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Abstract
A common maneuver drivers perform and experience on the road is changing lanes. Autonomous vehicles are required to
engage a lane change safely and to react to the other road users’ lane changes. To develop autonomous vehicles that change
lanes or respond to the lead vehicle’s lane changes in a safe and human-like way, one should investigate the factors that affect
human driver responses. By reviewing the literature to identify potential factors, this study extracted these factors from a
naturalistic driving data set and associated them with driver deceleration and acceleration responses to the lead vehicle’s cut-
in and cut-out to develop predictive models for the impact of the events on traffic flow. After the events were verified as
accurate, the variables associated with the events, including range, range rate, speed, lateral position in the lane, and average
acceleration were analyzed using logistic regression, support vector machines (SVM), and two forms of decision trees. In
total, 799 cut-in events and 684 cut-out events with the necessary variables were applied for analysis. The significant variables
influencing driver behavior were found, and using these variables, the predictive models achieved around 80% accuracy for
cut-ins, and 73% accuracy for cut-outs on test data. These results will assist in the future design of autonomous vehicle con-
trol to minimize detrimental effects on traffic when changing lanes and safe longitudinal control when responding to a lead
vehicle’s lane changes, allowing for safe integration with human drivers, and better design of driver assistance systems.
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One of the most common vehicle maneuvers is the action
of cutting in or out. This is a frequently performed man-
euver at high speeds that demands many considerations
and observations by the driver, as well as possibly requir-
ing a response from surrounding vehicles. To assist in
the design of systems such as automatic alerts and auton-
omous vehicles, it is important to understand human
behavior patterns in merging, so the automated systems
can respond to the maneuvers as human drivers.
Autonomous vehicles should also perform in a way that
minimizes the impact on following vehicles and traffic to
ensure smooth flow of traffic and to minimize the chance
of collisions (1). To develop such systems more accu-
rately, a comprehensive review on the factors associated
with driver responses to the lead vehicle is needed first.

Extensive research has been conducted on mathemati-
cal models concerning vehicles cutting in, particularly on
the highway with minimal other restrictions. Time

headway (THW) and time-to-collision (TTC) were com-
monly used independent variables as they were quantita-
tive representations of the danger level of a following
vehicle (2–4). Feng et al. (2) modeled a risk perception
parameter, defined as THW and TTC, as a function of
parameters of the event. Their study focused on the
brake initiation of the following vehicle and found that
the size of the cutting vehicle and difference in velocity
were the significant factors which affected the time of
brake initiation. Another important measure of cut-in
events was gap acceptance, the range to the lead vehicle
(LV) on cutting in. This was critical for ensuring that
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drivers felt comfortable as a response to cut-in events.
Das et al. (5) showed how lead and lag gaps could be esti-
mated using a multivariate adaptive regressive spline
model and obtained a correlation value higher than stan-
dard methods with linear regression. Furthermore, Wang
et al. (6) modeled gap length using a mixed effects model,
including in a key variable of the event being either man-
datory or discretionary, as well as finding the distribution
of the gaps. In a similar fashion, Hou et al. (7) deter-
mined the safety of gaps using Bayesian classifier and
decision trees. The present study intended to use the gap
as an independent predictor, which was different from
the preceding studies, opting instead to use the following
vehicle’s acceleration as the main dependent variable.

Other measures of surrogate safety measures (SSM)
(8) include time integrated TTC (TIT) which better cap-
tures vehicle behavior over a period of time. This mea-
sure was used by Van Winsum et al. (9) in the field of
vehicle safety. Another common type of measure is the
post encroach time (PET), which measures the difference
in time between when two vehicles pass through a com-
mon point, used by Allen et al. (10). Finally, a third type
of measure involves the deceleration rate, including max-
imum deceleration and deceleration rate to avoid a crash,
used by Gettman and Head (11). The present study
would use the SSM which was closest to this third type
but discretized it for classification models.

Another important factor to consider is the effect that
a vehicle cutting in will have on preceding vehicles and
traffic. To study this factor, a common approach is to
build a predictive model for the danger of cut-in events,
which is useful for the development of safety and warning
systems. Dangerous maneuvers can be directly identified
through braking, such as by Bagdadi (12), using deriva-
tives of acceleration. However, a more ideal model would
be able to expect dangerous maneuvers without requiring
them to happen first. To these ends, the parameters of a
cut-in event can be used to predict whether the event will
have a significant impact on the behavior of the following
vehicle, and therefore the danger level of the event. Xie
et al. (4) modeled the danger level of effects using accel-
eration, and predicts the artificial label of the event using
prior variables and machine learning models. Ma et al.
(13) took a similar approach, using SVM to predict the
danger level based on THW and relative speed. Li et al.
(14) took a slightly different approach, using support vec-
tor regression to predict continuous parameters of events
instead of a discrete dependent variable, including inte-
grated TTC. Ma et al. (15) developed a simulation for
the velocity of the vehicles around a cut-in event that is
useful for analyzing the disruption to traffic flow of such
an event.

The discretization of the danger of an event is often
done somewhat arbitrarily; this study avoided this

problem by splitting the data evenly via custom thresh-
olding of the continuous dependent variable of accelera-
tion. This led to a more even data set and higher
accuracy. Furthermore, we considered a large variety of
independent variables, and combined methods used by
the previous work to form a model based on only the sig-
nificant variables. Many of the previous studies did not
consider multicollinearity and correlation between the
independent variables, an important factor that could
affect the accuracy and interpretation of the models.
Additionally, we applied a greater variety of statistical
and machine learning models that were collectively more
flexible and that complement each other’s strengths and
weaknesses. These could also be applied to cut-out
events, a subject which was far less frequently studied in
the literature. Finally, while many of the existing studies
used data of drivers driving on a designated route or
analyzed a specific portion of the road, this study would
use fully naturalistic driving data collected from the mile-
age on thousands of different roads to obtain models
which were the most broadly applicable.

Studying the distribution of a variety of variables
involving such events can be useful in assessing the prob-
ability of risk for an event. It can also help in the devel-
opment of car simulation models and autonomous
vehicles. For example, Li et al. (3) found that the dura-
tion of cut-in follows a lognormal distribution, while
Feng et al. (2) found that THW during brake initiation
also followed a lognormal distribution. Finally, a lognor-
mal distribution was also appropriate for lag gaps, but a
gamma distribution was a better fit for lead gaps (5).
However, the fitting and evaluation models used in many
cases were outdated, and we used measures such as
goodness of fit that were on average more consistent.

The objectives of this study are as follows. First, study
the variables that affect the driver decision-making pro-
cess for each scenario. Second, develop a model for each
scenario that predicts whether the event has a significant
impact on the driver’s behavior. For cut-in, this corre-
sponds to discretized danger levels posed to the host vehi-
cle by the LV. For cut-out, we evaluate whether the LV
was impeding the host vehicle’s desired movement. We
restricted our attention to cut-in and cut-out events on
the highway, to help eliminate the discrete variable of the
type of road.

Methods

Data Collection

The study used naturalistic driving data from the Safety
Pilot Model Deployment (SPMD) managed by the
University of Michigan Transportation Research
Institute. The program was held in Ann Arbor,
Michigan, starting in August 2012, and included
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approximately 3,000 pieces of on-board equipment in
vehicles driven by participants on thousands of normal
commuting trips (16). For this research, 130 vehicles
instrumented with a MobilEye device and a data acquisi-
tion system (DAS) provided the necessary data with the
sampling rate of 10Hz. Video footage captured from
several cameras from different angles was available for
each timestamp.

Scenario Criteria

When studying the cutting events, a few constraints were
included to reduce variation. For cutting in and out, we
included the restriction that the host vehicle must not
have changed lanes immediately before or after the LV
has performed the lane change. This ensured that the
host vehicle’s lateral position was relatively stable and
was mostly reacting in the longitudinal direction. Second,
we restricted the curvature of the road through the yaw
rate of the host vehicle by an absolute value of 1� per sec-
ond. Third, we required that the LV performed only one
lane change throughout the event. For example, a vehicle
that was cutting in might not immediately cut out to an
adjacent lane, which filtered double lane changes.

For cut-ins, three key timestamps of the event were
identified based on the lateral distance (transversal) to
the LV. The start of a cut-in was defined as when the
norm of the transversal first crossed over from being
greater than 2m to less than 2m, which was labeled as
the time T1. This is generally when the wheels of the LV
first start to cross over the lane boundary. The end of a
cut-in was defined as when the norm of the transversal
first crosses over from being greater than 0.5m to less
than 0.5m (T3). The time T2 (between T1 and T3) was
then defined as when the MobilEye first detected the
merging vehicle as being the vehicle fully in the host lane
and directly in the front, as opposed to the LV (old)
before the cut-in. In other words, after T2 the cut-in vehi-
cle would become an LV (new).

For cut-outs, three timestamps were defined in a simi-
lar way. T1 was defined as the start of a cut-out, indicat-
ing when the norm of the transversal first crossed over
from being less than 0.8m to greater than 0.8m, which
was about the time the LV just crossed the lane bound-
ary. T3 was defined as the end of a cut-out, indicating
when the norm of the transversal first crossed over from
being less than 2.5m to greater than 2.5m. This allowed
T3 to roughly be the instance when the LV (old) had set-
tled into the adjacent lane. Finally, T2 for cut-outs was
defined analogously as the cut-ins.

Selection of Variables

Table 1 shows the independent variables and their defini-
tions as the predictors of driver responses. The

dependent variable was the longitudinal deceleration and
acceleration for cut-ins and cut-outs, respectively. For
cutting in, the dependent variable Y is defined as Y=1
if the average deceleration of the host vehicle during the
cut-in event is less than 20.1m/s2, and Y=0 otherwise.
For cutting out, it is more likely that on seeing the gap
to the LV increasing, the host vehicle chose to accelerate.
The binary variable Y in this case is, therefore, set to 1 if
the average acceleration during the cut-out event is
greater than 0.2m/s2, and Y=0 otherwise. These values
were also set accordingly to partition the data somewhat
evenly.

Data Reduction

To obtain instances of the relevant scenarios, the general
approach was to first query a large quantity of raw data
from the database in the Microsoft Structured Query
Language (SQL) Server. Next, this raw data was pro-
cessed to identify likely instances of the relevant scenario.
Each candidate instance was then manually reviewed
through the video viewing software to verify that the sce-
nario was valid (examples shown in Figure 1). Finally,
the verified instances were used to isolate out the time-
stamps of the raw data that were immediately preceding
and following each instance to form a final spreadsheet
of useful data.

The primary method of identifying cut-ins and cut-
outs was to analyze the distance to the nearest vehicle in
the front and observe timestamps where this distance
changed dramatically. In particular, timestamps with the
distance reducing by over 10m were considered as candi-
date cut-in points, whereas those with the distance

Table 1. Independent Variables

Variable name Unit Description

New range m Distance to new LV at T2

New range rate m/s Change of range per second
at T2

(negative = approaching)
Old range m Distance to LV just before T2

Old range rate m/s Change of range per second
just before T2

Yaw rate degree/s Host vehicle angular velocity
at T2

Speed m/s Speed at T2

Lane distance left m Distance to the left boundary
of the lane at T2

Duration s Value of T3–T1

Direction binary Direction (left or right) of the
cut-in/out

Previous
acceleration

m/s2 Average acceleration of host
vehicle between T1 and
T1-1 s

Note: LV = lead vehicle; T = time.
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increasing by over 10m were considered as a candidate
cut-out point. Each candidate point was then analyzed in
further detail to check that the LV started at the adjacent
lane and the host vehicle did not perform a lane change
throughout the event.

The initial query of data obtained 1,030 cut-ins and
1,029 cut-outs. On manual verification for the event
validity, the numbers of remaining instances were 857
and 866, respectively. However, the research team also
found that drivers did not apply the brake if the new LV
was far from the host vehicle. Figure 2 shows the average
range and range rate for the cut-in cases when drivers
did or did not apply the brake between T1 and T3. The
realistic interpretation of this is that if the new range was
greater than 30 to 40m, the driver might not be respond-
ing to the cut-in event at all. Thus, we selected the cut-in
instances with the ‘‘new range’’ of less than 30m from
this point onward. To maintain consistency, we also

selected cut-out instances with the ‘‘old range’’ of less
than 30m. With these restrictions, the numbers of avail-
able events were 799 for cut-ins and 684 for cut-outs.

Modeling Methods

In this study, three classification methods were used to
identify driver acceleration/deceleration responses: logis-
tic regression, support vector machine (SVM) with 5-fold
cross validation, and decision tree. The use of logistic
regression to model the effect of independent variables
on a binary dependent variable is common practice for
naturalistic vehicle data (e.g., modeling the probability
of drivers using one mode of braking over another [3]).
A variation inflation factor (VIF) was used to evaluate
the multicollinearity of a logistic regression. This is a
measurement of multicollinearity between independent
variables to check for correlation between the indepen-
dent variables. Generally, the VIF was suggested to be
lower than 4 for the variables to be considered indepen-
dent (17).

Support vector machine (SVM) is a useful supervised
machine learning model for classification. Xie et al. (4)
used SVM with iteratively tuned parameters for the cost
function to predict the risk of cut-in events, while Ma
et al. (13) applied SVM with a linear kernel to evaluate
the danger of cut-in events. Iranitalab and Khattak (18)
indicated that in crash prediction, SVM performs better
than other machine learning models such as random for-
ests and clustering. To avoid overfitting and to ensure
model robustness, 5-fold cross validation was employed.

Decision tree is a popular tool for data mining and
supervised learning, such as in predicting driving beha-
vior (19). Starting with the most significant variables, a
tree is built consisting of a series of variable comparisons
that lead to a classification of the data point. The tree is
highly flexible and can handle any relationship between
the independent variables, without any need for geo-
metric patterns, such as SVM. However, decision trees

Figure 1. Example for a valid lead vehicle cut-in event.

Figure 2. Scatters for range and range rate of braking/no-braking
responses.
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are known to overfit as a result of the creation of an
excessive number of nodes. Therefore, the bagged deci-
sion tree (BDT), consisting of the design of many deci-
sion trees and a voting system to decide which path to
traverse given a data point, is used. Caruana and
Niculescu-Mizil (20) demonstrated that bagged decision
trees generally have a higher accuracy rate than normal
decision trees and SVM. In this study, we applied both
the normal decision tree and BDT to test their effective-
ness and obtain additional measures of accuracy.

There are a wide range of tests available for determin-
ing the probability distribution that best fits some given
data. For example, Wang et al. (6) used the Akaike
Information Criterion (AIC) to determine the distribu-
tion of cut-in lead and lag gaps, and Varotto et al. (21)
used the Kolmogorov Smirnov test to check that two
data sets come from the same distribution. Wax and
Kailath (22) demonstrated that the Minimum
Description Length (MDL) criterion is an asymptotically
unbiased measurement, as opposed to the AIC. More
precisely, given a set of N observations of data arranged
in a vector X and a family of models, the MDL criterion
is defined as Equation 1.

MDL= � log f X jYð Þ+ 1

2
k logN ð1Þ

where
f is the log likelihood of the model,
Y is the maximum likelihood estimation of the para-
meters, and
k is the number of free adjustable parameters in Y.
This criterion penalizes models with many free para-
meters, as these are biased toward a better fit of the data.
For this study, MDL was selected to evaluate the good-
ness of fit of probability distributions of data and the
objective was to select the model that minimized the
MDL.

Results

Modeling for Cut-ins

Table 2(a) shows the logistic regression analysis for cut-
ins that the variables with significant effect on driver
deceleration responses were the old range, new range
rate, old range rate, lane distance left, and previous accel-
eration, by using the significant level of 0.05. Another
round of logistic regression was then run only on the sig-
nificant variables, and found no changes in the signifi-
cance, with coefficients denoted in Table 2(b). The VIFs
for these significant variables were all lower than 1.5
which indicated that no multicollinearity was found. The
prediction model for the probability of significant vehicle
deceleration for cut-ins is shown in Equation 2.

P Decelerationð Þ

=
1

1+ e0:887X1 + 0:0153X2 + 0:171X3 + 0:49X4 + 5:89X5
ð2Þ

where X1 through X5 respectively represent new range
rate, old range, old range rate, lane distance left, and pre-
vious acceleration. The overall accuracy of the cut-in
model was 81%.

SVM and decision trees (normal and BDT) were then
applied, only with the significant variables as indepen-
dent predictors. A chi-square goodness-of-fit test was
conducted to evaluate the consistency of the errors and
there was no significant difference between the folds. A
linear kernel was found to be optimal for the SVM pre-
diction model. Figure 3 shows the comparison between
the original naturalistic data and the prediction with
SVM, using the two most significant variables (old range
rate and previous acceleration) as an example. Table 3
further shows the errors of the prediction by the three
classification methods that SVM and BDT performed
better than the decision tree.

Table 2. Logistic Regression Results for Cut-Ins

(a) (b)

Variable Coefficient t p Coefficient for the final model

Intercept 0.499 0.33 0.741 nay

New range 0.0260 1.40 0.162 na
New range rate 0.898 5.79 0.000* 0.887
Old range 0.0133 3.59 0.000* 0.0153
Old range rate 0.156 2.98 0.003* 0.171
Yaw rate 20.222 20.80 0.425 na
Speed 20.0126 20.31 0.758 na
Lane distance left 0.594 2.21 0.027* 0.490
Duration 0.102 1.12 0.235 na
Direction 20.249 21.08 0.280 na
Previous acceleration 5.83 11.15 0.000* 5.89

Note: *refers to p-value \ 0.05; yrefers to not applicable; na = not applicable.
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Modeling for Cut-outs

Table 4(a) shows the logistic regression analysis for cut-
ins that the variables with significant effect on driver
deceleration responses were the new range, old range,
speed, lane distance left, and previous acceleration.
Another round of logistic regression was then run only
on the significant variables, from which no changes were
found in the significance and VIF were lower than 1.5
that was the same as the results for cut-ins. The final
coefficients for the classification model are shown in
Table 4(b) and the prediction model for the probability
of significant vehicle acceleration for cut-outs is shown
in Equation 3.

P Accelerationð Þ= 1

1+ e�6:98�0:0091X1 + 0:076X2 + 0:205X3�4:45X4

ð3Þ

where X1 through X4 respectively represent new range,
old range, speed, and previous acceleration. The overall
accuracy of the cut-out model was 73%.

In the same manner as for cut-ins, SVM and decision
tree models were run on the cut-outs. With the optimal
linear kernel for SVM, Figure 4 shows the comparison
between the original naturalistic data and the prediction
with the two most significant variables (speed and previ-
ous acceleration) as an example. Among the three classi-
fication methods, the results shown in Table 5 indicate
that the SVM performed the best, followed by BDT and
the decision tree.

Classification Model Comparisons

Confusion matrices were created to compare the predic-
tive results using the four classification methods, as
shown in Table 6. In general, the predictions for cut-ins
were more accurate than for cut-outs. In addition, the
miss rates were almost 20% higher than false positive
rates for cut-out prediction, but the difference decreased
to less than 10% for cut-in. The accuracies of the classifi-
cation for driver deceleration responses to LV cut-ins by
logistic regression, SVM, decision tree, and BDT were
81.0%, 80.9%, 77.2%, and 80.9%, respectively. For LV
cut-outs, the accuracy for identifying driver acceleration
responses by the four models decreased to 73.2%, 72.4%,
65.9%, and 70.8%. In both cases, the models by logistic
regression, SVM, and BDT had similar performance on
accuracy, false negative rate (miss rate), and false positive
rate (fall-out) that was better than the decision tree
model.

Figure 3. Comparison between the naturalistic data and the prediction with support vector machine (SVM) for cut-ins.

Table 3. Number of Errors for Each Fold: Cut-Ins

Fold

Number of prediction errors

Total casesSVM Decision tree BDT

1 34 45 36 159
2 30 41 26 160
3 33 34 25 160
4 25 30 30 160
5 31 32 36 160
Total 153 182 153 799

Note: SVM = support vector machine; BDT = bagged decision tree.
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Discussion

This study has provided a naturalistic basis for determin-
ing the impact of an LV cut-in or cut-out on the follow-
ing vehicle. In the logistic regression model, positive
coefficients of a variable indicate that an increase of the
variable was correlated with a lower probability of the
response of deceleration. For cut-ins, a higher range rate
of the new LV, range and range rate of the original LV,
distance to the left boundary, and the previous accelera-
tion were all correlated with a lower probability of the
driver choosing to decelerate. One explanation for the
prevalence of the previous vehicle dynamics is that higher
range and range rate to the original LV allow the cutting
vehicle to rapidly accelerate on cutting in. A common
occurrence is for an LV to be accelerating on an adjacent

lane to overtake the host vehicle, which is only possible if
the vehicle in front is either a significant distance away,
or currently accelerating.

Figure 4. Comparison between the naturalistic data and the prediction with support vector machine (SVM) for cut-outs.

Table 4. Logistic Regression Results for Cut-Outs

(a) (b)

Variable Coefficient t p Coefficient for the final model

Intercept 27.25 24.95 0.000* 26.98
New range 20.0102 22.79 0.005* 20.0091
New range rate 20.0245 20.45 0.655 nay

Old range 0.0756 4.02 0.000* 0.076
Old range

rate
0.0023 0.07 0.940 na

Yaw rate 0.0670 0.27 0.791 na
Speed 0.207 5.41 0.000* 0.205
Lane distance left 20.0315 20.13 0.896 na
Duration 0.130 1.18 0.240 na
Direction 20.0885 20.48 0.631 na
Previous acceleration 24.44 210.23 0.000* 24.45

Note: *refers to p-value . 0.05; yrefers to not applicable; na = not applicable.

Table 5. Number of Errors for Each Fold: Cut-Outs

Fold

Number of prediction error

Total casesSVM Decision tree BDT

1 47 44 32 136
2 34 37 40 137
3 33 46 46 137
4 40 51 45 137
5 35 56 40 137
Total 189 233 203 684

Note: SVM = support vector machine; BDT = bagged decision tree.

Hu et al 7



For cutting out, higher speed and old range were cor-
related with lower probability of acceleration, whereas
higher new range and previous acceleration were corre-
lated with higher probability of acceleration. The former
of these correlations makes sense, as an LV traveling at
higher speed is less likely to impede the host vehicle’s
desired travel, and drivers are more likely to follow with
a shorter distance. A greater distance to the new LV fol-
lowing the cut-out event will give more freedom to the
host vehicle to freely accelerate. Notably, the speed of the
host vehicle was only significant for cut-out, but not for
cut-in. A possible explanation for that is the restriction
that the vehicle be traveling above 25m/s on the highway:
for cut-in, the driver has a higher priority to react to the
event and avoid collision, emphasizing relative speed,
whereas for cut-out, the driver will be more likely to con-
sider the speed limit when accelerating, as a driver travel-
ing near the speed limit is unlikely to accelerate.

The accuracy for the cut-out acceleration prediction
was significantly lower than that of the cut-in decelera-
tion prediction. One likely explanation for this is that fol-
lowing an LV cut-out, the host vehicle has more freedom
to maneuver, and may choose to accelerate or maintain
current speed with human randomness. In contrast, on
having an LV cut-in with range under 30m, a previously
accelerating host vehicle has much less freedom, espe-
cially when eliminating possibilities of lane change.
Furthermore, it may be useful for future studies to ana-
lyze the acceleration of the host vehicle for a period of
time after the event has occurred to determine if some
drivers have a delayed reaction to the event.

In all cases, the accuracy results of the logistic regres-
sion, SVM, and BDT were consistent, while the decision
tree performs notably worse. The latter result was to be
expected, as decision trees commonly experience overfit-
ting (23). The consistency of the methods demonstrates
the robustness of the methods and shows that inherent
noise and randomness of the data is largely responsible
for the inaccuracies. SVM in this case performed well, as
the data was well separated by a linear kernel. Further
improvements would likely require consideration of new
variables and querying of new data.

The present study builds on and improves the results
from the existing literature on responses to lane changes.
Feng et al. (2) showed that drivers tend to brake earlier
with increasing relative velocity, consistent with our find-
ings that higher range rate was correlated with higher
probability of significant deceleration by the driver. Das
et al. (5) and Hou et al. (7) found that the most signifi-
cant predictors of driver response were relative range
and range, and Wang et al. (6) also found range rate to
be a significant variable. This was consistent in our find-
ings, as it was necessary to restrict the range to the newly
cut-in vehicle to under 30m for any variables to beT
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significant, indicating general driver unresponsiveness to
a more distant cut-in event. Additionally, the p value for
the new range rate was one of the lowest out of the stud-
ied independent variables.

Research Implications

This study has several implications on the existing litera-
ture and future studies. Ma et al. (13) demonstrated that
time headway (THW, calculated by distance divided by
host vehicle velocity) and relative velocity to the LV are
accurate predictors for the danger level of a cut-in event,
where the danger level was defined as driver reaction
time and longitudinal acceleration. However, the thresh-
old for danger levels beyond the base level was very high,
so the vast majority of data fell under the lowest level.
The present study extends this work by examining many
more possibly significant independent variables, as well
as setting a threshold of disturbance met by far more
cut-in events. The considered variables included enough
information to derive the THW, and under the highway
restriction found differing results. Similarly, Xie et al. (4)
use clustering on a graph of average and maximum
deceleration to assign danger levels. However, the unsu-
pervised clustering method appears to be somewhat arbi-
trary, as the data points do not naturally fall under
evident clusters, and the strong linear relationship
between average and maximum deceleration lead to the
risk levels being nearly discretized by random thresholds
of average deceleration. The present study consistently
classifies events as affecting the host vehicle above or
below the average, with a consideration of all variables
shown to be significant.

In applying the models to the design of autonomous
vehicles, two perspectives may be taken. First, from the
perspective of a vehicle looking to perform a discretion-
ary lane change, an autonomous vehicle should strive to
do so in a manner that avoids a significant acceleration
response from the vehicle behind, possibly through a
speed or range change, as this will help in maintaining
steady traffic flow, as well as minimize collision risk to
unalert drivers. On the other hand, from the perspective
of a vehicle behind another vehicle performing the lane
change, the models serve as a guide for an appropriate
response for the autonomous vehicle. These are most
effective in situations where the desired response, either
accelerating or braking sharply, is not immediately obvi-
ous as a result of an imminent threat of collision, as the
classification is based on a very slight value of accelera-
tion and is thus most effective when the appropriate
response consists of a low acceleration. For events with a
much greater threat of collision, other models, such as
those concerning the avoidance of an immediate collision
with a low TTC, would be more applicable to determine

the absolute value of the necessary acceleration of the
autonomous vehicle.

Limitations

Given the nature of the data acquisition systems and sys-
tem of experimentation, a few limitations should be
noted. The first involves the choices of independent vari-
ables that were made. Notable variables that were not
included in the analysis included the weather (may
increase the acceptable gap [6]), road conditions, influ-
ence of vehicles other than the LV for cutting in and out,
and speed limit. Furthermore, though the presence of
nearby vehicles other than the LV in a cut-in or out man-
euver may affect driver decision making, several different
variables would need to be considered, possibly one for
each nearby vehicle. This would cause thinning of data
as well as possible overfitting. Lastly, speed limit is possi-
bly an important factor in influencing whether a driver
decides to include deceleration or acceleration as part of
their collision avoidance maneuver.

Conclusions and Future Work

The use of the SPMD naturalistic database allows for the
investigation of the relevant events in natural settings.
Combinations of variables set thresholds for parameters
of cut-in and cut-out events that determine whether or
not the event has a significant impact on driver behavior.
The study quantifies the intuitive decision-making pro-
cess drivers naturally make that has been developed
throughout the years of driving experience.

Knowledge of the conditions under which a vehicle
cutting in has a significant behavioral impact on the pre-
ceding driver can help in the development of autonomous
vehicles. The developed predictive models allow for an
evaluation by an autonomous vehicle planning a lane
change of the impact on the following vehicles in the des-
ignated lane. Unless the cut-in is mandatory, autonomous
vehicles should avoid making a lane change that prompts
the preceding driver to perform a significant deceleration,
as it has a detrimental effect on the natural flow of traffic.
Alert systems on vehicles can also be developed that indi-
cate possibly dangerous cut-in events.

For the development of autonomous vehicles, this
research provided adjustable classification models by
selecting different thresholds. The confusion matrices
were based on the thresholds that maximized the summa-
tion of true positive and true negative rates. The develo-
per should weight the trade-offs between misses (lower
thresholds) and false alarms (higher thresholds) by con-
sidering cost, safety, policy, and end users. Having
human drivers in autonomous vehicles to subjectively
evaluate the thresholds can help select more acceptable
thresholds.

Hu et al 9



Future work could involve modeling the dynamics of
the vehicle performing the lane change in a way that
incorporates these minimal traffic disruption models, as
well as modeling the lateral movement behavior of the
driver in addition to the longitudinal movement as in our
work. This could also include further time-series data
analysis. Additionally, external environment factors such
as road conditions, lane count, and weather can be con-
sidered in the models, which could improve the prediction
accuracies. Finally, the research team plans to expand this
study to experiments with human subjects in an autono-
mous vehicle to identify the optimal thresholds.
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