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Abstract

Online nonstochastic control has emerged as a promising strategy for online convex1

optimization of control policies for linear systems subject to adversarial distur-2

bances and time-varying cost functions. However, ensuring safety in these systems3

remains a significant open problem, especially when the system parameters are4

unknown. Practical nonstochastic control algorithms for real-world systems must5

adhere to safety constraints without becoming overly conservative or relying on6

exact models. We address this challenge by presenting a safe nonstochastic con-7

trol algorithm for systems with unknown parameters subject to state and input8

constraints. Given data of a single disturbed input-state trajectory, we design non-9

conservative constraint sets for the policy parameters and develop a robust strongly10

stabilizing controller. By drawing a connection to model predictive control, we pro-11

pose a new analysis perspective and show how a slight change in the nonstochastic12

control algorithm can drastically improve performance if disturbances are constant13

or slowly time-varying.14

1 Introduction15

In reinforcement learning, gradient-based policy optimization has shown great success in practice16

Schulman et al. [2017]. For learning-based control, the paradigm of online convex optimization17

offers a powerful framework for iteratively updating control policies based on gradients and observed18

data. Nonstochastic control is such a gradient-based control method that has been proven effective19

for the control of linear dynamical systems in the face of deterministic, possibly adversarial, bounded20

disturbances and adversarially chosen cost functions [Agarwal et al., 2019, Hazan et al., 2020,21

Simchowitz, 2020]. At each time step, a convex cost function is revealed to the learner and the22

policy gradient is approximated by applying the cost function to the terminal state and action of23

a model-based rollout (simulation). Since optimizing over the function space of state or output24

feedback policies is computationally intractable, see for example [Goulart et al., 2006], disturbance25

feedback policies are employed. Nonstochastic control algorithms have been adapted or extended26

for different settings such as partial observability [Simchowitz et al., 2020], changing dynamics27

[Minasyan et al., 2021], bandit loss [Sun et al., 2023] or fully unknown linear systems [Chen and28

Hazan, 2021]. However, one critical challenge is the inclusion of a safety guarantee in the sense of29

adherence to state and input constraints, particularly in the presence of model uncertainty.30

Little research on nonstochastic control so far has considered the addition of input and state constraints.31

In the related literature, this problem setting has only been considered with access to an exact model32

Li et al. [2021], Nonhoff et al. [2024], Liu et al. [2023], Zhou and Tzoumas [2023], Martin et al.33

[2023] or achieved results in high probability with i.i.d. disturbances and conservative fixed parameter34

constraints with careful transitions in between updates Li et al. [2024]. For systems with unknown35

parameters, most works propose a sequential approach of system identification via least squares36

estimation (LSE) and control. Recent advances in statistical learning theory and the related discovery37

of high-probability finite time guarantees for models obtained via LSE [Wagenmaker and Jamieson,38
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2020, Sarkar and Rakhlin, 2019, Foster and Simchowitz, 2020, Simchowitz et al., 2018] was leveraged39

by a multitude of works to obtain high-probability regret guarantees in the nonstochastic control40

setting [Hazan et al., 2020, Chen and Hazan, 2021, Simchowitz, 2020].41

In this work, we change perspective from statistical learning LSE to data-driven robust control based42

on a set of unfalsified models Berberich et al. [2020], Van Waarde et al. [2023], Teutsch et al. [2024].43

In the nonstochastic control setting of linear systems subject to bounded disturbances, such a set may44

be constructed by set membership identification (SMI). Informally, SMI begins by considering the45

whole space of model parameters and continually discards those that could not have reproduced the46

seen data. By leveraging the disturbance bounds, the resulting sets can be much smaller than LSE47

confidence regions Li et al. [2023], and always contain the system’s true parameters, which allows48

for the design of robust controllers with certainty instead of high probability.49

Contribution: This work presents a safe online optimal control algorithm for unknown linear systems50

subject to nonstochastic disturbances. Given an input-state data trajectory, we bridge the gap between51

low-regret nonstochastic control and safe data-driven robust control by designing safety constraints52

for online policy updates that hold for all models that may have produced the data. By drawing from53

concepts in model predictive control Rawlings et al. [2017], Lorenzen et al. [2019], we establish54

recursive feasibility of the safety constraints for all models and propose a subtle but effective change55

to the initial state of the rollouts used for the policy gradient, which leads to the elimination of56

steady-state errors in the case of constant or slowly time-varying disturbances. We show the practical57

potential of the approach in a small simulation example.58

2 Preliminaries and problem setting59

In the nonstochastic control setting, the learner is presented with a linear time-invariant dynamical60

system61

xt+1 = Axt +But + wt (1)
where x ∈ Rnx is the state of the system and u ∈ Rnu is the input or action taken by the learner. The62

disturbance w ∈ Rnx represents uncertainty and is not subject to any assumed stochastic properties,63

but may be chosen from a known compact set W by an adversary at each time step and remains64

unknown to the learner. In this work, we assume W is a convex polytope W = {w ∈ Rnx |65

Gww ≤ gw}. At each time step t, the learner measures the current state xt and a cost function66

ct : Rnx × Rnu → R is revealed. The goal is to learn a policy that chooses inputs which minimize67

the cumulative costs
∑

t ct(xt, ut).68

2.1 Disturbance-action policies and the Gradient perturbation controller69

The considered policies are from the class of disturbance-action policies Agarwal et al. [2019], also70

called affine disturbance feedback, see for example [Goulart et al., 2006]. Instead of basing decisions71

on the current state directly, these policies compute the input based on estimates of past disturbances72

ŵt. These estimates are based on a system model (Â, B̂) ≈ (A,B). At time step t, the disturbance73

estimate ŵt−1 is computed as the prediction error74

ŵt−1 = xt − (Âxt−1 + B̂ut−1). (2)
Definition 1. A disturbance-action policy (DAP) πDAP(M) chooses inputs based on parameter75

matrices Mi via76

vt = m0 +

L∑
i=1

Miŵt−i = M ŵt (3)

where L is the memory length and M = [m0,M1 . . . ,ML], ŵt = [1, ŵT
t−1, . . . , ŵ

T
t−L]

T allow for77

shorter notation.78

In order to guarantee stability, DAPs are often used together with a fixed stabilizing state feedback79

controller ut = Kxt + vt. We will do the same and abbreviate (A+BK) = AK in the following.80

A gradient perturbation controller (GPC) iteratively updates the policy (3) based on gradients81

computed via a model rollout. Online, at each time step t, the state xt is measured, the last disturbance82

ŵt−1 is estimated and the control parameters M t are updated by taking a gradient-step as83

Mt+1,i = Mt,i − ηt∇lt(Mt,i) (4)
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where ηt > 0 is the learning rate. The loss lt approximates the that would have been obtained84

under the fixed policy πDAP(M t) and is defined based on the terminal state and input of an H-step85

simulation of the current with a given model (Â, B̂) and the most recent disturbance estimates86

ŵt−L−H:t. That is, lt(M t) = ct(xH|t(Mt), uH|t(Mt)) where (xk|t, uk|t) denotes the simulated87

states and inputs running from k = 0, . . . , L computed at time step t via88

x0|t = 0, wk|t = ŵt−H+k, wk|t = [1, wT
k−1|t, . . . , w

T
k−L|t]

T, uk|t = Kxk|t +M twk|t, (5)

xk+1|t = Âxk|t + B̂uk|t + wk|t, k = 0, . . . ,H − 1.

The justification is here that the actual state may be well approximated by such a simulation, since it89

evolves as xt = At
Kx0 +

∑t−1
k=0 A

k
KBvt−1−k + Ak

Kwt−1−k whereas a simulation with horizon H ,90

initial state zero, and the latest H disturbances reads x̃t =
∑H−1

k=0 Ak
KBvt−1−k +Ak

Kwt−1−k ≈ xt.91

The resulting approximation error reads92

xt − x̃t =

t−1∑
k=H

Ak
K(Bvt−1−k +wt−1−k) = AH

K

t−1−H∑
k=0

Ak
K(Bvt−1−k +wt−1−k) = AH

Kxt−H (6)

and is small for stable AK and large memory H . How small is captured by the following quantitative93

notion of stability introduced in Cohen et al. [2018].94

Definition 2. K is a (κ, γ)-strongly stable controller for (A,B) if ∥At
K∥ ≤ κγt for all t ≥ 0.95

Equipped with convergence bounds for the dynamics AK, the presented gradient pertubation controller96

(3)-(5) enjoys sublinear regret against the best fixed policy M∗ in hindsight, and thereby sublinear97

regret against an expressive class of controllers, see Hazan and Singh [2023] for an overview of98

results.99

2.2 Problem setting: Uncertain system and safety constraints100

While the presented control scheme has been extended in many directions, for example to bandit loss101

functions Sun et al. [2023] and partial observations Simchowitz et al. [2020], one challenge for the102

application of GPC to safety-critical systems is the adherence to input and state constraints in the face103

of model uncertainty. In this work, we consider a setting where the true system parameters (A,B)104

are unknown, and only an input-state trajectory {ut, xt}TD
t=0 is available. Furthermore, we restrict105

actions to a set106

ut ∈ U = {u ∈ Rnu | GUu ≤ gU} ∀t ≥ 0. (7)
and subject the state to polytopic safety constraints107

xt ∈ S = {x ∈ Rnx | GSx ≤ gS} ∀t ≥ 1 (8)
where both U and S are known user-specified convex compact sets that contain the origin. In order to108

render the problem of safety tractable, we assume that there exists a state feedback controller that109

can keep the system safe from initial state x0 = 0 no matter which disturbances are chosen by the110

adversary.111

Definition 3 (Safe control policies). A control policy is called safe if it generates inputs ut ∈ U for112

which the state of (1) satisfies xt ∈ S for all time t ≥ 0.113

Assumption 1. There exists Ksafe such that given x0 = 0, the state feedback ut = Ksafext is safe114

for all disturbance realizations wt ∈ W and all time t ≥ 0.115

Remark 1. On first glance, Assumption 1 may seem restrictive, but note that 1) we do not have116

access to Ksafe, and 2) the application of ut = Ksafext may incur high costs without the disturbance117

feedback, whose addition can in turn cause a loss of safety. Informally, Assumption 1 guarantees that118

the disturbances in W are not too large compared to the set of safe states S.119

3 Safe nonstochastic control120

A guarantee of safety constraints (8) during operation requires that the control input ut, or more121

specifically the control parameters M t are always chosen such that xt+1 ∈ S. Since most non-122

stochastic control algorithms in the literature already include projections into a set of parameters M123

for regret guarantees, it is a natural adaptation to enforce input and constraint satisfaction by similarly124

projecting into the set of safe control parameters Msafe,t and applying ut(ΠMsafe,t
Mopt,t) instead of125

ut(Mopt) for control. The resulting algorithm presented in this paper is shown in Algorithm 1.126
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Algorithm 1 Safe online optimal control

Identification phase:
Collect data (ut, xt)

Tini
t=0.

Construct set of unfalsified models Ω as in (9).
Compute (κ, γ)-strongly stable state feedback gain K for all Ω as in Lemma 1.
Choose a nominal model (Â, B̂) ∈ Ω.

Control phase:
for each time step t = Tini, . . . Tini + T do

Record state xt and construct latest disturbance estimate ŵt−1 := xt − (Âxt + B̂ut).
Receive cost function and update policy M t,opt = M t−1 − ηt∇lt(M t−1).
Project to closest safe policy M t = ΠMsafe,t

M t,opt.
Apply control ut(M t) (3)

3.1 From data to a set of models127

Instead of identifying one best-fit system, we consider the set of models (A,B) that agree with (may128

have produced) the given or recorded input-state data. Let Zi,j = {i, i+1, .., j}. Given an input-state129

data trajectory {xt, ut}Tt=0 resulting from the application of T arbitrary inputs to system (1), and130

assuming that the unknown disturbances {wt}T−1
t=0 were always in the known set W , the resulting set131

of consistent or unfalsified models is given by132

Ω[0,T ] = {[A B] ∈ Rnx×(nx+nu) | xt+1 − [A B]

[
xt

ut

]
∈ W, t = 0, . . . , T − 1}. (9)

The set Ω[0,T ] inherits convexity and closedness from W , and can be directly constructed in half-space133

representation by reorganizing the inequality constraints that represent W . If the data trajectory134

is sufficiently informative (see Lemma 2 in the Appendix), then Ω[0,T ] is also bounded and may135

be described as convex hull of its vertices Ω = conv({[Ai Bi]}Nv
i=1). As a representation of model136

uncertainty, Ω behaves nicely: First, as new data streams in, new constraints are added to the set137

and therefore updates never increase the uncertainty set in size. Second, crucially, as long as the138

assumed disturbance bound W holds, Ω always contains the true data-generating system matrices by139

construction, and every statement that holds for all models [AB] inside Ω necessarily holds for the140

actual unknown system. Since Ω is defined by input-state data (and the disturbance bound W) alone,141

these statements can be inferred directly from data. In this work, we will use the set of models Ω to142

construct constraints on the control parameters with which safety can be guaranteed.143

3.2 From a set of models to safety constraints144

In this work, safety is defined as constraints in input and state space. In order to derive a set of145

safe control parameters, we need to map the state space constraints xt ∈ S into constraints on the146

policy parameters M t. As intermediate mapping, we may consider the space of inputs since vt spans147

all of Rm in the sense that any desired safe input u can be reproduced by some choice of control148

parameters M such that u = Kx+ v(M t). The challenge is that the constraints on M 1) need to be149

recursively feasible, i.e., the state is only steered to where constraint satisfaction remains possible, 2)150

need to consider all possible models in Ω need to be considered, and 3) should not be conservative151

but restrict the space of parameters as little as possible.152

Consider the set of models Ω containing the true system and the disturbance bound W . The state153

evolution of the unknown system (1) satisfies the inclusion154

xt+1 ∈ Ω

[
xt

ut

]
⊕W, Ω

[
xt

ut

]
= {[A B]

[
xt

ut

]
| [A B] ∈ Ω} (10)

where ⊕ denotes the Minkowski set addition. With the Minkowski (Pontryagin) set difference ⊖, we155

can reformulate the above into a sufficient condition on the state and input at the current time step for156

satisfaction of safety constraints at the next time step,157

Ω

[
xt

ut

]
∈ S ⊖W =⇒ xt+1 ∈ S. (11)
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Remark 2. Non-emptiness of S ⊖W is covered by Assumption 1 since the existence of Ksafe implies158

that the the safe set S is specified large enough to contain the disturbance set, i.e., S ⊇ W and159

consequently S ⊖W ̸= ∅.160

In order to guarantee that the left-hand-side of (11) remains feasible during operation, we construct a161

(maximal) robust control invariant subset of S [Blanchini, 1999, Rawlings et al., 2017].162

Definition 4. A set X is robust control invariant (RCI) for dynamics xt+1 = Axt + But + wt,163

wt ∈ W , if for all x ∈ X there exists u ∈ U such that Ax+Bu+ w ∈ X for all w ∈ W .164

A maximal RCI subset of a the safe state set S is a set that contains all other RCI subsets of S. The165

maximal RCI subset is well defined since the set property of robust control invariance is closed166

under the union. For the present discrete-time linear dynamics, maximal RCI sets are computed via167

recursive erosion and expansion [Blanchini and Miani, 2015], see Appendix for details.168

In the following, let X be the maximal subset of S that is RCI for all models in Ω. That is, let X be169

such that170

(∀x ∈ X )(∃u ∈ U) Ω
[
x
u

]
∈ X ⊖W. (12)

Since Ω, S and W are compact and convex polytopes, so is X and we can write X = {x ∈ Rn |171

GXx ≤ gX }. Similarly, define X ⊖W = {x ∈ Rnx | GXx ≤ gX⊖W}.172

Remark 3. For the true system, X is nonempty by Assumption 1 and contains the origin.173

Substituting the DAC policy (3) into (12) and reformulating based on vertices of Ω leads to linear174

constraints on the control parameters175

GXBiMŵt ≤ gX⊖W −GX (Ai +BiK)xt i = 1, . . . , Nv, (13)
GUMŵt ≤ gU −GUKxt, , (14)

which define a convex constraint set M(ŵt, xt) = {M ∈ Rnu×Lnx | (13),(14) are satisfied} that is176

parameterized by the past estimated disturbances in ŵt and the current state xt.177

Remark 4. Note that M(ŵt, xt) also depends on the chosen state feedback gain K, which is however178

constant throughout. If K is safe as per Definition 3 (such that K = Ksafe from Assumption 1), then179

M t = 0 is a safe parameter choice for all time and {0} is a common subset of all sets M(ŵt, xt)180

with xt ∈ X , ŵt−i ∈ W . In general, the set of control parameters which are safe for all possible181

states and disturbances is the intersection of all such M(ŵ, x). In other words, more restrictive but182

fixed safety constraints as in [Li et al., 2021, 2024] are recovered by minimizing the RHS (13),(14)183

of over all xt ∈ X and requiring the inequalities to hold for all ŵt = [1, ŵT
t−1, . . . , ŵ

T
t−L]

T with184

ŵt−i ∈ W .185

3.3 Theoretical guarantees186

If at each time step t, the control parameters M t are projected into Msafe,t = M(ŵt, xt), we may187

guarantee safety as shown in the following result.188

Lemma 1 (Recursive feasibility). Let xt ∈ X . Then Msafe,t ̸= ∅ and any choice of control189

parameters M t ∈ Msafe,t leads to a nonempty constraint set in the next time step, Mt+1,safe ̸= ∅.190

Proof. Since X is RCI, Msafe,t ̸= ∅ for all x ∈ X by construction. Moreover, any choice of control191

parameters M t ∈ Msafe,t leads to xt+1 ∈ X . Since X ⊆ F , the safety condition (12) is feasible for192

all states in X .193

Theorem 1 (Constraint satisfaction). Assume that the model uncertainty in Ω is small enough such194

that X ̸= ∅. Then, for any T ≥ 0 and all possible disturbance sequences w0:T ∈ W , the proposed195

control strategy in Algorithm 1 is safe in the sense of Definition 3.196

Proof. Since x0 = 0, we have x0 ∈ X as long as X ≠ ∅. By Lemma 1 the set of control parameters197

Msafe,0 is not empty and any choice M0 ∈ Msafe,0 satisfies input constraints by construction of198

Msafe,0 and leads to a next state x1 ∈ X . Since X ⊆ S, the next state x1 is safe. Safety for all time199

follows by induction.200
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Remark 5. Besides safety with certainty, the proposed approach based on SMI offers another distinct201

advantage: Online adaptation of the above safety constraints is trivial. With every new data triple202

(xt−1, ut−1, xt), Ω may be updated by adding the constraints representing xt−Axt−1−But−1 ∈ W .203

Since Ωt ⊆ Ωt−1, a newly computed maximal RCI set Xt will always contain the prior version,204

Xt ⊇ Xt−1 and the constraints on the policy parameters are relaxed without loss of recursive205

feasibility. If computational time is an issue, update computations may happen asynchronously by206

computing an update of X on a batch of new data and injecting it into the control algorithm once207

the computation is finished. By contrast, a similarly easy adaptation is not possible if error bounds208

around a least square estimate replace the set of models: the error bound of LSE decreases with more209

data, but the change of the estimate itself may cause the new set of models to not be contained in the210

prior one. Consequently, a careful transition between updates is necessary Li et al. [2024], which is211

not the case in the proposed approach.212

If the gradient perturbation controller presented in Section 2 runs with an approximate model213

(Â, B̂), the only difference between the loss simulation (5) and the approximation in (6) is that an214

additional error is introduced due to the model error. By also bounding this additional error, setting215

an appropriate learning rate, and restricting control parameters M t to a special set, the gradient216

perturbation controller for uncertain systems achieves sublinear regret with respect to the class of217

state feedback controllers ut = Kxt Hazan et al. [2020], linear dynamical controllers Simchowitz218

[2020], or disturbance action policies with fixed control parameters Chen and Hazan [2021]. In219

order to recover similar regret guarantees with the additional projection to safety, we too require a220

(κ, γ)-strongly stabilizing controller as in Definition 2. In the foll we show how such a controller221

may be constructed for all models in Ω.222

Synthesis of a strongly stabilizing controller A sufficient condition for stability ρ(A+BK) < 1223

of all models (A,B) ∈ Ω is given by existence of a common quadratic Lyapunov function V (x) =224

xTPx for all hypothetical closed loop systems x+ = (A+ BK)x, (A,B) ∈ Ω. Computationally,225

this check requires solving a finite system of linear matrix inequalities (LMI) in a semi-definite226

program. Since regret bounds in the literature depend on the notion of (κ, γ)-strong stability, we227

provide a semi-definite program for the direct synthesis of a (
√
c, γ)-strongly stable controller with228

specified rate γ < 1 and minimal constant
√
c in the following. The idea is to combine a bound on229

the norm powers of AK based on the positive invariance of Lyapunov sublevel sets [Ahiyevich et al.,230

2018] with the fact since ρ(rA) = rρ(A) for any matrix A, stability of 1
γAK (i.e., ρ( 1γAK) ≤ 1)231

implies ρ(AK) ≤ γ. Recall that Ω = conv {[Ai Bi]}Nv
i=1.232

Proposition 1. Choose a desired spectral radius 0 ≤ r < 1 and let (c, Z, Y ) be the solution of233

minimize
c,Z,Y

c (15)

subject to In ⪯ Z ⪯ cIn, (16)[
rZ AiZ +BiY
∗ rZ

]
≻ 0 ∀i = 1, . . . , Nv. (17)

Then the controller K = Y Z−1 is (
√
c, r)-strongly stable for all (A,B) ∈ Ω.234

Please see Appendix for the proof.235

On regret bounds with safety constraints The presented algorithm allows to run a safe variant236

of GPC with any nominal model (Â, B̂) ∈ Ω, for example chosen via LSE and projection or as237

Chebyshev center of Ω. The computation of a strongly stable controller in Proposition 1 allows for238

a recovery of GPC regret bounds in literature, as long as the safety constraints are not active. The239

presented design of safety constraints restricts control parameters as little as possible. In fact, it was240

motivated by the following Proposition.241

Proposition 2. Every causally safe control policy (without foreknowledge of wt) needs to keep the242

state in the maximal RCI subset Xmax ⊆ S.243

Proof. If starting from xt there exists an input sequence that keeps the state inside S for all possible244

disturbance sequences wt: and all time, then the resulting state trajectory would be part of the maximal245

RCI subset of S. Since xt is not, the proof follows by contradiction.246
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In other words, enforcing the state to stay within the maximal RCI subset of S does not lead to a247

meaningful change of regret bounds if the comparator class is restricted to causally safe policies. In248

the continuation of this work, we are interested in formalizing regret bounds in case of active safety249

constraints.250

4 Better policy gradients by adaptive initial state - An MPC perspective251

In essence, the gradient perturbation controller presented above takes decisions that minimize the252

loss of model-based predictions. Recall the definition of the loss lt based on a model rollout. If253

instead of updating parameter towards the minimzer of the loss function, the policy parameters were254

chosen directly as the minimzer in each time step, the scheme could be interpreted as parameterized255

model predictive control (MPC): At each time step, choose the policy parameters parameterized by256

solving the finite-time optimal control problem (OCP) M∗
t = argminM lt(M), where compared to257

classical MPC formulations the costs act only on the terminal state. In other words, GPC tries to258

emulate a parameterized MPC by always updating the parameters towards the MPC solution. As259

such, MPC lends itself as analysis tool for GPC and existing results in MPC may carry over. One260

difference between classical MPC formulations and the present nonstochastic control version defined261

by lt comes from the fact that in MPC, the simulation (or rollout) is interpreted as prediction, instead262

of loss approximation in hindsight. As such, the initial state in (5) would be updated to the current263

state at each time step, i.e., set to x0|t = xt.264

Note that with x0|t = 0, the optimal solution M∗
t depends only on the current cost function ct and the265

past disturbances ŵ−L:H−1. Imagine the case where the cost function is fixed and the disturbances266

are constant or very slowly time-varying (compared to the update rate of GPC). Then, M∗
t is constant267

and GPC converges quickly to fixed parameters, representing a very simple constant policy. If268

instead, the initial state of (5) was set to x0|t = xt, the OCP would implicity represent a linear affine269

map from xt to M∗
t [Goulart et al., 2006], with the map being parameterized by the disturbances.270

As a consequence, GPC with varying initial state (for the loss simulation) could still influence the271

dynamics.272

A pathological example for the gradient perturbation controller Consider a simple integrator273

system with constant disturbance where the first and second component of the state may denote274

the position and velocity of a point mass, control inputs change the velocity, and the disturbance275

represents unknown changes in acceleration and velocity in between time steps,276

xt+1 =

[
1 0.1
0 1

]
xt +

[
0
1

]
ut +

[
1
0

]
. (18)

Let K = [−1 −1] stabilize the system, imagine the objective is to keep the point mass at the origin,277

and let the learner’s system model be exact so that the resulting predictions (loss simulation) used to278

compute the gradient are exact. Since the estimated disturbances in ŵt are constant, so is any DAP279

Mŵt and we choose a minimal disturbance memory of L = 1 without loss of generality. For ease of280

exposition, set the horizon to H = 2. In this simple setting, we would expect GPC to perform quite281

well. However, it does not, as seen in Figure 1 (a), where the position x1 tends to −10 instead of zero.282

As shown by the behavior of the associated MPC algorith, this is not an issue of convergence, but of283

a loss function disconnected to the problem at hand. Figure 1 (c),(d) shows the disconnect between284

loss, which tends to zero, and cumulative costs, which grow unbounded. GPC takes gradient steps285

that minimize x̄2
2|t,1 = (0.1v + 2)2 and converges to a constant input Mŵ = −20. The resulting286

steady state x∞ = (A + BK)x∞ + [1 − 20]T is x∞ = [−10 − 10]T. With larger horizons H ,287

the steady state error of GPC shrinks, but only tends to zero for the maximal choice H = t, i.e.,288

if the full horizon is taken into account. For example a horizon of H = 50 leads to a steady state289

[−0.0127,−10]T.290

If the loss simulation instead starts at the current state x0|t = xt, the steady state error vanishes291

and MPC even beats the best fixed DAP M∗ computed in hindisight (and denoted by Opt). If xt is292

accounted for in the loss, GPC minimizes x2|t,1 = ([1 0]A2z0 + 0.1v + 2)2 = ([0.9 0.1]x0|t +293

0.1v + 2)2 and no longer tends to a constant input, but towards an affine linear state feedback294

vt = − [9 1]xt − 20 under which the steady state x∞ = [0 − 10]T incurs zero cost. Regret against295

the best fixed DAP in hindisght is not only sublinear, but bounded.296
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Figure 1: A simple pathological example of the basic nonstochastic control algorithm (OGD) as
proposed in the literature. GPC’s loss tends to zero while the costs do not. With varying initial
condition (var ini), the costs tend to zero.

A generalization Considering the MPC variants lets us generalize this example. In the follow-297

ing, consider constant disturbances wt = w and fixed costs c(x, u) with minimizing steady state298

(x∗, u∗) = argmin c(x, u) such that x∗ = AKx
∗ + Bu∗ + w. Assume that x∗ is reachable in H299

time steps and that xH|t = x∗ is the terminal state of the solution trajectory to the OCP such that300

xH|t = AH
Kx0|t + SH−1Bv + SH−1w, where SH−1 = I +AK + . . .+AH−

K . At every time step t,301

solving the OCP with x0|t = 0 leads to a constant input vt where302

Bvt = S−1
H−1x

∗ − w, xt+1 = AKxt + S−1
H−1x

∗. (19)

The state thus converges, since AK is stable, but setting xt = xt+1 = x∞ leads to303

x∞ = (I −AK)
−1S−1

H−1x
∗ = (I −AK)

−1(I −AK)(I −AH
K )x∗ = (I −AH

K )x∗ (20)

so that xt only converges (close) to x∗ for very large horizons H where AH
K ≈ 0.304

This is different in the case where the initial state is updated to the current state, x0|t = xt.305

Proposition 3. Consider constant disturbances wt = w and assume the predicted terminal state306

satisfies xH|t = x∗ for all t ≥ 0. Then the closed-loop dynamics induced by MPC with x0|t = xt are307

stable and xt converges to x∗.308

The technical proof of Proposition 3 is in the Appendix. We note here that with the change of initial309

state in the OCP, the first (optimal) predicted state x1|t is the actual next state xt+1. So that if the310

state ever converges, i.e., xt = xt+1, we had x1|t = xt which implies xk+1|t = xk|t (since the inputs311

vk|t are constant) so that xH|t == . . . = xt which implies xt = x∗ by assumption. In short, the312

state can only converge to the optimal state. As a consequence of Proposition 3, GPC with varying313

initial state chases an optimal policy that achieves bounded O(1) regret, instead of one that induces a314

steady-state error.315

5 Simulation Example316

Consider the numerical example of a linearized DC-DC converter from Section V.B in [Lorenzen317

et al., 2016], where A =

[
1 0.0075

−0.143 0.996

]
, B =

[
4.798
0.115

]
, the state is subject to constraints318

|x1| ≤ 2, |x2| ≤ 3, and the disturbance is bounded as ∥w∥∞ ≤ 0.2. We let U = {u ∈ R | |u| ≤ 4}319

and generate an input-state data trajectory of length TData = 15 starting from zero initial state with320

inputs and disturbances sampled uniformly from U and W , respectively. After building the set of321

models Ω from the data, we solve (15) with r = 0.6 and receive a controller K = [−0.33 0.78]322

that is (8.6, 0.6)-strongly stable for all models in Ω. We choose the Chebyshev center of Ω as323

nominal model (Â, B̂), set H = 10, L = 1, pick a learning rate η = 0.1 and transition to the control324

phase of Algorithm 1. During the control phase, we let the disturbance vary at constant rate from325

zero to [0.2 0.2]T and back to zero over T = 500 time steps. The cost functions are defined as326

ct(xt, ut) = (xt,2 − x∗
t,2)

2 where x∗
t,2 = 1.5 for the first 250 time steps and x∗

t,2 = −1.5 for the327
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Figure 2: Behavior of safe GPC (blue) and GPC without state and input constraints (red). Both
methods first steer to and stabilize the state at the optimal x2 = 1.5 in the first 250 time steps, and the
optimal −1.5 in the second 250 time steps. Since safe GPC needs to adhere to the state constraints
on x1, it takes more time steps to transition and suffers higher cost along the way.

last 250 time steps. Recall that both the disturbances and future cost functions are unknown to the328

control algorithm. Figure 2 shows the resulting trajectories and cumulative costs for the proposed329

safe nonstochastic control algorithm running with varying initial state as proposed in Section 4. For330

comparison, the equivalent nonstochastic control algorithm without safety constraints is also shown.331

In the transition from x2 = 1.5 to x2 = −1.5, high values of x1 are necessary. As seen in Figure 2(a),332

the proposed algorithms satisfies the safety constraints with virtually no conservatism.333

6 Conclusion334

This work addressed the challenge of ensuring safety in online nonstochastic control for linear335

systems with unknown parameters. By leveraging a data-driven robust control approach based on336

set membership identification, we derived non-conservative constraint sets for policy parameters337

and constructed a strongly stabilizing controller. In contrast to existing works, both safety and338

strong stability are guaranteed for all unfalsified models and hold with certainty. In simulation, we339

demonstrated that our approach can effectively maintain system safety and performance from data340

alone. By integrating principles from model predictive control, we ensured recursive feasibility of the341

safety constraints and showed how updating the initial state of policy gradient rollouts effectively342

eliminates steady-state errors under constant or slowly varying disturbances. Beyond the above, this343

work left certain questions unanswered. First and foremost, we left a formal regret bound against an344

expressive class of causally safe policies open for future work. We hypothesize that sublinear regret345

against an expressive class of noncausally safe policies is unattainable in general, since a policy with346

foreknowledge of future disturbances may lead the state outside of the maximal RCI set and rely on347

the disturbances to stay safe.348

The MPC perspective also poses new questions. What role would intermediate costs play if applied349

to policy gradient rollouts? Moreover, if rollouts are interpreted as predictions, could not a learned350

disturbance model, instead of simply the last few disturbance estimates, be included in policy gradient351

rollouts without losing convexity? The lessons also go in the other direction, as most works in robust352

MPC either consider nominal predictions without disturbances, implicitly hoping that disturbances353

average out over time, or defend against the worst case, as in min-max MPC. As a consequence,354

these algorithms perform poorly if disturbances are constant or slowly-time-varying, a setting which355

nonstochastic control (with varying initial states) handles gracefully. Another exciting connection356

to explore is that of nonstochastic control and real-time iterative MPC [Gros et al., 2020], where357

at each time step, the (sub-)optimal input sequence is computed by updating the prior solution,358

instead of recomputing anew. Overall, this work highlights the potential of combining online convex359

optimization-based policy search with robust and predictive control techniques to achieve both safety360

and performance in real-world control systems.361
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A Appendix468

Variants of the following lemma are well known in the system identification literature. The following469

version is adapted from Bisoffi et al. [2023].470

Lemma 2. The set of consistent models Ω is convex and closed. It is bounded if and only if its471

generating data satisfies rank
[ x0 ··· xN−1
u0 ··· uN−1

]
= nx + nu.472

In practice, the rank condition of Lemma 2 is easily satisfied by long enough trajectories with random473

inputs.474

The following is a classical result in control due to Lyapunov.475

Proposition 4. A system xt+1 = Axt is stable in the sense that limt→∞ xt = 0 if and only if there476

exists P ≻ 0 such that477

P −ATPA ≻ 0. (21)

Proposition 4 implies the existence of a scalar Lyapunov function V (x) = xTPx which attains478

its minimum at the origin (V (x) > 0 for all x ̸= 0 and V (0) = 0) and descents with time479

(V (xt+1) < V (xt)) until xt = 0 since for all xt ̸= 0 the condition 21 guarantees480

V (xt+1)− V (xt) = xT
t A

TPAxt − xtPxt = xT
t (A

TPA− P )xt < 0. (22)

Informally, this implies limt→∞ V (xt) = V (xt→∞) = minx V (x) = V (0) and the state tends to481

the origin.482

Construction of the maximal RCI subset A maximal RCI subset X of Fx can be constructed by483

recursion [Blanchini and Miani, 2015], where the idea is to first set X0 = Fx and iteratively compute484

Xk+1 as the set of all states from which Xk can be surely reached (for all disturbances in W). That is,485

Xk+1 contains all states for which there exists an admissible input which drives the nominal state486

(without disturbance) A∗x+B∗u into Xk ⊖W ,487

Xk+1 = proj1:nx
{z ∈ col(Xk,U) | Ωz ∈ Xk ⊖W} . (23)

Crucially, x ∈ Xk+1 guarantees the existence of one input that drives all models of Ω into Xk ⊖W488

and may be computed similar to Fx above based on vertices of Ω, yielding again a convex polytope.489

Note that Xk+1 ⊆ Xk by construction. As soon as Xk+1 = Xk the computation is stopped and490

X := Xk is RCI for the true system following (12).491

Proof of Proposition 1 The proof makes use the well-known fact that sublevel sets of Lyapunov492

functions are positive invariant, which we formally define next before proving the result.493

Definition 5. A set X is positive invariant for dynamics xt+1 = f(xt) if f(x) ∈ X for all x ∈ X .494

Lemma 3. Consider a system xt+1 = f(xt) and let V (x) be a Lyapunov function such that495

V (0) = 0, V (x) > 0 ∀x ̸= 0, and V (f(x)) ≤ V (x)∀x ∈ Rnx . Then any sublevel set496

Ec = {x ∈ Rnx | V (x) ≤ c, c ≥ 0} of V (x) is positive invariant for dynamics xt+1 = f(xt).497

Proof. We first show that condition 17 implies stability of of498

xt+1 =
1

r
(A+BK)xt. (24)
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By the Schur complement, it is equivalent to rZ ≻ 0 and rZ − (Â(i)Z + B̂(i)Y )T(rZ)−1(Â(i)Z +499

B̂(i)Y ) ≻ 0. Multiplying from left and right by Z−1 yields500

rZ−1 − (Â(i) + B̂(i)Y Z−1)T
1

r
Z−1(Â(i) + B̂(i)Y Z−1) ≻ 0. (25)

Substituting K = Y Z−1 and P = Z−1 and dividing by r leads to501

P − 1

r
(Â(i) + B̂(i)K)TP

1

r
(Â(i) + B̂(i)K) ≻ 0 (26)

so that V (x) = xTPx is a Lyapunov function certifying stability for each closed loop system502

xt+1 = 1
r (Â

(i) + B̂(i)K)xt by Proposition 4. By convexity of Ω, stability of the models at the503

vertices of Ω implies stability for all models in Ω, which in turn implies ρ( 1r (A + BK)) ≤ 1 or504

equivalently ρ(A+BK) ≤ r for all (A,B) ∈ Ω.505

Since V (xt+1) ≤ V (xt) the ellipsoidal sublevel set V = {x ∈ Rnx | xTPx ≤ 1} of V (x) is positive506

invariant for system 24, i.e., x0 ∈ V =⇒ r−t(A+BK)tx0 ∈ V for all time t ≥ 0. Multiplying all507

sides in condition 16 by P = Z−1 yields P ⪯ I and I ⪯ cP which in turn implies xTx ≤ xTPx508

and xTPx ≤ 1
cx

Tx. As a consequence, whenever xTx ≤ 1 then xTPx ≤ 1 and thus V contains509

the unit norm ball B1 = {x ∈ Rnx | ∥x∥ =
√
xTx ≤ 1}. Additionally, whenever xTPx ≤ 1 then510

1
cx

Tx ≤ 1 (and equivalently xTx ≤ c) so that V is contained in a ball around the origin with radius511 √
c denoted by B√

c = {x ∈ Rnx | ∥x∥ ≤
√
c}. By positive invariance of V then, x ∈ B1 ⊆ V512

implies r−t(A+BK)tx ∈ V ⊆ B√
c for all time t ≥ 0. In other words513

∥x∥ ≤ 1 =⇒ 1

rt
∥(A+BK)tx∥ ≤

√
c ⇐⇒ sup

∥x∥≤1

∥(A+BK)tx∥
∥x∥

≤
√
crt (27)

which proofs the last part of the result by definition of the induced matrix norm.514

Proof of Proposition 3515

Proof. Rearranging x∗ = xH|t = AH
Kx0|t + SH−1Bv + SH−1w with x0|t = xt leads to516

Bvt = S−1
H−1(x

∗ −AH
Kxt)− w, xt+1 = (AK − S−1

H−1A
H
K )xt + S−1

H−1x
∗. (28)

Note (AK − S−1
H−1A

H
K ) = S−1

H−1(SH−1AK −AH
K ) and517

SH−1AK −AH
K = (I + . . .+AH−1

K )AK −AH
K = AK + . . .+AH−1

K = SH−1 − I (29)

so that the dynamics induced by MPC can be rewritten as518

xt+1 = (I − S−1
H−1)xt + S−1

H−1x
∗. (30)

Letting xt = xt+1 = x∞ immediately leads to S−1
H−1x∞ = S−1

H−1x
∗ which implies x∞ = x∗ since519

S−1
H−1 has full rank. It remains to show that xt actually converges, i.e., the closed-loop dynamics520

(30) are stable. Let λ be an eigenvalue of AK such that AKv = λv for some v ∈ Rnx . Then521

SH−1v = (1 + λ + . . . + λH−1)v so that (1 + λ + . . . + λH−1)−1 is an eigenvalue of S−1
H−1 and522

1 − (1 + λ + . . . + λH−1)−1 = λ−λH

1−λH is an eigenvalue of the closed-loop dynamics (30). Since523

λ−λH

1−λH ∈ [0, λ) for all H ∈ N we have ρ(I − S−1
H−1) < ρ(AK) and the closed-loop dynamics are524

stable by (strong) stability of AK.525
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