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ABSTRACT

Few-shot learning (FSL) aims to learn a classifier that can be easily adapted to
accommodate new tasks not seen during training, given only a few examples.
To handle the limited-data problem in few-shot regimes, recent methods tend to
collectively use a set of local features to densely represent an image instead of using
a mixed global feature. They generally explore a unidirectional query-to-support
paradigm in FSL, e.g., find the nearest/optimal support feature for each query
feature and aggregate these local matches for a joint classification. In this paper, we
propose a new method Mutual Centralized Learning (MCL) to fully affiliate the two
disjoint sets of dense features in a bidirectional paradigm. We associate each local
feature with a particle that can bidirectionally random walk in a discrete feature
space by the affiliations. To estimate the class probability, we propose the features’
accessibility that measures the expected number of visits to the support features
of that class in a Markov process. We relate our method to learning a centrality
on an affiliation network and demonstrate its capability to be plugged in existing
methods by highlighting centralized local features. Experiments show that our
method achieves the state-of-the-art on both miniImageNet and tieredImageNet.

1 INTRODUCTION

Few-shot classification aims to learn a classifier that can be readily adapted to novel classes given
just a small number of labeled instances. To address this problem, a line of previous literature adopts
metric-based methods (Vinyals et al., 2016; Snell et al., 2017; Sung et al., 2018) that learn a global
image representation in an appropriate feature space and use a distance metric to predict their labels.

Recent approaches (Zhang et al., 2020; Li et al., 2019; Lifchitz et al., 2019) have demonstrated that
the significant intra-class variations would inevitably drive the image-level embedding from the same
category far apart in a given metric space under low-data regimes. In contrast, densely representative
local features can provide transferrable information across categories that have shown promising
performances in the few-shot scenario. Among those methods illustrated in Figure 1, Li et al. (2019)
find the nearest neighbor support feature for each query feature and accumulates all the local matches
in a Naive-Bayes way to represent an image-to-class similarity; Zhang et al. (2020) use the earth
mover distance to compare the complex structured representations composed of local features. They
generally use the distances/similarities between two sets of dense features and perform classifications
in a query-to-support paradigm by either aggregating those local nearest matches or introducing the
optimal matching flows for each class.

In this work, we consider an extra support-to-query paradigm as a complement to fully affiliate two
disjoint sets of dense features. The potential of mutual affiliations stems from the intuition that, except
for using query features to find related support features, it is also plausible to estimate the relevance
of query features according to the support features. To achieve this, we use the local similarity matrix
as a basis to formulate the directional query-to-support and support-to-query affiliation matrices.
We associate each local feature with a particle that could bidirectionally random walk in a discrete
feature space by the mutual affiliations. The prediction probability for each class is then estimated by
the features’ accessibility (the expected number of visits to support features of that class) in a time-
homogeneous Markov process. The motivation behind our method is that support features sharing
the same class label with the query image would be frequently visited by their mutual closeness.
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Figure 1: Comparisons of three methods in the 3-way 1-shot scenario where every colored pane
indicates an image and particles within each pane represents the dense features of that image. The
solid lines indicate a query-to-support paradigm while the dotted lines indicate a support-to-query
paradigm. Among them, (a) Li et al. (2019) accumulates local similarities φ(·, ·) between all query
dense features and their nearest support dense features in a Naive-Bayes way as an image-to-class
similarity; (b) Zhang et al. (2020) finds the optimal matching flow that have the minimum earth
mover’s distance d(·, ·); (c) We use the features’ accessibility (i.e., the expected number of visits
to support features of each class) in a bidirectional Markov random walk {Xt} to measure the
image-to-class relevance. A major difference is that we consider the mutual affiliations between
dense features instead of following the unidirectional query-to-support paradigm.

The contributions are as follows: (1) We propose to learn mutual affiliations between the query and
support features instead of following the unidirectional query-to-support paradigm in FSL. (2) We
introduce the features’ accessibility to FSL and demonstrate that traditional transductive methods
could be easily adapted to the inductive setting if we treat dense features from a single query image
as a set of unlabeled data. (3) We propose a novel bidirectional random walks in FSL and draw its
connection to the single-mode eigenvector centrality of an affiliation network (4) The underlying
centrality investigated in this work can be plugged in existing global feature based methods like
ProtoNet and RelationNet by highlighting centralized local features instead of average pooling.

2 RELATED WORK

Dense Feature based FSL. A branch of method focuses on learning image-to-image similarities
based on the dense features. Among them, DC (Lifchitz et al., 2019) proposes to make predictions
for each local characteristic and average their output probabilities. DeepEMD (Zhang et al., 2020)
adopts the earth mover’s distance as a metric to compute a structural distance between dense features
to determine the image relevance. DN4 (Li et al., 2019) uses the top-k nearest neighbors between two
dense features in a Naive-Bayes way to represent image-level similarities. FRN (Wertheimer et al.,
2021) reconstructs the dense query features from support dense features of a given class to predict
their relevances. Our MCL is also among the family of dense feature based frameworks. A major
difference is that we consider their mutual affiliations instead of the unidirectional match up.

Graphical models in FSL. Another branch of methods learns graphs on FSL. Among them, Garcia
& Bruna (2017) build graph neural network (GNN) from a collection of images. Ding et al. (2020) use
the degree-centrality as part of graph features to adjust the weight of graph vertex in transductive FSL.
Our proposed feature accessibility of bidirectional random walks is well-related to the eigenvector
centrality. Differently, we use the single-mode centrality of bipartite data as a noval criterion for the
inductive classification.

From Transductive to Inductive. Liu et al. (2019) first introduced the well-known label spreading
(Zhou et al., 2003) to the transductive FSL that transfers information from labeled data to unlabeled
one, and shows substantial improvements over inductive methods. In this paper, we first demonstrate
it feasible to adopt label spreading for inductive FSL by treating the query dense features as numerous
unlabeled data and using features’ accessibility as a criterion for a joint prediction. Different from
label spreading, we further consider the set of query and support features as bipartite data where the
self-reinforcements (i.e., query-to-query and support-to-support random walks) are avoided.
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3 METHOD

3.1 PROBLEM FORMULATION

Let S denote the set of support images with corresponding class labels in a N -way K-shot episode,
the goal is to predict a class label for a single query image Q. We follow the recent dense feature
based methods to learn r number of d-dimensional features fθ(·) ∈ Rd×r to represent a set of local
characteristics for each image. We use q = {q1, ..., qr} to denote the set of dense features for a single
query image and use the K-shot averaged features sc = {sc1, ..., scr} to represent the set of dense
features from support class c. The bold font of {q, s} indicates a set of dense features while normal
font {q, s} indicates a single channel-dimensional feature vector. We use S =

⋃
c∈C sc to represent

the union of features from all supporting classes.

3.2 LEARNING MUTUAL AFFILIATIONS THROUGH BIDIRECTIONAL RANDOM WALKS

Our goal is to formulate and study an algorithm to find the label of a query image in a few-shot
classification task, given dense query features q and the union set S of support features from all the
classes. For simplicity of exposition, we denote |q| = r, |S| = Nr as the cardinality of sets q and S
respectively.

We start by defining local similarities between the two disjoint sets of dense features q,S. To be
specific, given vectors v1 and v2 from the two feature sets respectively, we use the the scaled cosine
similarity φγ(v1, v2) = γ〈v1/‖v1‖, v2/‖v2‖〉 to measure their closeness where 〈·, ·〉 denotes the
Frobenius inner product and γ ∈ R+ is a scaling parameter.

Following the query-to-support convention in previous work, we affiliate each query feature q to
support features s ∈ S with a random walk probability psq = exp(φγ(s, q))/

∑
s′∈S exp(φγ(s

′, q))
on the discrete feature space based on the relative closeness. The query-to-support probability matrix
PSq = (psq)s∈S,q∈q that indicates the probabilities for each q ∈ q random walking to s ∈ S can be
formulated by

PSq = ΦγD
−1 (1)

where Φγ ∈ R|S|×|q| is the exponential scaled similarity matrix with element entry [Φγ ]sq =

exp(φγ(s, q)). D is a diagonal matrix with its (j, j)-value to be the sum of the j-th column of Φγ .

Unlike existing methods that simply consider the query-to-support matches in a unidirectional
paradigm, we introduce an extra support-to-query relation as a complement to fully affiliate these two
feature sets. Formally, we affiliate support feature s to query features q ∈ q by a similar random walk
probability pqs = exp(φτ (q, s))/

∑
q′∈q exp(φτ (q

′, s)). The analogous support-to-query probability
matrix PqS = (pqs)q∈q,s∈S is given by

PqS = ΦτW
−1 (2)

where Φτ ∈ R|q|×|S| and [Φτ ]qs = exp(φτ (q, s)). W is the similar diagonal normalization matrix.

We consider a support feature random walks from S to q and then walks back to S as bidirectional
random walks starting from S. The probable locations for each support feature appearing at S after
walking and walking back are given by each column of probability matrix R|S|×|S| 3 ΨS = PSqPqS.
By analogy, query features could also random walk from q to S and then walk back to appear at q
with a similar probability matrix R|q|×|q| 3 Ψq = PqSPSq.

Although the local similarity matrices Φγ and Φτ would be symmetric if we ignore their different
scaling parameters γ and τ , the probability matrices PqS and PSq are both column-normalized and
thus directional.

3.3 ESTIMATING CLASS LABELS BY THE LONG-TERM FEATURES’ ACCESSIBILITY

We attack the classification problem based on the bidirectional random walks that encodes the mutual
affiliations between the two dense feature sets q,S. The motivation of our method is straightforward:
support features would be frequently visited in the long term of bidirectional random walks if they
shared the same class label with the query image. In other words, support class that owns most
querying characteristics would be the predicted class of the query image due to their mutual closeness.
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To formulate it, we associate each local feature with a particle z that is allowed to bidirectionally
random walk in a discrete feature space z = q ∪ S and assume these discrete random walks
time-homogeneous in a Markov process {Xt}. Formally, the probability from zj to zi is

Pr(Xt+1 = zi|Xt = zj) =

 exp(φγ(zi, zj))/
∑
s∈S exp(φγ(s, zj)) zi ∈ S, zj ∈ q

exp(φτ (zi, zj))/
∑
q∈q exp(φτ (q, zj)) zi ∈ q, zj ∈ S

0 otherwise
(3)

and the probability for all particles in the discrete feature space is given by the entry of

P =

(
0 PSq

PqS 0

)
(4)

where P is an anti-diagonal matrix that consists of the column-normalized sub-matrices PSq and
PqS defined in Eqn.(1) and Eqn.(2) respectively. The subscript of sub-matrices serves both as the
matrix size and as an indication for the particle with which it is associated. For example, PSq is of
size |S| × |q| and indicates the probabilities from query features q to support features S.

It can be proved (in Appendix B) that the Markov chain with anti-diagonal transition matrix P is
periodic and its stationary distributions are of period 2:

lim
t→∞

P2t =

(
π(S)eT|S| 0

0 π(q)eT|q|

)
lim
t→∞

P2t−1 =

(
0 π(S)eT|q|

π(q)eT|S| 0

)
(5)

where π(S) ∈ R|S|, π(q) ∈ R|q| are the stationary distributions of aforementioned bidirectional
random walks in Section 3.2 with equations π(S) = ΨSπ(S) and π(q) = Ψqπ(q) respectively.
e|·| is a vector of ones with different length indicated by its subscript.

To perform classification, we first assume particles uniformly distributed in the discrete finite space
z = q ∪ S. Then, we use the expected number of visits from all particles z ∈ z to support features
sc ⊂ S of class c in the long term of bidirectional random walks {Xt} as a measure:

Pr(ỹ = c) ∝ lim
t→∞

∑
z∈z

E

[
t∑

k=1

1[Xk ∈ sc]

∣∣∣∣X0 = z

]

= lim
t→∞

1

t

t∑
k=1

[
1

|S|+ |q|
∑
s∈sc

(∑
s′∈S

[
P2k

]
ss′

+
∑
q∈q

[
P2k−1]

sq

)]

=
1

|S|+ |q|
∑
s∈sc

(∑
s′∈S

[
lim
t→∞

P2t
]
ss′

+
∑
q∈q

[
lim
t→∞

P2t−1
]
sq

)
=
∑
s∈sc

[π(S)]s

(6)

where 1[·] is an indicator function that equals 1 if its argument is true and zero otherwise. [·]ij
indicates the entry of the matrix from particle j to particle i and [·]i indicates the entry of the vector
that associated to feature i. It should be noted that we give the derivation when the Markov chain
length t is even in the first equality of Eqn.(6) and prove that the odd t will reach the same result
in Appendix B. The second equality is from the absorbing of the periodic Markov chain where the
power of matrix get saturated to Eqn.(5) when the value of t increases. Since π(S) is the stationary
distribution of column-stochastic ΨS under the probability constraint eT|S|π(S) = 1, Pr(ỹ) is a valid
distribution for class predictions.

3.4 REINTERPRETATION AS A GRAPH CENTRALITY

If we interpret the Markov transition matrix P as an adjacency matrix {av1,v2} of a directed bi-
partite graph G := (V = {q,S}, E), we find that the accessibility of support features in the
time-homogeneous bidirectional random walk would be equivalent to learning a single-mode eigen-
vector centrality on graph G. The bipartite graph is also called the affiliation network in social
network analysis (Bonacich, 1972; 1991; Borgatti & Everett, 1997) that models two types of entities
"actors" and "society" related by affiliation of the former in the latter. The concept of centrality in
social network analysis is generally used to investigate the acquaintanceships among people that
often stem from one or more shared affiliations.
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To see this in graph theory, we start with a brief overview of the eigenvector centrality that reflects
score x of vertex v for both q ∈ q and s ∈ S in the affiliation network with adjacency {av1,v2}:

xq =
1

λ

∑
v∈V(q)

aq,vxv =
1

λ

∑
v∈S

aq,vxv xs =
1

λ

∑
v∈V(s)

as,vxv =
1

λ

∑
v∈q

as,vxv (7)

where V(·) is a set of neighbors for the given vertex and λ is a constant. With a small rearrangement,
Eqn.(7) can be rewritten in vector notation with an eigenvector equation Px = λx. The additional
requirement that all the entries of the eigenvector be non-negative implies (by the Perron–Frobenius
theorem Perron (1907)) that only the greatest eigenvalue results in the desired centrality measure. For
the adjacency matrix defined by the Markov transition matrix in our method, the largest eigenvalue λ
of the column-stochastic matrix P is 1.

Single-mode centrality (Borgatti & Everett, 1997) is a special form of graph centrality that measures
the extent to which nodes in one vertex set are relatively central only to other nodes in the same
vertex set on bipartite graph. For example, the single-mode centrality for different s in S is defined
by x̂S = xS/

∑
s∈S xs. Lemma 1 (proved in Appendix C) shows that features’ accessibility π(S) in

Eqn.(6) is equivalent to the single-mode eigenvector centrality of support set S on bipartite data.
Lemma 1. Assume G is the affiliation network of bipartite data {q,S} with the adjacency matrix
defined by the anti-diagonal Markov transition matrix P in Eqn.(4). The single-mode eigenvector
centrality x̂S = xS/

∑
s∈S xs of vertex set S is equivalent to the features’ accessibility π(S) on S in

a long term of time-homogeneous Markov process.

Based on this interpretation, it is straightforward to consider the attenuation (damping) factor α on the
affiliation network motivated by the well-known Katz centrality, a well-known variant of eigenvector
centrality in graph theory (Katz, 1953). The features’ accessibility of Markov bidirectional random
walks with attenuation α for few-shot classifications is defined by

PrKatz(ỹ = c) ∝
∑
z∈z

E

[ ∞∑
t=1

αt1[Xt ∈ sc]

∣∣∣∣X0 = z

]

=
1

ε

∞∑
t=1

∑
s∈sc

(∑
s′∈S

[
α2tP2t

]
ss′

+
∑
q∈q

[
α2t−1P2t−1]

sq

) (8)

where ε = (|S|+ |q|)
∑∞
t=1 α

t = (|S|+ |q|)α/(1− α) is a constant for a valid distribution.

Although we simply consider the single-mode centrality on S for an end-to-end classification purpose,
it is also beneficial to learn its conjugate centrality π(q) for q on the affiliation network. We will
show that both centralities could serve as plug-and-play for finding centralized local characteristics in
existing methods (hence the term Mutual Centralized Learning, MCL).

3.5 MUTUAL CENTRALIZED LEARNING

The algorithm of Mutual Centralized Learning (MCL) in Eqn.(6, 8) involves the computation of
Markov stationary distribution π(S) with equation π(S) = ΨSπ(S). Theoretically, the π(S) is the
eigenvector of ΨS with the eigenvalue 1 under a probability constraint eT|S|π(S) = 1.

The above constraints could lead to a solution of π(S) by solving the overdetermined linear system(
ΨS − I
eT|S|

)
π(S) =

(
0
1

)
(9)

where I is an identity matrix and 0 is a vector of zeros. Although we can solve it by various
methods like pseudo-inverse or QR decomposition and back substitution, it is empirically found
time-consuming as these operators are either numerically unstable or not paralleled well in modern
deep-learning packages.

To handle it, we present a fast solution by the graph centrality. We first calculate the closed-form
Katz centrality (Katz, 1953) and then solve single-mode Katz centrality in Eqn.(8) by

xKatz = ((I − αP)−1 − I)e (10)

PrKatz(ỹ = c) =

∑
s∈sc xKatz

s∑
s′∈S xKatz

s′
(11)
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where e is vector of ones with length |S| + |q|. Since Katz centrality degrades to the eigenvector
centrality when α approaches 1 (Katz, 1953), we can obtain a fast approximation of Eqn.(6) with a
large α = 0.999:

xEigen = lim
α→1

((I − αP)−1 − I)e ≈ ((I − 0.999P)−1 − I)e (12)

PrMCL(ỹ = c) =

∑
s∈sc xEigen

s∑
s′∈S xEigen

s′

(13)

We give the whole picture of proposed MCL with episode loss for few-shot classifications in Appendix
A and demonstrate that Eqn.(10) can be time efficiently solved in O(r3) by the block-wise inversion
in Eqn.(F.2).

3.6 GRAPH CENTRALITY AS PLUGIN FOR GLOBAL FEATURE BASED FSL.

Since the underlying centrality learned by MCL reveals the different importance of local features on
an affiliation network, it is thus plausible to plug it into global feature based methods by replacing
their native global average pooling (GAP) with the centrality weighted pooling as follows:

1. Remove the GAP layer to get feature map outputs (a set of dense features) for each image.
2. Calculate single-mode centrality π(S) and its conjugate π(q) by Eqn.(12)
3. Use π(q) as graph centrality weights on query dense features and weighted accumulate

them to a single feature vector for each image.
4. Unlike the centrality π(q) of query features that are from the single query image, π(S) are

calculated for support dense features from all classes. Thus, we execute an extra class-wise
normalization step to obtain normalized centrality weights for each supporting class.

5. Use the class-wise normalized centrality to accumulate dense features for every supporting
class like in step 3 and each class will be represented by a single feature vector.

Once we get the centrality weighted vector representations for the query image and support classes,
it is straightforward to perform traditional global feature based ProtoNet (Snell et al., 2017) and
RelationNet (Sung et al., 2018) as before.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

We conduct experiments on two widely-used FSL datasets and three fine-grained datasets: (1)
miniImageNet (Vinyals et al., 2016) contains 600 images per class over 100 classes. We follow the
split used by Sachin & Hugo (2017) that takes 64, 16 and 20 classes for train/val/test respectively;
(2) tieredImageNet (Ren et al., 2018) is much larger compared to miniImageNet with 608 classes.
The 351, 97 and 160 classes are used for train/val/test respectively. (3) CUB (Welinder et al., 2010)
consists 11,788 images from 200 bird classes. 100/50/50 classes are used for train/val/test and each
image is first cropped to a human-annotated bounding box. (4) meta-iNat (Wertheimer & Hariharan,
2019) is a benchmark of animal species in the wild. We follow the same class split proposed by
(Wertheimer & Hariharan, 2019) that uses 908/227 classes for training/evaluation respectively. (5)
tiered meta-iNat (Wertheimer & Hariharan, 2019) is a more difficult version of meta-iNat where a
large domain gap is introduced. The 354 test classes are populated by insects and arachnids, while
the remaining 781 classes (mammals, birds et al.) form the training set.

Backbone networks. We conduct experiments with both widely-used four layer convolutional
Conv-4 (Vinyals et al., 2016) and deep ResNet-12 (Sun et al., 2019) backbones. As is commonly
implemented in the state-of-the-art FSL literature, we adopt a pre-training stage for the ResNet-12
before the episode meta-training while directly meta-train from scratch for the simple Conv-4.

Dense feature extractor fθ(·). For a fair comparison with the previous dense feature based methods,
we explore three dense feature extractors in our experiments (details can be found in Appendix E): (1)
VanillaFCN simply treats the feature map output of fully convolutional network as dense features. (2)
PyramidFCN applies pyramid structures to extract dense features of different scales. (3) PyramidGrid
crops image into grid patches of different scales and encodes each patch to a feature vector.
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Method
Conv-4 ResNet-12

miniImageNet tieredImageNet miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Global features

DSN 51.78 68.99 53.22 71.06 62.64 78.83 67.39 82.85
MetaOptNet 52.87 68.76 54.71 71.76 62.64 78.63 65.99 81.56

FEAT 55.15 71.61 - - 66.78 82.05 70.80 84.79
RelationNet 52.12 66.90 54.33 69.95 60.97 75.12 64.71 78.41

RelationNet+MCL 54.50 70.63 57.73 74.46 61.70 75.53 65.93 80.27
ProtoNet 52.32 69.74 53.19 72.28 62.67 77.88 68.48 83.46

ProtoNet+MCL 54.31 69.84 56.67 74.36 64.40 78.60 70.62 83.84

Dense features
(VanillaFCN)

DN4 54.66 71.26 56.86 72.16 65.35 81.10 69.60 83.41
DeepEMD 52.15 65.52 50.89 66.12 65.91 82.41 71.16 83.95

FRN 54.87 71.56 55.54 74.68 65.90 81.92 70.56 85.47
Label Spreading 52.24 67.68 54.56 70.08 65.00 80.07 71.12 83.89

MCL (ours) 55.38 70.02 57.63 74.25 66.75 83.37 71.76 85.68
MCL-Katz (ours) 55.55 71.74 57.78 74.77 66.91 83.53 72.01 86.02

Dense features
(PyramidFCN)

DN4 54.54 70.94 57.05 72.90 63.54 79.04 71.10 84.22
DeepEMD 50.67 64.94 51.26 65.64 66.27 82.41 70.76 84.20

FRN 54.40 70.75 57.30 75.58 65.94 81.97 70.56 85.44
Label Spreading 53.38 68.69 55.21 71.22 65.71 75.78 71.00 78.01

MCL (ours) 55.13 70.77 57.93 74.36 67.38 84.06 72.01 86.31
MCL-Katz (ours) 55.77 71.24 58.20 74.73 66.94 83.85 72.13 86.32

Dense features
(PyramidGrid)

DN4 57.17 70.91 56.71 70.92 67.86 80.08 71.29 82.60
DeepEMD 55.68 70.75 55.88 70.06 67.83 81.32 73.13 84.18

FRN 55.80 71.52 55.68 72.87 67.00 82.20 71.42 85.58
Label Spreading 55.12 68.43 56.05 72.39 67.18 81.07 73.18 85.19

MCL (ours) 57.50 73.03 57.57 73.81 69.03 85.11 73.62 86.29
MCL-Katz (ours) 57.88 74.03 57.63 73.96 68.96 84.71 73.38 86.21

Table 1: Few-shot classification accuracy (%) on miniImageNet and tieredImageNet. The confidence
intervals are all below 0.25 for the 10,000 episodes evaluation. Results for DN4, DeepEMD and FRN
(except for their larger shot training) are our reimplementations for a fair and thorough comparison
under different dense feature extractor settings. Results of italic font indicates the performance of
MCL as a plug-and-play for global features based methods. Results of blue fonts are the second-placed
results in the last three panes, respectively.

4.2 FEW-SHOT CLASSIFICATION RESULTS

Table 1 details the comparisons of proposed MCL/MCL-Katz with competitive global feature based
DSN (Simon et al., 2020), MetaOptNet (Lee et al., 2019), FEAT (Ye et al., 2020) as well as dense
feature based DN4 (Li et al., 2019), DeepEMD (Zhang et al., 2020) and FRN (Wertheimer et al.,
2021) on mini-/tieredImageNet. Results on three fine-grained benchmarks can be found in Table 2.

Besides these methods, we also exploit the well-known label spreading in dense feature based
inductive FSL as a baseline to demonstrate that traditional transductive methods could be easily
adaptable to inductive settings if we treat vectors of feature maps as a set of unlabeled data and use
the features’ accessibility as a criterion in few-shot classification.

Comparisons with dense feature based methods. The last three panes of Table 1 illustrate that
proposed bidirectional random walks consistently outperforms unidirectional DN4’s nearest neighbor-
ing, DeepEMD’s optimal matching and FRN’s latent feature reconstructions under different settings.
Although the optimal matching flow is unidirectional in DeepEMD, they adopt a bidirectional cross-
reference attention that encodes the mutual relevance to a certain extent. If we consider dense features
as nodes and their similarities as edges in the bipartite graph, a major difference between DeepEMD’s
attention and our method is that they treat nodes equally to derive different attention on edges while
we use the fixed edges to derive the centrality of nodes in the graph.
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Method
CUB meta-iNat tiered meta-iNat

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
ProtoNet (Snell et al., 2017) 63.73 81.50 55.34 76.43 34.34 57.13

Covar. pool (Wertheimer & Hariharan, 2019) - - 57.15 77.20 36.06 57.48
DSN (Simon et al., 2020) 66.01 85.41 58.08 77.38 36.82 60.11

CTX (Doersch et al., 2020) 69.64 87.31 60.03 78.80 36.83 60.84
DN4 (Li et al., 2019) 73.42 90.38 62.32 79.76 43.82 64.17

FRN (Wertheimer et al., 2021) 73.48 88.43 62.42 80.45 43.91 63.36
MCL (ours) 74.16 87.72 64.66 81.31 43.96 64.61

MCL-Katz (ours) 76.19 89.44 63.92 81.09 44.01 64.24

Table 2: Fine-grained 5-way few-shot classification (%) results with Conv-4. Results of all comparing
methods (except for DN4) are drawn from FRN with larger shot training. The confidence intervals
are all below 0.25 for 10,000 episodes evaluation.
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(a) Ablation on parameters γ, τ and α. (b) Ablation on the length of Markov process {Xt}.

Figure 2: Ablative of 5-way FSL results on tieredImageNet with ResNet-12 and VanillaFCN feature
extractor. (a) studies the influences from different choices of parameters. (b) compares performances
between infinite length of Markov process and those from varying finite lengths.

Different choices of scaling hyper-parameters γ and τ . We use two hyper-parameters γ, τ in
matrices Φγ ∈ R|S|×|q| and Φτ ∈ R|q|×|S| respectively. With the column-wise normalization in
Eqn.(1,2), γ and τ can be interpreted as the reciprocal of temperatures in softmax-like random walk
probability. Thus, a large scaling parameter will have a hard random walk probability that leads to
a concentrated centrality in the affiliation network. However, an extremely large parameter (e.g.,
one-hot probability when γ, τ approach infinity) would inevitably bias the episodic training due to
the potential gradient explosion. In the experiments, we carefully select γ and τ by the validation
performance for pretrained ResNet12 backbone. Figure 2(a) details different combinations of γ and
τ . Since the cardinality |S| is larger than |q|, we empirically use a larger γ than τ in the experiments
as we need a harder probability in random walks from query to the large union set of support features.

Influence of Katz attenuation factor α. Intuitively, the contributions of distant nodes should be
penalized by attenuation in the long term of random walks. For a small value of α, the contribution
given by paths longer than one rapidly declines, and thus the centrality is mainly influenced by short
paths (mostly in-degrees). When α is large, long paths are devalued smoothly, and the centrality
would be more influenced by endogenous topology. We show the ablative on α in Figure 2(a) that,
for an extremely small α → 0, the classification will be only determined by γ in a unidirectional
query-to-support walk where the contributions from paths longer than one just vanished. We show
more quantitative comparisons between unidirectional and bidirectional random walks in Table 4.
The performance is improved by considering mutual affiliations for an increasing value of α. In this
work, we simply use α = 0.5 for MCL-Katz in Eqn.(8) and use α = 0.999 for MCL in Eqn.(6).

Long-term v.s. finite short-term features’ accessibility in Markov process. Figure 2(b) shows
the ablative results of using short-term features’ accessibility from various finite steps of the Markov
process. We see that the performance gains by the long term of random walks gradually saturate for
the increasing values of t as contributions from far distant nodes get vanished due to the exponential
decreasing of αt in MCL-Katz. With appropriate α, we see using the long-term features’ accessibility
for classifications consistently outperforms those from the finite short-term’s accessibility.
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(a) MCL as plug-and-play for a centralized global feature (b) MCL as an end-to-end dense classification method

ProtoNet MCL

ProtoNet
+MCL

MCL
(Katz)

query ground truth confounding support classes query ground truth confounding support classes

Table 3: Grad-CAM visualizations of query and support images in 4-way 1-shot classifications. The
left pane (a) illustrates MCL as plug-and-play on tieredImageNet. The right pane (b) illustrates MCL
as an end-to-end dense classification method on miniImageNet. Images at the second column of each
task are from the ground truth while the others are from the confounding support classes.

fθ(·)
mini- tiered-

1-shot 5-shot 1-shot 5-shot
uni-

VanillaFCN

54.88 69.98 55.31 68.87
MCL 55.38 70.02 57.63 74.25

MCL-Katz 55.55 71.74 57.78 74.77
uni-

PyramidFCN

54.92 69.17 55.69 69.26
MCL 55.13 70.77 57.93 74.36

MCL-Katz 55.77 71.24 58.20 74.73
uni-

PyramidGrid

56.61 71.40 55.12 69.19
MCL 57.50 73.03 57.57 73.81

MCL-Katz 57.88 74.03 57.63 73.96

Table 4: Comparisons between the unidirectional
random walks and bidirectional MCL on mini-
/tieredImageNet with Conv-4.

+MCL mini- tiered-
q s 1-shot 5-shot 1-shot 5-shot

ProtoNet

52.32 69.74 53.19 72.28
X 53.74 69.61 55.36 73.17

X 53.97 69.74 56.60 74.18
X X 54.31 69.84 56.67 74.36

RelationNet

52.12 66.90 54.33 69.95
X 53.25 66.79 54.46 70.71

X 54.37 70.57 57.68 74.24
X X 54.50 70.63 57.73 74.46

Table 5: Ablation of MCL as plug-and-play that in-
dividually applied on query features q and support
features s. The experiments are conducted with
Conv-4 and VanillaFCN on mini-/tieredImageNet.

Graph centrality as plugin. The first pane in Table 1 shows that our proposed centrality could
provide at most 3.4% and 4.5% performance gains for global feature based ProtoNet and RelationNet
respectively. Table 5 details that the improvements are consistent if we solely replace the global
average pooling with proposed centrality weighted pooling on the query and support dense features.

Qualitative visualizations of the feature centralization. To get a deeper understanding of our
centrality based methods, we visualize the Grad-CAM (Selvaraju et al., 2017) of the last convolutional
layer in ResNet-12. Table 3(a) first shows that ProtoNet fails to identify the most relevant regions of
interests in the task. With centrality weighted pooling, ProtoNet+MCL identifies those regions and
removing the confounding areas in predictions. Table 3(b) shows that the most centralized support
features in MCL are not only from the ground-truth but also mutually affiliate with the task-relevant
objects of the query images. It qualitatively validates the underlying idea of our methods that support
features would be frequently visited in the long term of bidirectional random walks by the mutual
affiliations if they shared the same class with the query image.

5 CONCLUSIONS

We present a novel dense feature based framework: Mutual Centralized Learning (MCL) to highlight
the mutual affiliations of bipartite dense features in FSL. We introduce a novel features’ accessibility
criterion and demonstrate classic transductive methods like label spreading could be easily adapted
to the inductive setting if we treat dense features from a single image as the set of unlabeled data.
We propose bidirectional random walk to learn mutual affiliations in FSL and prove its features’
accessibility in a long time-homogeneous Markov process is equivalent to the single-mode eigenvector
centrality of an affiliation network. We show that such centrality could not only serve as a noval
end-to-end classification criterion but also as a plugin in existing methods. Experimental results
demonstrate MCL achieves the state-of-the-art on both miniImageNet and tieredImageNet.
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Appendices

A ALGORITHM FOR EPISODE LOSS

Algorithm 1 Episodic Loss for N -way K-shot Mutual Centralized Learning.
Notations:

Ctrain: the set of training classes.
Cepisode: the set of randomly selected classes in each episode.
NQ: the number of selected query examples per class in each episode.
Dtrain: the set of training data {(x0, y0), (x1, y1), ...} where x is an image and y is its label.
Dc: the subset of Dtrain that belongs to class c
Qepisode: the set of query data in each episode.
Scepisode: the set of support data of class c in each episode.
q: the set of dense features of a single query image.
sc: the set of dense features of class c in each episode.
S: the set of dense features of all classes in each episode.

Require:
RANDOMSAMPLE({·}, k): random sampling k elements from set {·} without replacement.
fθ(x): function to dense features given the input image x (e.g., feature map from VanillaFCN).
1[·]: indicator function that equals one if its argument is true and zero otherwise

Procedure:
1: Qepisode ← {}
2: Cepisode ← RANDOMSAMPLE(Ctrain, N) . Select N -way classes for episode
3: for c in Cepisode do
4: Scepisode ← RANDOMSAMPLE(Dc,K) . Select K-shot support examples per class
5: sc ← 0
6: for (x, y) ∈ Scepisode do
7: sc ← sc + fθ(x)/K . Average support features from K-shot images of the same class
8: end for
9: Qepisode ← Qepisode ∪ RANDOMSAMPLE(Dc \ Scepisode, NQ) . Select NQ queries per class

10: end for
11: S←

⋃
c∈Cepisode

sc . Union support features of different classes within an episode
12: L ← 0 . Initialize episodic loss
13: for (x, y) in Qepisode do
14: q← fθ(x)
15: Compute matrix Φγ , Φτ , and their normalization matrices D and W by Eqn.(1, 2)
16: Construct transition matrix P by Eqn.(4)
17: Compute complete Katz centrality or approximated eigenvector centrality by Eqn.(10, 12)
18: Compute probability Pr(ỹ = c) for class c by Eqn.(13) for MCL (or Eqn.(11) for MCL-Katz).

19: L ← L− 1

NNQ

[∑
c∈Ce

1[y = c] logPr(ỹ = c)

]
. Negative log-likelihood loss

20: end for
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B PROOF OF EQN.(5)

Eqn.(5): Given the anti-diagonal Markov transition matrix P =

(
0 PSq

PqS 0

)
that is composed of

two column-normalized submatrices PSq, PSq, the stationary distribution is periodic with equation:

lim
t→∞

P2t =

(
π(S)eT|S| 0

0 π(q)eT|q|

)
lim
t→∞

P2t−1 =

(
0 π(S)eT|q|

π(q)eT|S| 0

)
where π(S) is the stationary vector of PSqPqS and π(q) is the stationary vector of PqSPSq. e|·|
denotes a vector of ones with different length indicated by its subscript.

Proof of periodic: Consider the eigenvalue λ of P with determinant

det(λI −P) = det

(
λI −PSq

−PqS λI

)
= det(λ2I −PSqPqS) (B.1)

it can be found that the eigenvalues of P are the square roots of eigenvalues of PSqPqS.

Since the subblocks of PSq and PqS are both column-normalized matrices as defined in Eqn.(1,2),
their product is column-stochastic that can be proved by:

eT|S|PSqPqS = eT|q|PqS = eT|S| (B.2)

We know (by the definition of stochastic matrix) that λ = 1 is the largest eigenvalue of PSqPqS,
and its uniqueness is guaranteed since there is no zero entry in both PSq and PqS. According to
Eqn.(B.1), we get another eigenvalue λ = −1 for stochastic matrix P. From the Perron–Frobenius
theorem that the period of P equals to the number of eigenvalue whose absolute value is equal to the
spectral radius of P, we can get its stationary distribution is of period 2.

Proof of stationary distribution for even periods: Consider the even power of matrix P in extreme

lim
t→∞

P2t = lim
t→∞

(
PSqPqS 0

0 PqSPSq

)t
=

(
lim
t→∞

[PSqPqS]
t

0

0 lim
t→∞

[PqSPSq]
t

)
(B.3)

We have shown in Eqn.(B.2) that PSqPqS is column-stochastic and use π(S) to represent its
stationary distribution vector with equation lim

t→∞
[PSqPqS]

t
= π(S)eT|S|. By analogy, the infinity

power of PqSPSq could also reach a similar stationary π(q). Thus, we can derive the left part of
Eqn.(5) by substituting the two stationary vectors into Eqn.(B.3).

Proof of stationary distribution for odd periods: From the definition, we have

lim
t→∞

P2t−1 = lim
t→∞

P2t+1 = P lim
t→∞

P2t =

(
0 PSqπ(q)e

T
|q|

PqSπ(S)e
T
|S| 0

)
(B.4)

According to the definition of π(q) and π(S), we can get

π(q)eT|q| = lim
t→∞

[PqSPSq]
t
= PqS

(
lim
t→∞

[PSqPqS]
t
)

PSq = PqSπ(S)e
T
|S|PSq (B.5)

if we right matrix product of e|q| on both sides of Eqn.(B.5), we have

π(q)eT|q|e|q| = PqSπ(S)e
T
|S|PSqe|q| (B.6)

Since eT|q|e|q| = |q| and eT|S|PSqe|q| =
∑
i

∑
j

[PSq]ij = |q|, Eqn.(B.6) can be simplified by

dividing the same scalar |q| on both sides:

π(q) = PqSπ(S) (B.7)

By analogy, a symmetric equation π(S) = PSqπ(q) can also be easily proved in the same way from
Eqn.(B.5) to Eqn.(B.7). Substituting both π(S) = PSqπ(q) and π(q) = PqSπ(S) into Eqn.(B.4)
gives the right part of Eqn.(5).
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C PROOF OF LEMMA 1.

Proof : We have shown in Appendix B that there exists an eigenvalue λ = 1 for the column-stochastic
matrix P with equation Px = x. If we interprete the transition matrix as an adjacency matrix for the
directed bipartite graph, the eigenvector centrality of that graph is x.

We split the eigenvector x into xS, xq for the bipartite vertex set q,S respectively and the single-mode
eigenvector centralities of the single vertex set can therefore be formulated by:

x̂S =
xS∑
s∈S xs

x̂q =
xq∑
q∈q xq

(C.1)

If we left matrix product P on both sides of Px = x, we will have P2x = P(Px) = Px = x. To
write it in matrix notation, we have(

PSqPqS 0

0 PqSPSq

)
︸ ︷︷ ︸

P2

(
xS

xq

)
︸ ︷︷ ︸

x

=

(
xS

xq

)
︸ ︷︷ ︸

x

(C.2)

Consider the first row of P2 matrix product with x in Eqn.(C.2), we have PSqPqSxS = xS. Since
π(S) is the eigenvector of PSqPqS of eigenvalue 1 with probability constraint

∑
s∈S[π(S)]s = 1,

π(S) is exactly equivalent to the single-mode eigenvector centrality x̂S in Eqn.(C.1).

By analogy, if we consider the matrix product between the second row of P2 and x, we can prove
π(q) equivalent to the conjugate single-mode eigenvector centrality x̂q of the bipartite graph G.

D SUPPLEMENTARY PROOF OF EQN.(6)

Eqn.(6):

Pr(ỹ = c) = lim
t→∞

∑
z∈z

E

[
t∑

k=1

1[Xk ∈ sc]

∣∣∣∣X0 = z

]
∑
z∈z

E

[
t∑

k=1

1[Xk ∈ S]

∣∣∣∣X0 = z

] =
∑
s∈sc

[π(S)]s

Let Pr(ỹ = c) , lim
t→∞

Pr(t). Since we have shown {Xt} is of 2 period in Appendix B, the proof of
Eqn.(6) is thus equivalent to prove:

lim
t→∞

Pr(2t) = lim
t→∞

Pr(2t− 1) =
∑
s∈sc

[π(S)]s (D.1)

Proof of even period: lim
t→∞

Pr(2t) =
∑
s∈sc

[π(S)]s (most of which has been shown in Eqn.(6))

From the definition, we have

Pr(2t) =

1
|z|

∑
z∈z

2t∑
k=1

∑
s∈sc

[
Pk
]
sz

1
|z| (|q|t+ |S|t)

=
1

t

t∑
k=1

[
1

|z|
∑
s∈sc

(∑
z∈S

[
P2k

]
sz

+
∑
z∈q

[
P2k−1]

sz

)] (D.2)

where |q|t is the number of visits from particles in q to support features in S after 2t steps of
Markov bidirectional random walk. |S|t is the number of visits starting from particles in S to support
features in S. The second equality is derived from the diagonal/anti-diagonal property of P2k/P2k−1

respectively where the sub-matrices 0 are ignored in summation.
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Taking it to the extreme, we have

lim
t→∞

Pr(2t) =
1

|z|
∑
s∈sc

(∑
z∈S

[
lim
t→∞

P2t
]
sz

+
∑
z∈q

[
lim
t→∞

P2t−1
]
sz

)
=
∑
s∈sc

[π(S)]s

(D.3)

where the first equality in Eqn.(D.3) is derived from the absorbing of periodic Markov chain and the
second equality is from the substitution of Eqn.(5).

Proof of odd period: lim
t→∞

Pr(2t− 1) =
∑
s∈sc

[π(S)]s

From the definition, we have

Pr(2t− 1) =

1
|z|

∑
z∈z

2t−1∑
k=1

∑
s∈sc

[
Pk
]
sz

1
|z| (|q|t+ |S|(t− 1))

=
1

|z|
1

t− |S||z|

∑
s∈sc

[∑
z∈q

Psz +

t∑
k=2

(∑
z∈S

[
P2k−2]

sz
+
∑
z∈q

[
P2k−1]

sz

)] (D.4)

Take Eqn.(D.4) to the extreme, we have

lim
t→∞

Pr(2t− 1) =
1

|z|
∑
s∈sc

(∑
z∈S

[
lim
t→∞

P2t−2
]
sz

+
∑
z∈q

[
lim
t→∞

P2t−1
]
sz

)
=
∑
s∈sc

[π(S)]s

(D.5)

where lim
t→∞

1

t− |S|z

∑
z∈q

Psz = 0 is ignored when t approaches the infinity.

E DETAILS OF EXPERIMENT SETTINGS.

E.1 BACKBONE NETWORK.

Conv-4. It contains four convolutional blocks, each of which consists of a convolutional layer, a
batch normalization layer and a Leaky ReLU layer of parameter 0.2. Besides, for each convolutional
blocks, an additional 2×2 max-pooling layer is appended, respectively. Given the image of size
84× 84, Conv-4 outputs a feature map of size 5× 5× 64.

ResNet-12. We use the same ResNet backbone as in previous literature. Although it is sometimes
call ResNet-10 (e.g., in DeepEMD) as they ignore the count of the last fully connected layer, they
are indeed the same architecture. The network is composed of four residual blocks, each having
three 3×3 convolutional layers with batch normalization and ReLU activation function. Each block is
followed by 2×2 max-pooling. The shortcut connections have a convolutional layer to adapt to the
right number of channels. The numbers of channels for each block are 64, 160, 320, 640 respectively.
Given the image of size 84× 84, ResNet-12 outputs a feature map of size 5× 5× 640.

E.2 DENSE FEATURE EXTRACTOR.

We compare three kinds of dense feature extractor in our work to demonstrate the effectiveness of our
methods. We didn’t investigate too much design choices in each extractors, e.g., the size of grids in
PyramidGrid, but mainly focus on their native designs as illustrated in Figure 3:

VanillaFCN simply treats the feature map output of the fully convolutional network as a set of dense
features. For examples, there are 25 64-dimensional dense feature vectors for Conv-4 backbone and
25 640-dimensional dense feature vectors for ResNet-12 backbone.
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(a) VanillaFCN
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…

5 × 5
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Pooling

…
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84 × 84
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84 × 84 84 × 84

Dense Features

…

…
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G
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(c) PyramidGrid

Figure 3: Dense feature extractors to extract local embeddings of the input image. (a) VanillaFCN
simply treats the feature map output of fully convolutional network as dense features. (b) PyramidFCN
applies pyramid structures on top of the native feature map to extract dense features of different
scales. (c) PyramidGrid crops image into grid patches of different scales and encodes each patch to a
feature vector with the embedding network. "GAP" indicates a single global average pooling layer.

PyramidFCN appends a feature pyramid structure at the end of VanillaFCN to extract local features
from multiple image scales. Concretely, we use an extra adaptative average pooling layer of output
size 3× 3 to obtain 34 (3× 3 + 5× 5) channel-dimensional dense features for each image in our
experiment.

PyramidGrid first crops the image evenly into an H ×W grid before sending it to the embedding
backbone and each image patch in the grid cell is encoded by the network individually. We add a
global average pooling (GAP) layer at the end of the backbone so that each image patch will generate
a feature vector. The feature vectors generated by all the patches constitute the set of dense features
for each image. Like in PyramidFCN, we also adopt an pyramid structure of size 3× 3 + 2× 2 in
the experiments.
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E.3 TRAINING PROCEDURE.

Conv-4 is trained from scratch with gradient descent. Specifically, the training is conducted on
30 epochs for both miniImageNet and tieredImageNet. Each epoch composes 20,000 episodes for
training. In each episode, 15 and 10 query images will also be selected from each class for the 1-shot
and 5-shot settings, respectively. In other words, for a 5-way 1-shot task, there will be 5 support
images and 75 query images in one training episode. To train the Conv-4 model, we adopt Adam
algorithm with an initial learning rate 1× 10−3 and reduce it by 0.1 every 10 epochs.

ResNet-12. The networks are first pre-trained from scratch in a fully supervised manner like previous
literature, i.e., minimizing cross-entropy loss on the train split of a dataset. In meta-training stage,
we use 30 epochs for miniImageNet and 60 epochs for tieredImageNet respectively. Each epochs
composes 200 episodes for the meta-training. We adopt the SGD with an initial learning rate 5×10−4

and reduce it by half every 10 epochs.

For data augmentation in both Conv-4 and ResNet-12, images are resized to 92 × 92, randomly
cropped to 84× 84 and randomly flipped along horizontal axis before used for training.

F COMPUTATIONAL SPEED AND SCALABILITY.

There are multiple ways to solve π(S) in Eqn.(6) and we discuss their computational speed and
scalabilities in this section. Formally, solving the stationary distribution π(S) with probability
constraints is equivalent to solving the Ax = b like overdetermined linear system in Eqn.(9):(

ΨS − I
eT|S|

)
︸ ︷︷ ︸

A

π(S)︸ ︷︷ ︸
x

=

(
0
1

)
︸︷︷︸

b

(F.1)

Here, we compare four different ways in solving this linear system:

1. Closed-form left pseudo inverse: x in Eqn.(F.1) has a closed-form solution x = (ATA)−1ATb.

2. Deep learning pseudo-inverse package like torch.pinverse.

3. QR decomposition and back substitution: We first find A = QR. The solution x then can be
expressed as x = R−1(QTb). Back substitution can be used to quickly and accurately find xwithout
explicitly inverting R. In practice, we use the torch.qr and torch.triangular_solve.

4. Katz centrality approximation as introduced in Eqn.(13). At first glance, the most expensive
step of MCL-Katz in Eqn.(10) is inverting I − αP. Directly inverting this matrix costs O(N3r3)
where N is the number of supporting classes and r is the number of dense features for each image
input. Fortunately, I−αP is a very special matrix that equals a diagonal matrix minus an anti-diagonal
matrix. In this case, we can reformulate its inversion by:

(I − αP)−1 =

[
I −αPSq

−αPqS I

]−1

=

[
I + α2PSq(I − α2PqSPSq)

−1PqS αPSq(I − α2PqSPSq)
−1

α(I − α2PqSPSq)
−1PSq (I − α2PqSPSq)

−1

] (F.2)

where the reformulation is owed to the blockwise matrix inversion. The most expensive step becomes
a (I − α2PSqPqS) ∈ Rr×r matrix inversion and the time complexity is reduced to O(r3). The
Pytorch pseudo-codes for Katz approximation can be found in Code 1.

It should be noted that those four mentioned MCL implementations won’t have any differences
in inference (except for their speed) but different in training. Among them, the closed-form left
pseudo-inverse is comparably time efficient but may has numerical problem in back-propagation
where extremely small values in inversion matrix cause gradient explosion; The SVD-based
torch.pinverse would amplify the round-off error when dealing with the ill-conditioned matrix.
Tricks like clip_grad_norm or pre-detect those ill-conditioned cases could slightly help mitigate
the problem but we still found some performance drops. QR based method is a numerically stable
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Time per
episode (ms)

VanillaFCN 622.3
ProtoNet 11.31

ProtoNet + MCL 16.75
MCL (closed-form) 15.43

MCL (torch.pinverse) 122.5
MCL (QR decomposition) 352.5
MCL (Katz approximation) 15.34

Table 6: Speed comparison between differ-
ent on ResNet-12. Each class owns 15 query
images in an 5-way 1-shot episode.

feature
resolution r

VanillaFCN
(ms)

DN4
(ms)

FRN
(ms)

MCL
(ms)

5×5 186.9 3.85 59.61 5.94
6×6 251.1 4.52 60.85 6.59
7×7 331.6 5.43 61.46 7.28
8×8 427.0 6.01 61.94 7.78

10×10 669.3 8.93 63.26 11.61
12×12 961.6 13.08 71.64 17.69

Table 7: Speed comparison for different input image
resolutions in 5-way 1-shot FSL tasks with ResNet-12.
Each class contains 4 query images in inference due to
the limited GPU memory for large image resolutions.

way to directly solve the overdetermined system and doesn’t suffer any of aforementioned problem.
However, as shown in Table 6, it is quite time-consuming throughout the experiment. As a compari-
son, Katz approximation is not only time-efficient but also numerical stable. We provide thorough
speed test for different cardinality r in Table 7 to show the scalability of proposed MCL.

# support of tensor shape [N, d, r]:
# N-way FSL, each class owns r number of d-dimensional dense features
# query of tensor shape [q, d, r]:
# q query examples, each of them owns r dense features.
#
# gamma: scaled similarity parameter
# tau: scaled similarity parameter
# alpha: Katz attenuation factor
# alpha_2: the square of alpha
#
# @: the matrix multiplication operator in Pytorch
def inner_cosine(query, support):

N, d, r = support.shape
q = len(query)
query = query / query.norm(2, dim=-1, keepdim=True)
support = support / support.norm(2, dim=-1, keepdim=True)

support = support.unsqueeze(0).expand(q, -1, -1, -1)
query = query.unsqueeze(1).expand(-1, N, -1, -1)
S = query_xf.transpose(-2, -1)@support_xf
S = S.permute(0, 2, 1, 3).contiguous().view(q, r, N * r)
return S

def MCL_Katz_approx(query, support):
N, d, r = support.shape
q = len(query)
S = inner_cosine(query, support) # [q, r, Nr]
St = S.transpose(-2, -1) # [q, Nr, r]

# column-wise softmax probability
P_sq = torch.softmax(gamma * S, dim=-2)
P_qs = torch.softmax(tau * St, dim=-2)
# From the derivations in Eqn.(F.2)
inv = torch.inverse(

torch.eye(r)[None].repeat(q, 1, 1) - alpha_2 * P_qs@P_sq
) # [q, r, r]
katz = (alpha_2 * P_sq@inv@P_qs).sum(-1) + (alpha * P_sq@inv).sum(-1)
katz = katz / katz.sum(-1, keepdim=True)
predicts = katz.view(q, N, r).sum(-1)
return predicts

Code 1: Pytorch pseudo-code for 1-shot MCL (Katz approximation) in a single episode. The whole
calculation is performed in parallel via batched matrix multiplication and inversion.
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G THE ADVANTAGE OF BIDIRECTIONAL RANDOM WALK

In our proposed random walks, there are r particles random walking from query dense features to
the support ones. If we only consider a unidirectional random walk, different starting q will end in
support dense features with different probabilities. Since those r query dense features are actually
from the same query image, an extra approach is needed for a joint prediction. Since the features’
accessibility of unidirectional random walks is equivalent to average the probabilities from all starting
query features, we consider it violates the intuition that different query dense features should own
different importance.

In this paper, we proposed the bidirectional paradigm such that features’ accessibility will converge
to a Markov stationary distribution after infinite steps of random walks. An interesting property of
stationary distribution is, whatever the initial data distribution is (i.e., the distribution of q), they will
converge to the same stationary distribution that is only determined by the transition matrix P . If all
starting q reach to the same stationary distribution, it is quite straightforward to treat that distribution
as a joint prediction of q.

Another interesting interpretation of π(S) in Eqn.(6) is from the equation proved in Appendix B
that π(S) = PSqπ(q) where π(q) is equivalent to measuring the importance of different q ∈ q
(the single-mode centrality of query dense features) and PSqπ(q) can be interpreted as an centrality
weighted accumulation of different unidirectional random walk probabilities from different starting q.
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