9 64.0

DN-DETR-C5 44.0 23.9 47.7 62.9

DN-DETR-C5 ✓ 45.4 (+1.4) 25.1 49.3 63.8

DN-DETR-DC5 47.5 27.9 50.7 65.9

DN-DETR-DC5 ✓ 48.0 (+0.5) 29.3 52.1 65.4

DAB-Deformable-DETR 48.1 31.4 51.4 63.4

DAB-Deformable-DETR ✓ 49.7 (+1.6) 31.4 52.5 65.6

DINO-Deformable-DETR 50.9 34.6 54.1 64.6

DINO-Deformable-DETR ✓ 51.3 (+0.4) 34.7 54.5 65.3

DINO-Deformable-DETR-Swin-L ✓ 58.4 41.0 62.5 73.9

Table 2: Results with a 50-epoch training schedule on MS COCO. We adopt the training schedule
of 50 epochs in the table, while for DINO-Deformable-DETR (Zhang et al., 2022b; Zhu et al.,
2020b), we train 36 epochs by following the settings in the original paper (Zhang et al., 2022b).
Except that we use Swin-Large (Liu et al., 2021) in the last row of the table, we use ResNet-50 (He
et al., 2016) as the backbone. As in Table 1, we do not use multiple patterns and apply dynamic
DN groups in DN-DETR. For DINO-Deformable-DETR, we adopt the 4scale version (Zhang et al.,
2022b).

2020b), even though they already achieve strong results by introducing auxiliary query denoising
tasks in model training.

Results with a 50-epoch training schedule. Compared with the original DETR model, the above
DETR-based methods achieve a 10× speed up on training. They provide good results with a 50
epochs training schedule. We show the effectiveness of Group DETR under this setting. As pre-
sented in Table 2, Group DETR can also outperform baseline models by large margins. When we
adopt a stronger backbone, Swin-Large (Liu et al., 2021), we can achieve 58.4 mAP (0.4 mAP
higher than its baseline DINO-Deformable-DETR (58.0 mAP with Swin-Large)), which verifies the
generalization ability of our Group DETR.

Convergence curves. We report the convergence curves in Figure 1. We give each method two
convergence curves of the baseline model and the baseline with Group DETR using dashed curves
and bold curves. The comparisons in Figure 1 support that Group DETR gives a further speed up on
DETR training convergence.

4.2 MULTI-VIEW 3D OBJECT DETECTION AND INSTANCE SEGMENTATION

Multi-view 3D object detection. We adopt PETR (Liu et al., 2022b) and PETR v2 (Liu et al.,
2022c) as our baseline models. Table 3 shows that Group DETR brings significant gains to PETR
and PETR v2. When we train PETR v2 with a longer training schedule (36 epochs), we obtain more
improvements on both nuScenes Detection Score (NDS) and mAP on the nuScenes val set (Caesar
et al., 2020).

Instance segmentation. We adopt Mask2Former (Cheng et al., 2021) as the baseline and apply
Group DETR to it. In Table 4, we provide comparisons of different training schedules. Group DETR
achieves non-trivial improvements on Mask2Former.
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Model w/ Group DETR Schedule NDS mAP
PETR 24e 42.0 37.4

PETR ✓ 24e 45.0 (+3.0) 38.8 (+1.4)

PETR v2 24e 50.3 40.7

PETR v2 ✓ 24e 51.3 (+1.0) 41.9 (+1.2)

PETR v2 36e 50.8 41.3

PETR v2 ✓ 36e 52.3 (+1.5) 42.7 (+1.4)

Table 3: Results on multi-view 3D object detection. All experiments are conducted on the
nuScenes val set (Caesar et al., 2020). We train these experiments with VoVNetV2 (Lee & Park,
2020) as the backbone and with the image size of 800× 320. We follow all the settings and hyper-
parameters of PETR and PETR v2.

Group DETR Schedule mAPm APm
s APm

m APm
l

12e 38.5 17.6 41.4 60.4

✓ 12e 39.7 (+1.2) 18.7 42.8 60.8

50e 43.7 23.4 47.2 64.8

✓ 50e 44.0 (+0.3) 23.8 47.1 65.1

Table 4: Results on instance segmentation. We adopt Mask2Former (Cheng et al., 2021) as the
baseline and report the mask mAP (mAPm) on the MS COCO val split for instance segmentation.

4.3 ABLATION STUDIES

We conduct ablation studies on object detection by using Conditional DETR-C5 (Meng et al., 2021)
as our baseline model. The studies include: the influence of group number, the performance in each
group, the assignment scheme, and the group design.

Influence of group number. Figure 3 shows the influence of the number of groups K in Group
DETR. The detection performance improves when increasing the number of groups, and saturates
when the group number (K) is greater than 11. Thus, we adopt K = 11 in Group DETR in our
experiments.
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Figure 3: Influence of group number (K) in Group DETR. As the number of groups increases,
continuous improvement could be achieved compared to the baseline model.

Performance in each group. Table 5 gives the performance of all groups in Group DETR. Each
group can achieve similar results, which is consistent with the design of independent groups. In
other experiments, we simply report the result of the first group.

Assignment. Figure 4 and Table 6 study the training convergence and performance by keeping the
same number (3300) of total object queries about three cases: single-group one-to-one assignment
(K = 1), single-group one-to-many assignment (K = 1 with 11 positive object queries for each
ground-truth object), and group-wise one-to-many assignment with K = 11 groups (Group DETR).
Figure 4 shows that Group DETR and single-group one-to-many assignment give significantly faster
convergence speeds than single-group one-to-one assignment.

Different from single-group one-to-one assignment in DETR (Carion et al., 2020), single-group one-
to-many assignment highly depends on the post-processing step NMS (Table 6). Our Group DETR
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group-1 group-2 group-3 group-4 group-5 group-6 group-7 group-8 group-9 group-10 group-11
37.6 37.5 37.4 37.5 37.6 37.5 37.6 37.4 37.5 37.6 37.5

Table 5: Performance in each group. We show the mAP on the MS COCO val split of different
groups in Group DETR. The results obtained by different groups are similar.
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Figure 4: Training convergence curves of dif-
ferent assignment methods. Multiple positive
object queries converge faster than one positive
object query per object.

Assignment NMS mAP
one-to-one w/o 41.5

one-to-one w/ 41.4

one-to-many w/o 7.2

one-to-many w/ 43.6

group-wise one-to-many w/o 43.4

group-wise one-to-many w/ 43.3

Table 6: Comparisons of different assignment
methods with and without NMS. Results are
obtained with a 50-epoch training schedule. We
set a threshold of 0.7 in NMS following DETR.

w/o NMS achieves almost the same performance as single-group one-to-many assignment w/ NMS,
and the inference of our Group DETR is more efficient than it. It is as expected that our Group
DETR performs better than single-group one-to-one assignment.

Group design. DN-DETR and our Group DETR both adopt the group design and focus on differ-
ent aspects: stabilizing the prediction and group-truth matching (DN-DETR), and exploiting multi-
ple positive predictions for one ground-truth object (ours), respectively. The performance compari-
son for DN-DETR and Group DETR in Table 7 shows that Group DETR is superior than DN-DETR.
The result of the combination of DN-DETR and Group DETR further improves the performance to
40.6 mAP, implying that the two approaches are complementary.

Group Design None DN-DETR∗ Group DETR DN-DETR + Group DETR
mAP 35.2 38.8 39.1 40.6

Table 7: Comparisons on group designs. We adopt the DAB-DETR (Liu et al., 2022a) as the
baseline model (the one with ‘None’ group design in the table) and train all models with a 12-epoch
schedule on MS COCO. ∗ represents that we report the best results of DN-DETR among different
numbers of denoising queries (more results are provided in Appendix B Table 8).

4.4 ANALYSES

Figure 5: Distribution of all groups of object
queries with different colors.

The object queries are distributed similarly
for all groups. We study the distributions of
object queries in each group with conditional
DETR as an example. Figure 5 depicts 2D ref-
erence points (positions) corresponding to the
object queries, with one color for one group.
We can see that the reference point distributes
similarly for all the groups. This provides an
explanation to that each group of object queries
gives similar detection performances in Table 5.

Visualization of positive object queries. We
visualize the positions of positive object queries
in all groups in Figure 6. The visualization
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Figure 6: Visualization of positive object queries. To give a neat visualization, we only show
one object per image. Each ground-truth box (green bounding box) is assigned to multiple positive
queries (red points). We train Group DETR based on Conditional-DETR-C5 for 50 epochs. The
number of groups is 11 here. In the figure, the positive queries (red points) may overlap. Best view
in color and zoom in.

shows that the positions of positive object queries are distributed in a certain region on the ob-
ject instance. This region is learned by the model and is somehow different from manually selecting
a center region within the bounding box. This is reasonable, since the center of the bounding box
may not have enough information about the object instance. According to the visualization, the posi-
tions of all positive object queries are considered good ones by the model to predict the ground-truth
objects. In the one-to-one assignment, only one of these object queries can be set as positive for
the object, while others are negatives. The model needs to distinguish the differences among these
object queries during training, which impact model learning, leading to slow training convergence.
With Group DETR, all these object queries are set as positives, which gives stronger supervision
signals in training, thereby improving training efficiency and speeding up training convergence.

Training memory and training time. Compared with the baseline models, Group DETR adopts
more object queries in the transformer decoder during training. It is expected that Group DETR
will increase training memory and training time. Thanks to the parallel computation with K groups
(shown in Algorithm 1), we only observe a ∼15% increase in training time. For instance, Group
DETR increases the time for training one epoch from 47 minutes (96 minutes) to 51 minutes (108
minutes) on Conditional DETR-C5 (-DC5), from 61 minutes (121 minutes) to 70 minutes (135
minutes) on DN-DETR-C5 (-DC5). Group DETR augments the training memory of Conditional
DETR-C5 (-DC5) from 7.1 G (13.7 G) to 16.8 G (23.0 G), the training memory of DN-DETR-C5
(-DC5) from 6.8 G (10.1 G) to 19.8 G (20.4 G). All the above training time and training memory
are measured with 8 Tesla A100 GPUs.

5 CONCLUSION

In this paper, we present a simple yet effective approach, Group DETR, to accelerate DETR training
convergence. We study different assignment methods and propose a novel group-wise one-to-many
assignment. It has shown positive results in a variety of DETR-based methods and vision tasks.
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APPENDIX

A DATASETS AND EVALUATION METRICS

We perform the object detection and instance segmentation experiments on the COCO 2017 (Lin
et al., 2014) dataset, which contains about 118K training (train) images and 5K validation (val)
images. Following the common practice, we report the standard mean average precision (mAP)
result (box mAP for object detection and mask mAP for instance segmentation) on the COCO vali-
dation dataset under different IoU thresholds and object scales.

We perform multi-view 3D object detection experiments on the nuScenes (Caesar et al., 2020)
dataset, which contains 1000 driving sequences. There are 700 for train set, 150 for val set
and 150 for test set. We report the standard nuScenes Detection Score (NDS) and mean Average
Precision (mAP) result on the nuScenes val set.

B ADDITIONAL RESULTS

Results of DN-DETR with different number of denoising queries. We conduct experiments
with different numbers of denoising queries in DN-DETR (Li et al., 2022). The results in Table 8
suggest that increasing the number of denoising queries can not achieve further improvements and
show unstable performances. The effects of denoising queries differ from the ones of Group DETR
(Figure 3). The denoising queries mainly aim to solve the instability in the matching process, while
our Group DETR aims to exploit multiple positive queries for one ground-truth object. We choose
to use 100 denoising queries in our experiments in Table 1 and Table 2 by following the setting in
the original paper (Zhang et al., 2022b).

#Denoising Queries 100 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300

mAP 38.6 38.8 37.8 38.7 38.5 38.1 38.7 37.9 38.1 38.7 38.1 38.7

Table 8: Results of DN-DETR with different number of denoising queries. We show the detec-
tion performances (mAP) on MS COCO (Lin et al., 2014) of adopting different number of denoising
queries in DN-DETR.
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