
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SHOTSIGHT: EXPLAINING KGE MODELS WITH AN
LLM-READY, EXAMPLE-BASED HEURISTIC

Anonymous authors
Paper under double-blind review

ABSTRACT

This article tackles the critical challenge of explainability in Knowledge Graph
Embedding (KGE) models. We introduce a novel case-based reasoning approach
called ShotSight, that leverages the latent space representation of nodes and edges
in a knowledge graph to generate compelling, human-understandable, example-
based explanations for link predictions. By analyzing the impact of identified
triples on model performance, we demonstrate the effectiveness of our approach in
generating explanations compared to random baselines. We evaluate our method
on two publicly available datasets and show its superiority in terms of explanatory
power for KGE models. Furthermore, we demonstrate the broader applicability
of this technique, extending beyond traditional KGE explanations. Specifically,
our method can serve as a valuable aid in constructing relevant “shots” for few-
shot prompting within Large Language Models (LLMs) and can be integrated into
graph-based Retrieval-Augmented Generation (RAG) systems, effectively making
KGE models LLM-ready.

1 INTRODUCTION

Figure 1: To support prediction of the target statement we identify influential examples by prob-
ing the knowledge base constrained w.r.t. the latent-space. This example is drawn from the
Fb15k-237 dataset. Predicted plausability score was 99%, and two most influential examples
were retrieved as an explanation with the following ranks: 1st: Nausea −→ symptomOf −→
ChronicKidneyDisease, 2nd: Fatigue −→ symptomOf −→ HBV

.

Link prediction is a common task in knowledge graphs, and often tackled with knowledge graph
embedding models, such as ComplEx, DistMult, TransE Trouillon et al. (2016); Yang et al. (2015);
Bordes et al. (2013), and others. However, these models lack direct interpretability Bianchi et al.
(2020), which is crucial for applications in critical domains like drug discovery and medicine Costa-
bello et al. (2020). Existing explainability methods for KGE models Lawrence et al. (2020); Bhard-
waj et al. (2021); Kang et al. (2019); Betz et al. (2022); Baltatzis & Costabello (2024) are limited,
and their evaluation approaches and datasets vary. Moreover, the human readability of explanations

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

is often overlooked. In this work, we propose a new method that generates explanations for link
predictions in KGE models using influential examples. We also introduce a dataset for evaluating
explanations through user studies. We grounded our approach in the Case-based reasoning (CBR), a
problem-solving approach that uses past experiences to inform solutions for new problems, Pradeep
et al. (2025) discusses combining CBR and XAI in a broad terms but for the first time it is used for
graph and specifically KGE models.

The need for AI systems to be explainable is growing due to legal requirements proposed in response
to the increasing risks posed by AI. Specifically, Article 13 of the EU AI Act, titled ”Transparency
and Provision of Information to Deployers,” which will come into force in August 2026, requires
that the operation of high-risk AI systems be transparent. Recital 27 clarifies that transparency
means allowing traceability and explainability EU (2024), suggesting that methods of explainable
AI (XAI) can help achieve compliance.

To address the lack of interpretability in KGE models, highly utilised in biomedical applications, we
propose post-hoc interpretability methods inspired by those used for other machine learning models.
Our goal is to provide explanations that link predictions back to the original graph, highlighting
the links and nodes that contribute the most to a given prediction. These explanations should be
understandable to users and provided quickly and efficiently.

However, achieving explainability in KGE models presents several challenges. First, there is
a lack of evaluation protocols, metrics, and benchmark datasets specifically designed for as-
sessing the explainability of these models. Existing benchmark datasets, such as FB15k-237
and WN18RR, YAGO3-10 often lack human-readable labels and are not primarily intended
for evaluating explainability. We can see this in e.g. FB15k-237 derivative of a Freebase
database that was discontinued. One example of triple could be the following: /m/08966,
/travel/travel destination/climate./travel/travel destination
monthly climate/month, /m/05lf . Not only ids of entities are unknown but also predicates struc-
ture is cumbersome and not easily understandable. Similar situation happens also in the case of
WN18RR dataset: 06845599, member of domain usage, 03754979. Despite their lack of inter-
pretability in the sense of understanding what each triple means these benchmark datasets are useful
and help establish common grounds for the community. Some newer datasets are more interpretable
but not as widely used as ones mentioned before, e.g. CoDEx Safavi & Koutra (2020) comes not
only with understandable labels, descriptions and sources but also with multiple languages and is
derived from Wikidata and Wikipedia which are actively in usage.

Another challenge for explainability arises from lack of ground-truth explanations apart from syn-
thetic datasets and limited user studies on explanations in the existing literature. Last but not least
the model’s predictions are ranked based and are not calibrated to represent probabilities directly,
which makes it difficult to interpret the results quickly Tabacof & Costabello (2020).

At the moment, there is no way to directly understand what contributed to a prediction of a KGE
model. One way to tackle this issue is to use special interpretability methods that work post-hoc.
Another way is to design new approaches, e.g., inspired by the methods available for explaining
other machine learning models Guidotti et al. (2018). An example of desirable output would be such
an explanation that links the prediction back to the original graph pointing out to links and nodes
that contributed the most to the given prediction and which removal would result in a decreased
probability of the prediction, being in the same time understandable to users. It is also desirable
that we can obtain the explanations fast and that they are also memory efficient. Given the above
requirements we consulted current literature on the subject to find whether such method exists.

1.1 RELATED WORK

The most basic way to identify influential triples would be to perform a simple search over all
possible triples that could be removed from the dataset and perform retraining after each such modi-
fication of the dataset. This approach is very inefficient as it requires many retrainings of the model.
For example, if explanation size, we are interested in, is equal to |e| = 1 we need n retrainings of
the model for each triple, when n is the number of triples in the training dataset. The number of
retrainings is increasing if we allow the explanation to be greater than 1, |e| > 1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

This section contains related work and up-to-date SOTA. It starts with brief introduction. Follow-
ing, each work is described with differentiation factor for ShotSight in mind. Finally, comparable
dimensions across presented works conclude the section. Basic principle of the majority of expla-
nation methods presented below is as follows: they try to identify such existing links in the graph
that their removal will strongly decrease the probability of the predicted link (this holds for Ex-
plaiNE Kang et al. (2019) and GNNExplainer Ying et al. (2019) but not for GraphLIME Huang
et al. (2020)).Worth mentioning is that none of these studies conducted user-studies on effectiveness
of human-readability of provided explanations or even whether the list of links/subgraph is enough
to constitute the explanation.

Apart from work on explainability aspects of Knowledge Graph Embedding models we would like
to bring attention to a similar but seemingly different subject of robustness and adversarial attack
approaches for Knowledge Graph Embedding models. Bhardwaj et al. (2021) explored methods
of poisoning KGEs with relation inference patterns, which aims at targeting influential triples and
design attacks based on it. Another work by Betz et al. (2022) introduced adversarial explanations
where they identify regularities in the knowledge graph and plan attacks based on them.

In Pezeshkpour et al. (2019), authors investigated robustness of knowledge graph embedding models
with regards to removal or addition of an influential triple to the training set.

Probably, the most notable, published work on explaining Knowledge Graph Embedding models
is GradientRollback (GR) Lawrence et al. (2020) and recent KGEx Baltatzis & Costabello (2024).
Both are methods that explain specifically knowledge graph embedding models for link predictions.
GR works by storing gradient updates in a separate influence matrix per every training example
t (during training) and also per every unique entity and relation in a triple. It then refers to this
gradient update matrix during the explanation phase. The influence updates regarding the training
triple (t) are subtracted from the parameters matrix to obtain a new parameter matrix that simulates
the situations of retraining the model without t. KGEx applies subgraph sampling and knowledge
distillation to train local surrogate models, then uses Monte Carlo ranking to identify which training
triples are most important for specific predictions. Neither of these methods present an integration
with language models that could be utilized in few shot prompting.

1.2 RESEARCH QUESTION

By considering the related work and requirements that we formulated in the above section, we posed
the following research question:

RQ: How to provide pertinent explanations for relational learning models trained on large knowl-
edge graphs with reasonable time/memory constraints?

In this work, we contribute the following:

• ShotSight, a novel heuristics for generating explanation graphs and a time-efficient batch
mode for generating influential examples.

• An evaluation protocol that includes a novel XAI test set for assessing the interpretability
of explanations from the Fb15k-237 benchmark dataset.

• Availability of code, dataset, and generated explanations as part of the AmpliGraph Python
library.

Fb15k-237 WN18RR XAI-Fb15k-237
Train 272,115 86,835 -
Test 20,466 3,134 239
Valid 17,535 3,034 -
Entities 14,541 40,943 445
Relations 237 11 91

Table 1: Details of the two benchmark datasets Fb15k-237 and WN18RR utilised to evaluate per-
formance of the explainability approach and a novel explainability testset prepared within the scope
of this work: XAI-Fb15k-237.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In this section we introduce the intuition behind the proposed approach, notation and the concept
of explanation graph. We then move to the steps required to obtain explanation graph and speed-up
approach to obtain influential examples. Next we present the evaluation protocol employed in this
work and metrics for measuring the performance of the explainability approach presented. As an
addition we will present an introduction to a small test set we have prepared for testing XAI methods
with the goal of reusing it for future user studies.

1.2.1 INTUITION

We propose ShotSight, a post-hoc, local explanation approach that explains Knowledge Graph Em-
bedding predictions. Our approach is based on the assumption that to explain why a certain link
between two entities is predicted as plausible, we have to look at the latent space representation of
that triple (individually at its subject, object, and predicate embeddings) and try to reverse-engineer
the training samples that the pattern was extracted from. We attempt to make an educated guess
based on the constraint latent space on which triples the target triple was modeled after.

Considering multi-hop neighbouring triples (especially the 1st-hop neighbourhood) is assumed as
this is the most likely source of influence when we look at the training of knowledge graph embed-
ding model, which updates embeddings of triple’s elements by considering triple level and corrupt-
ing either its subject or object. By triple level training we can observe a ripple effect of influence
from one triple to another.

1.2.2 NOTATION

Let us introduce key concepts and the notation used throughout the article. Let G be a knowledge
graph, denoted as G = (E ,R, T), where E is a set of entities in the graph, R is a set of predicates
in the graph, and finally T is a set of statements - triples defining specific links between entities
E with types of relations R, e.g.: triple t(s,p,o) ∈ T represents a directed edge in the knowledge
graph G, where s is the head entity (subject), p is the relation (predicate), and o is the tail entity
(object). Let e be an entity in G. The 1-hop neighborhood of entity e, denoted as N(e, 1), is defined
as: N(e, 1) = {(s, p, o) : (s, p, o) ∈ G, e ∈ {s, o}}, it contains such triples in graph G that either
their subject or their object is the same as the entity e for which the neighbourhood is being derived.
Consequently we will define an n-hop neighbourhood of an entity, denoted as N(e, n) as: N(e, n) =
{(s, p, o) : (s, p, o) ∈ G; s, o ∈ S′ ∪O′}∪ {N(e, n− 1)}, where S′ = {s : (s, p, o) ∈ N(e, n− 1)}
and O′ = {o : (s, p, o) ∈ N(e, n− 1)}. It contains triples from the n− 1 neighbourhood and triples
that are connected. Building on top of this formalisation we will define a 1-hop neighbourhood of a
triple t(s,p,o) as: N(t(s,p,o), 1) = {N(s, 1) ∪ N(o, 1) \ T} and consequently we will define n-hop
neighbourhood of a triple t(s,p,o) as:

N(t(s,p,o), n) = {N(t, n− 1) ∪ {(s, p, o) : (s, p, o) ∈ G; s, o ∈ S′ ∪O′}} (1)

where S′ = {s : (s, p, o) ∈ N(ts,p,o, n− 1)} and O′ = {o : (s, p, o) ∈ N(ts,p,o, n− 1)}.

1.2.3 SHOTSIGHT ALGORITHM:

ShotSight is an example-based heuristics that consists of four steps: sampling, filtering for examples,
aggregating for prototype and assembling the Explanation Graph.

1.2.4 PREREQUISITES:

Calibrated Knowledge Graph Embedding model, returning probability estimates as predictions, e.g.,
following Tabacof & Costabello (2020), in this way we are ensuring that the predictions are bounded
and are as close to the real probabilities as the current SOTA allows.

1. Latent space sampling: We include sampling step to derive similar entities to the elements
of the target triple in order to construct potential example triples that are a corner stone of
the method.
Let’s define an ordered set Sm = {s1, s2, ..., sm}, Sm ∈ S, where elements of the set are
entities with the same ordering as in set S, as described below. Given, s is a subject of the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

target triple, and f is a method of KGE model to obtain embedding of an element; and si
is another entity in G different than s, and a distance measure: dist(s, s′) we can define an
ordered set as follows:

S = {si : dist(f(s), f(si−1)) ≤ dist(f(s), f(si))∀si ∈ E} (2)
We will also define an ordered set with distances between subject entity and other entities
as below:

DS = {di : di = dist(f(s), f(si−1)) ≤ dist(f(s), f(si))∀si ∈ E} (3)
We will now repeat the same operation for the object o of the target triple to obtain set
Om = {o1, o2, ..., om}, Om ∈ O, analogically to the target triple subject we will define
ordering for the object entities as follows:

O = {oi : dist(f(o), f(oi−1)) ≤ dist(f(o), f(oi))∀oi ∈ E} (4)

Similarly we will also save distances to the object entity for the other entities in set DO as
below:

DO = {di : di = dist(f(o), f(oi−1)) ≤ dist(f(o), f(oi))∀oi ∈ E} (5)

2. Filtering for example triples: Filtering step is necessary to assure that the example triples
all exists in the training knowledge graph (represent past cases) and therefore were likely to
influence the embeddings of the target triple elements. This step is to obtain the Cartesian
product of sets Sm and Om to create a set of candidate triples with the target triple predicate
p, as denoted below:

eGt = {Sm ×Om : (si, p, oi) ∈ G} (6)

3. Aggregating for prototype: Aggregating - this steps provides a prototype of all the exam-
ple triples that were identified. This is motivated by an effective in machine learning tech-
nique from classification task of prototype method (e.g. as defined Hastie et al. (2009)).
The intuition is to find prototypical features of example triples that will be representative
for the identified set and could be used instead of the whole set.
Obtain N-hop neighborhoods according to Equation 1 of Example Triples obtained in Equa-
tion 6 into a prototype graph pGt following strict or permissive strategy.
1. Strict - takes the intersection of sets of triples between n-hop neighbourhoods of exam-
ples and target triple, as denoted below:

pGt = ∩len(eGTt)
i=1 N(t(s,p,o)i , n) ∩N(t(s,p,o), n) (7)

2. Permissive - takes the union of sets of triples between n-hop neighbourhoods of examples
and intersect it with the target triple n-hood neighbourhood, as denoted below:

pGt = ∪len(T)
i=1 N(t(s,p,o)i , n) ∩N(t(s,p,o), n) (8)

4. Assembling the Explanation Graph: the last step combines the results of the previous
steps into an Explanation Graph EG. Assembling joins all the previous steps together and
is mostly used for the visualization of the explanation derived in the context.

EG = pGt ∪ eGt ∪ {t} (9)

1.3 EVALUATION PROTOCOL

We evaluated our explanation approach by generating influential examples (with associated scores)
for TransE models on Fb15k-237 and WN18RR and for the ComplEx model on FB15k-237. For
each setup, we compared our proposed method to a baseline, modified the training data based on the
explanations, and then retrained the models. Our evaluation focused specifically on the generation
of influential training examples.

To evaluate the method we posed the below hypotheses, that we put to test in experiments:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

H1 Probabilities are highly correlated before and after retraining with the explanation removed.
Moreover, the slope coefficient is < 1, meaning that the original probabilities are higher
than respective probabilities after retraining.

H2 Plausibility of triples are the lower the more explaining triples are removed with magnitude
of a drop reflecting the rank of triples importance.

H3 Retrained model scores target triple as less plausible (compared to the original model scor-
ing the same target triple) upon removal of the explanation.

1.3.1 BASELINE:

As a baseline, we used a constrained random explanation approach that selects triples sharing the
same predicate as the target triple, regardless of their connection to it. Some other baselines could
have been utilised like random triple from the neighbourhood of the target triple. Our baseline
increased task difficulty because we focus on explanations with the same predicates, which limits the
available pool of triples for explanations to this subset. We can denote the baseline in a mathematical
formulation as follows. First, we define a set E of all triples that have the same predicate as target
triple t:

E = {(e′, p′, e′′) : (e′, p′, e′′) ∈ G, p′ = p}
Then, we draw a random sample of n triples from set E as a baseline explanation, equal in a size to
the number of triples obtained from our heuristics.

E1, E2, ..., En
iid∼ N(0, σ2

Z)

1.3.2 METRICS

In this work we used a metric called probability difference measured as percentage. It is similar to
the metric used in Lawrence et al. (2020) with the difference that PD used in this work takes into
account both explanations that increase the score after retraining and the ones that decrease the triple
scores after retraining. It is used, to measure the difference between prediction scores obtained by
originally trained KGE model on a target triple and a prediction obtained from the model trained on
the dataset without explanation of such training triple, it is defined as follows:

PD =
(M(t)−M ′(t)) ∗ 100

M(t)
(10)

1.3.3 EXPERIMENTS:

1. Remove-and-Retrain (ROAR) Hooker et al. (2019): We removed explanation from the
dataset and retrained the model (ROAR protocol) on the modified dataset without explana-
tion for two cases removing only the most influential example triple and removing full set
of examples returned by the method.

2. Reversed-Remove-and-Retrain (rev-ROAR): We removed all triples with same predicate
as Target Triple (set E) and instead added only the explanation (influential examples are
restricted to be of the same predicate type as a target triple by default). In this scenario we
wanted to test whether model can recover from a loss of majority of its influential examples.
We also explored two cases leaving only the most influential example triple and leaving the
full set of examples returned by the method.

Note: Both models: original and the one retrained in each experiment were trained exactly the
same, with SOTA hyperparameters for the TransE and ComplEx models on the dataset with early
stopping. This has the following consequence of evaluation time being very long. For the four
scenarios presented we had to train 5 models per dataset per target triple per model.

2 RESULTS

In this section we present the experimental results we have obtained from the experiments presented
in the evaluation section.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We trained the KGE models with the state of the art hyperparameters for respective benchamrk
datasets, we obtained the following results. For Fb15k-237 trained with TransE model we got 0.20
H@1, and 0.30 MRR scores. For WN18RR trained with TransE we obtained 0.05 H@1 and 0.22
for MRR scores. For ComplEx for FB15k-237 we got 0.21 Hits@1 and 0.31 MRR. We have also
trained other models and generated explanations with our method for them, their performance is
reported in the Appendix along with example explanations obtained for them. Table 4 lists training
parameters for models used in the experiments.

The H1 hypothesis was confirmed in all the cases for our method and random, scores after retraining
were correlated and whenever we removed the explaining triples with same predicate the respective
plausibility after retraining was lower, confirming also H3. Above epoch 20 the Pearson correlation
coefficient is 1 and predictions are perfectly correlated. To get a better view of how the probability
scores fluctuate across training, at every 10th epoch we make predictions for target triples. We
observed an interesting property of the model’s prediction ability, that we call recoverability, we
expected the scores to drop after retraining but we didn’t expect that the model could recover from
the loss of certain data points, see Figure 2a.

We can see how effectiveness of the explanations depends on how long the model had to recover
since the longer the training time the lower the difference between probabilities with original model
and the one with influential triples removed. In the case of Fb15k-237 we could see that model
recovered almost fully to predicting triple as plausible after 80 epochs of training (Figure 2a). This
was not the case for WN18RR (see Figure 2b) where single triple could not convey this much
information as in the previous dataset.

(a) TransE on Fb15k-237 (b) TransE on WN18RR (c) ComplEx on Fb15k-237

Figure 2: (a) TransE on Fb15k-237. Target triple probability across different epochs. We can see that
the probability difference between models before and after explanation removal is the lowest at the
beginning of the training. It changes in such a way that model can recover it’s predictive ability to
predict on a given triple. It means that to make an evaluation of an explainability method, one has to
consider the time aspect of the prediction. (b) TransE on WN18RR. Target triple probability across
different epochs. (c) ComplEx on Fb15k-237. Target triple probability across different epochs with
different experiments.

The H2 hypothesis was also confirmed, we could see that the more triples were removed from
training the bigger the difference between probabilities become. The hypotheses allowed us to be
confident that our assumptions about impact that the explanations have on the model are correct.
Interestingly, longer training reduced these differences, suggesting the model can compensate for
missing triples by leveraging other remaining triples—highlighting the graph-based model’s ability
to “deduce” plausibility and the ripple effects across training.

Appendix Tables B show example explanations generated for three datasets. Table 2 reports average
explanation generation times for models trained on different datasets. Our method, ShotSight, ex-
plains a single triple in about 5 seconds on average, compared to GradientRollback’s 6 minutes for
Fb15k-237. Although ShotSight clearly offers faster explanation generation, further investigation is
warranted to fully understand the differences between methods. Due to the substantial cost involved,
a direct comparison with GradientRollback was not undertaken beyond below assesment.

Comparison with Other Works We explored GR but due to feasibility we couldn’t benchmark
our method against it and KGEx authors have not released the codebase making comparisons also
not feasible. We used available code for GR and compared its results with our proposed ShotSight.
For ShotSight it takes 5.09s on average to obtain explanation for the triple in the test set of Fb15k-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

237 dataset. 5.85s for the test triples in CODEX-M dataset and 12.33s for WN18RR test triples on
average. When comparing with the GradientRollback reported times for Fb15k-237 we can see to
obtain an explanation for a single triple it takes 6±7 minute (as reported in their article). Moreover,
GR approach requires enabling a special training mode with batch size of 1 making it very slow.
It also requires much more memory than the initial dataset size to store training artefacts. E.g.
For embedding size of k=100 and training dataset of size 272,115 (Fb15k-237) apart from model
parameters during training we have to store around 272115 x 3 x 100 parameters. For Fb15k-237
the size of this extra matrix is equal to 2.4G which is more than 100 times bigger than the sole
dataset size of 22.6Mb. This method although time and memory consuming traces parameters in the
training leading to probably more accurate results on the expense of the high resources cost. The
resources exhaustion makes it prohibitive for usage in a large scale knowledge graphs.

2.1 XAI FB15K-237 DATASET CONSTRUCTION

At the moment there are no available and accepted benchmark datasets for human evaluation of
knowledge graph link prediction explainability methods. Each paper published up-to-date follows
different evaluation approach. It is, therefore, difficult to compare and draw conclusions about which
of the methods gives the best results.

Current benchmark datasets in knowledge graph embedding are not user-friendly for laymen, often
using encoded entities with incomplete and misaligned mappings. For example, Freebase fb15k-237
has over 20,000 test triples, making human evaluation impractical. Evaluating just 100 triples for
understandability takes about 10 minutes per person, translating to roughly 34 hours for the entire
test set—requiring multiple annotators for reliable results. This estimate excludes the time needed
to assess full explanations, which can span multiple triples or entire subgraphs. Due to the high cost
and effort, comprehensive human evaluation is infeasible for all published methods and datasets.
This challenge, combined with the lack of standard evaluation frameworks, often limits assessments
to synthetic metrics rather than human-grounded usefulness.

Recent publications on explainable link prediction do not provide any evaluation framework that
could contribute to fair comparison of explainability approaches, whereas explainability of methods
requires strict protocols involving a human-evaluation Doshi-Velez & Kim (2017).

A contribution to rigours evaluation could be a benchmark datasets that would make it possible to
compare different explainers of link prediction models.

The following sections describe the desiderata of such dataset and then the evaluation protocol of
obtaining such dataset with an example of Fb15k-237 Bordes et al. (2013) dataset which is a bench-
mark dataset commonly accepted in the community for assessing link prediction models. Sub-setting
already existing benchmarking datasets vs creating another dataset from scratch has an advantage
of being already familiar to the community and can eliminate the problem of running explantation
methods for models that benchmark results are not known. The disadvantages of such approach is
preserving biases available in the original datasets, dataset becoming obsolete (e.g. Freebase was
discontinued).

Desiderata The dataset should prioritize 1) human-readable triples, 2) aligning with layman un-
derstanding and 3) minimizing cognitive load for evaluation (limited size). 4) It must also be diverse
across predicates, 5) be publicly available, and 6) be based on a benchmarked dataset to mitigate
issues arising from model limitations. It should also fulfil more technical properties has no self-
relations, no duplicates. To achieve this we propose one that is human filtered.

Such dataset can provide a ground for a fair comparison across different explainability methods and
interpretability of their explanations. In Figure 3 we present a small user study we ran in the lab to
curate a subset of Fb15k-237 with triples that could be used in such a user study evaluation of the
explanations. Similar protocol could be employed for other suitable datasets with more interpretable
entities and relations (e.g. CoDEx).

Dataset Construction The dataset is a subset of a known benchmark in the knowledge graph
embedding community - Fb15k-237, to select triples we utilised a following procedure: we scored
all the triple with the model and from among triples with highest score we selected these that were
readable for our 3 evaluators. The three evaluators were knowledgable in the knowledge graph and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

explainability field. The detailed overview of the dataset is presented in 1.2. There is an intentional
bias in a benchmark dataset regarding the triples that score high. It also contains any other bias that
was included in the original benchmark dataset Fb15k-237 as it is a subset of it.

2.1.1 IMPLEMENTATION:

All experiments were implemented using Python 3.7 with Knowledge Graph Embedding library
AmpliGraph version 2.0, using TensorFlow 2.10 . All experiments were run under Ubuntu 18.04 on
an Intel Xeon Gold 6142, 64 GB, equipped with a Tesla V100 16GB.

3 DISCUSSION

In this work we introduce a novel heuristics to generate explanations for knowledge graph embed-
ding models. It works by generating influential examples from the constrained latent space search.
We evaluated the approach with a protocol involving novel XAI test set for evaluating interpretabil-
ity of explanations for the users. For future work we would like to compare how this approach work
on the GNN architectures since it is a model agnostic heuristic. One disadventage, that we are aware
of, is that our approach is a heuristics, we are doing some follow-up research on how to provide
estimation guarantees for this approach and if it is even possible. In the same time, we have decided
to go forward with the heuristic approach because of immense memory consumption and slow ex-
ecution time of other methods. Another limitation of ShotSight is its dependence on the quality of
past cases and the effectiveness of criticism strategies used in example-based explanations Kim et al.
(2016) which we indirectly support in the aggregation step.

Overall, the evaluation results support the effectiveness of our explanation approach based on influ-
ential examples. By removing these examples and retraining the model, we observed a decrease in
the plausibility of the target triple, indicating the importance of the identified examples in the origi-
nal prediction. This demonstrates the potential of our method to provide meaningful and informative
explanations for link predictions in knowledge graph embedding models.

In addition to the evaluation of our approach, we also introduced a novel XAI test set for evalu-
ating the interpretability of explanations from knowledge graph embedding models. This test set,
based on the Fb15k-237 benchmark dataset, provides a valuable resource for future user studies and
benchmarking of explainability methods. Furthermore, we will made the code, dataset, and gener-
ated explanations available as part of the AmpliGraph Python library, facilitating the adoption and
further exploration of our approach by the research community.

The core innovation of ShotSight extends beyond traditional KGE explanation techniques by directly
addressing the field of LLM-augmented knowledge retrieval. Our method’s ability to generate con-
textually relevant ‘shots’ – specifically, representative triples from the knowledge graph; provides
a crucial bridge to few-shot prompting within Large Language Models. These generated examples,
derived through our heuristic, can condition the LLM’s ”reasoning” process. It offers a simple way
for obtaining knowledge-grounded examples from the knowledge graph databases, something that
cannot be done with other explainability methods for KGEs.

In conclusion, our work contributes to addressing the challenge of explainability in knowledge graph
embedding models. By leveraging influential examples and generating explanation graphs, we offer
a novel approach to explaining link predictions. The evaluation results demonstrate the effectiveness
of our method in providing interpretable and informative explanations. We believe that our approach
has the potential to enhance the interpretability and trustworthiness of knowledge graph embedding
models in various domains, including critical applications such as drug discovery and medicine.

REPRODUCIBILITY STATEMENT

We provide hyperparameter and other relevant details in the Appendix. We will also release code
for method as part of graph machine learning library and code for the experiments to reproduce the
results reported in the paper.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Regulation (eu) 2024/1689 of the european parliament and of the council of 13 june 2024 lay-
ing down harmonised rules on artificial intelligence (artificial intelligence act). https://
eur-lex.europa.eu/eli/reg/2024/1689, 2024. Official Journal L, 12 July 2024.

Vasileios Baltatzis and Luca Costabello. Kgex: Explaining knowledge graph embeddings via
subgraph sampling and knowledge distillation. In Soledad Villar and Benjamin Chamberlain
(eds.), Proceedings of the Second Learning on Graphs Conference, volume 231 of Proceed-
ings of Machine Learning Research, pp. 27:1–27:13. PMLR, 27–30 Nov 2024. URL https:
//proceedings.mlr.press/v231/baltatzis24a.html.

Patrick Betz, Christian Meilicke, and Heiner Stuckenschmidt. Adversarial Explanations for Knowl-
edge Graph Embeddings. In Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, pp. 2820–2826, Vienna, Austria, July 2022. International Joint Conferences
on Artificial Intelligence Organization. ISBN 978-1-956792-00-3. doi: 10.24963/ijcai.2022/391.
URL https://www.ijcai.org/proceedings/2022/391.

Peru Bhardwaj, John Kelleher, Luca Costabello, and Declan O’Sullivan. Poisoning Knowledge
Graph Embeddings via Relation Inference Patterns. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 1875–1888, Online, August 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.147. URL https:
//aclanthology.org/2021.acl-long.147.

Federico Bianchi, Gaetano Rossiello, Luca Costabello, Matteo Palmonari, and Pasquale Minervini.
Knowledge graph embeddings and explainable AI. 2020. doi: 10.3233/SSW200011. URL
http://arxiv.org/abs/2004.14843.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating Embeddings for Modeling Multi-relational Data. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates, Inc., 2013.

Luca Costabello, Sumit Pai, Nicholas McCarthy, and Adrianna Janik. Knowledge graph embeddings
tutorial: From theory to practice, September 2020. URL https://doi.org/10.5281/
zenodo.4268208. https://kge-tutorial-ecai2020.github.io/.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
2017.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Dino Pedreschi, and Fosca
Giannotti. A survey of methods for explaining black box models. 2018. URL http://arxiv.
org/abs/1802.01933.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2 edition, 2009. ISBN 978-0-387-84858-7.

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for inter-
pretability methods in deep neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d{\textbackslash}textquotesingle Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin, and Yi Chang. GraphLIME:
Local interpretable model explanations for graph neural networks. 2020. URL http://
arxiv.org/abs/2001.06216.

Bo Kang, Jefrey Lijffijt, and Tijl De Bie. ExplaiNE: An approach for explaining network
embedding-based link predictions. 2019. URL http://arxiv.org/abs/1904.12694.

Been Kim, Rajiv Khanna, and Oluwasanmi Koyejo. Examples are not enough, learn to criticize!
criticism for interpretability. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, pp. 2288–2296, Red Hook, NY, USA, 2016. Curran
Associates Inc. ISBN 9781510838819.

10

https://eur-lex.europa.eu/eli/reg/2024/1689
https://eur-lex.europa.eu/eli/reg/2024/1689
https://proceedings.mlr.press/v231/baltatzis24a.html
https://proceedings.mlr.press/v231/baltatzis24a.html
https://www.ijcai.org/proceedings/2022/391
https://aclanthology.org/2021.acl-long.147
https://aclanthology.org/2021.acl-long.147
http://arxiv.org/abs/2004.14843
https://doi.org/10.5281/zenodo.4268208
https://doi.org/10.5281/zenodo.4268208
http://arxiv.org/abs/1802.01933
http://arxiv.org/abs/1802.01933
http://arxiv.org/abs/2001.06216
http://arxiv.org/abs/2001.06216
http://arxiv.org/abs/1904.12694

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Carolin Lawrence, Timo Sztyler, and Mathias Niepert. Explaining neural matrix factorization with
gradient rollback. 2020. URL http://arxiv.org/abs/2010.05516.

Pouya Pezeshkpour, Yifan Tian, and Sameer Singh. Investigating robustness and interpretability of
link prediction via adversarial modifications. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 3336–3347. Association for Computational Linguis-
tics, 2019. doi: 10.18653/v1/N19-1337. URL https://aclanthology.org/N19-1337.

Preeja Pradeep, Marta Caro-Martı́nez, and Anjana Wijekoon. Empowering explainable artificial
intelligence through case-based reasoning: A comprehensive exploration. IEEE Transactions on
Knowledge and Data Engineering, 2025.

Tara Safavi and Danai Koutra. CoDEx: A comprehensive knowledge graph completion benchmark,
2020. URL http://arxiv.org/abs/2009.07810.

Pedro Tabacof and Luca Costabello. Probability calibration for knowledge graph embedding models.
2020. URL http://arxiv.org/abs/1912.10000.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In Proceedings of the 33rd International Conference
on International Conference on Machine Learning - Volume 48, ICML’16, pp. 2071–2080, New
York, NY, USA, June 2016. JMLR.org.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding Entities and
Relations for Learning and Inference in Knowledge Bases. In Yoshua Bengio and Yann LeCun
(eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNExplainer:
Generating explanations for graph neural networks. 32:9240–9251, 2019. ISSN 1049-5258.
URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138248/.

11

http://arxiv.org/abs/2010.05516
https://aclanthology.org/N19-1337
http://arxiv.org/abs/2009.07810
http://arxiv.org/abs/1912.10000
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138248/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

Figure 3: Validation Protocol. The diagram presents steps to be taken to get the dataset for human
evaluation. It starts from the original benchmark dataset: Fb15k-237 (box number 1.) and ends at
the curated subsets of triples based on properties listed before. The path highlighted in blue refers to
the collection of ranks according to different models. The green box specifies selection criteria for
constructing the final datasets.

Figure 4: Probability differences between ShotSight and random baseline, TransE trained on Fb15k-
237.

A COMPUTATIONAL COMPLEXITY ANALYSIS

We have analyzed computational complexity of the ShotSight in the scenario of batch explanations.
ShotSight requires access to the training dataset so space complexity starts from O(t). Given: e
- number of entities (e.g.: 14,541 in Fb15k-237). k - embedding vector dimension (e.g. k=400,
TransE on Fb15k-237). m - number of nearest neighbours considered (parameter of ShotSight
default m=25). t - number of triples in the train set. x - number of examples, as explanation x << t.
we can split computational complexity into steps: 1) Sampling - this step is entirely dependent on the
nearest neighbour algorithm implementation, in the experiments we used implementation provided
in sklearn, which by default tries to adjust parameters for best efficiency. In the worst case scenario it
uses a brute force approach which complexity of the prediction time is O(e×k×m) with negligible
complexity of initialization of the algorithm and negligible space complexity too. In the best case

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 5: (a) TransE on Fb15k-237 - Probabilities correlation before and after retraining model with
reversed ROAR only explanations is left in the training dataset among triples with same predicates
as target triple. Above epoch 20 the Pearson correlation coefficient is 1 and predictions are perfectly
correlated. (b) TransE on WN18RR - Probabilities correlation before and after retraining model
with ROAR.

scenario kNN algorithm tries to adjust the inner data structure for optimized inference time with the
cost of initialization and space e.g. in the case of KD-Tree it is O(k×e×log(e)) of extra initialization
time and O(k × e) space with a benefit of inference time being O(m × log(e)). ShotSight needs
to find m nearest neighbours for both subject and object entity (in the default case) in this step. 2)
Filtering for example triples - in this step we need to take a cartesian product of obtained sets of
neighbours in step 1: which leaves us with O(m2) (default case, in full case it is O(m3) if we are
considering predicates embedding as well) and forces us to filter examples according to the dataset.
First we are mapping it into a tuples (O(t), where t is a number of train triples), than we utilize sets
intersections implementation in Python with complexity of O(min(t,m2)). In the post-processing
step we compute the score per each example obtained. The computational complexity in batch
explain is always dependent on the number of target triples to obtain explanations for.

B MODELS CALIBRATION

Knowledge Graph Embedding models predictions are uncalibrated - meaning they do not represent
probability of the triple but rather a plausability score. Explainability approches presented in this
work requires models to be calibrated. Achieving such property with knowledge graph embedding
models requires additional post-processing to make sure the returned predictions can be interpreted
as probabilities. We calibrate the trained model using procedure described in Tabacof & Costabello
(2020) on the validation test. Figures 9 and 10 shows the reliability diagram for uncalibrated and
calibrated scores compared with perfectly calibrated reference for two datasets. We can see that
uncalibrated scores (in blue) are unevenly distributed and concentrated around the lower part of
predicted values, whereas calibrated scores (in orange) although not perfect are distributed much
more evenly across the mean predicted values space. By calibrating pre-trained knowledge graph
embedding models to return values between 0 and 1 that are more evenly distributed, we return more
reliable and interpretable probabilities of triples.

USE OF LARGE LANGUAGE MODELS

This manuscript benefited from the use of a large language models (LLMs) to assist with language
polishing and improving readability. The authors reviewed, edited, and approved all content to
ensure accuracy and integrity.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 6: (a) Reliability diagram of the TransE model’s calibration for FB15k-237 dataset. (b)
Reliability diagram of the TransE model’s calibration for WN18RR dataset.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

epoch average rev-ROAR [%] ROAR [%]
1 all 1 all

10 ours -0.507 69.694 63.971 0.106 5.717
rand. -0.478 73.757 62.186 0.013 14.647

20 ours -0.066 25.457 23.819 -0.0 -0.009
rand. 0.007 27.968 21.456 0.001 -0.011

30 ours -0.181 10.911 8.27 -0.003 0.013
rand. -0.348 11.117 8.388 -0.001 -0.073

40 ours 0.009 5.312 4.735 0.0 0.034
rand. 0.096 5.435 4.154 0.002 0.048

50 ours -0.049 2.707 2.227 0.03 0.036
rand. 0.021 2.863 2.196 0.031 0.022

60 ours -0.112 1.635 1.456 -0.002 -0.016
rand. -0.057 1.718 1.332 -0.001 -0.007

70 ours -0.135 0.894 0.786 -0.0 -0.011
rand. -0.072 0.94 0.721 -0.0 -0.015

80 ours 0.053 0.574 0.496 -0.001 -0.001
rand. 0.002 0.599 0.456 -0.001 -0.038

90 ours -0.153 0.384 0.325 -0.0 0.028
rand. -0.421 0.402 0.303 -0.0 -0.0

100 ours -0.153 0.23 0.203 -0.007 -0.01
rand. -0.03 0.244 0.176 -0.007 -0.005

Table 2: TransE on Fb15k-237 - Probability difference between original model and models retrained
using two different scenarios ROAR and rev-ROAR considering most influential triple (1) and all
triples from the obtained explanation (all). We can see that when retraining the model with only
a single triple of given predicate (rev-ROAR-1) the model can recover from it’s initial almost 70%
probability drop at epoch 10th to a little over 0.2 difference at epoch 100th, we can observe the
same pattern but faster for the training with full explanation. On the other hand when we look at the
ROAR experiment we can see that removing a single triple has only influence epoch 10th of training
with 0.1% probability drop, this is increased when all triples are removed to 6%.

epoch average rev-ROAR [%] ROAR [%]
1 all 1 all

10 ours 0.0 13.515 15.018 1.118 1.696
rand. -0.004 - - 0.089 -0.306

20 ours -0.004 26.975 29.598 0.008 3.5
rand. -0.027 - 25.585 -0.021 -0.058

30 ours 0.018 34.791 37.518 0.031 1.198
rand. 0.005 34.384 - -0.046 0.035

40 ours -0.004 38.778 42.265 0.048 0.041
rand. 0.02 - - 0.021 0.036

50 ours 0.006 40.661 44.588 0.038 0.095
rand. 0.025 42.159 41.134 -0.01 0.004

60 ours 0.015 42.071 45.949 0.054 0.018
rand. 0.042 43.586 42.388 0.011 0.028

70 ours -0.032 43.149 46.509 0.071 0.021
rand. -0.309 44.506 - 0.005 -0.002

80 ours -0.017 42.835 46.048 0.025 0.017
rand. -0.252 44.057 - 0.001 -0.02

90 ours 0.047 42.512 45.655 0.01 0.012
rand. 0.058 43.58 - 0.011 0.013

100 ours -0.008 41.778 44.503 0.023 0.002
rand. 0.01 42.673 41.57 0.021 0.014

Table 3: TransE on WN18RR - Probability difference between original model and models retrained
using two different scenarios ROAR and rev-ROAR considering most influential triple (1) and all
triples from the obtained explanation (all). We can see that when retraining the model with only a
single triple of given predicate (rev-ROAR-1) the model cannot recover from initial 14% probability
drop at epoch 10th instead it worsen to reach it’s peak at around epoch 70th (amounting to 43%) to
settle on nearly 42% difference at epoch 100th, we can observe the same pattern but faster for the
training with full explanation. On the other hand when we look at the ROAR experiment we can see
that removing a single triple has only influence epoch 10th of training with 1.1% probability drop,
this is increased when all triples are removed to 1.7%, the difference above epoch 10th is smaller
than 1%.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

model/dataset WN18RR Fb15k-237
TransE k=350, eta=30 k=400, eta=30

Table 4: Parameters used for model training, trained with early stopping for 4000 epochs using
Adam optimizer with lr=0.0001, multiclass-nll loss, seed=0, regularizer L2 with lambda=0.0001

dataset total time [s] time/triple [s]
FB15k-237 104069.3 5.09
CODEX 60364.4 5.85
WN18RR 36048.5 12.33

Table 5: Time to obtain explanations for triples for respective TransE models trained on different
datasets, total time for all triples in the test dataset, time per triple. This also include cases when no
explanations where found. We also generated explanations for ComplEx model for FB15k-237 and
the respective times were 196682.1 for all test triples and 9.62s per triple - almost twice as much as
for a TransE model, which make sense as ComplEx model due to its architecture has twice as much
embeddings. For WN18RR the times for ComplEx model where respectively: 38289.0s and 13.09s.

Approach TransE ComplEx DistMult ConvE
H@1 MRR H@1 MRR H@1 MRR H@1 MRR

Fb15k-237 0.20 0.30 0.21 0.31 0.21 0.30 0.21 0.30

WN18RR 0.05 0.22 0.47 0.50 0.43 0.47 0.44 0.47

Table 6: MRR and Hits@1 on the Fb15k-237 and WN18RR benchmark datasets.

initialization
step time sapce
samplingKD−Tree O(k × e× log(e)) O(k × e)
samplingbrute−force O(1) O(1)

Table 7: Computational time and space complexity of initialization phase.

prediction
step time sapce
samplingKD−Tree O(m× log(e)) O(1)
samplingbrute−force O(e× k ×m) O(1)
product O(m2) O(1)
mapping O(t) O(t)
filtering O(min(t,m2)) O(1)
post-processing O(x) O(1)

Table 8: Computational time and space complexity of prediction phase.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

S P O Score
Billy Idol languages spoken, written, or signed English TT

Johnny Marr languages spoken, written, or signed English 0.00075
Chester Bennington languages spoken, written, or signed English 0.00076
Morrissey languages spoken, written, or signed English 0.00077
Loreena McKennitt languages spoken, written, or signed English 0.00077
Gordon Lightfoot languages spoken, written, or signed English 0.00080
Alan Stivell languages spoken, written, or signed English 0.00080
Robert Plant languages spoken, written, or signed English 0.00080
Oleg Skripka languages spoken, written, or signed French 0.00091
Alan Stivell languages spoken, written, or signed French 0.00091
Oleg Skripka languages spoken, written, or signed Russian 0.00097
Oleg Skripka languages spoken, written, or signed Ukrainian 0.00117

Table 9: Example explanation for a test triple in CODEX-M dataset - first row represents Target
Triple (TT). The lower the score, the closer is example to the Target Triple.

S P O Score
Artie Lange /influence/influence node/influenced by Jackie Gleason TT
George Carlin /influence/influence node/influenced by Danny Kaye 0.17232
Conan O’Brien (aka Big Red) /influence/influence node/influenced by Danny Kaye 0.19481
Conan O’Brien (aka Big Red) /influence/influence node/influenced by Steve Allen 0.24502
Bill Maher /influence/influence node/influenced by Steve Allen 0.25498

Table 10: Example explanation for a test triple in Fb15k-237 dataset - first row represents Target
Triple (TT). The lower the score, the closer is example to the Target Triple.

S P O Score
02314321 hypernym 08102555 TT
02314001 hypernym 08102555 0.02788
02313495 hypernym 08102555 0.04839
01928360 hypernym 08102555 0.05155
02314717 hypernym 08102555 0.06077
01928737 hypernym 08102555 0.06294
02321759 hypernym 02316038 0.09046

Table 11: Example explanation for a test triple in WN18RR dataset - first row represents Target
Triple (TT). The lower the score, the closer is example to the Target Triple.

17

	Introduction
	Related Work
	Research Question
	Intuition
	Notation
	ShotSight algorithm:
	Prerequisites:

	Evaluation Protocol
	Baseline:
	Metrics
	Experiments:

	Results
	XAI Fb15k-237 Dataset construction
	Implementation:

	Discussion
	Computational Complexity Analysis
	Models Calibration

