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ABSTRACT

In cooperative multi-agent reinforcement learning (MARL), existing communi-
cation methods are almost exclusively task-specific, necessitating the training of
new communication strategies for each unique task. This paper addresses this
inherent inefficiency by introducing a task-agnostic, environment-specific com-
munication strategy applicable to any task within a given environment. We pre-
train the communication strategy without task-specific reward guidance in a self-
supervised manner using a set autoencoder. Our objective is to learn a latent
Markov state from a set of local observations, coming from a variable number
of agents. Under mild assumptions, we prove that policies using our latent repre-
sentations are guaranteed to converge, and upper bound the value error introduced
by our Markov state approximation. Our method enables seamless adaptation to
novel tasks without relearning or fine-tuning the communication strategy, grace-
fully supports scaling to more agents than present during training, and detects
out-of-distribution events in an environment. Empirical results on diverse MARL
scenarios validate the effectiveness of our approach, surpassing task-specific com-
munication strategies in unseen tasks.

1 INTRODUCTION

Motivation. MARL exacerbates the brittleness of reinforcement learning with non-stationarity and
convergence issues (Marinescu et al., 2017; Zhang et al., 2019, Section 3.2). It is often impossible to
predict the underlying multi-agent Markov state given only the local observation of an agent. This is
due to the inherent partial observability of multi-agent problems as an agent typically has no knowl-
edge of what other agents see. Since we require complete cognisance of the Markov state to solve an
MDP, without it, MARL seldom leads to ideal or near-ideal solutions. This partial observability fur-
ther worsens the limited sample efficiency suffered by single-agent RL (Buckman et al., 2018; Yu,
2018). To alleviate these issues in collaborative settings, many approaches utilise communication to
share information between agents (Foerster et al., 2016; Sukhbaatar et al., 2016; Das et al., 2019;
Bettini et al., 2023). These methods typically use a differentiable strategy, optimising messages with
respect to the reinforcement learning objective.

However, thus far, differentiable communication for cooperative multi-agent learning has been en-
tirely task-driven. Previous works have learned communication strategies for solving riddles (Foer-
ster et al., 2016), traffic control (Sukhbaatar et al., 2016; Das et al., 2019), navigation (Das et al.,
2019; Li et al., 2020), and tasks requiring heterogeneous behaviour (Bettini et al., 2023). In every ex-
ample, agents learn a targeted communication strategy for each task that they are expected to solve.
Learning such task-specific communication strategies is wasteful and inefficient—particularly given
the poor sample efficiency of MARL.

We propose reducing the inefficiency of task-specific communication strategies by learning a task-
agnostic and environment-specific communication strategy. In task-specific strategies, even if the
environment does not change, each time that agents learn a new task, they also need to learn a new
communication strategy. In contrast, a task-agnostic strategy can be shared for all tasks within this
environment, erasing the requirement of learning new strategies for each new task. This enables
learning specialised cooperation skills for diverse tasks in the environment.

Our source code is provided in the supplementary materials, with instructions to reproduce all experiments.
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Figure 1: Learning and applying a task-agnostic communication strategy in MARL. Offline
pre-training. We pre-train a set autoencoder with sets of observations collected from exploring an
environment. Since there is no reward signal involved in sampling these observations, the autoen-
coder learns an environment-specific but task-agnostic representation. When a variable number of
agent observations are encoded by the set encoder, the output is a fixed-size latent vector ŝ approx-
imating the Markovian state s in a Dec-MDP. Policy training. For each agent, we deploy the set
encoder on-policy to encode the global observation (assembled via communication) into ŝ. We con-
dition the policy on ŝ so that it acts on the Markov state.

Approach. We differentiate between a task (an optimisation objective within an environment) and
an environment (a world and its transition dynamics). An agent solves a task in an environment by
maximising the return. Formally, the difference is that an environment E is defined by the state tran-
sition probabilities TE(s′ | s, a) while a task τ within E is defined by a reward function Rτ,E(s, a).

Noting this distinction, we focus on cooperative multi-agent problems known as Dec-MDPs, where
the Markov state is jointly fully observable. In these problems, the state is independent of the task
specifics, depending only on the environment. Thus, to achieve perfect cooperation in Dec-MDPs,
agents must infer the global observation (the joint set of all agents’ observations) from a collection
of local observations (Oliehoek & Amato, 2016). This is a skill that they need to employ for any
given task in an environment. Hence, the skill is transferable across tasks, implying that it can be
learned through a task-agnostic communication strategy. Our main idea is to learn this task-agnostic
communication method by pre-trained reconstruction of the global state (Figure 1).

In addition to eliminating the need to learn new communication strategies for novel tasks in an envi-
ronment, this method brings several other notable advantages. Firstly, by utilising a specialised set
autoencoder, we enable decoding a variable-sized set using a fixed-size latent state. This permits the
communication strategy to elegantly support variable numbers of agents and to even scale out-of-
distribution to more agents than seen during training. Additionally, by comparing pre-training losses
to the losses at runtime, it is possible to detect out-of-distribution disturbances in an environment
(e.g. adversarial agents and unsafe environment states). Finally, our approach is grounded in the en-
vironment, resulting in messages which have specific meaning for any task within this environment.
The alternative approach—using a fixed set of communication symbols to achieve environment and
task-agnostic communication—is un-grounded.

Contributions. We develop a method for learning general, task-agnostic and environment-specific
communication strategies in multi-agent teams that supports variable numbers of agents. We pro-
vide two proofs which demonstrate that (i) under mild assumptions, our method guarantees return
convergence and (ii) when these assumptions are not met, there is an upper bound on the regret.
We test our method with experiments on tasks in VMAS (Bettini et al., 2022) and the Melting Pot
suite (Agapiou et al., 2023). Our task-agnostic communication strategy outperforms strategies that
are reused (i.e. trained with policy losses on one task and deployed on another task in the same
environment). Moreover, we provide evidence that performance does not degrade significantly as
we scale the number of agents in the system. Lastly, we showcase how our pre-training method can
be used to detect out-of-distribution events in the environment.
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2 PRELIMINARIES

In this paper, we are mainly interested in a subset of cooperative multi-agent problems known as de-
centralised Markov decision processes (Dec-MDPs). In the Dec-MDP framework, the environment
provides a joint observation o = {o1, . . . , on} from which each agent observes its local observation
and decides on an action. Upon taking an action, the global reward function R provides a shared
reward for each time step, and each agent receives its next local observation (Bernstein et al., 2002).
A key feature of Dec-MDPs is that the underlying Markov state must be uniquely defined by the
joint set of observations of all agents (i.e. the global observation) (Oliehoek & Amato, 2016).

Formally, denoting ∆(X) as the set of probability distributions over the setX , a Dec-MDP is defined
by a tuple (n, S,A, T,O, O,R, γ) where n is the number of agents, S is the set of states (with initial
state s0),A is the set of actions for each agent, T : S×An → ∆(S) is the state transition probability
function T (s′ | s,a), O is the set of joint observations, O : S × An → ∆(O) is the observation
probability function O(o | s,a), R : S × An → ∆(R) is the global reward function R(s,a), γ is
the discount factor, and the multi-agent Markov state s is unambiguously determined by O.1

3 LEARNING TASK-AGNOSTIC COMMUNICATION

In a Dec-MDP, agent cooperation depends on the Markovian state of the multi-agent team within
an environment. This state is independent of task specifics, consisting of the current state of the
environment. Therefore, we define a communication model which reconstructs this environment-
specific information, and show how it can be trained without reward guidance to be completely
task-agnostic.

3.1 A COMMUNICATION MODEL FOR TASK-AGNOSTIC COOPERATION

As the global observation defines the multi-agent Markov state in a Dec-MDP, we define our com-
munication model as one in which agents reconstruct the multi-agent state by reconstructing the
joint set of all agents’ observations.

Consider a Dec-MDP defined by the tuple (n, S,A, T,O, O,R, γ) with agents i ∈ An =
{1, . . . , n}. Agents have a communication range ϵ where if the distance d(i, j) between agents i
and j is greater than ϵ then they cannot share information. Thus, we define the neighbourhood of
agent i as Ni = {j ∈ An | d(i, j) ≤ ϵ, j ̸= i}. In each time step t, an agent i receives a set which
contains the observations of all agents within i’s range,

ONi
t = {ojt | ∀j ∈ Ni}. (1)

Let Ot denote the joint set of all agent observations in time step t. With ONi
t and its local observation

oit, the agent can recover the set of observations of all agents within the communication range of i
(including itself) in this time step,

Oi
t = ONi

t ∪ {oit}. (2)

Using an autoencoder, the set Oi
t is encoded into a task-agnostic latent state ŝit. This latent

state is permutation-invariant and is a constrained approximation of the global observation Ot =
{oit, . . . , ont } (and therefore, the Markov state) constructed using the information available in Oi

t
and the knowledge of the autoencoder. The advantage of this state over a concatenation of all ob-
servations is that it is fixed in size, supporting variable numbers of agents, makes use of the sample
efficiency afforded by a permutation-invariant state, and is an efficient compressed representation.

To use this approximation of the multi-agent state in decision-making, we condition the policy of
agent i on this latent state. Let πθt denote a policy parameterised by weights θt. The probability that
agent i takes action ait is given by πθt(a

i
t | ŝit, oit). The policy is conditioned on the agent’s local

observation, even though oit is encoded within ŝit, because ŝit is permutation-invariant. Without oit,
the policy cannot determine which agent it is reasoning about.

When the latent state ŝt perfectly captures the global observation, the policy is guaranteed to con-
verge to a local optimum in the return:

1This notation is inspired by Oliehoek & Amato (2016) and Ellis et al. (2022).
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Theorem 3.1. A policy gradient method, which conforms to the assumptions in (Sutton et al., 1999,
Theorem 3), conditioned on ŝt in a Dec-MDP is guaranteed to converge to a local optimum in the
return assuming ŝt captures Ot with zero reconstruction error.

Proof. Consider a Dec-MDP defined by the tuple (n, S,A, T,O, O,R, γ). Define a policy π param-
eterised by θ that maps the global observation O to a distribution over joint actions A. Formally,
πθ(at | Ot) represents the probability of taking joint action at given global observation Ot and
policy parameters θ. The objective is to optimise the policy π to maximise the expected return over
a trajectory τ = (s1, a1, s2, a2, . . . , sT , aT ), where st is the multi-agent Markov state at time t. As-
sume a policy gradient method, such as REINFORCE (Williams, 1987; 1992), to update the policy
parameters θ. This requires estimating the gradient of the expected return with respect to θ in order
to update these parameters.

Note that (i) policy gradient methods converge to a locally optimal policy in Markov decision pro-
cesses (Sutton et al., 1999, Theorem 3), (ii) by definition: the joint state st in a Dec-MDP is the
multi-agent Markov state (Bernstein et al., 2002; Oliehoek & Amato, 2016), and (iii) by definition:
this state is jointly fully observable in Dec-MDPs (Bernstein et al., 2002; Oliehoek & Amato, 2016).

Then, since (iii) implies the global observation Ot uniquely defines st (Oliehoek & Amato, 2016),
and by (ii) Ot defines the multi-agent Markov state, since we use a policy gradient method, by (i) it
is guaranteed to converge to a local optimum as our policy is conditioned on Ot, which is equivalent
to the underlying Markov state. When the latent state ŝt captures Ot with zero reconstruction error,
this result extends to when the policy is conditioned on ŝt instead.

However, in practice we cannot assume that ŝt captures Ot with no error. To quantify the effect of
any error on the return, we can place a bound on the regret: the difference in the expected return
achieved if the approximation of the underlying Markov state was perfect.

Theorem 3.2. Suppose the policy in a Dec-MDP and its associated value function are Lipschitz
continuous. Then the regret of a policy learned from an approximation ŝt of the underlying Markov
state st is bounded above and this bound is directly proportional to the reconstruction error. 2

Proof. Consider an identical setting to that stated in the proof of Theorem 3.1. Additionally, define a
value function Vπθ

derived from the policy πθ and let ϵ be some error in reconstructing the underlying
multi-agent Markov state st. Thus, ŝt can be decomposed into st + ϵ.

Assume that Vπθ
is K Lipschitz continuous where K ∈ R. Since Vπθ

is derived from πθ, let us also
assume that πθ is Lipschitz continuous.

Then,

|Vπθ
(st)− Vπθ

(̂st)| ≤ K|st − (̂st)| (3)
|Vπθ

(st)− Vπθ
(st + ϵ)| ≤ K|st − (st + ϵ)| (4)

= K| − ϵ| (5)
= K|ϵ|. (6)

Thus, the difference in expected return (regret) between a policy which assumes the underlying
Markov state is the true state st and one which assumes the underlying Markov state is an approxi-
mation ŝt due to reconstruction error ϵ is bounded above by K|ϵ|. Since K is a constant, this bound
is directly proportional to the root mean squared error |ϵ|.

Hence, in a Dec-MDP, the reconstruction error ϵ is precisely the autoencoder’s error in reconstructing
Ot from the latent state ŝt as the Markovian state st is uniquely defined by the global observation.
In general, Theorem 3.2 can be extended to Dec-POMDPs as a bound on the error in estimating the
global observation rather than the underlying Markov state.

2For this theorem, we treat st as a vector st to decompose its approximation into the true state and error.
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3.2 TRAINING A TASK-AGNOSTIC COMMUNICATION STRATEGY

We posit that we can learn a task-agnostic communication method by pre-training an autoencoder
with global observations Ot from exploration of an environment. If the exploration policy is in-
dependent of the reward function, the strategy is task-agnostic. We use either a uniform random
policy or uniform random sampling from the observation space. Neither requires knowing a reward
function and hence any method learned in this way is task-agnostic.

Online and on-policy

Offline and off-policy

Stop gradient

Figure 2: Method details. A set autoencoder
(with encoder ϕ and decoder ϕ−1) is pre-trained
with global observations sampled from reward-
free exploration using a self-supervised recon-
struction loss offline. During policy training,
the pre-trained set autoencoder is loaded with its
weights frozen. This communication strategy is
shared when training policies for all tasks τ and
agents i within a specific environment. The input
to a policy π is a concatenation of the encoded set
of observations from all agents ŝt (an approxima-
tion of the Markov state) and the relevant agent’s
observation oit.

Figure 2 provides a detailed overview of our
method. Given a permutation-invariant set au-
toencoder with encoder ϕ and decoder ϕ−1,
we train the autoencoder with a self-supervised
loss

1

n

n∑
t=1

l
(
ϕ−1(ϕ(Ot)),Ot

)
, (7)

where l is a function defining a set reconstruc-
tion error specified by our choice of autoen-
coder.

Typically, graph autoencoders (GAEs) (Tian
et al., 2014; Wang et al., 2016; Kipf & Welling,
2016) would be ideal to encode sets with per-
mutation invariance. However, we instead
use the permutation-invariant set autoencoder
(PISA) (Kortvelesy et al., 2023) because, un-
like many GAEs, this architecture allows de-
coding a variable-sized set using a fixed-size
latent state. In other words, no matter the num-
ber of agents or the corresponding cardinality
of the set Ot, the dimension of the latent state
ŝt is constant. This property is highly desirable
as it allows a trained encoder to scale as agents
are added or removed from the environment. If
pre-trained on global observations, it also en-
ables the autoencoder to approximate the global

observation even when some observations in the multi-agent team are missing. We also note that to
the best of our knowledge, PISA achieves the lowest set reconstruction error among comparable set
autoencoders (Kortvelesy et al., 2023, Figure 2), and therefore, is an apt architectural choice for our
task-agnostic communication strategy.

While many environments emit two-dimensional pixel observations, PISA encodes feature vectors
into permutation-invariant states. Given this dichotomy, when required, we also pre-train a convolu-
tional autoencoder on each element of Ot to encode each pixel observation oit into a feature vector
vi
t. Thus, when an image encoder is necessary, a set of these feature vectors Vt is the input to our

set autoencoder rather than Ot directly.

4 EXPERIMENTS & DISCUSSION

We propose three experiments. The first shows that a task-agnostic communication strategy is more
effective than a task-specific strategy when presented with a novel task. It also verifies that our
proposed strategy outperforms a baseline that does not use communication. Our second experiment
validates the claim that our method elegantly handles variable numbers of agents. It shows how our
method fares as more agents are introduced, going out-of-distribution with respect to the number of
agents seen during pre-training. The final experiment demonstrates that, by comparing pre-training
autoencoder losses to the losses during policy training, we can detect out-of-distribution events in
the environment. Refer to Appendix G for the hardware and implementation details of running these
experiments.

5



Under review as a conference paper at ICLR 2024

4.1 EXPERIMENTAL SETUP

Our experiments focus on two MARL suites. Firstly, Melting Pot (Agapiou et al., 2023) is a suite
of 2D, grid-based, discrete multi-agent learning environments, providing scenarios that can test a
variety of types of coordination focusing on social dilemmas. In this type of scenario, problems are
a mixture of competition and cooperation so many tasks are not fully cooperative and accordingly,
cannot be Dec-MDPs. To address this, we sum all individual agent rewards emitted by the base
Melting Pot task into a shared global reward. This ensures each task is fully cooperative. Refer to
Appendix A for the complete modification details.

Target
Agent

Sensing range

Swarm radius

Pursuer

Cooks

Pots

Ingredients

Figure 3: Tasks. Circuit
(top), Discovery (middle),
and Pursuit-Evasion (bot-
tom).

To supplement Melting Pot, we also study tasks in the vec-
torised multi-agent simulator (VMAS) (Bettini et al., 2022): a 2D,
continuous-action framework designed for benchmarking MARL.
Together, these two suites provide a comprehensive study, as they
cover both visual and vector observations, discrete and continuous
action spaces, sparse and dense rewards, and different forms of co-
operation requirements, ranging from high-level to low-level collab-
oration strategies. We include further discussion around benchmark
selection in Appendix F.

We obtain our pre-training dataset by following a uniform random
policy (Melting Pot) or uniform random sampling from the obser-
vation space (VMAS) for a million steps in the environment. With
these samples, we train a task-agnostic communication strategy (Sec-
tion 3.2) and deploy it with our communication model (Section 3.1).
For all of our experiments, we optimise the policy for each agent
using Proximal Policy Optimisation (PPO) (Schulman et al., 2017).
This is commonly referred to in multi-agent literature as Independent
PPO (IPPO). However, we emphasise that our method is algorithm-
agnostic. Any optimisation algorithm may be used with our method
in place of IPPO. Further details are available in Appendix E (pre-
training) and Appendix D (policy training).

4.2 PERFORMANCE ON NOVEL TASKS

In this experiment, we measure the converged reward of our method
(task-agnostic) against two baselines as we learn policies for a variety
of tasks. The task-specific baseline simulates reusing communication
strategies learned from other tasks. In a real use case, this is the only
option to avoid training a new strategy if a task-agnostic strategy does
not exist. The difference between the task-specific and task-agnostic
baselines is in the set autoencoder pre-training. For the task-specific
baseline, we pre-train the set autoencoder using reinforcement learning while trying to learn a policy
for a distinct but similar task in the same environment. We use an identical setup for pre-training
the task-specific set autoencoder as when we evaluate the task-agnostic method. In contrast, the
task-agnostic baseline uses random samples from the environment with reconstruction loss for pre-
training. This approach lets us assess how well a task-agnostic method generalises compared to
a task-specific one using the same architecture. The no-comms baseline uses no communication
strategy at all. For Melting Pot environments, we additionally utilise an image encoder, pre-trained
in all tasks in an environment, which we use for every baseline.

We evaluate our method, along with the baselines, on three distinct tasks (Figure 3):

Collaborative Cooking: Circuit. In Melting Pot’s collaborative cooking environment, the primary
task is for agents to collaborate to complete recipes. In each variant, the task is slightly different as
agents must learn different coordination skills to successfully cook together. For our task-agnostic
strategy, we pre-train on the environment and deploy it to learn the Circuit variant, where two agents
must navigate around a circuit to access cooking pots and ingredients. The task-specific variant uses
a communication strategy which was learned in the Cramped variant where agents must cook under
tight space restrictions.
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Figure 4: Task-Agnostic communication strategies lead to greater rewards in novel tasks. For
each set of results, we report the mean and central 95% interval over 5 seeds. We trained for 6.4
million environment steps in Melting Pot tasks, and 12 million environment steps in VMAS tasks.
We used the same number of steps to pre-train the task-specific strategy on a similar task.

Discovery. In this VMAS task, four agents must try to discover targets. To get a positive global
reward, two out of four agents must position themselves within a small radius of a target. This is
known as covering the target and is how a target is “discovered”. Together, agents must coordinate
to discover targets as fast as possible. New targets continuously spawn as others are discovered. For
this task, the task-specific variant uses a communication strategy learned in VMAS’ Flocking task
where agents must learn to flock, much like birds do, around a moving target.

Pursuit-Evasion. The VMAS Pursuit-Evasion task is a find-and-intercept game. The agents are
pursuers and they must catch an evading target. The visibility of the pursuers is limited. They must
work together to find the target and collectively swarm around them in order to catch them as fast
as possible to achieve the highest reward. For this, the task-specific variant uses a communication
strategy learned in VMAS’ Discovery task.

We see a significant improvement in return when using task-agnostic strategies (Figure 4):

In Circuit, the task-specific baseline fails to achieve a mean reward much higher than the starting
reward. The no-comms baseline sharply rises to a strong reward, but soon plateaus, no longer
improving after around 1M steps. In contrast, our task-agnostic method improves more slowly, but
after approximately 4M steps of training, outperforms both baselines. This is likely because it takes
some time to learn how to decode the permutation-invariant latent state.

In Discovery, both the task-specific and no-comms baselines lead to a quick collapse of the reward,
followed by plateauing, after approximately 400,000 steps, failing to learn a useful representation.
Meanwhile, the task-agnostic strategy produces a better policy almost immediately, gradually im-
proving and peaking after around 10M steps. We outperform the two baselines from just after the
start and through to the end of training.

In Pursuit-Evasion, while the task-specific baseline appears to outperform the no-comms baseline,
much like Discovery, both plateau after a small number of training steps. The task-agnostic com-
munication strategy improves from the very start to the end, outperforming both baselines after only
about 1M steps.

The results show that task-agnostic communication strategies consistently enable agents to leverage
communication without relearning the communication strategy. This indicates that our approach is
a practical alternative to the task-driven methods used in the community. This is useful in the real
world, where cooperative robots engage in a variety of tasks in a shared environment. Our method
has allowed us to use a general prior (pre-trained) understanding of the environment to generalise to
novel tasks better than the baselines. Finally, while using an autoencoder may appear trivial, it is es-
sential to emphasise that our approach is distinct due to being task-agnostic. Other works (Lin et al.,
2021; Guan et al., 2022) have also explored autoencoders as a component of representation learning
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Figure 5: Our task-agnostic strategy scales out-of-distribution. We pre-trained the communica-
tion strategy with 1, 2, and 3 agents and trained the policy for 12 million environment steps. For
each set of results, we report mean and central 95% interval over 5 seeds.

for communication in MARL, but their approaches are decidedly task-specific. Consequently, it is
not possible to compare these works to ours.

4.3 GENERALISATION WITH OUT-OF-DISTRIBUTION NUMBERS OF AGENTS

In certain real-world situations, new agents may join the multi-agent team during execution to sup-
port other agents if help is required, expanding the communication network. To cope with such
dynamic scenarios, we investigate how pre-trained reconstructions of the global state generalise to
out-of-distribution (OOD) inputs. Since the PISA encoder’s latent state is fixed-size, input cardinal-
ity is independent of output dimensionality—we can encode a set of any cardinality into a constant
size latent vector. Therefore, in this experiment, we measure the performance of our communication
strategy when we have more agents, and hence larger sets, than seen during pre-training.

We pre-train our set autoencoder in the Discovery environment with 1, 2, and 3 agents, using 1M
samples for each case. Then, we train and evaluate a policy on more agents than seen during pre-
training. Under these conditions, in Figure 5, we show that our method still significantly outperforms
the baseline when we learn a policy with 4 and 5 agents, going beyond the number of agents that
we pre-trained our communication strategy with. This is evidence that our approach can elegantly
handle changes in connectivity (e.g. from communication disruptions) and can support variable
numbers of agents without fine-tuning. Even once we reach 10 agents, although the performance
gap is smaller, we continue to outperform the no-communication baseline. At this point, we are far
outside the training distribution.

4.4 DETECTING OUT-OF-DISTRIBUTION EVENTS
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Figure 6: Detecting OOD agents. We report the
mean set reconstruction error of PISA over the last
10 iterations of policy training.

We often want to detect out-of-distribution
events in an environment. For example, if a
disturbance occurs that makes it unsafe (e.g.
humans entering a robot-only operating area,
or adversarial agents accessing the communi-
cations network), we want to detect this so that
agents can safely halt or take appropriate ac-
tions. In this experiment, we show that we can
detect these OOD occurrences by comparing
the set reconstruction loss during training and
at runtime.

In Figure 6, we show how the set reconstruction
loss changes when we deploy a communication
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strategy pre-trained with 1, 2, and 3 agents on
Discovery (as in Section 4.3) to train policies
with 3 (in-distribution), 4 (OOD), and 5 (OOD)
agents in the same environment. A threshold set by the pre-training loss mean plus three standard
deviations easily detects the OOD agent counts.

Similarly, we can detect OOD observations. In the Collaborative Cooking environment, when we fix
one of the agents to receive only Gaussian noise observations (OOD), the loss exceeds our threshold
(Figure 7). Without any observation-tampering (in-distribution), this does not happen.

5 RELATED WORK

Addressing MARL’s poor sample efficiency is challenging. Prior MARL papers have neglected the
inefficiency of relearning communication strategies for distinct tasks. We addressed this by intro-
ducing task-agnostic communication strategies that can be shared for all tasks within an environ-
ment. Additionally, we support variable numbers of agents—something earlier autoencoder-based
communication strategies were unable to do.
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Figure 7: Detecting OOD observations. We
measure the mean set reconstruction error of PISA
over the last 10 iterations of policy training.

Differentiable Communication. Differen-
tiable models of communication optimise mes-
sages with respect to the objective on-policy.
Some typical examples are DIAL (Foerster
et al., 2016), CommNet (Sukhbaatar et al.,
2016), TarMAC (Das et al., 2019), Eccles et al.
(2019), HetGPPO (Bettini et al., 2023), EPC
(Long et al., 2020), SPC (Wang et al., 2023),
and Abdel-Aziz et al. (2023). All of these
methods employ task-specific communication
strategies and thus require optimising the strat-
egy for each distinct task. In contrast, our
method is task-agnostic—tasks within an envi-
ronment can share our pre-trained communica-
tion strategies. While some of these works sup-
port variable numbers of agents (population-
invariant communication), DIAL, TarMAC, Eccles et al. (2019) and Abdel-Aziz et al. (2023) do
not. Our approach supports population-invariant communication in addition to task-agnostic com-
munication through a fixed-size latent state in the autoencoder.

Self-Supervised Communication. Several recent works have used self-supervised and contrastive
objectives to train differentiable communication strategies (Lin et al., 2021; Guan et al., 2022; Lo
& Sengupta, 2022; Lo et al., 2023). All of these methods learn the communications policy online,
biasing the communications towards a specific objective, while we learn it offline without any bias.
Hence, they are not task-agnostic strategies. Furthermore, none of these methods support variable
numbers of agents as ours does.

Pre-training in RL. Contemporary works in RL have utilised pre-training to leverage prior knowl-
edge when training policies (Cruz et al., 2017; Singh et al., 2021; Yang & Nachum, 2021; Schwarzer
et al., 2021; Seo et al., 2022). Fundamentally, they all attempt to learn representations that are useful
for solving the underlying MLP through various unsupervised methods. While all of these works
focus on single-agent RL, we utilise pre-training to improve the efficiency of MARL.

Other notable related work includes natural language communication, such as Eloff & Engelbrecht
(2021), where messages are passed through a restricted discrete set of words. Unlike our approach,
this is not continuously differentiable and, due to the selection of communication symbols and RL-
based communication training, is not task-agnostic.

6 CONCLUSION

We proposed task-agnostic communication strategies to eliminate the inefficiency of task-specific
communication, using a set autoencoder to reconstruct the global state from local observations. Our

9
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approach is guaranteed to converge under modest assumptions, with an upper bound on regret due
to approximating the Markovian state. Empirically, it outperforms task-specific strategies in novel
tasks, scales to more agents than in pre-training, and detects out-of-distribution events during policy
training using pre-training losses.

Limitations. For simplicity, we use full connectivity between agents. However, this is not a techni-
cal limitation since it can be overcome by propagating information via aggregation (e.g. aggregating
sets of PISA encodings with another PISA). Additionally, collecting pre-training samples with a
scheme such as curiosity-driven exploration (Pathak et al., 2017) could lead to more efficient repre-
sentations of the Markovian state from the autoencoder as it samples sparse states more frequently.

Nonetheless, as it stands, our method is adaptable to various learning paradigms, not just RL, be-
cause it pre-trains communication strategies in a self-supervised manner. As we avoid end-to-end
training, we also expedite RL policy training by tuning fewer weights. Additionally, having pre-
trained an autoencoder, our policy can use sparse reward signals more efficiently as it does not need
to learn environment-specific features. Lastly, our method opens up new applications, allowing
changing policies at runtime, or running heterogeneous policies on different collaborative agents.

REPRODUCIBILITY STATEMENT

Our complete source code is provided in the supplementary materials, including instructions to re-
produce every experiment. In addition, we provide extensive details of our network architectures
(Appendix C), training and pre-training hyperparameters (Appendix D and E), and compute re-
sources (Appendix G).
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Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 19561–19579, Baltimore, MD,
USA, 2022. PMLR. URL https://proceedings.mlr.press/v162/seo22a.html.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
Data-Driven Behavioral Priors for Reinforcement Learning. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?id=Ysuv-WOFeKR.

Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning Multiagent Communication with
Backpropagation. In Advances in Neural Information Processing Systems, volume 29, Barcelona,
Spain, 2016. Curran Associates, Inc. URL https://proceedings.neurips.cc/
paper/2016/hash/55b1927fdafef39c48e5b73b5d61ea60-Abstract.html.

12

http://arxiv.org/abs/2203.03344
https://openreview.net/forum?id=SJxbHkrKDH
http://proceedings.mlr.press/v70/pathak17a.html
http://proceedings.mlr.press/v70/pathak17a.html
http://dl.acm.org/citation.cfm?id=3332052
http://arxiv.org/abs/1707.06347
https://proceedings.neurips.cc/paper/2021/hash/69eba34671b3ef1ef38ee85caae6b2a1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/69eba34671b3ef1ef38ee85caae6b2a1-Abstract.html
https://proceedings.mlr.press/v162/seo22a.html
https://openreview.net/forum?id=Ysuv-WOFeKR
https://proceedings.neurips.cc/paper/2016/hash/55b1927fdafef39c48e5b73b5d61ea60-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/55b1927fdafef39c48e5b73b5d61ea60-Abstract.html


Under review as a conference paper at ICLR 2024

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy
Gradient Methods for Reinforcement Learning with Function Approximation. In Ad-
vances in Neural Information Processing Systems, volume 12, Denver, CO, USA,
1999. MIT Press. URL https://proceedings.neurips.cc/paper/1999/hash/
464d828b85b0bed98e80ade0a5c43b0f-Abstract.html.

Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning Deep Representations for
Graph Clustering. In Carla E. Brodley and Peter Stone (eds.), Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada, pp.
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A MODIFICATIONS TO TASKS AND ENVIRONMENTS

As alluded to in Section 4.1, we enforce that Melting Pot tasks are Dec-MDPs with a global reward
R. In the default case, an agent i receives an individual reward ri. We modify this such that each
individual agent reward ri is summed to make a global reward R =

∑n
i ri and this global reward is

shared between all agents instead of them receiving their individual reward.

In all collaborative cooking task variants, we enable a pseudo-reward that rewards agents with +1 for
picking up a tomato and putting it in a pot. Without this pseudo-reward, these tasks have extremely
sparse rewards that make them highly challenging to learn. This shaped reward assists in learning
on these typically very difficult tasks.

In VMAS, we modify the observation spaces of Discovery and Flocking to be identical by replacing
Discovery’s redundant additional position vector feature with a two-dimensional zero vector and
reducing the number of LiDAR rays from 15 to 12. This allows us to use communication strategies
learned in Flocking on Discovery. We argue that Flocking and Discovery are two tasks in the same
environment because the obstacles in Flocking can be treated as targets to derive the Discovery task
from Flocking (along with a change of reward).

Furthermore, we designed and created Pursuit-Evasion ourselves based on both Flocking and Dis-
covery. This is another task that we argue is in the same environment. It can be derived from
Flocking if we treat Flocking’s target as a robber, and the agents as the police after modifying the
reward. By extension, it can also be derived from Discovery.

B PERMUTATION-INVARIANT SET AUTOENCODER ARCHITECTURE

The set autoencoder architecture is based on Kortvelesy et al. (2023, Figure 1). It encodes a variable-
sized set of elements {x1, x2, . . . , xn} where xi ∈ Rn into a fixed-size permutation-invariant latent
state z ∈ Rz . It is trained with a self-supervised reconstruction objective to decode the latent state
and recover the set.

Encoder. The encoder takes the input set {x1, x2, . . . , xn} and maps each element to a key ki
according to some criterion and encodes the keys using a network ψkey. Simultaneously, the encoder
takes the input set elements and also encodes them into values using a separate network ψval. The
encoder then takes the element-wise product of the corresponding key and value embeddings and
sums them all. Finally, a cardinality embedding λenc(n) is added to this sum to form the final latent
state z.

Decoder. The decoder takes the latent state z and predicts the cardinality of the set with a network
λdec. The predicted cardinality is used to create a set of keys as in the encoder and the keys are
mapped to queries by a network ϕkey. Each query is element-wise multiplied by the latent state and
a final decoder network ϕdec recovers the set from these embeddings.

Further details may be found in Kortvelesy et al. (2023). The hyperparameters used in our work are
detailed in Appendix E.

C POLICY NETWORK ARCHITECTURES

When training to solve Melting Pot tasks, we independently train the policy of each agent with PPO.
For each agent, we have independent three-layer MLPs as our policy and value networks. The policy
network’s hidden layer is 128 neurons wide, while the value network’s hidden layer is 1024 neurons
wide. We initialise the last layer of the policy network and value network using a normal distribution
with zero mean and 0.01 standard deviation in line with the suggestions made by Andrychowicz et al.
(2020).

Unlike Melting Pot, as no heterogeneous behaviour is required for our VMAS tasks, we train a
policy that’s shared between all agents with PPO. For each agent, we have independent three-layer
MLPs as our policy and value networks. For Discovery, the policy and value networks have a 256-
wide hidden layer while for Pursuit-Evasion, the hidden layers are 512-wide. We initialise the last
layer of the policy and value networks with the same normal distribution as we use for Melting Pot.
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D TRAINING HYPERPARAMETERS

Our training hyperparameters are dependent on the multi-agent suite and task and are described in
Table 1 and 2. We always use fixed seeds 0-4 for every experiment. Specifically for Pursuit-Evasion,
we use the defaults for the parameters in Table 2 except for train batch size, SGD minibatch size,
training iterations, and rollout fragment length.

Table 1: Melting Pot training hyperparameters.

Parameter Value
Train batch size 6400
SGD minibatch size 128
Training iterations 1000
Rollout fragment length 100

Table 2: VMAS training hyperparameters.

Parameter Value
Train batch size 60000
SGD minibatch size 4096
Training iterations 200
Rollout fragment length 125
KL coefficient 0.01
KL target 0.01
λ 0.9
Clip 0.2
Value function loss coefficient 1
Value function clip ∞
Entropy coefficient 0
η 5e-5
γ 0.99

E PRE-TRAINING HYPERPARAMETERS

For Melting Pot environments we train an image encoder in addition to PISA. Observations are first
encoded with the image encoder before this embedding is passed to PISA. For the image encoder, we
use a 3-layer CNN encoder and decoder as specified in Table 3. Our training data is gathered from
observations of all agents generated with a uniform random policy rolled out over 1M environment
steps. We train the image encoder with a mini-batch size of 32 for approximately 1000 iterations or
until the loss has clearly converged.

Table 3: Melting Pot image autoencoder architecture.

Layer Type In ch. Out ch. Kernel Stride Padding Activation
Encoder Conv2D 3 16 3 2 1 ReLU

Conv2D 16 32 3 2 1 ReLU
Conv2D 32 64 3 2 1 ReLU
Linear 1600 128 - - - -

Decoder Linear 128 1600 - - - -
ConvTranspose2D 64 32 3 2 1 ReLU
ConvTranspose2D 32 16 3 2 1 ReLU
ConvTranspose2D 16 3 3 2 1 Sigmoid
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For the set autoencoder, we use the default implementation of PISA provided in the author’s reposi-
tory3. We train PISA with a latent dimension of 256 with a batch size of 32 for 15000 iterations or
until the loss has clearly converged.

Unlike Melting Pot, we do not train an image encoder for VMAS environments as observations are
already feature vectors. We train PISA with a latent dimension of 72 with a batch size of 256 for
15000 iterations where the loss has clearly converged.

Since VMAS environments are extremely simple, we find that uniformly randomly sampling from
the observation space to generate pre-training data works well. This leads to learning a strong
autoencoder where the reconstruction loss is very small during policy training. Hence, we use
this method in our final results rather than a uniform random policy. Both lead to task-agnostic
communication strategies as they are reward-free.

F CHOOSING MARL BENCHMARKS

While other well-known MARL benchmarks exist, we choose not to use these as they either do not
require communication to solve (Samvelyan et al., 2019), lack sufficient task variation (Samvelyan
et al., 2019; Ellis et al., 2022; Kurach et al., 2020), or are not Dec-MDP/POMDPs (Kurach et al.,
2020).

While SMAC (Samvelyan et al., 2019) is commonly used in prior literature, many of its environ-
ments can be solved with open-loop policies (i.e. with observations of just the agent ID and time
step) (Ellis et al., 2022). As a result, communication is not necessary to solve it. While SMACv2
(Ellis et al., 2022) resolves some of these issues, the objective remains simply to kill all the enemy
agents. Consequently, this environment does not have enough task variation to test task-agnostic
communication, the main contribution of this paper.

Similarly, GRF (Kurach et al., 2020) is not a suitable benchmark to evaluate communication as it
provides full pixel-frame observations, thus giving the entire visual state to each agent and eliminat-
ing any need for communication. Moreover, GRF allows control over only a single “active” player
at a time. Since only one agent is active at any time step, communication is not applicable in the
usual sense, and the environment is neither a Dec-MDP nor Dec-POMDP. Like SMAC, GRF also
does not feature task variation as the only objective is to win at the game of football.

Melting Pot (Agapiou et al., 2023) represents similarly challenging tasks. Like SMAC and GRF, it
features high-dimensional pixel-based observations and complex objectives. It is a new, but state-
of-the-art benchmark. VMAS (Bettini et al., 2022) is also a suitably challenging benchmark. The
visualisations in VMAS appear simple, but the dynamics are complex, going beyond kinematics by
simulating elastic collisions, rotations, and joints. Thus, while the environments are conceptually
basic, VMAS still represents a realistic challenge to agents.

G COMPUTATION, HARDWARE, AND IMPLEMENTATION DETAILS

We implemented our work with the Ray RLLib library (version 2.1.0 for VMAS and 2.3.1 for
Melting Pot) and wrote all our models with the PyTorch framework. Our models and policies were
primarily trained on individual NVIDIA A100 GPUs with 40GiB of memory and NVIDIA RTX
2080Ti GPUs with 11GiB of memory. Experiments were conducted with 5 workers for VMAS
with 32 vectorised environments and 2 workers for Melting Pot. In each case, we used a single
driver GPU while environment simulations were carried out on CPU. Training a policy for 12M
environment steps on a VMAS task took approximately 6-12 hours, while 6.4M environment steps
on Melting Pot took about 18-24 hours. Pre-training the image encoder took about 6 hours and
pre-training PISA took about 1 hour for VMAS and 6 hours for Melting Pot.

3https://github.com/Acciorocketships/SetAutoEncoder/tree/main
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