
Under review as submission to TMLR

Ensemble Policy Optimization with Diversity Regularization

Anonymous authors
Paper under double-blind review

Abstract

In machine learning tasks, ensemble methods have been widely adopted to boost the per-
formance by aggregating multiple learning models. However, ensemble methods are much
less explored in the task of reinforcement learning, where most of previous works only com-
bine multiple value estimators or dynamics models and use a mixed policy to explore the
environment. In this work, we propose a simple yet effective ensemble policy optimization
method to improve the joint performance of the policy ensemble. This method utilizes a
policy ensemble where heterogeneous policies explore the environment collectively and their
diversity is maintained by the proposed diversity regularization mechanism. We evaluate
the proposed method on continuous control tasks and find that by aggregating the learned
policies into an ensemble policy in test time, the performance is greatly improved. DEPO
has performance improvement and faster convergence over the base on-policy single-agent
method it built upon. Code will be made publicly available.

1 Introduction

Ensemble methods, which train multiple learners to solve the same problem (Zhou, 2012), have been widely
applied in machine learning to improve the model performance (Hansen & Salamon, 1990; Freund & Schapire,
1997; Dietterich, 2000; Singh et al., 2016; Huang et al., 2017). However, in the field of Reinforcement Learning
(RL), ensemble methods are much less explored. So far previous works have studied the ensemble of value
functions (Osband et al., 2016; Chen et al., 2017) or the ensemble of dynamics models (Rajeswaran et al.,
2016; Chua et al., 2018; Buckman et al., 2018). Both works focus on fitting multiple estimators that are
used to train the policy while the training data is still collected by a single policy that is derived from the
ensemble of estimators. As a result, the collected data is bounded in a limited state-action subspace which
is highly correlated to previous experience.

We consider adopting ensemble method in RL in its most straightforward form: improving the performance
by averaging the action distributions of learned policies. We first examine an individual PPO policy ensemble,
where we train 5 PPO policies independently. As shown in the Fig. 1, surprisingly, directly aggregating the
independent policies turns out to be not effective. We find that those learned policies converge to different
behavioral modes due to the initialization and their historical experience, thus simply averaging the outputs
jeopardizes the performance.

To address above issue, we propose Diversity-regularized Ensemble Policy Optimization (DEPO), a simple
yet effective framework that augments the single-policy optimization with the power of ensemble method in
policies. 1 Concretely, DEPO (1) trains multiple policies simultaneously by sharing data collected from each
heterogeneous policy to maximize a novel peer pressure objective, (2) maintains the ensemble diversity via a
non-parametric diversity regularizer, and (3) aggregates the policy ensemble to a mixture policy in test time,
further boosting the performance over the well-trained individual policies. We benchmark our framework
on the continuous control tasks. The experiments verify the effectiveness of the proposed ensemble policy
optimization method in that DEPO outperforms the single agent counterpart in final performance. We also
conduct detailed ablation studies to justify the techniques used in DEPO.

1Note that the term “ensemble policy optimization” is also used in (Rajeswaran et al., 2016), referred to the optimization
of model ensemble, which is different to the policy ensemble described in this work.
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Figure 1: In this figure, IPPO refers to the experiment training 5 PPO policies independently. DEPO is
our proposed learning framework where 5 PPO policies explore independently but are trained from shared
data. The Ensemble results indicate the performance when the action is sampled from a uniform mixture
of constituent policies in the ensemble a ∼

∑K
i=1

1
K πi(·|s). DEPO can substantially improve the final

performance. Noticeably the independently trained PPO policies yield inferior performance when using the
mixed policy than the individual policy.

2 Related Work

Ensemble method. Apart from the ensemble methods commonly used in the classic machine learning
tasks (Singh et al., 2016; Huang et al., 2017; Wen et al., 2020), an expanding body of works explores
the ensemble method in Reinforcement Learning (RL). The ensemble methods in RL fall into roughly two
categories: the ensemble of value functions and the ensemble of dynamics models in model-based RL.

The ensemble of value functions manages to reduce the variance of state value estimation (Hans & Udluft,
2010; Fujimoto et al., 2018), thus it can be used to encourage efficient exploration through selecting action
by using upper-confidence bound (UCB) (Osband et al., 2016; Chen et al., 2017) or voting methods (Wiering
& Van Hasselt, 2008; Faußer & Schwenker, 2011; Peng et al., 2016). In these methods, the behavior policy
is retrieved from a mixture of Q functions. In offline RL, EDAC (An et al., 2021) uses an ensemble of Q
networks to penalize OOD data with high uncertainties. However, the diversity encouragement in EDAC aims
at learning better uncertainty estimation with less Q networks while, in DEPO, the diversity is encouraged for
better exploration and final performance. In EDAC, the cosine similarity between the gradients of different
Q networks are used as the diversity. In contrast, the proposed DEPO uses the difference action distribution
of two policies on the same input data as the diversity reward.

On the other hand, the ensemble of dynamics models can mitigate the model approximation errors (Ra-
jeswaran et al., 2016; Chua et al., 2018; Buckman et al., 2018) and accelerate policy learning by generating
synthetic experiences from the ensemble (Kurutach et al., 2018). However, in most of the cases, there is only
one training policy that exhibits in the system.

There are some works using multiple policies, but all in a centralized manner: there is only one “mixed” policy
interacts with the environment. Both of Zheng et al. (2018) and Zhang & Yao (2019) maintain multiple critics
in the system and use a voting method a = arg maxai

Q(s, ai) to sample actions. The former work trains a
set of independent critics separately and the latter maintains a centralized critic. Lee et al. (2020) proposes
SUNRISE, which chooses action based on UCB (Chen et al., 2017) at = arg maxa Qmean(st, a) + λQstd(st, a)
and trains each critic individually. Agarwal et al. (2020) and Misra et al. (2020) use historical policies to
optimize current policy for global optimal policy via larger state-action space coverage. Instead, we use a
policy ensemble where each constituent policy explores the environment independently at the same time.
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Figure 2: Compared to single policy optimization workflow, the proposed ensemble policy optimization
framework incorporates multiple heterogeneous policies to execute in independent environments and share the
data among the policy ensemble during training. The diversity regularization mechanism further preserves
the ensemble diversity.

Exploration with shared experience. A similar domain to the policy ensemble method is the distributed
RL, where large quantities of parallel actors collect data simultaneously. Mnih et al. (2016) propose A3C
and A2C that use multiple independent actors to explore the environments. Both methods maintain a global
agent who receives the gradients from parallel actors and episodically broadcasts the latest parameters of the
global policy to actors. IMPALA (Espeholt et al., 2018) is similar to A3C but is different in mixing samples
instead of gradients from actors and updating the global policy based on the shared samples. Compared to
A3C, A2C, and IMPALA, DEPO maintains a group of heterogeneous policies and eliminates the concept of
a centralized policy during training.

Besides, our work is different from the works on Multi-agent RL where multiple agents interact with each
others in the same environment (Lowe et al., 2017; Gupta et al., 2017; Rashid et al., 2018). DEPO focuses
on improving the exploration with policy ensemble in single agent tasks. The different agents explore in
independent environments and have no influence on each other during the sampling period.

Learning with diversity. In deep RL community, many works encourage diversity explicitly through
adding extra loss to make an agent behave differently (Hong et al., 2018; Masood & Doshi-Velez, 2019);
creating conjugate policies which improve the main policy by adding noise in parameters (Cohen et al., 2019);
or adding diversity as explicit reward (Eysenbach et al., 2018). Zhang et al. (2019) propose a method called
task novelty bisector (TNB) which boosts the diversity with gradient fusion. The diversity regularizer in
DEPO is different in the following aspects: (1) It trains multiple policies simultaneously, instead of generating
a population of policies sequentially; (2) DEPO uses a simple and computationally efficient form of diversity,
which does not require extra auto-encoder (Burda et al., 2018), hand-craft behavioral representation (Mouret
& Clune, 2015), or complex heuristics to balance the task and diversity objectives (Hong et al., 2018).

3 Method

3.1 Preliminary

Problem Formulation. In this work, we focus on proposing a novel policy optimization method to tackle
decision-making problem. The decision-making problem is modeled as an infinite-horizon Markov decision
process (MDP), defined by the tuple M = ⟨S,A, P, R, γ, d0⟩ consisting of a finite state space S, a finite
action space A, the state transition probability distribution P : S × A × S → [0, 1], the reward function
R : S ×A → [Rmin, Rmax], the discount factor γ ∈ (0, 1) and the initial state distribution d0 : S → [0, 1].

The goal of reinforcement learning is to find a policy πθ : S × A → [0, 1], which is parameterized by θ, that
can maximize the expected episodic return:

J(πθ) = vπθ
= E

πθ

∑
t=0

γtr(st, at). (1)

Here we denote the state value as vπ(st) = Eπ

∑
t′=t γ(t′−t)r(st′ , at′).
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In this work, we propose a novel policy ensemble method to improve the training efficiency by leveraging
multiple heterogeneous policies to collect data simultaneously. Concretely, after each training iteration, our
method will propose a mixed policy from trained policy ensemble. We will show that such a mixed policy
can lead to better return compared to the trained policy in single-agent RL method.

We run on virtual simulation environment and focus on model-free RL that does not access the internal
state of the simulator. This work focuses on on-policy RL setting, where the policy used to collect data in
virtual environment is the policy that will be optimized after data collection. The data will be discarded
after training instead of stored to replay buffer as in off-policy methods Fujimoto et al. (2018); Haarnoja
et al. (2018). As shown in previous works Espeholt et al. (2018); Vinyals et al. (2019), on-policy methods
can greatly improve data throughput and leverage massive computing resources. This work provides insight
to better utilize the feature of scalability of on-policy methods.

On-policy RL Algorithms. The policy gradient methods are typical on-policy RL algorithms. These
methods derive the policy gradient (Sutton & Barto, 2018) ∇θJ(πθ) following:

Aπθ
(st, at) = r(st, at) + γvπθ

(st+1)− vπθ
(st), (2)

∇θJ(πθ) = E(s,a)∼Pπθ
[∇θ log πθ(a|s)Âπθ

(s, a)], (3)

where (s, a) is collected from the exploration of policy πθ and Pπθ
denotes the data distribution. The

advantage Aπθ
(st, at) describes the relative improvement of action at over the baseline, namely the state

value vπθ
(st), at step t. Eq. 3 can be obtained by differentiating the surrogate objective:

J(πθ) = E
(s,a)∼Pπθ

[log π(a|s)Âπ(s, a)], (4)

wherein Pπθ
is the state-action visitation distribution deduced by policy πθ. Applying the policy gradient

to policy parameters with stochastic gradient ascent can improve the expected return.

In popular RL method PPO (Schulman et al., 2017), a clipped surrogate objective is used to modulate the
distributional shift between behavior policy πold and target policy πnew, so that it can update the target
policy multiple times with same data collected by πold:

JPPO(πnew) = E
(s,a)∼Pπold

[min(ρÂπold , clip(ρ, 1− ϵ, 1 + ϵ)Âπold)], (5)

ρ denotes the probability ratio ρ = πnew(s, a)/πold(s,a), and ϵ > 0 is the clipping parameter. The ratio
clipping can reduce the variance of policy gradient estimation and constrains πnew remaining close to πold.

As illustrated in left panel of Fig. 2, we can summarize the learning pipeline of single policy optimization
methods as following four steps: (1) Sampling: a behavior policy interacts with environments and collects
a sampled batch, (2) Augmentation: the samples are augmented with value targets or advantages and
formed into a batch, (3) Updating: the policy is updated based on the augmented training batch. (4)
Synchronization: update the behavior policy according to the latest target policy.

3.2 Ensemble Policy Optimization Framework

Extending the single-policy optimization, we consider a policy optimization framework which supports mul-
tiple heterogeneous policies running in parallel exploring the same task. The ensemble policy optimization
(EPO) consists three components: (1) a policy ensemble that contains K policies, each policy interacts with
the environment independently to roll-out a batch of samples; (2) a training algorithm T that updates the
ensemble and should be capable to integrate data collected from each policy; and (3) an aggregation function
G that proposes a mixed policy at test time at ∼ G({πi}K

i=1) that further boosts the performance.

We instantiate the EPO framework with Diversity-regularized Ensemble Policy Optimization (DEPO). DEPO
maintains a policy ensemble that contains K policy networks without weight-sharing among them. As
illustrated in the right panel of Fig. 2, during sampling period, DEPO requests each policy to roll-out a
sampled batch containing n = N/K transitions from the environment, wherein N denotes the size of sampled
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batch in single policy optimization. DEPO then forms a shared training batch with totally N samples by
concatenating transitions {(st, at, rt, st+1) ∼ Pπi}K

i=1 from all K policies. The shared batch is dispatched to
each policy’s optimizer, augmented by the target policy and value estimator, and then is used to optimize
neural networks of the target policy.

In test time, DEPO aggregates the policy ensemble with a uniform mixture of all policies:

a ∼ G(·|s, π1, ..., πK) =
1
K

K∑
i=1

ai, ai ∼ πi(·|s). (6)

Note that to maximize the diversity of the sampled data, we do not aggregate policies during training.
There are multiple behavior policies exploring each environment independently. This is the key difference to
previous works. In the next section, we will discuss how DEPO trains each policy in the ensemble.

3.3 Peer Pressure Objective

We define the peer pressure objective for arbitrary policy πk (a shorthand of πθk
) by slightly changing the

Eq. 1 as:

JPP(πk) = vπk
− 1

K

K∑
i=1

vπi
. (7)

This objective incentivizes the agent to maximize its expected return while outperforming the averagely
performing policies in the ensemble. In following, we will derive a practical optimization objective such that
we can effectively utilize the data sampled by heterogeneous policies. We first revisit the following lemma:

Lemma 1 (The performance difference lemma) For arbitrary policies πk and πi, their expected per-
formance difference is:

vπk
− vπi

=
1

1− γ
E

s∼Pπk

E
a∼πk

[Aπi
(s, a)]. (8)

This lemma is proved by Kakade & Langford (2002). We use this lemma to decompose the peer pressure
objective. After applying this lemma, Eq. 7 can be written as:

JPP(πk) =
1

K(1− γ)

K∑
i=1

E
s∼Pπk

E
a∼πk

[Aπi
(s, a)]

=
1

K(1− γ)

K∑
i=1

E
s∼Pπk

E
a∼πi

[ρ(πk, πi)Aπi
(s, a)],

(9)

wherein ρ(πk, πi) = πk(a|s)/πi(a|s) is the importance sampling coefficient. The peer pressure objective
JPP(πk) queries the action distributions as well as the advantages of policy πi under the state distribution
deduced by policy πk. However, suppose we replace the state distribution s ∼ Pπk

by Pπi
, then we can

directly utilize the transitions sampled by the policy πi without replaying πi on the dataset collected by
πk. We will justify such approximation in the following Theorem 1. We first write the DEPO objective for
training policy πk as:

JDEPO(πk) =
1
K

K∑
i=1

E
(s,a)∼Pπi

ρ(πk, πi)Âπi
(s, a). (10)

The DEPO objective is a practical form of JPP that can be easily computed using the shared training batch.
In the following theorem, we state that DEPO objective approximates the peer pressure objective.

Theorem 1 The peer pressure objective in Eq. 7 is bounded by DEPO objective:

JDEPO(πk)−D ≤ JPP(πk) ≤ JDEPO(πk) + D, (11)
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wherein D describes the divergence between the target policy πk and others as

D =
4γ

K(1− γ)2

K∑
i=1

ϵi max
s

DKL(πi(·|s)||πk(·|s)), (12)

where ϵi = max(s,a) |Aπi(s, a)|.

To prove this theorem, we first introduce a lemma according to the Theorem 1 in (Schulman et al., 2015).

Lemma 2 Define a function:

Lπi(πk) = vπi + E
s∼Pπi

E
a∼πk(·|s)

Âπi(s, a). (13)

Then the following inequality holds:

|vπk
− Lπi

(πk)| ≤
4γϵi

(1− γ)2Dmax
KL (πi, πk), (14)

where ϵi = max(s,a) |Aπi
(s, a)|, and Dmax

KL (πi, πk) = maxs DKL(πi(·|s)||πk(·|s)).

Note that the authors of Schulman et al. (2015) only give the lower bound of vπk
−Lπi

(πk) but they actually
proved the upper bound at the same time.

For simplicity, define Di = 4γϵi

(1−γ)2 Dmax
KL (πi, πk). Therefore D = 1

K

∑K
i=1 Di. Following Eq. 14, we have:

E
s∼Pπi

a∼πk(·|s)

Âπi
(s, a)−Di ≤ vπk

− vπi
≤ E

s∼Pπi

a∼πk(·|s)

Âπi
(s, a) + Di (15)

Now we build the connection between JDEPO and JPP. Since Ea∼πk
Âπi

(s, a) = Ea∼πi
ρ(πk, πi)Âπi

(s, a), we
have:

JDEPO(πk) =
1
K

K∑
i=1

E
s∼Pπi

a∼πk(·|s)

Âπi
(s, a) (16)

Compute the average of Eq. 15 over all is, we have:

JDEPO(πk)−D =
1
K

K∑
i=1

[ E
s∼Pπi

a∼πk(·|s)

Âπi
(s, a)−Di]

≤
1
K

K∑
i=1

[vπk
− vπi ] = JPP(πk)

≤
1
K

K∑
i=1

[ E
s∼Pπi

a∼πk(·|s)

Âπi(s, a) + Di] = JDEPO(πk) + D

(17)

The main theorem is proved. Note that D measures the divergence between πk and others policies. Since we
update policy πk with the shared data batch, D will naturally reduce after each training iteration because all
policy are updated to maximize the log action probability of the same set of high-return actions. Therefore
JDEPO approximates JPP.
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Figure 3: Illustration of the PPO loss, Two-side Clip loss, and the gradient fusion method in diversity
regularization.

3.4 Learning Objectives

To bound the policy update and reduce variance, we further apply the clipped surrogate objective as in Eq. 5
to the DEPO objective in Eq. 10. However, we find the clipped objective leads to numerical instability and
will catastrophically collapse the learning since the objective is not bounded when the advantage is negative,
as the PPO Loss shown in Fig. 3. This phenomenon is also noticed in (Ye et al., 2019). To tackle this issue,
we use a Two-side Clip (TSC) surrogate objective to mitigate the variance of advantage as shown by the
TSC Loss in Fig. 3. Concretely, the TSC loss equipped by DEPO is computed as follows:

JTSC(πk) =
1
K

K∑
i=1

E
(s,a)∼Pπi

[clip(ρ(πk, πi), 0, 1 + ϵ)Âπi(s, a)]. (18)

The ablation studies in Sec. 4.4 shows that data sharing across ensemble can already boost the performance.
In next section, we will discuss an important problem brought by the data sharing.

3.5 Diversity Regularization

Due to the data sharing among policies, it is inevitable that all the constituent policies gradually become
identical during the course of learning. To further improve the effectiveness of DEPO, we propose the
Diversity Regularization (DR) mechanism, which regularizes the exploration and preserves the diversity of
policies.

Considering the continuous control tasks we focus on, we use the Mean Square Error (MSE) between the
means of action distributions produced by two agents as the diversity reward Hong et al. (2018). MSE is
bounded since each action dimension is limited to [−1, 1], avoiding unbounded value in other metrics like
KL divergence. Denoting µk(s) as the mean of a stochastic action distribution πk(·|s), MSE can be written
in the closed form ||µk − µi||22. We therefore use the following diversity reward:

r
(k)
d (s) =

1
K − 1

K∑
i=1,i̸=k

||µk(s)− µi(s)||22. (19)

We do not treat the diversity reward as intrinsic reward, instead, we use the diversity reward to compute
the diversity objective to update the policy following Eq. 5 and then form diversity gradient based on such
objective. The diversity gradient is fused with the primal task gradient later. The ablation study on using
the intrinsic reward method is presented in Sec. 4.4.

DR retrieves the final gradient from two streams of gradients using the Feasible Direction Method (FDM).
As illustrated in Fig. 3, we flatten the gradients w.r.t. all parameters into a vector for both objectives and get
the task gradient and diversity gradient gt, gd ∈ R|θ| respectively. Then we compute the angular bisector of
two flattened gradients in the parameter space: d = Z(Z(gt) +Z(gb)), wherein Z(x) = x/||x||2 normalizes
input to a unit vector. d therefore is a unit vector representing direction of the final gradient. We project
two gradient vectors into d and use the average as the magnitude of final gradient. The final gradient after
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fusion is computed as follows:

gfinal =
gt · d + min(gd · d, gt · d)

2 · d. (20)

min operation ensures the diversity reward does not prevail against the task reward.

The final gradient direction d is the angular bisector ensuring there always exist non-negative components
of both gradient after the projection gt · d and gd · d. The bisector therefore can improve both objectives
effectively (Zhang et al., 2019). An alternative is to simply add two gradient vectors (Hong et al., 2018).
However, such approach introduces a trade-off factor that is hard to tune. Evaluation in Sec. 4.4 shows that
the FDM method performs better than using auxiliary loss.

To reduce the variance when estimating diversity across ensemble and possible trajectories, we introduce a
diversity value network (DVN) to estimate the diversity value and compute the diversity gradient. DVN
updates to minimize the Bellman error between the predicted values and r

(k)
d (s) + γDV N(st+1, at+1). We

compute the diversity in online manner, so the diversity reward is non-stationary during the training. To
relieve such issue, we invite a common trick called Delayed Update Target (Lillicrap et al., 2015). We maintain
a set of target policies by Polyak averaging the parameters of the policy ensemble over the course of training:

θ
(k)
target ← (1− τ)θ(k)

target + τθ
(k)
latest, ∀k = 1, ..., K, (21)

wherein 0 < τ ≤ 1 is a hyper-parameter. We then compute the diversity of a given policy πk against such
target policies, including the delayed update target of k-th policy itself.

4 Experiments

4.1 Setup

We implement DEPO using RLLib (Liang et al., 2018). Generally, we host 8 concurrent trials in an Nvidia
GeForce RTX 2080 Ti GPU. Each trial consumes 3 CPUs with 10 parallel rollout workers. To ensure
efficiency, we hosts the sampling and training pipelines of each policy in separate workers running in parallel.
DEPO only synchronizes when sharing the data and computing diversity. The wall-time overhead therefore
is trivial compared to single-policy methods.

To ensure fair comparison, we ensure (1) the total number of interactions with environments and (2) the
total number of sampled transitions in each training iteration for the whole DEPO system to be identical
to the single-policy methods. Concretely, we set the total number of sampled steps to 5× 107 for on-policy
baselines and DEPO. In each training iteration, the whole system of DEPO collects 10, 000 transitions. For
DEPO ensemble with 5 policies, this means each policy has the quota of 2, 000 steps to interact with its
environment. All 5 policies will form a shared training batch with totally 10, 000 transitions, equal to the
size of the training batch in on-policy single-policy baselines.

For all experiments, we use fully-connected neural networks with two layers, 256 hidden units per layer, for
both policy networks and value networks. We use ReLU as the activation function. Other hyper-parameters
in both on-policy and off-policy setting are listed in Appendix.

The implementation of OAC follows the code provided by the original paper (Ciosek et al., 2019). Note that
the total training timesteps of this work is different from OAC paper. We use the official implementation of
Actor-critic Ensemble (Zhang & Yao, 2019), SUNRISE (Lee et al., 2020), and TD3 (Fujimoto et al., 2018).
The PPO, A2C, APPO and SAC implementations follow RLLib (Liang et al., 2018).

We evaluate methods in five continuous control locomotion tasks: HalfCheetah-v3, Ant-v3, Walker2d-v3,
Hopper-v3, and Humanoid-v3 in MuJoCo simulator (Todorov et al., 2012). Experiments are repeated 10
times with different random seeds and the standard deviation of the values are presented in tables as well
as the shadow of curves. The ensemble size is K = 5 if not explicitly stated.
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Figure 4: The learning curves of the PPO and DEPO in five environments. The performance of policy in
DEPO ensemble (DEPO) already outperforms baselines in all tasks. Using the mixture policy of the ensemble
in test time further boosts the performance (DEPO avg.).

Table 1: The episodic reward of baselines and proposed framework. Elite refers to the best policy in the
ensemble and Average is the performance of the mixture policy of DEPO ensemble. DEPO outperforms
major single-agent baselines and achieves competitive performance compared to powerful exploration and
ensemble method baselines.

Category Method Ant-v3 HalfCheetah-v3 Hopper-v3 Humanoid-v3 Walker2d-v3
Proposed

Framework
DEPO Average 6107.2 ±258.9 8022.8 ±293.1 3608.0 ±135.8 5276.0 ±61.0 6379.4 ±241.1

DEPO Elite 5487.6 ±239.8 7529.5 ±210.8 2922.8 ±288.5 4114.0 ±136.9 6179.1 ±271.6

Single-agent
Baseline

PPO 4155.4 ±596.9 3559.4 ±1041.1 2860.1 ±166.2 663.4 ±55.8 3209.8 ±280.1

APPO 1460.9 ±427.7 2814.6 ±75.8 2038.1 ±421.6 1351.9 ±32.9 3159.9 ±187.5

A2C 1881.8 ±185.4 2882.7 ±1293.2 2132.9 ±97.1 519.9 ±90.5 1891.3 ±664.6

SAC 4654.2 ±272.3 7763.5 ±1777.4 3372.7 ±95.5 5021.3 ±165.9 4213.3 ±169.9

Exploration TNB 2211.0 ±250.3 1623.6 ±94.6 2916.8 ±383.2 493.2 ± 40.8 2906.3 ± 152.3

OAC 4891.7 ±184.4 7576.6 ±499.0 3418.0 ±235.8 5128.8 ±78.0 3867.6 ±1126.8

Ensemble
Method

ACE 1280.7 ±165.0 4131.2 ±330.8 1724.3 ±776.9 1529.3 ±493.2 3383.0 ±421.9

SUNRISE 3902.0 ±1019.4 6518.3 ±1717.4 3639.1 ±90.2 5534.2 ±97.5 4981.1 ±982.0

4.2 Main Results

To validate that the ensemble policy optimization can improve the performance over single policy schemes,
we compare DEPO with following baselines:

• Single-agent RL: We compare with A2C (Mnih et al., 2016), PPO (Schulman et al., 2017), APPO, a
variant to IMPALA (Espeholt et al., 2018) and Soft Actor-Critic (SAC) (Haarnoja et al., 2018). In our
preliminary experiments, we find A3C and IMPALA are unstable and sometimes fail the training, so
we instead use A2C, the synchronized version of A3C, and APPO, which replaces the V-trace loss in
IMPALA with the surrogate loss in PPO but still using the asynchronized infrastructure proposed
in RLLib.

• Exploration: TNB (Zhang et al., 2019) aims at seeking diverse policies and trains a population of
polices sequentially so the time consumption is much larger than ours. OAC (Ciosek et al., 2019)
further integrates SAC with the Upper Confidence Bound heuristics to conduct more informative
exploration.

• Ensemble Method: We compare two ensemble methods with multiple policies: ACE (Zhang & Yao,
2019) and SUNRISE (Lee et al., 2020). Both works utilize a mixed policy to explore and train in the
off-policy setting.

As shown in Fig. 4, in all five tasks, our method (DEPO) outperforms the single-policy baseline with a large
margin. Using the aggregated mixture policy in test time yields even more powerful policies that further
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Figure 5: The learning dynamics of DEPO.
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Figure 6: Ablation studies on the major mechanisms.

0 1 2 3 4 5
1e7

0

1000

2000

3000

4000

5000

6000

E
pi

so
de

 R
ew

ar
d

Ant-v3

0 1 2 3 4 5
1e7

0

1000

2000

3000

4000

5000

6000

Walker2d-v3

0 1 2 3 4 5
Sampled Steps 1e7

500

1000

1500

2000

2500

3000

Hopper-v3

0 1 2 3 4 5
1e7

1000

2000

3000

4000

E
pi

so
de

 R
ew

ar
d

Humanoid-v3

0 1 2 3 4 5
1e7

0

2000

4000

6000

8000
HalfCheetah-v3

Episode Reward
Diversity Reward

D
iv

er
si

ty
 R

ew
ar

d

Figure 7: The tendency of diversity reward and episode reward. The diversity reward always peaks at the
learning progressing drastically.

boosts the performance (DEPO Avg.) compared to individual policies. In Hopper-v3, PPO collapses after
a long time of training, while DEPO maintains its performance, which shows that DEPO is stable during
training. In Table 1, we can see that DEPO outperforms majority of baselines.

4.3 Learning Dynamics

We investigate the dynamics of ensemble diversity in the course of training. As shown in Fig. 5, we plot
two curves, the average diversity and the objective similarity, alongside with the reward curve of DEPO in
Walker2d-v3 environment. The objective similarity is the cosine similarity between the task gradient and
the diversity gradient cos⟨gt, gd⟩, showing the alignment between two objectives. The average diversity is
the mean of the diversity reward of all policies E

∑K
i=1 r

(i)
d /K.

An interesting observation is that the diversity as well as the objective similarity peaks when the performance
is improved with the highest speed. When the sampled step is in range of 3M to 10M , the objective similarity
achieves high value, indicating the task gradient and diversity gradient are aligned to head to the similar
direction. This phenomenon suggests in the early stage of training, finding diverse policies is finding better
policies. As shown in Fig. 7, the same phenomenon happens for all tested tasks. In the later training, the
average diversity drops to low value and the objective similarity goes to zero. The policy ensemble becomes
stable thus the diversity has a marginal impact to the policy improvement in the later stage of training. In
short, we demonstrate empirically that the diversity regularization helps improving the exploration, especially
in the early stage of learning.

4.4 Ablation Studies

To further understand which designed elements of DEPO are crucial, we conduct ablation studies thoroughly
in Walker2d-v3 benchmark.

Key components. We first examine the key components of the proposed DEPO in Fig. 6. Compared to
the baseline PPO, purely sharing data among the ensemble without diversity regularization (w/o Diversity)
already boosts the performance. This result confirms the previous discovery that diversity introduced by
different random initializations can promote performance (Osband et al., 2016).
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Table 2: Ensemble Size
Size Performance

K=1 2564.7 ±667.3

K=3 5766.0 ±363.7

K=5 6179.1 ±271.6

K=10 6086.7 ±602.7

Table 3: Ensemble Method
Method Performance

Median 5660.3 ±590.1

Elite 6179.1 ±271.6

Voting 5710.1 ±344.1

Average 6379.4 ±241.1

Table 4: Design Choice
Ablation Performance

w/o Â Norm. 1105.1 ±609.3

w/o DVN 2701.8 ±235.7

w/ Ada. Div. 2806.1 ±521.8

w/ Mask 4558.5 ±1129.6

w/o TSC 4624.4 ±796.2

w/o DU 4672.8 ±836.5

Table 5: Comparison with single-agent method with large model.

Method Ant-v3 HalfCheetah-v3 Hopper-v3 Humanoid-v3 Walker2d-v3

DEPO 6107.2 ±258.9 8022.8 ±293.1 3608.0 ±135.8 5276.0 ±61.0 6379.4 ±241.1

PPO 4155.4 ±596.9 3559.4 ±1041.1 2860.1 ±166.2 663.4 ±55.8 3209.8 ±280.1

PPO Large 1892.6 ± 201.5 2018.6 ± 458.6 1862.7 ± 159.2 875.3 ± 72.5 2660.2 ± 240.3

On the contrary, disabling data sharing (w/o Sharing) decreases the performance significantly even if the
diversity regularization is active. This is because data sharing broadcasts the experience of all policies so
that all policies can optimize toward the high reward region collectively. When disabling data sharing,
maximizing the diversity reward becomes the most feasible local minima for each policy, especially when the
reward supervision from primal task is not significant in the early stage of training.

We also test the idea proposed in (Hong et al., 2018) (Extra Loss) to justify our usage of FDM as the
gradient fusion method. We use an adaptive multiplier to balance the weighted sum of task and diversity
objective: gfinal = gt +βgd, wherein β increases by 0.05 if current policy’s average diversity is lower than the
running average for past 100 iterations and vice versa. However, due to the difficulty in tuning the trade-off
between task and diversity, such method performs poorly compared to the DR.

Notice that in Eq. 10, we use the estimator Âπi to estimate the advantage of policy πk in the state-action
space sampled by the behavior policy πi instead of using the estimator Âπk

of policy πk. Though we
discuss that DEPO objective approximate the peer pressure objective through Theorem 1, we also verify this
statement in the Value Replay experiment: we replay each value network v̂πk

on the shared training batch
and compute the estimated advantage Âπk

in Eq. 2 based on the replayed values for each policy. Intuitively,
replaying the values will provide more accurate estimation to the policy gradient. However, the empirical
result suggests such method performs inferior to the DEPO objective. DEPO converges faster than Value
Replay and achieves better final performance.

Impact of the ensemble size. We reveal the impact of the ensemble size to the final performance. Note
that when K = 1, the policy computes diversity against the delayed update target of itself. As shown
in Table 2, the performance is improved when the ensemble size increase. However, when the ensemble
size exceeds some threshold, preserving diversity will jeopardize the learning because one or more policies
would learn diverse but weak behaviors, dragging down the whole training process. Finding an appropriate
ensemble size can maximize the effectiveness of DEPO.

Impact of the aggregation methods. In Table 3, we examine different aggregation methods on policy
ensemble. Median and Elite refer to the method using a single policy in the ensemble to sample action. The
policy is selected based on its performance in evaluation and we select the median or the best policies. On the
other hand, Voting refers to taking the action from policies that yields highest value: at ∼ πi, i = arg maxi vi.
The results shows that Average the output distributions yields the greatest performance gain and can even
outperforms the best policy in the ensemble. More sophisticated aggregation methods, such as treating
policy selection as a discrete RL problem, are left to future works.

Other design choices. In Table 4, we evaluate the significance of other design choices:
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• w/o Â Norm.: The advantage normalization demonstrates significant impact. Without such normalization,
the diversity advantage and the task advantage might have disparate magnitudes, which imposes chaotic
supervision to the learning and thus damages the performance.

• w/o DVN: The Diversity Value Network (DVN) also has huge impact. In this experiment, we disable the
DVN and replace the diversity advantage with the discounted diversity return. However, the result suggests
ablating DVN damages the training because the estimation of diversity return creates huge variance.

• w/ Ada. Div.: We use a simple heuristic to adapt the final gradient direction to justify the usage of
angular bisector between two gradients. We adapt the β when computing the direction of the final gradient
(1−β)Z(gt) + βZ(gd) in the same way as Extra Loss experiment. However, such method does not surpass
the simple angular bisector. This setting does not limit the diversity gradients. On the contrary, the bisector
bounds the diversity gradient projection so that its impact to the final gradient will not exceed the task
gradient.

• w/ Mask: An technique to increase training diversity is also tested: during sampling, we generate a binary
mask on each sample for each policy, and then filter the training batch for each policy according to the
mask (Osband et al., 2016). By doing this, each policy will train on different data. However, similar to the
finding in (Lee et al., 2020), this method reduces the training performance since the total data used to train
each policy is reduced.

• w/o TSC: We find that using the Two-side Clip Loss proposed in Eq. 18 can further improve the performance.

• w/o DU: The Delayed Update target of policies can stabilize the computing of diversity reward and therefore
improve the result.

Though the outcome of DEPO is a mixed policy with identical scale of neural network (NN) as single-agent
method, DEPO uses multiple networks and a larger number of parameters during training. To verify the
fairness, we conduct an experiment with larger neural architecture for the baseline PPO. We adjust the
number of units in each hidden layer to 600 instead of original 256, so that the total number of parameters
is approximately equivalent to the 5 policies DEPO ensemble. As shown in Table 5, increasing the number
of trainable parameters is not always better. Compared to PPO with small NN, large NN only works better
in the environment Humanoid-v3. In other environments, larger NN even impedes the performance since it
is difficult for the network to converge due to underfitting. This result suggests that the internal mechanism
of DEPO indeed helps to find better policy, instead of exploiting the benefit of more trainable parameters.

5 Conclusion

In this work we explore the implementation of ensemble method into the policy optimization in RL and
develop an ensemble policy optimization method called DEPO. The proposed method requests a set of policies
to explore the environment simultaneously, trains each policy with shared training batch, and maintains the
diversity of the ensemble with diversity regularization. The performance in test time is greatly improved
by aggregating the learned policies into an ensemble policy. Experimental results show that the proposed
ensemble policy optimization method can substantially improve sample efficiency in continuous locomotion
tasks compared to the single-policy optimization counterparts. Detailed ablation studies reveal that the data
sharing among the ensemble and the diversity regularization significantly improve the performance.
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A Hyper-parameters

In this section, we present the hyper-parameters used in training. To illustrate that our method can be an
add-on to existing single-agent baseline, we first search the hyper-parameters for PPO and find those that
can maximize the performance in single-agent training. We then use the same set of hyper-parameters to
train DEPO.

Table 6: Environment-related hyper-parameters of PPO and on-policy DEPO. The hyperparameters are
selected based on PPO’s performance.

Parameter H.C. Ant Walker Hopper Human.

LR 0.0003 0.0001 0.0002 0.0001 0.0001
λ 0.95 0.95 1.0 1.0 0.95
SGD Epochs 30 20 20 20 20
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Table 7: Environment-agnostic hyper-parameters of DEPO.
Hyper-parameter Value

Number of Agents 5
KL Coefficient 1.0
Discount Factor (γ) 0.99
Delayed Update Coefficient (τ) 0.005
Max Norm of Gradient 10.0
Use Diversity Value Network True
Use Normalized Advantage False
Use Delayed Update True
Use Two-side Clip Loss True
Maximum Sampled Steps 5 × 107

SGD Minibatch Size 1024
Training Batch Size 10,000
Number of Parallel Workers 10
Sampled Batch Size per Worker 200
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