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Abstract

We consider the challenging problem of using
domain knowledge to improve deep reinforce-
ment learning policies. To this end, we propose
LEGIBLE, a novel approach, following a multi-step
process, which starts by mining rules from a deep
RL policy, constituting a partially symbolic repre-
sentation. These rules describe which decisions the
RL policy makes and which it avoids making. In
the second step, we generalize the mined rules us-
ing domain knowledge expressed as metamorphic
relations. We adapt these relations from software
testing to RL to specify expected changes of actions
in response to changes in observations. The third
step is evaluating generalized rules to determine
which generalizations improve performance when
enforced. These improvements show weaknesses
in the policy, where it has not learned the general
rules and thus can be improved by rule guidance.
LEGIBLE supported by metamorphic relations pro-
vides a principled way of expressing and enforcing
domain knowledge about RL environments. We
show the efficacy of our approach by demonstrat-
ing that it effectively finds weaknesses, accompa-
nied by explanations of these weaknesses, in eleven
RL environments and by showcasing that guiding
policy execution with rules improves performance
w.r.t. gained reward.

1 Introduction

Deep reinforcement learning (RL) has shown impressive
feats. Starting from deep Q-learning [Mnih et al., 2015],
where a single network architecture successfully played
dozens of Atari games, deep RL has moved on to more
complex domains and achieved super-human performance in
games, like Go [Silver et al., 2016] and chess [Silver et al.,
2018], and it mastered StarCraft [Oriol Vinyals et al., 2019].
Despite the impressive success in winning strategy games, de-
ploying deep RL agents faces challenges in other domains.
First, the decision-making of RL agents needs to be more ac-
curate, making it hard to trust their decisions. Second, suc-
cessful applications are often not the result of RL alone.

A thorough analysis of an agent’s behavior may help un-
derstand its “’reasoning” — e.g., chess masters found that Al-
phaZero highly values king mobility [Nielsen, 2019]. Ex-
plainable AI (XAI) methods strive to alleviate the analysis of
policies by providing human-understandable explanations of
an RL agent’s decision. Relating to the second point, Alp-
haZero combines RL with Monte Carlo tree search (MCTS)
to better evaluate situations. Thus, it considers the application
domain, as MCTS works well for decision-making in board
games [Chaslot ef al., 2008].

Contributions. We propose poLicy Evaluation Gulded By
ruLEs (LEGIBLE), a rule-based framework to create expla-
nations of an RL policy’s decisions and to evaluate and im-
prove the RL policy under consideration, supported by do-
main knowledge. LEGIBLE comprises three main methods
that build upon each other. 1. Mining Rules: We first mine
rules that partially represent the policy. These rules are split
into positive, denoting action choices, and negative rules, de-
noting action avoidance in particular situations. They enable
human comprehension of a policy’s decisions and symbolic
reasoning and manipulation. 2. Generalizing Rules: We
propose an approach to generalize mined rules to other situa-
tions through domain knowledge about symmetries and rela-
tions known about the environments. Borrowing the concept
from software testing, we formalize the generalization via
metamorphic relations [Chen ef al., 2018]. 3. Rule-Guided
Execution: Finally, we propose to guide the execution of
a policy in the RL environment with generalized rules, i.e.,
enforce the decisions prescribed by rules, which serves two
purposes. 3.1. Evaluation: Rule-guided execution helps to
identify weaknesses in the policy. If we find that enforcing
generalized rules corresponding to a certain rule » improves
the RL agent’s performance, we can deduce that the original
rule r is likely adequate. However, the policy has not learned
to decide adequately in related situations, i.e., we identify
a weakness in the policy’s generalization. Additionally, the
generalized rules explain the cause of the weakness. 3.2. Pol-
icy Improvement: Finally, guiding policy execution with
the composition of generalized rules, which the evaluation
deemed useful, creates a new policy that improves upon the
original policy. We demonstrate these aspects of LEGIBLE
in experiments with policies trained in six PAC-Man RL en-
vironments [DeNero and Klein, 2010] and five environments
from Farama’s highway—-env [Leurent, 2018].



Related Work. Our work is related to explainable RL
(XRL), runtime enforcement, and evaluation of RL poli-
cies. [Milani er al., 2024] provide an excellent survey on
XRL including a taxonomy and evaluation criteria. Learn-
ing rules falls into the most popular taxonomic category of
feature importance and the subcategory Convert Policy to an
Interpretable Format. Although symbolic rules as an inter-
pretable format are not popular yet, decision trees which are
related to rules are often used [Bewley and Lawry, 2021;
Guo and Wei, 2022; Bastani et al., 2018; Milani et al.,
2022]. Several neuro-symbolic approaches have been pro-
posed for RL, where neural networks encode symbolic rela-
tions and logical rules. Examples include neural logic ma-
chines [Dong er al., 2019] and neural logic RL [Jiang and
Luo, 2019], and relational approaches [Delfosse et al., 2023;
Zambaldi et al., 2018] that enable the extraction of symbolic
information and rules from learned policies. In contrast to
these works, we consider standard architectures used in deep
RL and extract partial rule-based representations of learned
policies. Moreover, we demonstrate the application of rules
beyond explanations for evaluation and runtime enforcement.

There are two main strands of work in RL policy evalu-
ation: off-policy evaluation (OPE) and testing of RL poli-
cies. OPE [Uehara et al., 2022; Chandak et al., 2021;
Jiang and Li, 2016] estimates the expected performance of
a new policy using existing data from a previously learned
policy. Since we generate new data, our approach to evalu-
ation is closer to RL testing [Tappler er al., 2022; Tappler et
al., 2024b; Tappler et al., 2024a; Zolfagharian et al., 2023;
Li er al., 2023; Biagiola and Tonella, 2024], which creates
challenging situations to test policies in them. These ap-
proaches apply software testing concepts, like search-based
testing, to RL. To our knowledge, we are the first to ap-
ply metamorphic testing in RL, which is popular for test-
ing other machine-learning models [Zhang er al., 2022;
Xie et al., 2011; Guo er al., 2020] due to its applicabil-
ity when absolute correctness criteria are not available. To
test policies, we perform rule-guided execution of policies,
which can be considered a type of runtime enforcement [Fal-
cone, 2010]. In RL, runtime enforcement has gained pop-
ularity in the form of shielding [Alshiekh er al., 2018;
Odriozola-Olalde et al., 2023], which enforces pre-specified
properties like safety. In contrast, we enforce generalizations
of learned rules to evaluate these generalizations.

2 Preliminaries

2.1 Reinforcement Learning

An RL agent learns a decision-making policy for a task by
trial and error. At each step, the agent observes the environ-
ment’s state and performs an action, triggering a stochastic
state transition. It then receives feedback in the form of a nu-
merical value, called reward, telling it how well it is doing,
and the new state of the environment. During training, the
agent learns how to maximize the cumulative reward it gets.
Let A(S) denote a probability distribution over a set S.
Formally, an agent interacts with a Markov decision process
(MDP) M = (S, s0, A, P, R) consisting of a set of states S,
an initial state sy € S, a set of actions .4, a probabilistic tran-

sition function P : S x A — A(S), and a reward function
R:S x AxS — A(R). The agent’s behavior is character-
ized by a policy 7 : S — A(A), defining a distribution over
actions to take in given states. Executing a policy 7 within an
environment modeled by an MDP M yields traces of the form
50,@0,71, 815+ --50n—1,Tn, Sn with Ty ~ R(Si—la Aj—1, Si)v
P(siya:)(si41) > 0, and 7(s;)(a;) > 0. Such a finite execu-
tion is also called an episode. The agent’s goal is to learn
a policy that maximizes the discounted cumulative reward
R =E(};2,~"ri41) for a discount factor y € [0,1).

To handle large state spaces, RL algorithms often employ
neural networks as function approximators, e.g., for state-
action value functions [Mnih ef al., 2015]. Since we mostly
focus on extracting symbolic knowledge from policies in this
paper, we do not detail the specifics of RL algorithms.
State-Action Value Function. Q-learning [Watkins and
Dayan, 1992] and its deep variants [Mnih et al., 2015;
van Hasselt et al., 2016] are based on the notion of Q-
function, or state-action value function. This function is de-
fined as Q- (s,a) = E[> i 7'rit1]s0o = s,a0 = al, i.e., it
is the expected return after executing a in state s and then fol-
lowing policy 7. We focus mainly on Q-learning agents and
use the Q-function to identify actions that an agent avoids in
a given situation, i.e., actions with low Q-values.

2.2 [Explainable & Interpretable Al

Explainable AI (XAI) methods create human-understandable
explanations of individual decisions or predictions of mod-
els that are otherwise not interpretable, like neural networks,
while interpretability techniques commonly extract useful in-
formation, like interpretable surrogate models, from non-
interpretable models [Molnar, 2022]. To enable human com-
prehension, explanations commonly focus on the most rel-
evant factors leading to a decision, like the most important
input features. This working principle makes XAl techniques
good candidates for creating abstractions for symbolic AI. We
use a model-agnostic XAl technique for explaining individ-
ual predictions, called LIME [Ribeiro er al., 2016], and we
use rules as (partial) surrogate models of RL policies.
LIME. Treating the choice of action a through a policy 7
in state s as a classification task, LIME can learn a local in-
terpretable surrogate model around s. It samples new data
points around s and queries 7 to learn the surrogate model,
which explains what features of s lead to the choice of a and
provides weights describing the strength of influence. As we
consider states that are vectors containing information about
the environment, we use LIME for tabular data. In this case,
it samples new values in the neighborhood of numerical fea-
tures and values from a training set for categorical features.
We use the Python implementation of LIME [Marco Tulio
Ribeiro et al., 2021], which provides an explanation for pre-
dicting every available class, i.e., for choosing every available
action. Several alternatives to LIME exist, like SHAP [Lund-
berg and Lee, 2017], but we have chosen LIME as it is reason-
ably fast and showed promising results in experiments. Since
it is model-agnostic and works for image and textual data,
LIME enables us to easily adapt to changing representations
of 7 and to handle additional types of features.
Interpretability & Rules. RL interpretability is approached



in different ways, e.g., post-hoc interpretability for a DRL
policy m may be achieved by learning a decision tree pol-
icy from 7 through imitation learning [Bastani et al., 2018].
We learn rule-based representations of policies, which, like
decision trees, enable manual comprehension and symbolic
reasoning [Apté and Weiss, 1997]. The rules are of the form
a4+ cy,...,Cn, specifying to take action a if conditions c; to
cn, hold. We have chosen rules, as they conveniently enable
learning partial representation of a policy. For rule learning,
we use the algorithm RIPPER [Cohen, 1995], where we treat
the selection of actions as a classification task from states to
actions. To clearly distinguish between reinforcement learn-
ing and rule learning, we refer to the latter as rule mining.

2.3 Metamorphic Testing

Metamorphic testing (MT) [Chen et al., 2018] is a technique
for generating test cases and deciding on test verdicts. It is
based on metamorphic relations (MRs), which define a rela-
tion between a sequence of a program’s inputs and the cor-
responding outputs. MRs express the output changes in re-
sponse to input changes. Consider, e.g., a program imple-
menting the factorial, an MR could be defined as ((n,n +
1), (r,r - (n +1))), where the first pair represents two inputs
and the second pair represents two outputs denoting that if
n! = r then (n + 1)! = r - (n + 1) should hold. Note that
MRs do not specify correctness criteria in absolute terms but
as relations. This makes MT a popular choice for deciding
on test verdicts in machine learning [Zhang et al., 2022], e.g.,
in image recognition [Dwarakanath er al., 2018]. While it is
hardly possible to completely characterize a cat, MRs can ex-
press properties like if an image shows a cat, then a rotated
version of that image still shows a cat. In this paper, we adapt
MRs from programs to RL agents, by forming relations over
states (inputs to the agent) and actions (outputs of the agent)
to express domain knowledge. Unlike in MT, we do not make
assumptions about the correctness of specific chosen actions.

3 LEGIBLE

This section presents an overview of poLicy Evaluation
Gulded By ruLLEs (LEGIBLE), our rule-based framework
for policy evaluation and policy improvement, which com-
prises three main steps, depicted in Fig. 1. Given a deep RL
policy, Step 1 learns symbolic rules that (partially) capture the
decision-making of the policy. Rules are horn clauses where
the head specifies an action and the body defines states where
the rule should be applied. We distinguish between positive
rules, for situations where the policy chooses a certain action,
and negative rules describing situations where it avoids a cer-
tain action. Rule mining applies two types of criteria: (1) the
rules should reflect what features are important to the deci-
sions of the RL policy under consideration and (2) the rules
should be accurate and cover as many situations as possible,
where we favor accuracy. Hence, mined rules explain which
decisions are important and occur often.

Step 2 generalizes rules to new situations that are related
to the originally covered situations through user-specified
relations. For this purpose, we use metamorphic relations
(MRs) [Chen er al., 2018] from software testing, which usu-
ally specify how program outputs should change in response

to input changes. Likewise, we use them to specify how de-
cisions should change in response to a change in the state.
MRs generally need to be created manually and they reflect
some domain knowledge about the environment, like symme-
try constraints, i.e., through Step 2, we provide a method to
introduce symbolic domain knowledge into RL.

Finally, in Step 3 we apply the generalized rules during ex-
ecutions of the RL policy under consideration. Actions pre-
scribed by rules generalized from positive rules are enforced
while actions of negative generalized rules are blocked. In
this way, we determine which rules generalize to improved
behavior in the RL environment. Conversely, such improve-
ments reveal weaknesses in the RL policy since they show
that the policy makes useful decisions in some specific situ-
ations but it does not generalize these decisions to all related
situations. Hence, Step 3 provides a way to evaluate RL poli-
cies and a basis for policy improvements by enforcing sets of
generalized rules that influence behavior positively.

Setting. For the remainder of this paper, let 7 be the greedy
policy of a Q-learning-based agent and Q: S x A — R be its
Q-function. A state s is a vector in R™, where n is the number
of features, f; for i € [1..n] denotes the i feature, and f?
denotes its value in s. To enable rule learning, we consider
environments with a discrete action space and discretize the
state space by defining intervals for every feature separately.
To simplify the presentation, we write f; = k to denote f; €
(Li k, wi k] where [l; ., u; k] is the k™ interval for feature i.

Running Example. Figure 2 shows a small PAC-Man envi-
ronment from [DeNero and Klein, 2010], which serves as a
running example. The agent can move in the four cardinal
directions or do nothing at every time step. Its goal is to eat
all pellets (small dots). Colliding with ghosts terminates an
episode unless they are vincible, which happens for a fixed
amount of time after the agent eats a capsule (large dot). The
observable states include information on the location of walls,
the distance to ghosts, capsules, and pellets, the direction to-
wards these objects, and other data. For efficient learning, we
use a one-hot encoding for categorical features, e.g., features
9 to 12 describe the direction toward the closest pellet, where
f§ = 1 means that the closest pellet is north.

The agent receives a reward of 10 for eating a pellet, 200
for eating a ghost (collision when vincible), 500 for complet-
ing the level, —500 for colliding with an invincible ghost, and
—1 every time step to encourage fast completion.

4 Step 1: Rule Mining

To create training data for rule mining, we execute the agent
in its environment for n,,;. episodes to sample traces, i.e.,
state-action-reward sequences. From these traces, we collect
all observed state-action pairs (s,a) € S x A in a multiset £
to which we refer as experiences. We treat rule mining as a
classification problem from states to actions based on training
data F, where we aim to learn rules that (1) represent what
is important to the agent’s decisions and that (2) are accurate
and have high coverage. In the following, we detail the form
of rules we consider and how we learn them.
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Figure 1: Overview of the proposed approach

Figure 2: Small PAC-Man environment

Rules. A rule p is of the form:

p = ®action(a) + /\ fi = v;, where (D
iel

® € {+,—} is the rule polarity, and I C [l..n] is a set of
(feature) indices. We refer to the conjunction of conditions as
the rule body, denoted body(p), and to the action consequent
as the rule head. Given a state s which satisfies /\z cr Vi = s
we say that p triggers in s, denoted s = p. f ® = —, pis
a negative rule, denoting action « is avoided if s &= p. A
positive rule with ® = + denotes that a should be taken.
Feature Importance. To determine which features are im-
portant to the policy’s decision, we select 7 f.q¢ €xperiences
from E and apply LIME to generate explanations for the de-
cisions of . The explanations quantify the importance of a
feature f; to perform or not perform an action a. For each f;,
we compute the sum of importance values from the 1 f¢q; €x-
planations, which we denote by imp(®, a, f;), representing
the importance of feature f; to take or avoid a.

Mining Rules. We apply the rule learning algorithm
RIPPER [Cohen, 1995] for every combination of action and
rule polarity individually. This approach enables more effec-
tive mining of negative rules compared to posing rule mining
as a multi-class classification problem for all actions. Hence,
we select two datasets from E for every action-polarity com-
bination, which rules shall distinguish: the inclusion dataset
inc(a,®) containing positive examples and the exclusion
dataset exc(a,®). To account for feature importance, we
adapt RIPPER’s rule growing. Instead of solely targeting
coverage by optimizing FOIL’s information gain during rule
growing, we maximize the product of FOIL’s information
gain and feature importance imp(®, a, f;).

The inclusion dataset inc(a, +) for mining positive rules
contains all (s,a) from E, i.e., experience matching action
a, and the exclusion dataset contains all (s,a’) from E s.t.
a’ # a. To mine negative rules, we add all (s,a’) where
a’ = argmin, Q(s,a) in inc(a, +) and we add all (s, a) to
exc(a,—). Following the rule mining through RIPPER, we

East
Figure 3: State-action pairs related by fr = (0, 2,62, 64, =).

filter rules by imposing bounds on minimal accuracy and cov-
erage. We evaluate the accuracy of a rule by checking if it
agrees with the experiences from a validation set. Coverage
refers to the ratio of times that a rule triggers, which is a com-
mon optimization criterion of rule learning algorithms.

Running Example. In the PAC-Man environment, we learn
rules, such as p; = —action(0) <+ feo = 0 and py =
—l—action(O) — fo=1AN f50 =1A f62 =1A f65 = 1.
Both predicate on action 0, i.e., going north. Rule p; says
that PAC-Man avoids trying to go north if there is a wall, as
fe2 = 0 means that going north is not possible. The second
rule ps says that the agent learned to go north if there is a pel-
let in the north direction (fy = 1), Ghost 2 is west (f50 = 1),
and there is no wall to the north (fg2 = 1) and west (fg5 = 1).

5 Step 2: Rule Generalization

The rules provide insights into decisions that the policy
learned to be beneficial. The intuition behind rule generaliza-
tion is that often there are symmetries in the environment and
the agent may have learned how to act in one situation, but
not in corresponding symmetrical situations. More generally,
situations are often related through relations that can be ex-
pressed symbolically. Borrowing the concept from software
testing, we refer to these symbolic relations as metamorphic
relations (MRs). We define MRs for RL based on feature re-
lations that relate actions and individual features of states.

Definition 1. A feature relation fr is a tuple (a,d’,i,j, R)
with R C R x R describing a relation between features i and
J in state-action pairs. Two state-action pairs (s1,a1) and
(s2,a2) are feature-related by fr denoted (s1,aq) fr (s2, as)
iffar = ahaz = a'A(f;*, f7?) € R. A metamorphic relation
mr for RL is a set of feature relations defined on the same
actions a and a'. Given sa; = (s1,a1) and say = (82, a2),
we define sa; mr sas iff say fr sas for all fr € mr, ie., an
MR relates multiple pairs of features of state-action pairs.

Running Example. Figure 3 shows two PAC-Man state-
action pairs related by (0, 2,62, 64, =), where = simply de-
notes the equality relation. On the left, PAC-Man goes north
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action with action 0 and there is no wall to the north, repre-
sented by f§2Z = 1. On the right, PAC-Man goes east with
action 2 and there is no wall to the east fgz =1,1i.e., we have
fg; = fgj satisfying the relation from fr.

We define MRs based on feature relations to enable con-
venient, compositional definitions and extend them to rules
as follows. Let fr = (a,d’, j, k, R), p1 = ®action(ay)
/\ieh fi = vi1, and py = ®2action(a2) — /\ielz fi = vio:
P1 fr P2 iff R = X9, a1 = a, g = CL/, and either fj =
x € body(p1) and fr, = y € body(pz) such that (x,y) € R
orj ¢ I and k ¢ I». Rule bodies must either include facts
satisfying the relation R, or they should not predicate on the
respective features. Analogously to states, we extend MRs
to rules denoted by p; mr ps. Through sets of MRs M, we
automatically generalize each positive and negative rule p; to
a set of positive or negative rules given by the fixed point of
Mgen(pj) = {pi} U U{Mgen(p) | pj mr p,mr € M3},
Running Example. We illustrate rule generalization with
rule py = —action(0) < fg2 = 0 and feature relation
fr = (0,2,62,64,=) from above. An MR mr = {fr} in-
cluding only fr describes a 90-degree clockwise rotation of
the action and the only relevant feature from north to east.
Action 0 and 2 describe going north and east, respectively.
Features 62 and 64 indicate the absence of a wall to the north
and east, respectively, e.g., fea = 0 means that there is a
wall to the east. Hence, if po = —action(2) + fes =
0 then p; mr py, because p; fr po, which holds because
polarity(p1) = polarity(pz), head(p1) = 0, head(p2) =
2, and fe2 = 0 € body(p1), fea = 0 € body(p2) with 0 = 0.
The rule ps can be automatically generated and states to not
go east if there is a wall. Enforcing it may improve perfor-
mance if the agent has not learned to generalize from p; to
p2, because trying to go into a wall results in a reward of —1
as the agent stays in its location in such a case.

6 Step 3: Guiding Agents with Rules

To evaluate 7, we propose to first execute 7 without rule guid-
ance and then guide 7 with each rule set M., (p;) separately
for a set M of MRs. By comparing the gained cumulative
reward, we determine which generalized rules improve per-
formance and thus reveal weaknesses of 7.

Algorithm 1 monitors the execution of 7 for n episodes and
enforces rules if they trigger. It assumes that the environment
provides RESET and STEP operations, which are commonly
part of the interface to RL environments, like the Gymnasium
API [Towers et al., 2024]. After resetting the environment to
start an episode, in every step, Line 5 checks which rules trig-
ger. If a single positive rule triggers (Line 6), we enforce it.
Otherwise — there is no positive rule or a conflict between
positive rules — we disable all actions of negative rules in
Line 10 by setting their Q-values to negative infinity. After
that, we choose the action with the highest Q-value or a ran-
dom action if all actions have been disabled. Furthermore,
we could add additional randomness to the action choices.
Finally, Algorithm 1 returns the average cumulative reward
and the corresponding standard error. While generalization
does not change rule polarity, Algorithm 1 supports combin-
ing rules generalized from rules with different polarity.

Algorithm 1 Policy evaluation guided by Rules

Input: Q-function @, set of gen. rules G, # eval. episodes n
Output: Average Cumulative Reward

I: Rews «+ ()

2: fori < 1ton do

3: s < RESET(), rew < 0

4:  while s not terminal do

5 Gt « {(action(r), polarity(r)) | r € G,s = r}
6: if [{(a,+) € G¢}| = 1 then

7: act < a

8: else

9: q < Q(87 )

10: q(s,a) + —oo for (a,—) € G¢

11: act < argmax, q(s, a)

12: s, < STEP(s,act), rew < rew +r

13:  APPEND(Rews, rew)
14: return mean(Rews), stderr(Rews)

7 Experiments

This section presents experiments on the application of
learned and generalized rules. First, we show how gener-
alized rules help detect weaknesses in RL policies through
rule-guided execution and how rules can explain the identi-
fied weaknesses. After that, we demonstrate the RL policy
improvement through rule-guided execution.

Setup and Environment. All experiments are based on
RL policies trained in six PAC-Man levels [DeNero and
Klein, 2010] and five highway-env [Leurent, 2018] en-
vironments using stable-baselines3 [Raffin et al., 2021]. The
PAC-Man levels differ in size (small, medium, and original)
and the presence of capsules. We trained DQN [Mnih et al.,
2015] policies for 2.5 - 105 steps in the small and medium
PAC-Man environments with 69-dimensional states and for
5 - 10° steps in the original-sized environments with 117-
dimensional states. In highway-env, we trained DQN
policies for 5 - 10° steps to navigate in driving scenarios, like
merging onto a highway. We configured highway-env to
create observations relative to the ego vehicle, comprising 7
properties of the ten closest vehicles, like their relative po-
sitions. Every training run is repeated five times and the
resulting policies provide the basis for the experiments be-
low. Code and data from the experiments are available at
https://doi.org/10.6084/m9.figshare.28569017.

We mine rules for all environments using the same setup,
except for the discretization of states. In the PAC-Man en-
vironments, we use the decile discretization provided by
LIME [Marco Tulio Ribeiro et al., 2021], which discretizes
each numerical feature into intervals corresponding to deciles
calculated from the data. Categorical features, like cardi-
nal directions to the closest food, are left unchanged. The
highway—-env environments do not include categorical fea-
tures and there we normalize and discretize each feature into
ten intervals. For both types of environments, we sample
nrule = 600 episodes to generate experiences for rule mining
and impose a minimal accuracy of 0.9 and a minimal cover-
age of 0.01 on rules, discarding all other rules.

For the remainder of this section, let 7w denote a trained
policy, R be a set of rules learned from 7, and M be a set
of MRs. The MRs for PAC-Man encode 90-degree clock-
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wise turns from every cardinal direction, i.e., from every
rule, we generate four rules, including the original rule. The
highway-env MRs generalize rules to other vehicles oc-
curring in observations, i.e., from a rule with conditions
on the first vehicle, we generate rules conditioned on the
other vehicles. Furthermore, the MRs encode symmetry con-
straints, e.g. generalizing rules for changing to the left lane to
rules for changing to the right lane and vice versa.

7.1 Identifying Weaknesses

With the first set of experiments, we approach the research
question RQ1: Does rule-guided execution effectively reveal
weaknesses in a trained policy? We consider policy weak-
nesses as decisions where enforcing a rule improves perfor-
mance, i.e., rule-guided execution detects decisions that could
be improved. As a benchmark for performance, we compare
against the average cumulative reward cr, gained by 7w with-
out rule guidance. To identify weaknesses in 7, we propose
to generalize each rule r € R to Ry = Mgey(r) individu-
ally and guide the execution of 7 with R, using Algorithm 1.
We perform n = 100 evaluation episodes in highway-env
and n = 250 evaluation episodes in the PAC-Man environ-
ments. Ry reveals a weakness if the cumulative rewards
from rule-guided execution are significantly larger than those
of unguided execution, which we determine using a Welch
test [Welch, 1947] and a p-value threshold of 0.05.
Baselines. We are the first to propose MT for RL, therefore
we compare MT to two random baselines. The first base-
line, random testing (RT), blocks or enforces randomly cho-
sen actions during policy execution in k percent of the states.
We randomly assign each of the k policy changes to approx-
imately one percent of the state space, such that if we visit
a state twice the same change happens. In the experiments,
we performed 100 RT evaluations where we only blocked ac-
tions and 100 evaluations where only enforced actions. We
set k = 3 since we found that low values are more effective
at detecting weaknesses. Each evaluation compares against
the average cumulative reward cr, from unguided execution.
Additionally, we use another random baseline, which we
call random rules (RR). For RR, we randomly generate rule
sets instead of generating them via MRs and execute Algo-
rithm 1, i.e., RR serves as an ablation study to study the
impact of MRs. The random generation uses information ex-
tracted from mined rules by creating rules with the same dis-
tribution of rule lengths and rule polarities, and by using the
feature values found in the mined rules. Additionally, rule
sets created for RR are of similar size as the rule sets created
using MRs. Hence, the random rules benefit from informa-
tion extracted from policies, but not from domain knowledge.
Results. Tables 1 and 2 show evaluation results for the
five base policies trained in each environment. For each RT,
RR, and rule-guided execution supported by MRs, denoted
as metamorphic testing (MT), the tables show the mean ra-
tio of evaluations that detected weaknesses from five repe-
titions. The tables additionally show the number of evalu-
ations for RR and MT (for RT they are fixed to two times
100), i.e., the number of generalized rule sets R,. We can
see that on average 5 to 24 percent of the MT evaluations
reveal weaknesses. This is consistently higher than RT, es-

Table 1: Detected weaknesses and number of evaluations in six
PAC-Man levels.

Experiment R"ll") etec;(;g Wezﬁjﬁ??i)ejrs) # Evaluations
small 0.00 | 0.01 0.13 105.4
small-nc 0.01 | 0.03 0.11 85.0
medium 0.01 | 0.04 0.08 117.6
medium-nc | 0.01 | 0.00 0.09 109.6
original 0.00 | 0.00 0.16 121.6
original-nc | 0.02 | 0.03 0.14 108.8

Table 2: Detected weaknesses and number of evaluations in five
highway—env environments.

Experiment R"IP etecggWeall\T;s(sgls]rs) # Evaluations
highway 0.02 | 0.14 0.05 90.8
highway-fast | 0.07 | 0.20 0.12 119.6
merge 0.09 | 0.24 0.16 109.6
intersection 0.06 | 0.00 0.12 20.8
roundabout 0.01 | 0.06 0.11 33.6

pecially in PAC-Man environments, where RT rarely reveals
weaknesses. In contrast, RR reveals more weaknesses than
MT in three cases where it substantially lees weaknesses in
the other eight environments. We can answer RQ1 posi-
tively, as rule-guided execution consistently revealed weak-
nesses in the examined policies, both through RR and MT.
We can further deduce that domain knowledge helps since
MT performed better overall. In the cases, where RR per-
formed better than MT, either our MRs may not optimally
represent relations that hold in the environment or the pol-
icy under test generalizes well, but includes other issues that
RR detects. MT further improves upon RR as it facilitates
explanations, as the rules within a rule set are related. If
a rule set I7, reveals weakness, we know that the cause is
linked to the original rule from which R, was generated
and to the MRs used for generation. Beyond that, the good
performance of RR suggests that search-based approaches,
which are popular in RL testing [Zolfagharian et al., 2023;
Tappler et al., 2022], might be viable for rule generation.

Explaining Weaknesses. We illustrate explaining policy
weaknesses with two cases from the PAC-Man levels small
and original with capsules. In both cases, the generalization
of the following simple rules increases performance:

—action(0) < fo=0A fe2 =0
—action(O) — fo=0A f110=0

(small)
(original)

The feature indices differ among the environments, but both
rules can be interpreted as “don’t go north if there is no food
and there is a wall to the north”. Generalizations to other di-
rections are safe to apply, yet the policies have not picked up
on them, thus enforcing them improves performance. How-
ever, we found that the policies have learned stronger versions
of these rules, e.g., in the environment original, we learned
related rules with additional constraints: —action(1l) <
Jo=0Afo=0Afio=0Afi1=1A fegg=0A f111 =0
and —action(S) — f5 =0A f10 =1A f12 =0A f113 =0.
Hence, rule-guided execution points to situations where the
policy learned suboptimal decisions.



Algorithm 2 Greedy rule selection for policy improvement.

1: ¢rmaz < mean cumulative reward of

2: RT + 0

3: for p € Rdo

4: if Alg. 1 with G < Mgyen(p) = R4 reveals weakness then
5: RT' + RTUR,

6: cr, stderr < Algorithm 1 with G <+ RT’

7.

8

if cr > crymaq. then
RT + RT’, crmaz < cr

Table 3: Average cumulative reward and standard error for non-
guided and rule-guided execution of PAC-Man.

Experiment Base Rul(eo-frusl)ded Ext. Training | RS

small 1023.6 1268.9 1018.4 16
+43.7 +20.5 +14.0

small-nc 450.6 635.7 447.9 44
+36.5 +16.8 +11.6

medium 1339.6 1601.1 1371.4 44
+49.0 +22.0 +14.9

medium-nc 840.9 1050.2 789.4 38
+38.6 +16.9 +12.4

original 1590.5 2013.6 1552.4 49
+51.5 +28.8 +16.3

original-nc 784.8 1194.8 796.4 34
+48.3 +28.1 +15.0

7.2 Policy Improvements

The final set of experiments focuses on policy improvement
without retraining through rule-guided execution, where we
tackle Research Question RQ2: Can guidance with composi-
tions of rule sets improve RL policies? For this purpose, we
assume to have already evaluated 7 with all generated sets of
rules 17, individually. To improve 7, we propose to compose
rule sets (RS) that reveal weaknesses without overconstrain-
ing the policy. Below, we present experiments, where we first
greedily selected rule compositions RT" through Algorithm 2.

Table 3 and Table 4 show the cumulative reward of non-
rule-guided execution and execution guided by RT. We per-
formed the non-rule-guided execution with the base policies
from which we mined rules and with policies trained twice
as long, e.g., policies for highway—-env were trained for
10° steps. The tables again report averages from five rep-
etitions, particularly the mean cumulative reward from run-
ning Algorithm 1 and the standard error of the estimate of
the mean cumulative reward. The tables also show how many
rule sets have been composed to create RT". We can see that
rule-guided execution always improved the base reward sub-
stantially, except in the intersection environment, where the
improvement is only marginal on average. In other cases, we
see larger improvements, e.g., 274 percent in the highway-
fast environment. We can further see that extended training
did not improve the reward in many environments (PAC-Man)
and only slightly in others (highway—env). In all cases,
rule-guided execution yields larger improvements, thus it pro-
vides value that cannot be gained from more training. More-
over, the greedy selection of rules always composed multiple
rule sets to create R to improve the policy under considera-
tion. Hence, we can answer RQ2 positively.

Table 4: Average cumulative reward and standard error for non-
guided and rule-guided execution of policies in highway-env.

Experiment Base Rul(eo-(jrusl)ded Ext. Training | RS
. 17 110.4 68.0
highway +3.3 9.7 +5.1 5.4
. 181 193.8 74.3
highway-fast | | 4 5 1141 +5.2 3.6
23.8 28.7 25.6 .
merge +0.3 +0.1 +0.3 :
N 1.5 12.7 1.7 50
mtersection - 4 g 7 +0.5 +0.5 :
361.0 T2 499.0
roundabout | 45y | 4974 1+32.9 4.6

8 Conclusion

We propose LEGIBLE, a rule-based framework for evaluat-
ing, explaining, and improving RL policies. After learning
rules from the most important policy decisions, we use high-
level domain knowledge to generalize learned rules to other
related situations. For this purpose, we leverage MRs [Chen
et al., 2018] to express relations like symmetries that hold
in the considered environment. By executing policies guided
by generalized rules, we identify weaknesses, where a policy
learned to behave adequately in a particular situation, but not
in related situations. That is, we find cases where RL poli-
cies fail to generalize. In these cases, the generalized rules
and applied MRs explain the found weaknesses. LEGIBLE
provides a basis for policy improvement, by enforcing sets
of generalized rules, which were found to improve perfor-
mance. In experiments with deep RL policies trained in six
PAC-Man environments [DeNero and Klein, 2010] and in five
highway—-env [Leurent, 2018] environments, LEGIBLE re-
vealed weaknesses in all policies, which are explained by
the learned and generalized rules. Rule-guided execution im-
proved the average cumulative reward by up to 273%.

LEGIBLE enables the integration of domain knowledge
into RL policies and our evaluation approach is the first meta-
morphic testing (MT) approach for RL. In contrast to exist-
ing work on RL testing [Tappler ef al., 2022; Zolfagharian et
al., 2023; Li et al., 2023; Biagiola and Tonella, 2024], which
brings the agent into challenging environment states, we take
an agent-centric view, evaluating changes in the agent’s de-
cisions. By generalizing decisions learned from a policy, we
ensure that generalized decisions are learnable.

In future work, we will investigate how to integrate other
types of domain knowledge, e.g., knowledge about temporal
dependencies between actions via restraining bolts [Giacomo
et al., 2020]. As our work is complementary to existing RL
testing approaches, we will study how to combine MT with
existing work that focuses on the environment, like search-
based testing [Tappler et al., 2022; Zolfagharian et al., 2023;
Biagiola and Tonella, 2024]. Finally, we will work on a more
seamless integration of generalized rules into RL policies.
Specifically, we are exploring how to integrate improvements
resulting from rules directly into DRL policies, without need-
ing to enforce them explicitly. To this end, we consider trans-
fer learning approaches [Torrey and Shavlik, 2010] and imi-
tation learning as a basis [Hussein ez al., 2017].
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