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Abstract

Protein Language Models (PLMs), pre-trained on
extensive evolutionary data from natural proteins,
have emerged as indispensable tools for protein
design. While powerful, PLMs often struggle to
produce proteins with precisely specified func-
tionalities or properties due to inherent challenges
in controlling their outputs. In this work, we in-
vestigate the potential of Activation Steering, a
technique originally developed for controlling text
generation in Large Language Models (LLMs), to
direct PLMs toward generating protein sequences
with targeted properties. We propose a simple yet
effective method that employs activation editing
to steer PLM outputs, and extend this approach to
protein optimization through a novel editing site
identification module. Through comprehensive
experiments on lysozyme-like sequence genera-
tion and optimization, we demonstrate that our
methods can be seamlessly integrated into both
auto-encoding and autoregressive PLMs without
requiring additional training. These results high-
light a promising direction for precise protein en-
gineering using foundation models.

1. Introduction
Protein Language Models (PLMs) (Madani et al., 2020; Ni-
jkamp et al., 2023; Lin et al., 2022; Hayes et al., 2024; Lv
et al., 2024) have emerged as transformative tools for under-
standing and designing proteins (Notin et al., 2022; Strokach
& Kim, 2022; Ferruz & Höcker, 2022; Meier et al., 2021).
By distilling evolutionary information from billions of pro-
tein sequences, these models encode rich biological knowl-
edge about protein structure and function. Coupled with
additional predictors, PLMs achieve state-of-the-art perfor-
mance in predicting diverse protein properties (Mardiko-
raem & Woldring, 2023; Notin et al., 2022; Zhang et al.,
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2024; Chu et al., 2024; Gordon et al., 2024). However, their
ability to generate proteins with precisely specified proper-
ties remains limited, typically requiring massive sequence
generation followed by resource-intensive screening.

To address this limitation, several strategies have been
explored to control the generation. One straightforward
method involves fine-tuning PLMs using a dataset consist-
ing of proteins that exhibit desired characteristics, thereby
converting a general-purpose model into a specialized gen-
erator (Nijkamp et al., 2023). This approach, however, de-
mands hundreds or even thousands of high-quality data and
substantial computational resources. Besides, it risks dilut-
ing the general knowledge encapsulated during the initial
pre-training phase. Another strategy incorporates special
keyword tags indicating functionalities or properties during
the pre-training, aiming to guide the generation process akin
to prompt engineering in large language models (LLMs) for
natural language processing (Madani et al., 2020; Lv et al.,
2024). Yet, this approach lacks flexibility, as any control
requires alignment with the tags used during the pre-training
phase, limiting its adaptability to new controls. These chal-
lenges motivate the exploration of inference-time control
methods that preserve model knowledge while enabling
precise steering.

Inference-time edit methods, known as activation steering
or activation editing, have been introduced to guide the gen-
erated texts of LLMs toward desired behaviors (Subramani
et al., 2022; Turner et al., 2023; Panickssery et al., 2023;
Wang & Shu, 2023; Liu et al., 2023; Li et al., 2024; Zou
et al., 2023; Cao et al., 2024; Qiu et al., 2024; Lee et al.,
2024a). These methods presuppose that the models inher-
ently possess the knowledge required to generate the desired
output in the internal representations but may not always
actualize this potential in its outputs. By modifying the
internal activations, we can steer the model’s behavior to
produce the desired texts. Despite their success in LLMs,
these techniques remain largely unexplored in the context of
PLMs, where the unique characteristics of protein languages
present additional challenges.

In this paper, we explore the potential of activation steer-
ing in PLMs, aiming to guide protein generation toward
sequences with specific properties. We begin by confirming
that PLMs indeed encode knowledge about these proper-
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ties, as detailed in Section 3.1. Subsequently, we adapt the
Activation Addition technique (Turner et al., 2023), orig-
inally developed for LLMs, to steer the outputs of both
auto-regressive and auto-encoding PLMs. Specifically, we
compute a steering vector as the mean difference in inter-
nal representations between proteins with and without the
target property. During inference, we add this vector to the
models activations, biasing generation toward proteins with
the desired characteristics.

We further extend the proposed method to protein opti-
mization tasks using auto-encoding PLMs, which predict
beneficial mutations in protein sequences toward the target
property. Without steering, standard models, guided by co-
evolutionary patterns learned from natural proteins, tend to
predict sequences similar to those found in nature. To direct
these models towards generating novel proteins with desired
properties, we first identify mutation sites that are crucial for
achieving these properties and then apply activation steering
in the prediction. To implement this, we propose a novel al-
gorithm that selects mutation sites based on the dissimilarity
between the token representations and the steering vector.
By integrating this algorithm with activation steering, our
method effectively guides protein sequence optimization
toward target properties.

Our work makes three key contributions:
1) We present the first application of activation steering

to PLMs, enabling property-specific protein generation
without retraining;

2) We propose a novel protein optimization framework
that integrates activation steering with mutation site
identification in auto-encoding PLMs;

3) We provide comprehensive empirical validation on pro-
tein generation and optimization across diverse PLM
architectures (ProLLaMA, ESM2, ESM3) and biologi-
cal properties, including thermostability, solubility, and
green fluorescent protein (GFP) brightness.

2. Related Works
Protein Language Models (PLMs) leverage transformer
architectures to learn functional and structural patterns from
evolutionary protein sequences. PLMs can be broadly cate-
gorized into auto-encoding (AE) and autoregressive (AR)
architectures. AE-PLMs like ESM2 (Lin et al., 2022) and
ESM3 (Hayes et al., 2024) use masked language model-
ing to capture bidirectional dependencies, which are essen-
tial for understanding protein sequences. AR-PLMs like
ProGen (Madani et al., 2020; Nijkamp et al., 2023) adopt
causal language modeling, enabling de novo protein gen-
eration. These models excel in diverse tasks: zero-shot
mutation effect prediction (Meier et al., 2021), evolutionary
trajectory modeling (Hie et al., 2022), and structure-aware

design (Zheng et al., 2023). Their latent spaces encode bio-
physical properties, supporting state-of-the-art performance
in fitness prediction (Hie et al., 2024) and atomic-level struc-
ture inference (Lin et al., 2023).

Recent advances extends PLMs to multitask settings (Pei
et al., 2024; Lv et al., 2024) and controllable protein gen-
eration (Lv et al., 2024; Madani et al., 2020; Ferruz &
Höcker, 2022). However, steering PLM outputs toward
user-specified functional traits, such as increased stability
or solubility, remains challenging. Unlike natural language,
protein generation requires preserving structural viability
and evolutionary plausibility, which limits the effective-
ness of standard LLM control methods like prompting or
fine-tuning. While PLMs have revolutionized protein engi-
neering, their latent spaces remain underutilized for targeted
activation-based interventions, highlighting the potential for
adapting inference-time steering techniques from NLP to
protein design.

Activation Steering modifies a models behavior at infer-
ence time by perturbing its internal activations, without
training or changing model weights. In LLMs, methods like
activation addition (ActAdd) (Turner et al., 2023) compute
steering vectors as contrasts between activations of opposing
prompts (e.g., truthful vs. deceptive) and inject these into
hidden states to influence outputs. Recent works improve
this approach: contrastive activation addition (CAA) (Pan-
ickssery et al., 2023) aggregates steering vectors from hun-
dreds of contrast pairs (e.g., truthful vs. hallucinated re-
sponses) to reduce noise and improve robustness across
diverse prompts. Other methods refine vector extraction
through dataset-driven preferences (Li et al., 2024), optimal
transport (Singh et al., 2024), conditional interventions (Qiu
et al., 2024), or bi-level optimization (Cao et al., 2024), en-
abling more precise control. These techniques have been
used to steer attributes such as style, safety, and truthful-
ness (Zou et al., 2023; Liu et al., 2023) with applications
ranging from bias mitigation (Adila et al., 2024) to adver-
sarial robustness (Wang & Shu, 2023).

While activation steering is well-studied in LLMs, its ap-
plication to protein language models (PLMs) remains unex-
plored. Unlike LLMs, PLMs generate outputs that reflect
biophysical functionalities rather than linguistic semantics,
and their latent spaces are shaped by evolutionary and struc-
tural constraints. Existing LLM methods focus on abstract
linguistic properties, while steering PLM generations re-
quires grounding activation vectors in sequence-function
relationships (e.g., stability, thermostability, or solubility).
To bridge this gap, in this work, we adapt activation addi-
tion to PLMs by constructing steering vectors from protein
sequences with contrasting functional traits, and demon-
strate that PLM generations can be reliably steered toward
user-specified properties.
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Protein Optimization aims to design sequences with im-
proved functional properties while preserving structural vi-
ability. Traditional approaches, such as directed evolution
(DE), rely on iterative mutation and screening (Romero &
Arnold, 2009). Machine learning-assisted DE (MLDE) ac-
celerates this process by predicting fitness from sequence
data (Wu et al., 2019; Wittmann et al., 2021), but its de-
pendence on experimental labels limits scalability (Yang
et al., 2025). Zero-shot predictors, such as PLM likelihoods,
partially mitigate this by estimating fitness without labeled
data (Meier et al., 2021; Notin et al., 2024), but they struggle
to explicitly guide generation toward desired properties.

Recent advances leverage generative PLMs for de novo pro-
tein design (Madani et al., 2023; Nijkamp et al., 2023) and
latent space optimization (Stanton et al., 2022; Kirjner et al.,
2023). For example, Kirjner et al. (2023) smooth noisy fit-
ness landscapes using energy-based models to guide Gibbs-
with-Gradients sampling, while Stanton et al. (2022) opti-
mize sequences in latent space via denoising autoencoders.
However, these methods require training differentiable fit-
ness proxies or imposing explicit structural constraints, lim-
iting their flexibility. As for reinforcement learning (Lee
et al., 2024b; Angermueller et al., 2019) and evolutionary
algorithms (Ren et al., 2022) based methods, they both face
trade-offs between exploration and computational cost.

In contrast, activation steering offers a lightweight alter-
native. By perturbing PLM activations at inference time,
we bypass weight updates and expensive sampling and di-
rectly inject functional preferences into generation. Unlike
previous PLM-based optimization methods, which use like-
lihoods as proxies or fine-tune models on labeled data, our
method directly steers generation toward target properties
without explicit fitness predictors.

3. Activation Steering for PLMs
3.1. Preliminary

Protein language models (PLMs) have been shown to pro-
vide effective representations for downstream property pre-
diction tasks (Notin et al., 2022), indicating that they capture
relevant functional and structural information. This capa-
bility forms the foundation for activation steering, where
model activations are manipulated to influence generated
protein properties.

To support this premise, we analyze the internal representa-
tions of several PLMs. As shown in Figure 1, t-SNE visual-
izations of activations from ESM2, ESM3, and ProLLaMA
reveals that proteins with and without target properties form
partially distinct clusters in activation space. This pattern is
consistent across different models. These observations con-
firm that PLMs inherently encapsulate intrinsic knowledge
about specific protein properties and motivate our approach
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Figure 1. t-SNE visualization of PLM activations from ESM2,
ESM3, and ProLLaMA for proteins with (red) and without (green)
the target properties: high thermostability (top row) or high sol-
ubility (bottom row). Partial separation of clusters suggests that
property-related information is encoded in the activation space.

to steering protein generation toward desired characteristics
through activation space manipulation.

3.2. Activation Steering for PLMs

To guide protein generation toward desired properties, we
employ activation steering, which modifies model activa-
tions using steering vectors. Specifically, at each layer l, the
activation is updated as:

h̃l = hl + αvl, (1)

where hl and h̃l are the activations in the l-th layer before
and after steering, respectively, vl is the steering vector for
the l-th layer, and α is a scalar hyper-parameter controlling
the steering strength. After modification, the edited acti-
vations h̃l is rescaled to have the same norm as hl before
being passed to the next layer. The steering process is il-
lustrated in Figure 2b. We apply activation steering to all
layers except the input layer and across all tokens.

The steering vectors used in Equation (1) are computed as
the mean difference in representations at the l-th layer be-
tween sets of proteins with and without the desired property.
These steering vectors point in the direction from undesired
to desired properties. For AE-PLMs, we use the average
activations across all tokens; for AR-PLMs, we use the last
token’s activation. Formally, for AE-PLMs, the steering
vectors are calculated as:

vl =
1

|P|
∑
xp∈P

havg
l (xp)−

1

|N |
∑

xn∈N
havg
l (xn), (2)

and for AR-PLMs:

vl =
1

|P|
∑
xp∈P

hlast
l (xp)−

1

|N |
∑

xn∈N
hlast
l (xn), (3)
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Figure 2. Overview of Activation Steering for PLMs and Activation Steering based Protein Optimization (ASPO). (a) Computation of
steering vectors: For each layer, the steering vector is computed as the mean difference in activations between positive (desired property)
and negative (undesired property) protein sets. (b) Activation steering during generation: At each layer, model activations are modified by
adding a scaled steering vector. (c) Identification of mutation sites: For a given protein, token representations at a selected layer are
projected onto the steering vector to compute relatedness scores. Tokens with the lowest scores (most negatively related to the target
property) are selected as candidate mutation sites. (d) Mutation prediction: Identified mutation sites are masked, and new amino acids
are predicted using activation steering.

where P and N are the positive and negative sets of pro-
teins regarding the desired property, respectively. They are
the sets of proteins with and without the desired property.
havg
l (xp) and hlast

l (xp) denote the average activation of all
tokens and last token activation of the l-th layer for a se-
quence input x, respectively. The computation of steering
vectors is illustrated in Figure 2a.

3.3. Protein Optimization via Activation Steering

AE-PLMs predict the amino acid (AA) at a masked position
in a protein sequence using the contextual information of
surrounding AAs. While this mechanism leverages coevolu-
tionary patterns from natural proteins, it does not directly
optimize for specific target properties. To optimize a protein
for desired properties, we propose to identify and mutate
tokens that are negatively related to the target property, and
apply activation steering to guide PLM’s prediction at these
positions toward desired properties.

A key challenge is to systematically identify which AAs
in a sequence are most opposed to the target property. We
address this by leveraging the steering vector vl, which en-
codes the direction of the desired property in the models
representation space. For each token, we compute a relat-
edness score by projecting its representation hk

l onto vl:

sk = projvl
hk
l =

v>
l h

k
l

‖vl‖
, (4)

where sk is the relatedness score of the k-th token in the
l-th layer. The projection of a tokens representation onto
vl quantifies relatedness to the target property. Tokens with
large positive projection (large sk) indicate their correspond-
ing AAs are strongly related to the property, while those
with large negative projections (small sk) are less related or
even opposed. After computing the relatedness scores for all
tokens, we rank these scores and select the T tokens with the
lowest values (i.e., most negatively related to the target prop-
erty) as mutation sites. The PLM then predicts new amino
acids for these positions, guided by activation steering. This
process is illustrated in Figure 2c and Figure 2d.

To compute the relatedness score, we need to identify the
most informative layer. Specifically, we split the positive (P)
and negative (N ) sets into training and validation subsets.
For each layer, we train a linear classifier on the training
subset to distinguish between representations from P and
N , and evaluate the validation accuracy on the validation
subsets. We then compute the relatedness scores for the
layer with the highest validation accuracy and use them to
select the mutation sites.

The mutation process is repeated for R rounds to progres-
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Algorithm 1 Activation Steering based Protein Optimization (ASPO)
1: Input: protein sequence x, positive protein sequence set P , negative set N , steering strength α, layer ` for relatedness

score computation, number of mutation sites per round T , and number of rounds R
2: Compute steering vectors {vl} for all layers l = 1, 2, ..., L using Equation (3)
3: for r = 1 to R do
4: Compute token representations hk

` for all tokens k = 1, 2, ...,K at layer `.
5: Compute the relatedness scores sk for all tokens using Equation (4).
6: Obtain the set of the token indices of the T lowest scores in {sk` } as IT .
7: Mask tokens at positions in IT .
8: Predict new amino acids at positions in IT using activation steering (Equation (1)) with steering vectors {vl}.
9: end for

sively steer the protein towards the desired properties. In
each round, we compute token representations, calculate
their relatedness scores, and select the mutation sites. We
then mask the tokens in the selected positions and predict
new amino acids using activation steering. We refer to this
method as Activation Steering based Protein Optimization
(ASPO), summarized in Algorithm 1.

4. Experiments
In this section, we evaluate the effectiveness of our acti-
vation steering method to control protein language models
(PLMs) for property-driven protein generation and optimiza-
tion.

4.1. Steering PLMs for Protein Generation

4.1.1. EXPERIMENTAL SETTINGS

Tasks: We focus on the generation of lysozyme-like pro-
teins with enhanced thermostability or solubility by steering
PLMs toward these properties.

Base Models: We assess the effectiveness of our method
across two types of PLMs: 1) auto-encoding PLMs
(AE-PLMs), including ESM2 (650M) (Lin et al., 2022)
and ESM3-open (1.4B) (Hayes et al., 2024); and 2)
auto-regressive PLMs (AR-PLMs), including ProLLaMA
(7B) (Lv et al., 2024). ProLLaMA enables controlled se-
quence generation via superfamily descriptions, which we
use to restrict outputs to the lysozyme-like family. For AE-
PLMs, which do not generate sequences directly, we start
from a reference sequence, iteratively mask 10% of tokens,
and regenerate them using the model.

Evaluation Metrics: To evaluate all methods, we assess
their generated sequences for target property fitness, diver-
sity, and novelty. For each metric, we calculate the value
for each protein sequence and report the average with stan-
dard deviation. Detailed metric definitions are provided in
Appendix A.1.

Data: To construct the positive and negative sets for steering

vector extraction, we first predict thermostability or solubil-
ity for all lysozyme-like proteins in the UniRef50 dataset
using property-specific predictors. For thermostability, se-
quences with predicted values above 70C form the high
thermostability set, and those below 50C form the low ther-
mostability set. For solubility, we construct a high solubility
set using the sequences with predicted soluble probability
higher than 0.8 and a low solubility set using the sequences
with predicted soluble probability lower than 0.15. We ran-
domly sample sequences from each high and low set to form
the positive (P) and negative (N ) sets, respectively.

Hyper-parameter settings: We fix positive and negative
set sizes for steering vector extraction at 100 and set α = 1.0
by default. The sensitivity of these hyperparameters will be
explored in Section 4.3.

Baselines: We compare our method to two baselines: (1)
PLMs fine-tuned on positive sets (Fine-tuning), and (2) the
original, unmodified models (Original Model). For AE-
PLMs, we fine-tune only the last layer. For AR-PLMs,
we use LoRA (Hu et al., 2022) on all layers with rank 4
and alpha 16. To evaluate performance, we generate 1000
sequences for each method. For AE-PLMs, we randomly se-
lect 1000 lysozyme-like proteins from the UniRef50 dataset
as initial reference sequences to generate 1000 sequences.

4.1.2. RESULTS AND ANALYSIS

Table 1 summarizes the performance of activation steering
compared to fine-tuning and the original models across both
auto-regressive (ProLLaMA) and auto-encoding (ESM2,
ESM3) PLMs. For both thermostability and solubility tasks,
activation steering consistently outperforms the baselines in
terms of the target property. For example, on ESM2, activa-
tion steering achieves a thermostability of 82.20 compared
to 63.56 for fine-tuning and 56.48 for the original model.
Similar improvements are observed for solubility, where ac-
tivation steering reaches 0.494, substantially higher than the
baselines. These results demonstrate that activation steer-
ing is highly effective at guiding PLMs to generate protein
sequences with desired properties.
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Table 1. Comparison of generating lysozyme-like protein with high thermostability or solubility. Results are reported as mean (std) for
each metric.

Base Model Method Thermostability Solubility
Thermostability ↑ Diversity ↑ Novelty ↑ Solubility ↑ Diversity ↑ Novelty ↑

ProLlama
Original Model 56.18 (8.05) 0.931 (0.035) 0.767 (0.064) 0.230 (0.085) 0.931 (0.035) 0.767 (0.064)
Fine-tuning 57.24 (8.64) 0.958 (0.017) 0.798 (0.068) 0.241 (0.086) 0.958 (0.017) 0.838 (0.059)
Activation Steering 67.68 (12.86) 0.927 (0.027) 0.807 (0.063) 0.276 (0.110) 0.964 (0.016) 0.882 (0.056)

ESM2
Original Model 56.48 (12.04) 0.954 (0.023) 0.591 (0.110) 0.289 (0.151) 0.963 (0.019) 0.596 (0.130)
Fine-tuning 63.56 (14.87) 0.953 (0.023) 0.585 (0.099) 0.356 (0.213) 0.961 (0.020) 0.594 (0.132)
Activation Steering 82.20 (12.92) 0.971 (0.023) 0.739 (0.130) 0.494 (0.241) 0.998 (0.001) 0.880 (0.087)

ESM3
Original Model 55.20 (11.14) 0.952 (0.021) 0.573 (0.100) 0.257 (0.177) 0.958 (0.017) 0.579 (0.123)
Fine-tuning 62.82 (14.72) 0.949 (0.021) 0.568 (0.104) 0.318 (0.215) 0.955 (0.017) 0.570 (0.119)
Activation Steering 82.06 (12.06) 0.954 (0.019) 0.614 (0.115) 0.582 (0.264) 0.966 (0.019) 0.639 (0.123)

In addition to property optimization, activation steering
maintains or even improves sequence diversity and novelty.
For instance, on ESM3, activation steering achieves the
highest solubility (0.582) while also increasing diversity
(0.966) and novelty (0.639) compared to the original and
fine-tuned models. This indicates that our method does not
simply memorize or overfit to the positive set, but is capable
of generating a broad range of novel and diverse sequences.
Overall, these results highlight the advantage of activation
steering for controllable and diverse protein design.

Additional experimental results for our method using ESM-
3B and steering multiple target properties are provided in
Appendix B.

4.2. Steering AE-PLMs for Protein Optimization

4.2.1. EXPERIMENTAL SETTINGS

Tasks: We evaluate our method on three protein optimiza-
tion tasks: improving thermostability, solubility, and the
fluorescence intensity of Green Fluorescent Protein (GFP).
For thermostability and solubility, we focus on lysozyme-
like proteins. For GFP, we follow the established setup
in (Ren et al., 2022; Kirjner et al., 2023).

Evaluation Metrics: We assess all methods using four met-
rics: target property fitness, diversity, dissimilarity to the
initial set (Dissiminit), and dissimilarity to the high-fitness
set (Dissimhigh). Detailed definitions of these metrics are
provided in Appendix A.1.

As noted by (Kirjner et al., 2023), higher diversity and
dissimilarity to the initial set do not necessarily equate to
superior performance in protein optimization. Similarly,
while high Dissimhigh suggests optimization toward the high-
fitness reference set, it does not guarantee discovery of all
possible high-fitness proteins. Therefore, it is possible for
a method that generates high-fitness proteins but achieves
just a fair value of Dissimhigh.

Data: For thermostability and solubility, we use the same
positive and negative sets as in our protein generation exper-

iments. For GFP brightness, we adopt the same data split
as (Kirjner et al., 2023) and randomly select 100 sequences
from easy difficulty as the positive set and 100 sequences
from hard difficulty as the negative set. We follow (Kirjner
et al., 2023) to construct a medium difficulty task and a hard
difficulty task for each target property. Each task has an
initial set for optimization. For thermostability optimization,
the hard difficulty task uses sequences from the low ther-
mostability set as the initial set, while the medium difficulty
task uses sequences with predicted thermostability between
50C and 70C. For solubility optimization, the hard difficulty
task uses sequences from the low solubility set, and the
medium difficulty task uses sequences with predicted solu-
ble probability between 0.3 and 0.6. To estimate Dissimhigh,
we use the high thermostability set and high solubility set
as the reference high-fitness set. For GFP brightness, both
initial and high-fitness sets follow (Kirjner et al., 2023).

Baselines: We compare our Activation Steering-based Pro-
tein Optimization (ASPO) method, implemented on ESM2
and ESM3, against AdaLead (Sinai et al., 2020), PEX (Ren
et al., 2022), and GGS (Kirjner et al., 2023). These baseline
methods all require a surrogate fitness predictor. Therefore,
we train the surrogate fitness predictor using the positive
and negative sets for steering vector extraction. Note that
the original AdaLead and PEX both update the surrogate
fitness predictor using the generated sequences with ground-
truth fitness obtained from wet-lab experiments in each
round. To ensure a fair comparison, we assume no access to
ground-truth fitness during optimization and do not update
the surrogate fitness predictor for these methods.

Hyper-parameter settings: We use the same default set-
tings as the experiments for protein generation to set the
positive set and negative set sizes as 100 and steering
strength α = 1.0. For protein optimization specific hyper-
parameters, we set the number of optimization rounds
R = 8 and the number of mutation sites per round T = 4
for thermostability experiments and set R = 4 and T = 2
for the solubility and GFP brightness experiments.
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Table 2. Comparison of lysozyme-like protein optimization toward high thermostability. Results are reported as mean (std).
Medium difficulty Hard difficulty

Fitness ↑ Diversity Dissiminit Dissimhigh Fitness ↑ Diversity Dissiminit Dissimhigh

Before Optimization 59.78 (3.04) 0.879 (0.072) 0 0.601 (0.100) 46.38 (3.11) 0.923 (0.038) 0 0.708 (0.087)
AdaLead 63.56 (11.94) 0.947 (0.036) 0.351 (0.166) 0.697 (0.096) 55.16 (9.29) 0.962 (0.018) 0.626 (0.185) 0.832 (0.069)
PEX 66.80 (10.95) 0.923 (0.053) 0.203 (0.087) 0.651 (0.086) 48.95 (5.75) 0.959 (0.022) 0.185 (0.094) 0.741 (0.073)
GWG 68.25 (9.35) 0.885 (0.068) 0.059 (0.024) 0.611 (0.096) 47.73 (3.90) 0.926 (0.036) 0.049 (0.010) 0.708 (0.081)
ESM2 + ASPO 84.34 (7.59) 0.840 (0.064) 0.290 (0.167) 0.661 (0.114) 74.69 (12.32) 0.828 (0.062) 0.291 (0.163) 0.734 (0.076)
ESM3 + ASPO 88.42 (3.98) 0.803 (0.060) 0.110 (0.055) 0.603 (0.077) 86.43 (9.02) 0.865 (0.048) 0.161 (0.093) 0.714 (0.072)

Table 3. Comparison of lysozyme-like protein optimization toward high solubility. Results are reported as mean (std) for each metric.
Medium difficulty Hard difficulty

Fitness ↑ Diversity Dissiminit Dissimhigh Fitness ↑ Diversity Dissiminit Dissimhigh

Before Optimization 0.278 (0.012) 0.898 (0.054) 0 0.684 (0.108) 0.085 (0.011) 0.896 (0.056) 0 0.689 (0.097)
AdaLead 0.617(0.247) 0.949 (0.021) 0.475 (0.162) 0.794 (0.079) 0.530 (0.283) 0.959 (0.017) 0.512 (0.177) 0.792 (0.080)
PEX 0.489 (0.246) 0.920 (0.044) 0.080 (0.032) 0.711 (0.101) 0.252 (0.240) 0.927 (0.041) 0.096 (0.043) 0.715 (0.089)
GWG 0.356 (0.115) 0.912 (0.042) 0.060 (0.019) 0.694 (0.101) 0.165 (0.130) 0.919 (0.041) 0.071 (0.030) 0.707 (0.089)
ESM2 + ASPO 0.510 (0.282) 0.860 (0.061) 0.022 (0.011) 0.724 (0.105) 0.349 (0.273) 0.838 (0.052) 0.018 (0.011) 0.710 (0.063)
ESM3 + ASPO 0.654 (0.273) 0.879 (0.054) 0.058 (0.039) 0.720 (0.109) 0.397 (0.247) 0.858 (0.055) 0.057 (0.038) 0.711 (0.060)

Table 4. Comparison of GFP optimization toward high fluorescence brightness. Results are reported as mean (std) for each metric.
Medium difficulty Hard difficulty

Fitness ↑ Diversity Dissiminit Dissimhigh Fitness ↑ Diversity Dissiminit Dissimhigh

Before Optimization 1.494 (0.340) 0.717 (0.002) 0 0.028 (0.005) 1.325 (0.279) 0.560 (0.002) 0 0.032 (0.005)
AdaLead 1.179 (0.329) 0.737 (0.024) 0.060 (0.088) 0.085 (0.085) 1.255 (0.372) 0.596 (0.041) 0.071 (0.095) 0.099 (0.092)
PEX 1.426 (0.337) 0.719 (0.002) 0.004 (0.004) 0.032 (0.007) 1.320 (0.298) 0.563 (0.003) 0.004 (0.004) 0.036 (0.007)
GWG 1.683 (0.641) 0.721 (0.003) 0.021 (0.002) 0.039 (0.010) 1.510 (0.545) 0.568 (0.004) 0.021 (0.002) 0.043 (0.009)
ESM2 + ASPO 3.862 (0.329) 0.397 (0.005) 0.020 (0.007) 0.010 (0.007) 3.907 (0.247) 0.406 (0.006) 0.022 (0.009) 0.012 (0.009)
ESM3 + ASPO 3.739 (0.357) 0.503 (0.004) 0.021 (0.007) 0.010 (0.007) 3.687 (0.321) 0.507 (0.005) 0.024 (0.009) 0.012 (0.008)

4.2.2. RESULTS AND ANALYSIS

Thermostability Optimization. Table 2 shows the results
for optimizing the thermostability of lysozyme-like proteins.
Our ASPO methods, ESM2+ASPO and ESM3+ASPO,
achieve the highest fitness scores across medium and hard
difficulty settings. Specifically, ESM3+ASPO attains a fit-
ness of 88.42 (medium) and 86.43 (hard), significantly out-
performing all baselines. While AdaLead and PEX improve
fitness over the initial set, their gains are notably smaller. In
terms of diversity and dissimilarity metrics, ASPO methods
yield slightly lower diversity compared to baselines, but
achieve low dissimilarity to the initial set and maintain com-
petitive dissimilarity to the high-fitness sets. This suggests
that ASPO effectively steers sequences toward high-fitness
regions without excessive exploration, focusing optimiza-
tion on relevant sequence space.

Solubility Optimization. Table 3 presents results for sol-
ubility optimization. ASPO (especially ESM3+ASPO)
achieves the highest or competitive fitness in both medium
and hard solubility tasks, with fitness values of 0.654 and
0.397, respectively. AdaLead also performs well in terms
of fitness, but at the cost of dissimilarity to the initial set,
indicating a broader but less targeted search. In contrast,
ASPO methods maintain lower dissimilarity to the initial

set, reflecting a more focused optimization process. These
results demonstrate that ASPO can efficiently improve sol-
ubility while generating sequences that are not excessively
divergent from the starting set.

GFP Brightness Optimization. Table 4 presents results
for GFP fluorescence brightness optimization. Here, both
ESM2+ASPO and ESM3+ASPO achieve a significant in-
crease in fitness, reaching 3.862 and 3.739 for the medium
difficulty task, and 3.907 and 3.687 for the hard difficulty
task, respectively. These values are more than double those
of the best-performing baselines. Although the diversity of
ASPO-generated sequences is lower, the marked improve-
ment in the target property demonstrates the methods strong
optimization capability. Dissimilarity metrics remain low,
suggesting that ASPO finds high-fitness variants close to the
initial set, which may be advantageous for practical protein
engineering where minimal sequence changes are preferred.

Summary. Across all tasks and difficulty levels, ASPO
consistently achieves the highest or near-highest fitness val-
ues. These results collectively demonstrate that integrating
activation steering with mutation site identification enables
more precise and reliable protein optimization compared to
existing search-based methods.
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Figure 3. Sensitivity to the number of samples used for steering vector extraction. Columns show results for protein generation, medium-
difficulty protein optimization, and hard-difficulty protein optimization. The first row is for thermostability, and the second row is for
solubility.

4.3. Sensitivity to Hyperparameters

This section analyzes the sensitivity of our activation steer-
ing method to two key hyperparameters: 1) the size of the
positive and negative sets used for steering vector extrac-
tion, and 2) the hyperparameter α used for controlling the
steering strength in activation addition. We evaluate their
impact on both protein generation and optimization tasks.

Sensitivity to the positive and negative sets size. We in-
vestigate how the size of the positive and negative sets,
ranging from 10 to 250 samples, affects the effectiveness
of the proposed activation steering across different model
architectures and tasks.

The findings, illustrated in Figure 3, reveal varying trends
and optimal set sizes depending on the architecture and task.
For ESM2 and ESM3, performance generally improves as
the set size increases from 10 to 100 samples, stabilizing
near peak values as the number of samples continues to
grow, except for the ESM2+ASPO in the hard difficulty task
for thermostability optimization. In contrast, ProLLaMA’s
peak performance is achieved with just 10 samples, after
which there is a gradual decline. This pattern suggests that
the bidirectional attention mechanisms of AE-PLMs benefit
from larger, more diverse example sets to establish robust

steering directions, whereas the average feature extracted
from the last token in AR-PLMs may become less effective
with larger sets, potentially due to increased divergence in
the examples.

These observations offer practical guidelines for setting
the size of the positive and negative sets. Using 100 sam-
ples generally provides reliable performance across various
tasks and architectures, with diminishing returns observed
beyond this point. Specifically, for activation steering on
ProLLaMA in protein generation tasks, this configuration
preserves over 90% of the maximum fitness performance.
For ESM2 and ESM3, it captures more than 95% of the
maximum potential gains. Thus, we recommend a default
setting of 100 samples for these experiments.

Sensitivity to steering strength (α). We investigate the
impact of the steering strength α, varying it from 0.05 to 20,
across different tasks and models.

As shown in Figure 4, the steering strength α exhibits task-
dependent landscapes. For protein generation for enhanced
thermostability (Fig. 4.3), both ESM2 and ESM3 achieves
peak performance at α = 0.5 and remain stable for α ≥
0.5. This suggests that auto-encoding models benefit from
moderate steering strength.
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Figure 4. Sensitivity of steering strength α. Columns show results for protein generation, medium-difficulty protein optimization, and
hard-difficulty protein optimization. The first row is for thermostability, and the second row is for solubility..

In the case of protein generation for enhanced solubility
(Fig. 4.3), however, performance drops sharply for large α
values. For both ESM2 and ESM3, we observe that their
performance collapses completely at α = 20, indicating in
solubility task, the performance is more sensitive to over-
steering than thermostability task. Generally over-steering
(α > 5) catastrophically degrades solubility performance
while only mildly impacting thermostability.

Given these observations, we recommend a default α = 1.0
for most applications, achieving 90-98% of maximum per-
formance across tasks while avoiding performance cliffs.
Practitioners may consider lowering to α = 0.5 for
solubility-focused applications or raising to α = 2.0 for
thermostability optimization.

5. Conclusion
In this paper, we demonstrate the viability of activation
steering as a powerful paradigm for guiding PLM toward
generating and optimizing proteins with desired properties.
By deriving steering vectors from contrasting protein sets
and applying them to perturb PLM activations during infer-
ence, our method enables precise, training-free control over
sequence generation. Our Activation Steering-based Protein
Optimization (ASPO) framework further enhances protein

engineering by integrating activation editing with mutation
site identification. Because our approach does not require
model retraining or explicit fitness predictors, it offers a
scalable and efficient alternative to traditional methods such
as directed evolution or reinforcement learning based pro-
tein optimization. Ultimately, activation steering provides a
promising direction for programmable protein design using
foundation models.
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A. Supplementary Experimental Details
A.1. Definition of Metrics

Fitness quantifies how well a protein exhibits the desired properties. We estimate fitness using predictors described in
Appendix A.2 for thermostability and solubility. For GFP, we use the predictor from (Kirjner et al., 2023) to estimate the log
fluorescence intensity.

Dissimilarity Score measures how different two sequences are. In our experiment, we estimate the dissimilarity in a
set-wise manner using MMseqs2 (Steinegger & Söding, 2017). Specifically, given a query set and a target set, we use
MMseqs2 to align sequences from the query set to the target set, with a maximum E-value of 10.0 (−e 10.0) and a sensitivity
of 15.0 (−s 15.0). For each matched pair, we define dissimilarity as 1.0−percent identity, where percent identity is reported
by MMseqs2. For pairs with no match (not reported by MMseqs2), we assign a dissimilarity of 1.0.

Diversity assesses how distinct the generated sequences are from each other. We run MMseqs2 with the generated set as
both query and target, compute dissimilarity for all sequence pairs (excluding self-pairs), and define the diversity of each
sequence as the minimum dissimilarity to any other sequence in the set. We use the same approach to evaluate diversity in
protein optimization outputs.

Novelty measures how different the generated sequences are from a reference set. In our protein generation experiments, the
reference set is all lysozyme-like proteins in the UniRef50 (Suzek et al., 2015) dataset. We use MMseqs2 to align generated
sequences (query) to the reference set (target), and compute novelty as the average dissimilarity for each generated sequence
against all reference sequences.

Dissimilarity to Initial Set (Dissiminit) quantifies how different the optimized sequences are from the initial set. We compute
the average dissimilarity of each optimized sequence to all sequences in the initial set, following the same procedure as for
novelty.

Dissimilarity to High-Fitness Set (Dissimhigh) is defined similarly to Dissiminit, but uses the high-fitness set as the reference
set.

A.2. Fitness Predictor

Thermostability Predictor. We construct a thermostability predictor using ESM2-650M as the feature extractor. The
predictor adopts the same architecture as the “lm head” in ESM2-650M and is trained with mean squared error loss. For
training, we use data from the Meltome Atlas (Jarzab et al., 2020), which provides melting temperatures for 48,000 proteins
across 13 species (archaea to humans), with values ranging from 30C to 90C. To focus on sequence-dependent effects and
minimize species-specific variation, we use the median melting temperature across all species for each protein as its final
label.

The dataset is split into 90% for training and 10% for testing. To reduce redundancy, we ensure a maximum sequence
identity of 90% within the training set. Furthermore, any training sequence with≥30% identity to a test sequence is removed,
preventing information leakage and ensuring a fair evaluation. The final dataset contains 24,817 proteins for training and
3,134 for testing.

On the test set, the predictor achieves a Spearman rank correlation of 0.76.

Solubility Predictor. The solubility predictor is a binary classifier with the same architecture and training procedure as the
thermostability predictor. We use the preprocessed dataset from Khurana et al. (2018), containing 28,972 soluble and 40,448
insoluble proteins. The data is split 90%/10% for training and validation. For benchmarking, we use an independent test set
from Chang et al. (2014), which includes 1,000 soluble and 1,001 insoluble proteins.

On this test set, our predictor achieves an accuracy of 0.708, precision of 0.758, recall of 0.612, and F1 score of 0.677,
demonstrating its effectiveness for sequence-based solubility prediction.
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Table 5. Comparison of generating lysozyme-like protein with both high thermostability and solubility. Results are reported as mean (std).
Thermostability Solubility Diversity Novelty

ESM2
Original Model 56.45 (11.07) 0.328 (0.151) 0.967 (0.019) 0.596 (0.136)
Fine-tuning 59.69 (13.22) 0.406 (0.199) 0.966 (0.020) 0.596 (0.138)
Activation Steering 68.02 (14.44) 0.483 (0.244) 0.992 (0.005) 0.950 (0.070)

ESM3
Original Model 54.46 (10.48) 0.314 (0.193) 0.962 (0.016) 0.572 (0.122)
Fine-tuning 60.22 (13.90) 0.425 (0.206) 0.960 (0.016) 0.568 (0.122)
Activation Steering 66.75 (9.61) 0.451 (0.253) 0.980 (0.009) 0.925 (0.108)

Table 6. Comparison of generating lysozyme-like protein with high thermostability or solubility. Results are reported as mean (std).

Base Model Method Thermostability Solubility
Thermostability ↑ Diversity ↑ Novelty ↑ Solubility ↑ Diversity ↑ Novelty ↑

ESM2-650M
Original Model 56.48 (12.04) 0.954 (0.023) 0.591 (0.110) 0.289 (0.151) 0.963 (0.019) 0.596 (0.130)
Fine-tuning 63.56 (14.87) 0.953 (0.023) 0.585 (0.099) 0.356 (0.213) 0.961 (0.020) 0.594 (0.132)
Activation Steering 82.20 (12.92) 0.971 (0.023) 0.739 (0.130) 0.494 (0.241) 0.998 (0.001) 0.880 (0.087)

ESM2 3B
Original Model 56.05 (11.24) 0.968 (0.020) 0.632 (0.143) 0.298 (0.174) 0.971 (0.021) 0.622 (0.162)
Fine-tuning 64.22 (14.49) 0.965 (0.022) 0.629 (0.143) 0.385 (0.236) 0.966 (0.022) 0.610 (0.165)
Activation Steering 83.33 (9.47) 0.990 (0.006) 0.915 (0.105) 0.631 (0.228) 0.996 (0.003) 0.951 (0.077)

B. Additional Experiment Results
B.1. Activation Steering for Multiple Desired Properties

Previous experiments demonstrated the effectiveness of Activation Steering for guiding protein generation toward a single
desired property. In this part, we extend our evaluation to the simultaneous optimization of multiple properties. Specifically,
we aim to lysozyme-like proteins with both high thermostability and solubility.

For our Activation Steering, we compute the steering vectors for thermostability and solubility as vtherm
l and vsol

l , respectively.
We then obtain the steering vectors for performing activation addition in Equation (1) as vl = 0.5vtherm

l + vsol
l . For the

fine-tuning baseline, we fine-tune the model using the union of positive data sets for these two properties.

Table 5 shows that Activation Steering consistently outperforms both the original model and fine-tuning across all metrics
and backbones (ESM2 and ESM3). For instance, on ESM2, Activation Steering improves thermostability from 56.45 to
68.02, and solubility from 0.328 (original) and 0.406 (fine-tuned) to 0.483. Similar trends hold for ESM3. Although gains
are smaller when optimizing multiple properties at once, Activation Steering remains more effective than fine-tuning or the
original model for jointly optimizing multiple protein properties, without reducing diversity or novelty.

B.2. Activation Steering on Larger PLM

To assess the scalability of our activation steering method, we evaluate its performance on the larger ESM2-3B model, using
ESM2-650M as a reference. The task settings and baselines are the same as the protein generation experiments described in
Section 4.1.

Table 6 summarizes the results. Compared to the smaller ESM2-650M, ESM2-3B consistently achieves higher scores across
all metrics, demonstrating the benefits of scaling up the model size for protein generation tasks.

On ESM2-3B, Activation Steering achieves the best performance for both thermostability and solubility, with mean values
of 83.33 and 0.631, respectively. These improvements are accompanied by substantial gains in diversity and novelty. The
performance gap between Activation Steering and the baselines is even more pronounced on ESM2-3B than on ESM2-650M,
indicating that the effectiveness of Activation Steering is amplified as the model size increases. This suggests that large
protein language models are better able to leverage activation-based steering for generating diverse and novel sequences
with improved target properties.

In summary, these results demonstrate that Activation Steering remains effective as model size increases, and that scaling up
the model further enhances its ability to generate proteins with desirable characteristics.
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