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Abstract

Online nonstochastic control has emerged as a promising strategy for online convex
optimization of control policies for linear systems subject to adversarial distur-
bances and time-varying cost functions. However, ensuring safety in these systems
remains a significant open problem, especially when the system parameters are
unknown. Practical nonstochastic control algorithms for real-world systems must
adhere to safety constraints without becoming overly conservative or relying on
exact models. We address this challenge by presenting a safe nonstochastic con-
trol algorithm for systems with unknown parameters subject to state and input
constraints. Given data of a single disturbed input-state trajectory, we design non-
conservative constraint sets for the policy parameters and develop a robust strongly
stabilizing controller. By drawing a connection to model predictive control, we pro-
pose a new analysis perspective and show how a slight change in the nonstochastic
control algorithm can drastically improve performance if disturbances are constant
or slowly time-varying.

1 Introduction

In reinforcement learning, gradient-based policy optimization has shown great success in practice
Schulman et al. [2017]. For learning-based control, the paradigm of online convex optimization
offers a powerful framework for iteratively updating control policies based on gradients and observed
data. Nonstochastic control is such a gradient-based control method that has been proven effective
for the control of linear dynamical systems in the face of deterministic, possibly adversarial, bounded
disturbances and adversarially chosen cost functions [Agarwal et al., 2019, Hazan et al., 2020,
Simchowitz, 2020]. At each time step, a convex cost function is revealed to the learner and the
policy gradient is approximated by applying the cost function to the terminal state and action of
a model-based rollout (simulation). Since optimizing over the function space of state or output
feedback policies is computationally intractable, see for example [Goulart et al., 2006], disturbance
feedback policies are employed. Nonstochastic control algorithms have been adapted or extended
for different settings such as partial observability [Simchowitz et al., 2020], changing dynamics
[Minasyan et al., 2021], bandit loss [Sun et al., 2023] or fully unknown linear systems [Chen and
Hazan, 2021]. However, one critical challenge is the inclusion of a safety guarantee in the sense of
adherence to state and input constraints, particularly in the presence of model uncertainty.

Little research on nonstochastic control so far has considered the addition of input and state constraints.
In the related literature, this problem setting has only been considered with access to an exact model
Li et al. [2021], Nonhoff et al. [2024], Liu et al. [2023], Zhou and Tzoumas [2023], Martin et al.
[2023] or achieved results in high probability with i.i.d. disturbances and conservative fixed parameter
constraints with careful transitions in between updates Li et al. [2024]. For systems with unknown
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parameters, most works propose a sequential approach of system identification via least squares
estimation (LSE) and control. Recent advances in statistical learning theory and the related discovery
of high-probability finite time guarantees for models obtained via LSE [Wagenmaker and Jamieson,
2020, Sarkar and Rakhlin, 2019, Foster and Simchowitz, 2020, Simchowitz et al., 2018] was leveraged
by a multitude of works to obtain high-probability regret guarantees in the nonstochastic control
setting [Hazan et al., 2020, Chen and Hazan, 2021, Simchowitz, 2020].

In this work, we change perspective from statistical learning LSE to data-driven robust control based
on a set of unfalsified models Berberich et al. [2020], Van Waarde et al. [2023], Teutsch et al. [2024].
In the nonstochastic control setting of linear systems subject to bounded disturbances, such a set may
be constructed by set membership identification (SMI). Informally, SMI begins by considering the
whole space of model parameters and continually discards those that could not have reproduced the
seen data. By leveraging the disturbance bounds, the resulting sets can be much smaller than LSE
confidence regions Li et al. [2023], and always contain the system’s true parameters, which allows
for the design of robust controllers with certainty instead of high probability.

Contribution: This work presents a safe online optimal control algorithm for unknown linear systems
subject to nonstochastic disturbances. Given an input-state data trajectory, we bridge the gap between
low-regret nonstochastic control and safe data-driven robust control by designing safety constraints
for online policy updates that hold for all models that may have produced the data. By drawing from
concepts in model predictive control Rawlings et al. [2017], Lorenzen et al. [2019], we establish
recursive feasibility of the safety constraints for all models and propose a subtle but effective change
to the initial state of the rollouts used for the policy gradient, which leads to the elimination of
steady-state errors in the case of constant or slowly time-varying disturbances. We show the practical
potential of the approach in a small simulation example.

2 Preliminaries and problem setting

In the nonstochastic control setting, the learner is presented with a linear time-invariant dynamical
system

xt+1 = Axt +But + wt (1)

where x ∈ Rnx is the state of the system and u ∈ Rnu is the input or action taken by the learner. The
disturbance w ∈ Rnx represents uncertainty and is not subject to any assumed stochastic properties,
but may be chosen from a known compact set W by an adversary at each time step and remains
unknown to the learner. In this work, we assume W is a convex polytope W = {w ∈ Rnx |
Gww ≤ gw}. At each time step t, the learner measures the current state xt and a cost function
ct : Rnx × Rnu → R is revealed. The goal is to learn a policy that chooses inputs which minimize
the cumulative costs

∑
t ct(xt, ut).

2.1 Disturbance-action policies and the Gradient perturbation controller

The considered policies are from the class of disturbance-action policies Agarwal et al. [2019], also
called affine disturbance feedback, see for example [Goulart et al., 2006]. Instead of basing decisions
on the current state directly, these policies compute the input based on estimates of past disturbances
ŵt. These estimates are based on a system model (Â, B̂) ≈ (A,B). At time step t, the disturbance
estimate ŵt−1 is computed as the prediction error

ŵt−1 = xt − (Âxt−1 + B̂ut−1). (2)

Definition 1. A disturbance-action policy (DAP) πDAP(M) chooses inputs based on parameter
matrices Mi via

vt = m0 +

L∑
i=1

Miŵt−i = M ŵt (3)

where L is the memory length and M = [m0,M1 . . . ,ML], ŵt = [1, ŵT
t−1, . . . , ŵ

T
t−L]

T allow for
shorter notation.

In order to guarantee stability, DAPs are often used together with a fixed stabilizing state feedback
controller ut = Kxt + vt. We will do the same and abbreviate (A+BK) = AK in the following.
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A gradient perturbation controller (GPC) iteratively updates the policy (3) based on gradients
computed via a model rollout. Online, at each time step t, the state xt is measured, the last disturbance
ŵt−1 is estimated and the control parameters M t are updated by taking a gradient-step as

Mt+1,i = Mt,i − ηt∇lt(Mt,i) (4)

where ηt > 0 is the learning rate. The loss lt approximates the that would have been obtained
under the fixed policy πDAP(M t) and is defined based on the terminal state and input of an H-step
simulation of the current with a given model (Â, B̂) and the most recent disturbance estimates
ŵt−L−H:t. That is, lt(M t) = ct(xH|t(Mt), uH|t(Mt)) where (xk|t, uk|t) denotes the simulated
states and inputs running from k = 0, . . . , L computed at time step t via

x0|t = 0, wk|t = ŵt−H+k, wk|t = [1, wT
k−1|t, . . . , w

T
k−L|t]

T, uk|t = Kxk|t +M twk|t, (5)

xk+1|t = Âxk|t + B̂uk|t + wk|t, k = 0, . . . ,H − 1.

The justification is here that the actual state may be well approximated by such a simulation, since it
evolves as xt = At

Kx0 +
∑t−1

k=0 A
k
KBvt−1−k + Ak

Kwt−1−k whereas a simulation with horizon H ,
initial state zero, and the latest H disturbances reads x̃t =

∑H−1
k=0 Ak

KBvt−1−k +Ak
Kwt−1−k ≈ xt.

The resulting approximation error reads

xt − x̃t =

t−1∑
k=H

Ak
K(Bvt−1−k +wt−1−k) = AH

K

t−1−H∑
k=0

Ak
K(Bvt−1−k +wt−1−k) = AH

Kxt−H (6)

and is small for stable AK and large memory H . How small is captured by the following quantitative
notion of stability introduced in Cohen et al. [2018].
Definition 2. K is a (κ, γ)-strongly stable controller for (A,B) if ∥At

K∥ ≤ κγt for all t ≥ 0.

Equipped with convergence bounds for the dynamics AK, the presented gradient pertubation controller
(3)-(5) enjoys sublinear regret against the best fixed policy M∗ in hindsight, and thereby sublinear
regret against an expressive class of controllers, see Hazan and Singh [2023] for an overview of
results.

2.2 Problem setting: Uncertain system and safety constraints

While the presented control scheme has been extended in many directions, for example to bandit loss
functions Sun et al. [2023] and partial observations Simchowitz et al. [2020], one challenge for the
application of GPC to safety-critical systems is the adherence to input and state constraints in the face
of model uncertainty. In this work, we consider a setting where the true system parameters (A,B)

are unknown, and only an input-state trajectory {ut, xt}TD
t=0 is available. Furthermore, we restrict

actions to a set
ut ∈ U = {u ∈ Rnu | GUu ≤ gU} ∀t ≥ 0. (7)

and subject the state to polytopic safety constraints

xt ∈ S = {x ∈ Rnx | GSx ≤ gS} ∀t ≥ 1 (8)

where both U and S are known user-specified convex compact sets that contain the origin. In order to
render the problem of safety tractable, we assume that there exists a state feedback controller that
can keep the system safe from initial state x0 = 0 no matter which disturbances are chosen by the
adversary.
Definition 3 (Safe control policies). A control policy is called safe if it generates inputs ut ∈ U for
which the state of (1) satisfies xt ∈ S for all time t ≥ 0.

Assumption 1. There exists Ksafe such that given x0 = 0, the state feedback ut = Ksafext is safe
for all disturbance realizations wt ∈ W and all time t ≥ 0.

Remark 1. On first glance, Assumption 1 may seem restrictive, but note that 1) we do not have
access to Ksafe, and 2) the application of ut = Ksafext may incur high costs without the disturbance
feedback, whose addition can in turn cause a loss of safety. Informally, Assumption 1 guarantees that
the disturbances in W are not too large compared to the set of safe states S and guarantees that the
problem of safety (by linear control) is feasible at all.
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3 Safe nonstochastic control from data

A guarantee of safety constraints (8) during operation requires that the control input ut, or more
specifically the control parameters M t are always chosen such that xt+1 ∈ S. Since most non-
stochastic control algorithms in the literature already include projections into a set of parameters M
for regret guarantees, it is a natural adaptation to enforce input and constraint satisfaction by similarly
projecting into the set of safe control parameters Msafe,t and applying ut(ΠMsafe,t

Mopt,t) instead of
ut(Mopt) for control. The resulting algorithm presented in this paper is shown in Algorithm 1.

Algorithm 1 Safe online optimal control

Identification phase:
Collect data (ut, xt)

Tini
t=0.

Construct set of unfalsified models Ω as in (9).
Compute (κ, γ)-strongly stable state feedback gain K for all Ω as in Lemma 1.
Choose a nominal model (Â, B̂) ∈ Ω.

Control phase:
for each time step t = Tini, . . . Tini + T do

Record state xt and construct latest disturbance estimate ŵt−1 := xt − (Âxt + B̂ut).
Receive cost function and update policy M t,opt = M t−1 − ηt∇lt(M t−1).
Project to closest safe policy M t = ΠMsafe,t

M t,opt.
Apply control ut(M t) (3)

3.1 From data to a set of models

Instead of identifying one best-fit system, we consider the set of models (A,B) that agree with
(may have produced) the given or recorded input-state data. Given an input-state data trajectory
{xt, ut}Tt=0 resulting from the application of T arbitrary inputs to system (1), and assuming that the
unknown disturbances {wt}T−1

t=0 were always in the known set W , the resulting set of consistent or
unfalsified models is given by

Ω[0,T ] = {[A B] ∈ Rnx×(nx+nu) | xt+1 − [A B]

[
xt

ut

]
∈ W, t = 0, . . . , T − 1}. (9)

The set Ω[0,T ] inherits convexity and closedness from W , and can be directly constructed in half-space
representation by reorganizing the inequality constraints that represent W . If the data trajectory
is sufficiently informative (see Lemma 2 in the Appendix), then Ω[0,T ] is also bounded and may
be described as convex hull of its vertices Ω = conv({[Ai Bi]}Nv

i=1). As a representation of model
uncertainty, Ω behaves nicely: First, as new data streams in, new constraints are added to the set
and therefore updates never increase the uncertainty set in size. Second, crucially, as long as the
assumed disturbance bound W holds, Ω always contains the true data-generating system matrices by
construction, and every statement that holds for all models [AB] inside Ω necessarily holds for the
actual unknown system. Since Ω is defined by input-state data (and the disturbance bound W) alone,
these statements can be inferred directly from data. In this work, we will use the set of models Ω to
construct constraints on the control parameters with which safety can be guaranteed.

3.2 From a set of models to safety constraints

In this work, safety is defined as constraints in input and state space. In order to derive a set of safe
control parameters, we need to map the state space constraints xt ∈ S into constraints on the policy
parameters M t. As intermediate mapping, we may consider the space of inputs since vt spans all of
Rm in the sense that any desired safe input u can be reproduced by some choice of control parameters
M such that u = Kx+ v(M t). The challenge is that the constraints on M 1) need to be recursively
feasible, i.e., the state is only steered to where constraint satisfaction remains possible, 2) need to
consider all possible models in Ω need to be considered, and 3) should not be conservative but restrict
the space of parameters as little as possible. Consider the set of models Ω containing the true system
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and the disturbance bound W . The state evolution of the unknown system (1) satisfies the inclusion

xt+1 ∈ Ω

[
xt

ut

]
⊕W, Ω

[
xt

ut

]
= {[A B]

[
xt

ut

]
| [A B] ∈ Ω} (10)

where ⊕ denotes the Minkowski set addition. With the Minkowski (Pontryagin) set difference ⊖, we
can reformulate the above into a sufficient condition on the state and input at the current time step for
satisfaction of safety constraints at the next time step,

Ω

[
xt

ut

]
∈ S ⊖W =⇒ xt+1 ∈ S. (11)

Remark 2. Non-emptiness of S ⊖W is covered by Assumption 1 since the existence of Ksafe implies
that the the safe set S is specified large enough to contain the disturbance set, S ⊇ W .

In order to guarantee that the left-hand-side of (11) remains feasible during operation, we construct a
(maximal) robust control invariant subset of S [Blanchini, 1999, Rawlings et al., 2017].

Definition 4. A set X is robust control invariant (RCI) for dynamics xt+1 = Axt + But + wt,
wt ∈ W , if for all x ∈ X there exists u ∈ U such that Ax+Bu+ w ∈ X for all w ∈ W .

A maximal RCI subset of a the safe state set S is a set that contains all other RCI subsets of S. The
maximal RCI subset is well defined since the set property of robust control invariance is closed
under the union. For the present discrete-time linear dynamics, maximal RCI sets are computed via
recursive erosion and expansion [Blanchini and Miani, 2015], see Appendix for details.

In the following, let X be the maximal subset of S that is RCI for all models in Ω. That is, let X be
such that

(∀x ∈ X )(∃u ∈ U) Ω
[
x
u

]
∈ X ⊖W. (12)

Since Ω, S and W are compact and convex polytopes, so is X and we can write X = {x ∈ Rn |
GXx ≤ gX }. Similarly, define X ⊖W = {x ∈ Rnx | GXx ≤ gX⊖W}.

Remark 3. For the true system, X is nonempty by Assumption 1 and contains the origin.

Substituting the DAC policy (3) into (12) and reformulating based on vertices Ai, Bi of Ω leads to
linear constraints on the control parameters

GXBiMŵt ≤ gX⊖W −GX (Ai +BiK)xt i = 1, . . . , Nv, (13)
GUMŵt ≤ gU −GUKxt, , (14)

which define a convex constraint set M(ŵt, xt) = {M ∈ Rnu×Lnx | (13),(14) are satisfied} that is
parameterized by the past estimated disturbances in ŵt and the current state xt.

Remark 4. Note that M(ŵt, xt) also depends on the chosen state feedback gain K, which is however
constant throughout. If K is safe as per Definition 3 (such that K = Ksafe from Assumption 1), then
M t = 0 is a safe parameter choice for all time and {0} is a common subset of all sets M(ŵt, xt)
with xt ∈ X , ŵt−i ∈ W . In general, the set of control parameters which are safe for all possible
states and disturbances is the intersection of all such M(ŵ, x). In other words, more restrictive but
fixed safety constraints as in [Li et al., 2021, 2024] are recovered by minimizing the RHS (13),(14) of
over all xt ∈ X and requiring the inequalities to hold for all possible disturbances ŵt−i ∈ W .

3.3 Theoretical guarantees

If at each time step t, the control parameters M t are projected into Msafe,t = M(ŵt, xt), we may
guarantee safety as shown in the following result.

Lemma 1 (Recursive feasibility). Let xt ∈ X . Then Msafe,t ̸= ∅ and any choice of control
parameters M t ∈ Msafe,t leads to a nonempty constraint set in the next time step, Mt+1,safe ̸= ∅.

Proof. Since X is RCI, Msafe,t ̸= ∅ for all x ∈ X by construction. Moreover, any choice of control
parameters M t ∈ Msafe,t leads to xt+1 ∈ X . Since X ⊆ F , the safety condition (12) is feasible for
all states in X .
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Theorem 1 (Constraint satisfaction). Assume that the model uncertainty in Ω is small enough such
that X ̸= ∅. Then, for any T ≥ 0 and all possible disturbance sequences w0:T ∈ W , the proposed
control strategy in Algorithm 1 is safe in the sense of Definition 3.

Proof. Since x0 = 0, we have x0 ∈ X as long as X ≠ ∅. By Lemma 1 the set of control parameters
Msafe,0 is not empty and any choice M0 ∈ Msafe,0 satisfies input constraints by construction of
Msafe,0 and leads to a next state x1 ∈ X . Since X ⊆ S, the next state x1 is safe. Safety for all time
follows by induction.

Remark 5. Besides safety with certainty, the proposed approach based on SMI offers another distinct
advantage: Online adaptation of the above safety constraints is trivial. With every new data triple
(xt−1, ut−1, xt), Ω may be updated by adding the constraints representing xt−Axt−1−But−1 ∈ W .
Since Ωt ⊆ Ωt−1, a newly computed maximal RCI set Xt will always contain the prior version,
Xt ⊇ Xt−1 and the constraints on the policy parameters are relaxed without loss of recursive
feasibility. If computational time is an issue, update computations may happen asynchronously by
computing an update of X on a batch of new data and injecting it into the control algorithm once
the computation is finished. By contrast, a similarly easy adaptation is not possible if error bounds
around a least square estimate replace the set of models: the error bound of LSE decreases with more
data, but the change of the estimate itself may cause the new set of models to not be contained in the
prior one. Consequently, a careful transition between updates is necessary Li et al. [2024], which is
not the case in the proposed approach.

If the gradient perturbation controller presented in Section 2 runs with an approximate model
(Â, B̂), the only difference between the loss simulation (5) and the approximation in (6) is that an
additional error is introduced due to the model error. By also bounding this additional error, setting
an appropriate learning rate, and restricting control parameters M t to a special set, the gradient
perturbation controller for uncertain systems achieves sublinear regret with respect to the class of
state feedback controllers ut = Kxt Hazan et al. [2020], linear dynamical controllers Simchowitz
[2020], or disturbance action policies with fixed control parameters Chen and Hazan [2021]. In
order to recover similar regret guarantees with the additional projection to safety, we too require a
(κ, γ)-strongly stabilizing controller as in Definition 2. In the foll we show how such a controller
may be constructed for all models in Ω.

Synthesis of a strongly stabilizing controller A sufficient condition for stability ρ(A+BK) < 1
of all models (A,B) ∈ Ω is given by existence of a common quadratic Lyapunov function V (x) =
xTPx for all hypothetical closed loop systems x+ = (A+ BK)x, (A,B) ∈ Ω. Computationally,
this check requires solving a finite system of linear matrix inequalities (LMI) in a semi-definite
program. Since regret bounds in the literature depend on the notion of (κ, γ)-strong stability, we
provide a semi-definite program for the direct synthesis of a (

√
c, γ)-strongly stable controller with

specified rate γ < 1 and minimal constant
√
c in the following. The idea is to combine a bound on

the norm powers of AK based on the positive invariance of Lyapunov sublevel sets [Ahiyevich et al.,
2018] with the fact since ρ(rA) = rρ(A) for any matrix A, stability of 1

γAK (i.e., ρ( 1γAK) ≤ 1)
implies ρ(AK) ≤ γ. Recall that Ω = conv {[Ai Bi]}Nv

i=1.
Proposition 1. Choose a desired spectral radius 0 ≤ r < 1 and let (c, Z, Y ) be the solution of

minimize
c,Z,Y

c (15)

subject to In ⪯ Z ⪯ cIn, (16)[
rZ AiZ +BiY
∗ rZ

]
≻ 0 ∀i = 1, . . . , Nv. (17)

Then the controller K = Y Z−1 is (
√
c, r)-strongly stable for all (A,B) ∈ Ω.

Please see Appendix for the proof.

On regret bounds with safety constraints The presented algorithm allows to run a safe variant
of GPC with any nominal model (Â, B̂) ∈ Ω, for example chosen via LSE and projection or as
Chebyshev center of Ω. The computation of a strongly stable controller in Proposition 1 allows for
a recovery of GPC regret bounds in literature, as long as the safety constraints are not active. The
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presented design of safety constraints restricts control parameters as little as possible. In fact, it was
motivated by the following Proposition.
Proposition 2. Every causally safe control policy (without foreknowledge of wt) needs to keep the
state in the maximal RCI subset Xmax ⊆ S.

Proof. If starting from xt there exists an input sequence that keeps the state inside S for all possible
disturbance sequences wt: and all time, then the resulting state trajectory would be part of the maximal
RCI subset of S. Since xt is not, the proof follows by contradiction.

In other words, enforcing the state to stay within the maximal RCI subset of S does not lead to a
meaningful change of regret bounds if the comparator class is restricted to causally safe policies.

4 Better policy gradients by adaptive initial state - An MPC perspective

In essence, the gradient perturbation controller presented above takes decisions that minimize the
loss of model-based predictions. Recall the definition of the loss lt based on a model rollout. If
instead of updating parameter towards the minimzer of the loss function, the policy parameters were
chosen directly as the minimzer in each time step, the scheme could be interpreted as parameterized
model predictive control (MPC): At each time step, choose the policy parameters parameterized by
solving the finite-time optimal control problem (OCP) M∗

t = argminM lt(M), where compared to
classical MPC formulations the costs act only on the terminal state. In other words, GPC tries to
emulate a parameterized MPC by always updating the parameters towards the MPC solution. As
such, MPC lends itself as analysis tool for GPC and existing results in MPC may carry over. One
difference between classical MPC formulations and the present nonstochastic control version defined
by lt comes from the fact that in MPC, the simulation (or rollout) is interpreted as prediction, instead
of loss approximation in hindsight. As such, the initial state in (5) would be updated to the current
state at each time step, i.e., set to x0|t = xt.

Note that with x0|t = 0, the optimal solution M∗
t depends only on the current cost function ct and the

past disturbances ŵ−L:H−1. Imagine the case where the cost function is fixed and the disturbances
are constant or very slowly time-varying (compared to the update rate of GPC). Then, M∗

t is constant
and GPC converges quickly to fixed parameters, representing a very simple constant policy. If instead,
the initial state of (5) was set to x0|t = xt, the OCP would implicity represent a linear affine map
from xt to M∗

t [Goulart et al., 2006], with the map being parameterized by the disturbances. As a
consequence, GPC with varying initial state can still impact the dynamics.

A pathological example for the gradient perturbation controller Consider a simple integrator
system with constant disturbance where the state may denote the position and velocity of a point mass,
control inputs change the velocity, and the disturbance represents unknown changes in acceleration

and velocity in between time steps, xt+1 =

[
1 0.1
0 1

]
xt+

[
0
1

]
ut+

[
1
0

]
. Let K = [−1 −1] stabilize

the system, imagine the objective is to keep the point mass at the origin, and let the learner’s system
model be exact so that the resulting predictions (loss simulation) used to compute the gradient are
exact. Since the estimated disturbances in ŵt are constant, so is any DAP Mŵt and we choose a
minimal disturbance memory of L = 1 without loss of generality. For ease of exposition, set the
horizon to H = 2. In this simple setting, we would expect GPC to perform quite well. However, it
does not, as seen in Figure 1 (a), where the position x1 tends to −10 instead of zero. As shown by the
behavior of the associated MPC algorith, this is not an issue of convergence, but of a loss function
disconnected to the problem at hand. Figure 1 (c),(d) shows the disconnect between loss, which
tends to zero, and cumulative costs, which grow unbounded. GPC takes gradient steps that minimize
x̄2
2|t,1 = (0.1v + 2)2 and converges to a constant input Mŵ = −20. The resulting steady state

x∞ = (A+BK)x∞ + [1 − 20]T is x∞ = [−10 − 10]T. With larger horizons H , the steady state
error of GPC shrinks, but only tends to zero for the maximal choice H = t, i.e., if the full horizon is
taken into account. For example a horizon of H = 50 leads to a steady state [−0.0127,−10]T.

If the loss simulation instead starts at the current state x0|t = xt, the steady state error vanishes
and MPC even beats the best fixed DAP M∗ computed in hindisight (and denoted by Opt). If xt is
accounted for in the loss, GPC minimizes x2|t,1 = ([1 0]A2z0 + 0.1v + 2)2 = ([0.9 0.1]x0|t +
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Figure 1: A simple pathological example of the basic nonstochastic control algorithm (OGD) as
proposed in the literature. GPC’s loss tends to zero while the costs do not. With varying initial
condition (var ini), the costs also tend to zero.

0.1v + 2)2 and no longer tends to a constant input, but towards an affine linear state feedback
vt = − [9 1]xt − 20 under which the steady state x∞ = [0 − 10]T incurs zero cost. Regret against
the best fixed DAP in hindisght is not only sublinear, but bounded.

A generalization Considering the MPC variants lets us generalize this example. In the follow-
ing, consider constant disturbances wt = w and fixed costs c(x, u) with minimizing steady state
(x∗, u∗) = argmin c(x, u) such that x∗ = AKx

∗ + Bu∗ + w. Assume that x∗ is reachable in H
time steps and that xH|t = x∗ is the terminal state of the solution trajectory to the OCP such that
xH|t = AH

Kx0|t + SH−1Bv + SH−1w, where SH−1 = I +AK + . . .+AH−
K . At every time step t,

solving the OCP with x0|t = 0 leads to a constant input vt where

Bvt = S−1
H−1x

∗ − w, xt+1 = AKxt + S−1
H−1x

∗. (18)

The state thus converges, since AK is stable, but setting xt = xt+1 = x∞ leads to

x∞ = (I −AK)
−1S−1

H−1x
∗ = (I −AK)

−1(I −AK)(I −AH
K )x∗ = (I −AH

K )x∗ (19)

so that xt only converges (close) to x∗ for very large horizons H where AH
K ≈ 0. This is different in

the case where the initial state is updated to the current state, x0|t = xt.
Proposition 3. Consider constant disturbances wt = w and assume the predicted terminal state
satisfies xH|t = x∗ for all t ≥ 0. Then the closed-loop dynamics induced by MPC with x0|t = xt are
stable and xt converges to x∗.

The technical proof of Proposition 3 is in the Appendix. We note here that with the change of initial
state in the OCP, the first (optimal) predicted state x1|t is the actual next state xt+1. So that if the
state ever converges, i.e., xt = xt+1, we had x1|t = xt which implies xk+1|t = xk|t (since the inputs
vk|t are constant) so that xH|t == . . . = xt which implies xt = x∗ by assumption. In short, the
state can only converge to the optimal state. As a consequence of Proposition 3, GPC with varying
initial state chases an optimal policy that achieves bounded O(1) regret, instead of one that induces a
steady-state error.

5 Simulation Example

Consider the numerical example of a linearized DC-DC converter from Section V.B in [Lorenzen

et al., 2016], where A =

[
1 0.0075

−0.143 0.996

]
, B =

[
4.798
0.115

]
, the state is subject to constraints

|x1| ≤ 2, |x2| ≤ 3, and the disturbance is bounded as ∥w∥∞ ≤ 0.2. We let U = {u ∈ R | |u| ≤ 4}
and generate an input-state data trajectory of length TData = 15 starting from zero initial state with
inputs and disturbances sampled uniformly from U and W , respectively. After building the set of
models Ω from the data, we solve (15) with r = 0.6 and receive a controller K = [−0.33 0.78]
that is (8.6, 0.6)-strongly stable for all models in Ω. We choose the Chebyshev center of Ω as
nominal model (Â, B̂), set H = 10, L = 1, pick a learning rate η = 0.1 and transition to the control
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Figure 2: Behavior of safe GPC (blue) and GPC without state and input constraints (red). Both
methods first steer to and stabilize the state at the optimal x2 = 1.5 in the first 250 time steps, and the
optimal −1.5 in the second 250 time steps. Since safe GPC needs to adhere to the state constraints
on x1, it takes more time steps to transition and suffers higher cost along the way.

phase of Algorithm 1. During the control phase, we let the disturbance vary at constant rate from
zero to [0.2 0.2]T and back to zero over T = 500 time steps. The cost functions are defined as
ct(xt, ut) = (xt,2 − x∗

t,2)
2 where x∗

t,2 = 1.5 for the first 250 time steps and x∗
t,2 = −1.5 for the

last 250 time steps. Recall that both the disturbances and future cost functions are unknown to the
control algorithm. Figure 2 shows the resulting trajectories and cumulative costs for the proposed
safe nonstochastic control algorithm running with varying initial state as proposed in Section 4. For
comparison, the equivalent nonstochastic control algorithm without safety constraints is also shown.
In the transition from x2 = 1.5 to x2 = −1.5, high values of x1 are necessary. As seen in Figure 2(a),
the proposed algorithms satisfies the safety constraints with virtually no conservatism.

6 Conclusion
This work addressed the challenge of ensuring safety in online nonstochastic control for linear
systems with unknown parameters. By leveraging a data-driven robust control approach based on
set membership identification, we derived non-conservative constraint sets for policy parameters
and constructed a strongly stabilizing controller. In contrast to existing works, both safety and
strong stability are guaranteed for all unfalsified models and hold with certainty. In simulation, we
demonstrated that our approach can effectively maintain system safety and performance from data
alone. By integrating principles from model predictive control, we ensured recursive feasibility of the
safety constraints and showed how updating the initial state of policy gradient rollouts effectively
eliminates steady-state errors under constant or slowly varying disturbances. Beyond the above, this
work left certain questions unanswered. First and foremost, we left a formal regret bound against
an expressive class of causally safe policies open for future work. We hypothesize that sublinear
regret against an expressive class of noncausally safe policies is unattainable in general, since a policy
with foreknowledge of future disturbances may lead the state outside of the maximal RCI set and
rely on the disturbances to stay safe. The MPC perspective also poses new questions. What role
would intermediate costs play if applied to policy gradient rollouts? And if rollouts are interpreted as
predictions, could a learned disturbance model not be included without losing convexity? The lessons
also go in the other direction, as most works in robust MPC either consider nominal predictions
without disturbances, implicitly hoping that disturbances average out over time, or defend against the
worst case, as in min-max MPC. As a consequence, these algorithms perform poorly if disturbances
are constant or slowly-time-varying, a setting which nonstochastic control (with varying initial
states) handles gracefully. Another exciting connection to explore is that of nonstochastic control
and real-time iterative MPC [Gros et al., 2020], where at each time step, the (sub-)optimal input
sequence is computed by updating the prior solution, instead of recomputing anew. Overall, this work
highlights the potential of combining online convex optimization-based policy search with robust and
predictive control techniques to achieve both safety and performance in real-world control systems.
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A Appendix

Variants of the following lemma are well known in the system identification literature. The following
version is adapted from Bisoffi et al. [2023].
Lemma 2. The set of consistent models Ω is convex and closed. It is bounded if and only if its
generating data satisfies rank

[ x0 ··· xN−1
u0 ··· uN−1

]
= nx + nu.

In practice, the rank condition of Lemma 2 is easily satisfied by long enough trajectories with random
inputs.

The following is a classical result in control due to Lyapunov.
Proposition 4. A system xt+1 = Axt is stable in the sense that limt→∞ xt = 0 if and only if there
exists P ≻ 0 such that

P −ATPA ≻ 0. (20)

Proposition 4 implies the existence of a scalar Lyapunov function V (x) = xTPx which attains
its minimum at the origin (V (x) > 0 for all x ̸= 0 and V (0) = 0) and descents with time
(V (xt+1) < V (xt)) until xt = 0 since for all xt ̸= 0 the condition 20 guarantees

V (xt+1)− V (xt) = xT
t A

TPAxt − xtPxt = xT
t (A

TPA− P )xt < 0. (21)

Informally, this implies limt→∞ V (xt) = V (xt→∞) = minx V (x) = V (0) and the state tends to
the origin.

Construction of the maximal RCI subset A maximal RCI subset X of Fx can be constructed by
recursion [Blanchini and Miani, 2015], where the idea is to first set X0 = Fx and iteratively compute
Xk+1 as the set of all states from which Xk can be surely reached (for all disturbances in W). That is,
Xk+1 contains all states for which there exists an admissible input which drives the nominal state
(without disturbance) A∗x+B∗u into Xk ⊖W ,

Xk+1 = proj1:nx
{z ∈ col(Xk,U) | Ωz ∈ Xk ⊖W} . (22)

Crucially, x ∈ Xk+1 guarantees the existence of one input that drives all models of Ω into Xk ⊖W
and may be computed similar to Fx above based on vertices of Ω, yielding again a convex polytope.
Note that Xk+1 ⊆ Xk by construction. As soon as Xk+1 = Xk the computation is stopped and
X := Xk is RCI for the true system following (12).

Proof of Proposition 1 The proof makes use the well-known fact that sublevel sets of Lyapunov
functions are positive invariant, which we formally define next before proving the result.
Definition 5. A set X is positive invariant for dynamics xt+1 = f(xt) if f(x) ∈ X for all x ∈ X .
Lemma 3. Consider a system xt+1 = f(xt) and let V (x) be a Lyapunov function such that
V (0) = 0, V (x) > 0 ∀x ̸= 0, and V (f(x)) ≤ V (x)∀x ∈ Rnx . Then any sublevel set
Ec = {x ∈ Rnx | V (x) ≤ c, c ≥ 0} of V (x) is positive invariant for dynamics xt+1 = f(xt).

Proof. We first show that condition 17 implies stability of of

xt+1 =
1

r
(A+BK)xt. (23)
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By the Schur complement, it is equivalent to rZ ≻ 0 and rZ − (Â(i)Z + B̂(i)Y )T(rZ)−1(Â(i)Z +

B̂(i)Y ) ≻ 0. Multiplying from left and right by Z−1 yields

rZ−1 − (Â(i) + B̂(i)Y Z−1)T
1

r
Z−1(Â(i) + B̂(i)Y Z−1) ≻ 0. (24)

Substituting K = Y Z−1 and P = Z−1 and dividing by r leads to

P − 1

r
(Â(i) + B̂(i)K)TP

1

r
(Â(i) + B̂(i)K) ≻ 0 (25)

so that V (x) = xTPx is a Lyapunov function certifying stability for each closed loop system
xt+1 = 1

r (Â
(i) + B̂(i)K)xt by Proposition 4. By convexity of Ω, stability of the models at the

vertices of Ω implies stability for all models in Ω, which in turn implies ρ( 1r (A + BK)) ≤ 1 or
equivalently ρ(A+BK) ≤ r for all (A,B) ∈ Ω.

Since V (xt+1) ≤ V (xt) the ellipsoidal sublevel set V = {x ∈ Rnx | xTPx ≤ 1} of V (x) is positive
invariant for system 23, i.e., x0 ∈ V =⇒ r−t(A+BK)tx0 ∈ V for all time t ≥ 0. Multiplying all
sides in condition 16 by P = Z−1 yields P ⪯ I and I ⪯ cP which in turn implies xTx ≤ xTPx
and xTPx ≤ 1

cx
Tx. As a consequence, whenever xTx ≤ 1 then xTPx ≤ 1 and thus V contains

the unit norm ball B1 = {x ∈ Rnx | ∥x∥ =
√
xTx ≤ 1}. Additionally, whenever xTPx ≤ 1 then

1
cx

Tx ≤ 1 (and equivalently xTx ≤ c) so that V is contained in a ball around the origin with radius√
c denoted by B√

c = {x ∈ Rnx | ∥x∥ ≤
√
c}. By positive invariance of V then, x ∈ B1 ⊆ V

implies r−t(A+BK)tx ∈ V ⊆ B√
c for all time t ≥ 0. In other words

∥x∥ ≤ 1 =⇒ 1

rt
∥(A+BK)tx∥ ≤

√
c ⇐⇒ sup

∥x∥≤1

∥(A+BK)tx∥
∥x∥

≤
√
crt (26)

which proofs the last part of the result by definition of the induced matrix norm.

Proof of Proposition 3

Proof. Rearranging x∗ = xH|t = AH
Kx0|t + SH−1Bv + SH−1w with x0|t = xt leads to

Bvt = S−1
H−1(x

∗ −AH
Kxt)− w, xt+1 = (AK − S−1

H−1A
H
K )xt + S−1

H−1x
∗. (27)

Note (AK − S−1
H−1A

H
K ) = S−1

H−1(SH−1AK −AH
K ) and

SH−1AK −AH
K = (I + . . .+AH−1

K )AK −AH
K = AK + . . .+AH−1

K = SH−1 − I (28)

so that the dynamics induced by MPC can be rewritten as

xt+1 = (I − S−1
H−1)xt + S−1

H−1x
∗. (29)

Letting xt = xt+1 = x∞ immediately leads to S−1
H−1x∞ = S−1

H−1x
∗ which implies x∞ = x∗ since

S−1
H−1 has full rank. It remains to show that xt actually converges, i.e., the closed-loop dynamics

(29) are stable. Let λ be an eigenvalue of AK such that AKv = λv for some v ∈ Rnx . Then
SH−1v = (1 + λ + . . . + λH−1)v so that (1 + λ + . . . + λH−1)−1 is an eigenvalue of S−1

H−1 and

1 − (1 + λ + . . . + λH−1)−1 = λ−λH

1−λH is an eigenvalue of the closed-loop dynamics (29). Since
λ−λH

1−λH ∈ [0, λ) for all H ∈ N we have ρ(I − S−1
H−1) < ρ(AK) and the closed-loop dynamics are

stable by (strong) stability of AK.
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