G1: Teaching LL.Ms to Reason on Graphs with Reinforcement Learning

Anonymous Authors'

Abstract

Although Large Language Models (LLMs) have
demonstrated remarkable progress, their profi-
ciency in graph-related tasks remains notably lim-
ited, hindering the development of truly general-
purpose models. Previous attempts, including pre-
training graph foundation models or employing
supervised fine-tuning, often face challenges such
as the scarcity of large-scale, universally repre-
sented graph data. We introduce G1, a simple yet
effective approach demonstrating that Reinforce-
ment Learning (RL) on synthetic graph-theoretic
tasks can significantly scale LLMs’ graph reason-
ing abilities. To enable RL training, we curate
Erdds, the largest graph reasoning dataset to
date comprising 50 diverse graph-theoretic tasks
of varying difficulty levels, 100k training data and
5k test data, all drived from real-world graphs.
With RL on Erddés, G1 obtains substantial im-
provements in graph reasoning, where our fine-
tuned 3B model even outperforms Qwen2.5-72B-
Instruct (24x size). RL-trained models also show
strong zero-shot generalization to unseen tasks,
domains, and graph encoding schemes, includ-
ing other graph-theoretic benchmarks as well as
real-world node classification and link prediction
tasks, without compromising general reasoning
abilities. Our findings offer an efficient, scalable
path for building strong graph reasoners by fine-
tuning LLMs with RL on graph-theoretic tasks,
which combines the strengths of pretrained LLM
capabilities with abundant, automatically gener-
ated synthetic data, suggesting that LLMs possess
graph understanding abilities that RL can elicit
successfully.

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email @domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction

Large Language Models (LLMs) have achieved widespread
success (Brown et al., 2020; |Guo et al., [2025)) but exhibit
notable limitations in reasoning about graph-structured data,
a critical capability for achieving general-purpose intelli-
gence. Proficient graph reasoning is essential for numerous
applications, yet even state-of-the-art LLMs like OpenAI’s
ol (OpenAl et al., |2024) demonstrate significant deficien-
cies, with reported accuracies as low as 58.49% on graph
connectivity tests (Yuan et al.,[2025).

Initial efforts to enhance LLMs’ graph understanding ex-
plored various natural language encoding schemes (Fatemi
et al., 2023 [Chu et al.| [2025b}; [Das et al., [2024)), but these
yielded only modest improvements. Alternative strategies
have involved instruction tuning (Luo et al.,|2024; Ye et al.,
2024) or preference tuning (Chen et al.,|2024; Wang et al.,
2024a) on curated graph datasets. Others attempted to build
specialized graph foundation models through pretraining
(Mao et al.| [2024} |[Kong et al., [2025; Liu et al., [2024)); how-
ever, these are often limited by the lack of large-scale, uni-
versal graph representations suitable for diverse graphs. See
more discussions on related works in Appendix[A] Different
from prior work, we believe LLMs pretrained on Internet-
scale data already possess graph reasoning ability and can
be elicited through trial and error without human data.

In this work, we are the first to explore the use of Reinforce-
ment Learning (RL) to solve graph reasoning tasks. We
chose graph-theoretic problems as a testbed as they allow di-
rect verification of generated answers to produce rule-based
rewards for RL training, which is shown to be key for the
success of DeepSeek R1 in math and coding problems (Guo
et al.| 2025)). We collect the largest-to-date graph-theoretic
problem set, Erdés, with either groundtruth answers or
automatic verification programs. As illustrated in Table [T}
these tasks span a wide spectrum of difficulty levels, from
basic graph properties like node counting to NP-hard prob-
lems such as finding the maximal independent set. Another
advantage of adopting graph-theoretic tasks is its circum-
vention of scarce human-annotated data; the model learns
through exploration and reinforcement on synthetic tasks
where ground-truth outcomes provide direct reward sig-
nals, similar to the AlphaGo-Zero paradigm (Silver et al.,
2017). Besides data construction, we also study various
aspects of the training process, such as the influence of data

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Table 1: An overview of 50 graph-theoretic tasks in our dataset Erdés (100k train, 5k test), alongside with the difficulty
distribution, and the accuracy of the base model Qwen2.5-7B-Instruct and our RL-trained G1-7B model. A complete

description of tasks are in Appendix|G.2}

Difficulty

Tasks

Ratio

Base Model Acc

G1 Acc

Easy

Node Number, Dominating Set, Common Neighbor, Edge Number, Neighbor,
BFS, Has Cycle, DFS, Minimum Spanning Tree, Edge Existence, Is Regular,
Degree, Is Tournament, Density

29.16%

57.16%

95.07 %

Medium

Adamic Adar Index, Clustering Coefficient, Connected Component Number,
Bipartite Maximum Matching, Local Connectivity, Jaccard Coefficient, Min
Edge Covering, Is Eularian, Degree Centrality, Is Bipartite, Resource Allocation
Index

22.91%

42.55%

88.91%

Hard

Max Weight Matching, Closeness Centrality, Traveling Salesman Problem,
Strongly Connected Number, Shortest Path, Center, Diameter, Barycenter, Ra-
dius, Topological Sort, Periphery, Betweenness Centrality, Triangles, Average
Neighbor Degree, Harmonic Centrality, Bridges

33.33%

18.87%

50.44 %

Challenging

Isomophic Mapping, Global Efficiency, Maximal Independent Set, Maximum
Flow, Wiener Index, Hamiltonian Path, Min Vertex Cover

14.58%

3.29%

23.57%

mixture, supervised initialization, and the use of chain-of-
thought (Wei et al.,[2022). Our results confirm that RL with
synthetic graph-theoretic task is a powerful and scalable
approach to improving graph reasoning abilities of LLM:s.

Our work makes the following key contributions:

e We are the first to apply reinforcement learning (RL)
framework to improving LLMs on graph reasoning
tasks. The resulting model G1 significantly enhances
the graph reasoning abilities of LLMs across a diverse
set of synthetic tasks, demonstrating that appropriately
finetuned LLMs can become stronger graph reasoners.

* We introduce Erdés, the largest-scale and most com-
prehensive graph-theoretic dataset that comprises 50
distinct tasks of varying complexities, uniquely con-
structed from diverse real-world graphs, providing a
reliable platform for training and evaluating graph rea-
soning.

* We empirically demonstrate that G1 achieves substan-
tial performance improvements on our Erdés bench-
mark, with gains of up to 46% over baseline mod-
els. Notably, our finetuned G1-7B model attains com-
petitive performance with state-of-the-art reasoning
models like OpenAI’s 03-mini and G1-3B easily rivals
Qwen2.5-72B-Instruct by noticeable margins.

* G1 models exhibit strong zero-shot generalization on
unseen graph tasks and domains, improving base mod-
els’ performance on other graph-theoretic benchmarks
(GraphWiz and GraphArena) and real-world graphs
(Cora and PubMed) without deteriorating general rea-
soning ability (GSM8K, MATH, and MMLU-pro), in-
dicating a synergetic improvement of LLMs’ graph
reasoning abilities through RL.

G1 charts a data-efficient and scalable course for developing

LLMs with strong graph reasoning. By demonstrating that
RL can unlock latent graph understanding within general-
purpose LLMs using synthetic data, our work suggests a
possible paradigm shift away from reliance on heteroge-
neous real-world graphs to build graph foundation models.
This paves the way for more versatile Al systems capable
of sophisticated reasoning across diverse data modalities.

2. Erdds: A Comprehensive Collection of
Graph-theoretic Reasoning Tasks on
Real-world Graphs

To facilitate rule-based Reinforcement Learning of LLMs
(aka. Reinforcement Learning from Verifiable Rewards
(RLVR)) on graphs, we construct a diverse, large-scale
collection of graph-theoretic reasoning tasks. We name
it Erdds to remember Paul Erdés, a seminal figure with di-
verse contributions to graph theory. Compared to real-world
graph tasks, these graph-theoretic tasks allow clear rule-
based determination of rewards for the answers sampled
from LLMs. We categorize these tasks into Easy, Medium,
Hard, and Challenging, based on their inherent problem
complexity as well as current LLMs’ ability to solve them
(see a full list in Table[T)). For the training split, there are a
total of 100,000 question-answer pairs, evenly distributed
across tasks with 2,000 examples each. We also reserve
5,000 test pairs with different questions for evaluation. We
include a detailed comparison of Erdés with other graph
reasoning benchmarks in Appendix[G.I] Erdés can serve
as a dataset for training LLMs as well as a benchmark for
evaluating LLMs on graph-theoretic tasks. We will release
all task prompts, problems, chain-of-thought exemplars, and
solution verification programs for public use. Below is a
more detailed description of the data collection process.

Graph-theoretic Tasks. We curate 50 graph-theoretic rea-
soning tasks available on NetworkX (Hagberg et al.| 2008)),

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

one of the most widely used library for graph processing,
and construct, as we know, the most comprehensive col-
lection so far. In the difficulty level, the tasks vary from
easy determination of graph attributes like node number
counting, to well-known NP-hard problems like the travel-
ing salesman problem. This collection includes both tasks
for general graphs and tasks specific to directed graphs or
weighted graphs, and covers a wide range of answer types
including boolean, integer, float, node list, edge list, and
node mapping.

Answer Generation. To generate the golden answer for
each problem, we utilize the default solvers of NetworkX to
automatically solve the problem. If there are multiple solu-
tions to each question, we use NetworkX-based programs
to verify the correctness of each generated solution. The
procedure ensures rigorous rewarding attribution, avoiding
both costly human labeling and potential bias and hacking
brought by LLM judges.

Graph Sources. Most previous graph-theoretic datasets
or benchmarks (Wang et al.,[2023}; [Luo et al.} 2024} |Chen
et al.l|2024)) consider random graphs, following Erd6s-Rényi
model (Erdos, |1959) or Barabasi—Albert model (Barabasi
& Albert,|1999). However, these random graph models are
often far from graphs encountered in real-world practice. To
mitigate this gap, we utilize the real-world graphs from the
Network Repository (Rossi & Ahmed, [2015)), the largest
network repository with thousands of donations in 30+ do-
mains. As these graphs can be very large and infeasible for
LLMs, we downsample the graphs by random walk with
a restart strategy, generating subgraphs with sizes from 5
to 35 nodes, following common settings in previous work
(Wang et al., 2023; Yuan et al., 2025} [Tang et al., [2025).

Language Encoding. There are multiple ways to translate
the graph structure into languages that LLMs can under-
stand. Previous works explore serialized formats such as
adjacency matrix, edge list, or graph embeddings (Fatemi
et al., 2023} |Dai1 et al., 2025; |Ye et al., [2024), but fail to
find a consistently good method. Here, we choose to de-
scribe the graph structure in a unified edge list format, e.g.,
(1,2),(2,3),.... In later experiments of Section we
show that our model trained on a single graph description
method can even positively transfer to other formats.

3. Training LLMs to Reason on Graphs

In this section, we introduce the training pipeline that we
explored for training G1. We design proper rule-based re-
wards for different graph tasks, while intentionally keeping
the RL algorithm general and consistent with previous work.
Similar to DeepSeek R1 (Guo et al.,[2025)), the training of
G1 is very simple: it consists of a Reinforcement Learn-
ing phase for rewarding correct rollouts with the GRPO
algorithm (Shao et al.,|2024), and an optional SFT phase

for warming up the model in the beginning (without which
we call G1-Zero). We find that the SFT phase is generally
beneficial for learning more challenging tasks, whose initial
accuracy with the base model is close to zero.

3.1. Reinforcement Learning of LLMs on Graphs

Rule-based Rewards on Graphs. We design the following
rule-based outcome reward model (ORM) for our training
on graph-theoretic tasks, with a combination of value match,
set matching, and algorithmic verification for different prob-
lems:

e Strict value matching. For tasks that have a unique
ground truth value, e.g., node counting, the policy re-
ceives a reward of +1 only when the generated answer
is identical to the ground truth in terms of numerical
value, e.g., 0.5 and 1/2, otherwise it receives a reward
of 0.

 Jaccard Index for set matching. For problems whose
answer is not a single value 5 but an unordered set, e.g.,
common neighbors of two nodes, the reward is defined
as the Jaccard Index between the generated set s and
the ground truth s, i.e., |s N §|/|s U §|. In this way, the
model can receive intermediate rewards for imperfect
solutions.

e Algorithmic verification. Lastly, for problems that have
multiple correct solutions (e.g., shortest paths) and it is
not feasible to enumerate all of them, we implement al-
gorithmic verifiers to check correctness of the proposed
solutions. For instance, we determine the validness of
a Hamiltonian path proposed by the policy by checking
whether all the edges in the path exist and each node is
visited exactly once.

RL Algorithm. Following common practice (Guo et al.,
2025)), we use the Group Relative Policy Optimization
(GRPO) (Shao et al.| 2024) algorithm for RL training.
Specifically, for each question ¢ ~ P(Q) drawn from the
training set, GRPO first samples a set of responses {0; }$.;
from the policy model. The responses receive rewards
{r;}$_,, which enables calculating the group relative advan-
tages {4}

; —mean({ry,re, - ,7c})
std({r1, 72, ,ra}) '

Next, the policy model 7y is updated by maximizing the
following objective:

A== (1)

G

1
Jereo(0) =Ey (o6 G Z
i1

min (W(Oiq) A;,
0014 (Oi‘Q)

. mg(0ilq)))
cli ———1—¢1+€) A4
P (ﬂ-eold (Oi|q)

- 6DKL (7T0||7Tref)) (2)

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

where the expectation is taken over ¢ ~ P(Q) and
{0;}¢1 ~ ma,,,(0Olq). The KL divergence to the refer-
ence policy mr (base model) prevents large deviation from
the pretrained model and circumvents severe overfitting. Be-
sides, e controls the clipping range of the probability ratios.

3.2. Optional Warm-up with Supervised Fine-tuning

During RL training, we have noticed that for some chal-
lenging tasks like isomorphic mapping (see Table [I), the
initial accuracy of the base model is often so low that we
frequently end up with only incorrect rollouts, producing no
useful signal for RL training. This issue can be mitigated by
using a stronger base model with higher initial performance;
for example, R1 uses DeepSeek V3 (671B parameters) as
its base model, although this inevitably increases compute
cost. We find that introducing a short warm-up phase with
supervised fine-tuning, aimed at teaching the model basic
reasoning skills before the RL phase, effectively improves
overall learning efficiency. Specifically, in this paper we
consider two types of supervised fine-tuning.

Direct-SFT. The first is direct supervised fine-tuning on
question-answer pairs (g, a), where ¢ is the textual descrip-
tion of the problem and a is the final answer without any
intermediate reasoning steps. As discussed above, for graph-
theoretic tasks, these question-answer pairs can often be
synthesized by programming. However, this approach does
not include the reasoning steps leading to the answers, mean-
ing we cannot use it to explicitly teach the model reasoning
processes.

CoT-SFT. Secondly, we can collect reasoning trajectories
via sampling (g, ¢, a) triplets from another model (Yuan
et al.,[2023)), where c represents the Chain-of-Thought (CoT)
reasoning steps in natural language that lead to the final
answer a, and use them to fine-tune the base model. Specif-
ically, we instruct a base model to generate potential so-
lutions for each question ¢, and only keep the correct re-
sponses that pass verification. This process is also called
Rejection Sampling Fine-tuning (RFT) (Yuan et al., [2023).
In practice, we use Qwen2.5-32B-Instruct (Team) 2024), a
more capable model for generating candidate solutions more
reliably, ending up with around 4,500 training examples for
the SFT phase.

4. Experiments

4.1. Benchmarking G1 on Graph-theoretic Reasoning
Tasks

Setup. As shown in Table |2} in the interest of academic
compute budgets, we focus on comparing relatively small
models. We include strong proprietary models (of unknown
sizes) like GPT-40-mini (non-reasoning) and OpenAl 03-
mini (state-of-the-art reasoning), open-source instruction
models like Qwen2.5-Instruct series (3B, 7B, 72B) (Team,

Table 2: Test accuracy (%) comparison of different LLMs
of varying sizes on our Erdés benchmark tasks. In all
experiments we use Qwen2.5-Instruct models as our base
model (marked below). We report the average accuracy
across all tasks in the Average column, and full results for
each task are provided in Appendix @

Model Easy Medium Hard Challenging Average
Proprietary (Unknown Parameters)
GPT-40-mini 7620 72.07 28.81 3.34 47.60
OpenAlI 03-mini (w/ tool use) 74.83 83.49 59.28 4322 64.90
3B Parameters
Llama-3.2-3B-Instruct 36.50 21.45 6.81 1.14 17.32
Qwen?2.5-3B-Instruct (base model) 45.71 30.18 9.44 1.29 22.72
Direct-SFT-3B (Ours) 7443 7527 43.69 14.43 53.78
CoT-SFT-3B (Ours) 65.57 67.64 29.44 4.57 43.56
G1-3B (Ours) 94.86 84.64 41.25 7.57 59.76 (+37.04)
7B Parameters
Llama-3.1-8B-Instruct 49.21 30.45 13.69 1.43 25.10
Qwen2.5-7B-Instruct (base model) 57.36 42.55 18.87 3.29 32.06
Qwen2.5-Math-7B-Instruct 5279 39.64 14.82 2.46 28.94
DeepSeek-R1-Distill-Qwen-7B 71.79 7373 39.12 16.57 51.64
GraphWiz-7B-RFT 14.57 13.73 1.38 0.47 7.70
GraphWiz-7B-DPO 20.36 19.09 1.44 0.78 10.59
Direct-SFT-7B (Ours) 73.57 7591 39.12 10.71 51.76
CoT-SFT-7B (Ours) 7257 7573 38.50 11.00 51.34
G1-7B (Ours) 95.07 8891 50.44 23.57 66.16 (+34.10)
70B Parameters
Llama-3.1-70B-Instruct 68.07 5545 31.87 4.44 42.28
Qwen2.5-72B-Instruct 71.71 67.81 3887 8.22 47.16

2024), Qwen2.5-Math-Instruct (Yang et al., 2024), LLaMA-
3 series (3B, 8B, 70B) (Al 2024), and a strong baseline
DeepSeek-R1-Distill-Qwen-7B (Guo et al. 2025) that is
distilled from DeepSeek R1 with 671B parameters. Ad-
ditionally, for reference, we incorporate previous training
strategies for graph reasoning tasks such as GraphWiz-RFT
and GraphWiz-DPO (Chen et al.| [2024). We finetune our
model from Qwen2.5-Instruct models (3B and 7B) for 300
steps with batch size 512 on a cluster of 8 xA800 GPUs,
using our dataset Erdés. More experimental details can be
found in Appendix [C]

Performance. As shown in Table |2} our proposed model
G1-7B consistently outperforms most proprietary, open-
source, and graph training counterparts by significant mar-
gins across all difficulty levels. With a notable average accu-
racy of 66.16%, G1-7B outperforms GPT-40-mini (47.60%)
by 18.56%, reaching competitive performance to a cutting-
edge reasoning model like 03-mini (64.90%) that underwent
much heavier training. Notably, our small variant G1-3B,
delivers a strong average performance of 59.76%, surpass-
ing open-source models including Qwen2.5-72B-Instruct
(47.16%) and Llama-3.1-70B-Instruct (42.28%) with 20x
parameters.

Remark on SFT baselines. Interestingly, Direct-SFT
emerges as a surprisingly strong baseline in Table[2] The
3B and 7B versions of Direct-SFT both outperform larger
open-source models with 53.78% and 51.76% accuracy, sug-
gesting that LL.Ms can discover some effective patterns by
directly fitting targets. However, we also observe that with
Direct-SFT, the 7B model yields no extra gain over the 3B
model, while CoT-SFT and G1 (initialized with CoT-SFT)

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Table 3: Test accuracy (%) by computational complexity on
the GraphWiz benchmark.

Table 4: Test accuracy (%) by computational complexity on
the GraphArena benchmark.

Model Linear Poly NP-Complete Avg.
Llama-3.2-3B-Instruct 29.80 3.00 2.50 19.80
Qwen2.5-3B-Instruct (base) 40.25 9.58 69.12 36.44
G1-3B 58.06 26.75 69.12 50.08
Llama-3.1-8B-Instruct 54.00 5.67 32.12 33.03
DeepSeek-R1-Distill-Qwen-7B 57.69 31.42 70.88 51.86
GraphWiz-7B-RFT 67.56 29.83 43.38 49.61
GraphWiz-7B-DPO 63.88 36.25 39.50 49.25
Qwen?2.5-7B-Instruct (base) 49.06 17.92 76.12 44.69
G1-7B 68.00 32.25 72.62 57.11

Poly-Time NP-Complete
Easy Hard Easy Hard
2225 675 8.00 0.66 8.40

Model Avg.

Llama-3.2-3B-Instruct

Qwen2.5-3B-Instruct (base) 31.50 14.50 1733 1.50 14.85
G1-3B 57.50 26.75 24.66 1.83 24.80
Llama-3.1-8B-Instruct 47.00 2125 2200 2.16 20.90
DeepSeek-R1-Distill-Qwen-7B ~ 66.0 22.75 34.83 1.50 28.65
GraphWiz-7B-RFT 2.25 0.75 083 0.00 0.85

GraphWiz-7B-DPO 0.25 1.00 066 0.16 049

Qwen?2.5-7B-Instruct (base) 62.00 3575 2883 2.16 28.84
G1-7B 7750 4425 4733 850 41.10

Table 5: Test accuracy (%) on Node Classification and Link Table 6: Test accuracy (%) on reasoning benchmarks be-

Prediction benchmarks.

yond graph-related tasks.

Model oS LLiTnl Avg.
Cora PubMed Cora PubMed
Llama-3.2-3B-Instruct 68.77 75.20 60.40 57.60 64.79
Qwen2.5-3B-Instruct (base) 70.83 75.08 62.15 58.38 65.66
CoT-SFT-3B 7597 8147 75.70 71.52 75.12
G1-3B 77.25 83.88 78.97 69.75 75.16
Llama-3.1-8B-Instruct 70.90 75.00 50.60 46.10 59.53
DeepSeek-R1-Distill-Qwen-7B 76.50 81.25 68.03 78.72 78.80
Qwen2.5-7B-Instruct (base) 79.30 85.35 88.22 88.67 85.50
CoT-SFT-7B 73.20 83.25 64.70 68.12 73.17
G1-7B 79.20 86.20 87.98 91.88 87.29

performance scales with larger models. This indicates that
even though the CoT-SFT performance may appear low
compared to Direct-SFT (possibly because of limited data
size with about 100 examples per task), CoT-SFT could
have better scaling and generalization properties.

4.2. Transferability of G1 to Unseen Tasks and Domains

In this section, we evaluate zero-shot generalization of G1
to unseen domains, tasks, and data formats. Detailed bench-
mark description and complete evaluation setups are pro-
vided in Appendix

4.2.1. G1’S TRANSFERABILITY TO OTHER GRAPH
REASONING BENCHMARKS

We consider two additional graph reasoning benchmarks,
GraphWiz (Chen et al.| 2024) and GraphArena (Tang et al.|
2025), which bring three major shifts that challenge our
model: 1) different distributions of the underlying graphs 2)
tasks unseen during training 3) unfamiliar graph encoding
formats, e.g., the GraphArena benchmark represents nodes
with human names instead of integers.

The performance across models is reported in Table [3|and
TableE} On the GraphWiz benchmark, G1-7B achieves the

Model GSMS8K MATH MMLU-pro
Llama-3.2-3B-Instruct 71.03 42.40 13.50
Qwen2.5-3B-Instruct (base) 81.95 62.20 38.53
CoT-SFT-3B 75.36 56.00 34.85
G1-3B 79.30 61.80 37.11
Llama-3.1-8B-Instruct 74.45 44.80 32.02
DeepSeek-R1-Distill-Qwen-7B 86.03 87.20 37.21
Qwen2.5-7B-Instruct (base) 86.27 69.80 45.75
CoT-SFT-7B 83.85 65.80 44.79
G1-7B 87.49 71.80 48.56

highest overall accuracy (57.11%) among all models, out-
performing DeepSeek-R1-Distill-Qwen-7B (51.86%) and
even models specifically trained on GraphWiz data such
as GraphWiz-7B-RFT (49.61%). The smaller variant G1-
3B also achieves comparable performance with DeepSeek-
R1-Distill-Qwen-7B. Similar results can be found on the
GraphArena benchmark (Table f)) with a different graph
encoding scheme. These results demonstrate that G1 has
strong zero-shot generalization ability to unseen graph en-
coding methods, graph distributions, and graph tasks. Full
results for GraphWiz and GraphArena are shown in Ap-

pendix [E.2]and Appendix [E.4]

4.2.2. G1 ON REAL-WORLD, NON-GRAPH-THEORETIC
GRAPH-REASONING TASKS

For real-world graph tasks, we consider two standard prob-
lems: node classification and link prediction. We adopt
the benchmarks introduced by [Wang et al.| (2025), which
are constructed by subsampling from the widely used Cora
and PubMed citation graphs. As shown in Table [5] our
model G1 significantly outperforms both open-source and
distilled baselines across tasks and model sizes. In the 3B
model category, G1-3B surpasses the base model (Qwen?2.5-
3B-Instruct) by a large margin—especially in link predic-

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Table 7: Test accuracy (%) on our benchmark. * denotes the
tasks are excluded in model training. G1-Hard-3B is only
RL-trained on Hard and Challenging tasks.

Category Model Easy Medium Hard Challenging Average
Base Model Qwen2.5-3B-Instruct 45.71 30.18 9.44 1.29 22.72
Direct-SFT-3B 74.43 7527 43.69 14.43 53.78
Ours G1-3B 94.86 84.64 4125 7.57 59.76
G1-Hard-3B 69.36" 70.64* 48.50 17.43 53.30

tion on Cora (+16.82%) and node classification on PubMed
(+8.8%). In the 7B model category, G1-7B achieves the
highest average score of 87.29%, ranking first on PubMed
dataset in both node classification and link prediction tasks.
Overall, G1 consistently demonstrates strong generalization
across real-world graph tasks where graph-text reasoning is
required.

4.2.3. G1’S REASONING ABILITY BEYOND GRAPHS

We next extend our investigations of G1’s abilities be-
yond graph-based tasks. We consider two mathematics
benchmarks, GSM8K (Cobbe et al., |2021b)) and MATH
(Hendrycks et al., 2021)), and a massive multi-task bench-
mark MMLU-Pro (Wang et al.| 2024b). In table E], we first
notice that the CoT-SFT training on graph reasoning tra-
jectories leads to a non-negligible degradation in general
abilities, which could be attributed to the fact that SFT mem-
orizes pattern instead of incentivizing truly generalizable
skills (Chu et al.} 2025a). Remarkably, the subsequent rein-
forcement learning stage—despite being trained exclusively
on graph tasks—restores the reasoning abilities of both the
3B and the 7B model. G1-7B even surpasses the perfor-
mance of the initial Qwen-7B checkpoint in all of the three
benchmarks (87.49% v.s. 86.27% for GSM8K, 72.8% v.s.
69.8% for MATH, and 48.56% v.s. 45.75% for MMLU-pro).
Interestingly, G1-7B also outperforms Qwen-7B-Instruct on
several non-STEM tasks like Economy (68.76 v.s. 46.87),
which are intuitively less related to graph reasoning (see
Appendix [E.3|for full MMLU-Pro results).

4.3. Training Analysis

In this section, we further analyze the influence of two
training factors on G1’s reasoning performance.

Data Mixture. In Table 2| we observe that although G1-3B
achieves strong overall performance, it is outperformed by
Direct-SFT-3B on the Hard and Challenging subsets. We
hypothesize that this gap arises from imbalanced reward
signals across different difficulty levels during RL training.
Since correct rollouts are much easier to obtain on simpler
tasks, the policy tends to allocate more of its constrained
probability ratios as well as KL budget to optimize for Easy
and Medium tasks, thereby maximizing the overall rewrad.
To test this hypothesis, we introduce G1-Hard-3B, which is
trained exclusively on Hard and Challenging tasks during

94.9
88.6 846 Qwen2.5-3B-Instruct
80 s 7 G1-Zero-3B
= ; G1-3B
S 59.8
>‘60
O 50.1
g N 41.2
5 .
2 40
] 30.2
< 269 22.7
20
24 7.6
13 34
Easy Medium Hard Challenging Average

Difficulty Level

Figure 1: Test accuracy comparison of G1-3B and G1-Zero-
3B on our benchmark. Results for -7B are in Appendix @

RL. As shown in Table[7] this model achieves the highest ac-
curacy on Hard (48.50%) and Challenging (17.43%) tasks,
surpassing both G1 and Direct-SFT. These results support
our claim, suggesting that the suboptimal performance of
G1-3B on challenging tasks is a natural consequence of the
uniformly weighted reward function, rather than a shortcom-
ing of G1 training pipeline. Notably, despite being trained
only on hard tasks, G1-Hard-3B also generalizes to Easy
and Medium tasks (69.36% and 70.64%), far exceeding the
baseline Qwen2.5-3B-Instruct. This indicates that learning
to solve difficult tasks confers transferable reasoning skills
that benefit performance on simpler problems. To better
balance the optimization process across difficulty levels, we
further explore reward-weighting strategies in Appendix [F}

SFT Warmup. We study the role of SFT as a cold-start
mechanism for RL, evaluating its impact on both perfor-
mance and response behavior. To isolate the effect of
SFT, we compare two variants: G1-Zero-3B that is directly
trained from the base model Qwen2.5-3B-Instruct with RL,
and G1-3B that initializes RL from the CoT-SFT check-
point. As shown in Figure|l} training RL directly from the
base model achieves surprisingly strong performance, align-
ing with recent findings in Deepseek-R1-Zero (Guo et al.|
2025)). Meanwhile, initializing RL with CoT-SFT provides
clear and consistent improvements across all difficulty lev-
els, with an average accuracy of 59.8% compared to 50.1%
of G1-Zero-3B. Besides, we notice that relative improve-
ments become larger as the difficulty increases. In addition
to performance gains, we also observe that models initial-
ized by CoT-SFT present more precise reasoning patterns,
illustrated by the case study in the following section.

4.4. Understanding the Benefits of RL Training for
Graph Reasoning

To understand how RL training helps graph reasoning, we
take shortest path as a case study. Specifically, we study
the behaviors of three models: Qwen2.5-3B-Instruct (base),
G1-Zero-3B (RL only), and G1-3B (SFT & RL).

We identify three primary approaches adopted by the mod-
els to solve the problem: 1) Breadth-First Search (BFS),

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Query: The task is to determine the shortest path between two nodes. Here is an undirected graph
containing nodes from 1 to 7. The edges are: (1, 3), (1, 6), (1, 5), (3, 2), (3, 7), (5, 2), (7, 4). Question:

What is the shortest path between node 6 and node 4?

Ground Truth: [6,1, 3, 7, 4]

Question

Graph

We can use Dijkstra's algorithm to find the shortest path.
Let's start by initializing the distances from node 4 to all

other nodes and setting the distance to the starting node
(node 4) to 0. The distance to all other nodes is initially set
to infinity.

1. Initialize distances:
- Distance to 4:0
- Distance to 7:

To determine the shortest path between node 6 and
node 4, we will analyze the given graph step by step.

First, let's list the nodes and their connections:
- Node 1 is connected to nodes 3, 6, and 5.

We need to find the path from node 6 to node 4. Let's
start from node 6 and see which nodes we can reach
next.

1. Node 6 is connected to node 1.

2. Node 1 is connected to nodes 3, 6, and 5.

To find the shortest path between node 6 anm
in the given undirected graph, we can use a graph

traversal method such as Breadth-First Search (BFS).

Let's represent the graph as an adjacency list for
easier visualization: - Node 1: connected to 3, 6, 5

Starting from node 6, we will perform a BFS to find
the shortest path to node 4.

1. Initialize the queue with the starting node 6.

2. Select the node with the smallest distance (node 4) and
update the distances to its neighbors:
- Node 4 has no neighbors.

8. Select the next smallest distance node (node 7), update
the distances to its neighbors:

Since we have reached node 4 and the distance to it is 5,
we can now trace back the path:

2.
- From node 7 to node 4: distance is 2 (edge (7, 4))

3. Since we are already at node 6, we can try to reach
other nodes from here. Node 1 is connected to node 3,

Now, let's look at the connections from node 3:

Now, let's look at the connections from node 7:
1. Node 7 is connected to nodes 3 and 4.

So, the path from node 6 to node 4 is:

The shortest path from node 6 to node 4 is: [6, 5, 2, 3, 7, 4] \[6\to 1 \to 3\to 7\to 4] Thus, the shortest path found is: 6 ->1->3->7->4.
We, the final answer is: $\boxed{[6, 5, 2, 3, 7, 4]}$. @'e, the final answer is: \boxed{[6, 1, 3, 7, 4]}. \Therefore, the final answer is: $\boxed{[6, 1, 3, 7, 4]}

2. Keep track of visited nodes to avoid revisiting.
3. Track the path by backtracking from the end node
to the start node.

Let's execute the BFS:

- Start at node 6.

- Explore neighbors of 6: the only neighbor is 1.

- From node 1, explore its neighbors: 3, 5, 6 (but 6 is
already visited)......

- From node 7, explore its neighbors: 4 (this is the
target node).

Qwen2.5-3B-Instruct

Gl-Zero-3B

G1-3B

Figure 2: An intuitive illustration of the differences in solution strategies employed by Qwen2.5-3B-Instruct, G1-Zero-3B,

and G1-3B for a shortest path problem.

BFS

=
o

25]24.00 Dijkstra

> 20.59 0.8 Intuitive
R20 z
g c
> 0.6
oy 1463 7 g
g g
810 i 04
<

5 0.2

o !

BFS Dijkstra Intuitive Qwen2.5 G1-Zero Gl
Method Model

(a) The accuracy of different
graph reasoning patterns for
shortest path on Qwen2.5-3B-
Instruct.

(b) Frequency of different graph
reasoning patterns for Qwen2.5-
3B-Instruct, G1-Zero-3B and
G1-3B.

Figure 3: Reasoning patterns for the shortest path task.

2) Dijkstra’s algorithm, and 3) Intuitive deductions. Fig-
ure [3a shows the distribution of these approaches alongside
their corresponding accuracies for Qwen2.5-3B-Instruct.
On unweighted graphs, BFS is the most efficient method
and yields the highest performance. In contrast, Dijkstra’s
algorithm is best suited for weighted graphs, where it cor-
rectly accounts for edge costs. However, its reliance on a
min-priority queue and a distance list introduces compu-
tational complexity, which appears to challenge Qwen2.5-
3B-Instruct and results in its lowest observed accuracy. For
example, as shown in Figure|2|(left), the model falsely states
that node 4 has no edges (node 4 is connected to node 7)
while updating the distance list. Interestingly, intuitive ap-
proaches—where the model attempts to visually estimate or
heuristically trace paths—can also produce correct answers
by a noticeable accuracy, particularly on small graphs.

We proceed by observing that RL training significantly re-
shapes the models’ graph reasoning strategies: RL-trained
models largely abandon Dijkstra and prefer a combination
of BFS and intuitive search. As shown in Figure[3b|and Fig-
ure 2] (middle), G1-Zero-3B navigates the graph in a manner
akin to human heuristics—sequentially checking neighbors
and adjusting paths dynamically. G1-3B primarily adopts a
neat BFS-style algorithm as in Figure[3band Figure[2](right),
executing it with high precision, occasionally resorting to
intuitive strategies for simple graphs. To conclude, our case
study highlights how RL training enhances graph reasoning
by guiding LLMs toward more model-aware strategies that
are adaptive to their inherent capabilities (Wu et al., [2025)).

5. Discussion

In this paper, we explored the use of RL to improve LLMs’
reasoning abilities on gragh reasoning and demonstrate sig-
nificant improvements across a spectrum of tasks with vari-
ous difficulty levels, showing that graph reasoning of LLMs
can be elicited via RL training (even with only 300 steps).
We also comprehensively evaluate the transferability of RL-
trained models to unseen graph reasoning tasks, real-world
graph tasks, and general reasoning tasks, observing strong
zero-shot generalization. These results support that train-
ing LLMs on diverse synthetic graph-theoretic tasks via RL
offers a scalable, generalizable path toward robust graph
reasoning. As a first step, this approach may guide the
development of efficient, general-purpose graph reasoners.

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Impact Statement

This paper presents work whose goal is to advance the field
of Large Language Models on graph reasoning. There are
many potential societal consequences of our work, none
which we feel must be specifically highlighted here.

References

Al, M. Llama3 foundation models.
llama.com/models/llama—3/, 2024.

Barabasi, A.-L. and Albert, R. Emergence of scaling in
random networks. science, 286(5439):509-512, 1999.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P, Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, 1., and Amodei, D. Language
models are few-shot learners. In NeurIPS, 2020.

Chen, N., Li, Y., Tang, J., and Li, J. Graphwiz: An
instruction-following language model for graph computa-
tional problems. In SIGKDD, 2024.

Chu, T., Zhai, Y., Yang, J., Tong, S., Xie, S., Schuurmans,
D., Le, Q. V, Levine, S., and Ma, Y. Sft memorizes, rl
generalizes: A comparative study of foundation model
post-training, 2025a. URL |https://arxiv.org/
abs/2501.17161.

Chu, X., Xue, H., Tan, Z., Wang, B., Mo, T., and Li, W.
Graphsos: Graph sampling and order selection to help
Ilms understand graphs better. arXiv e-prints, pp. arXiv—
2501, 2025b.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021a.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021b.

Dai, X., Qu, H., Shen, Y., Zhang, B., Wen, Q., Fan, W., Li,
D., Tang, J., and Shan, C. How do large language models
understand graph patterns? a benchmark for graph pattern
comprehension. In ICLR, 2025.

Das, D., Gupta, L., Srivastava, J., and Kang, D. Which
modality should i use—text, motif, or image?: Understand-
ing graphs with large language models. In NAACL, 2024.

https://www.

Erdos, P. Erdds-rényi model. Publ. Math. Debrecen, pp.
290-297, 1959.

Fatemi, B., Halcrow, J., and Perozzi, B. Talk like a
graph: Encoding graphs for large language models. arXiv
preprint arXiv:2310.04560, 2023.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P, Bi, X., et al. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Hagberg, A. A., Schult, D. A., and Swart, P. J. Exploring net-
work structure, dynamics, and function using networkx.

In Proceedings of the 7th Python in Science Conference,
2008.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In NeurIPS, 2017.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the math dataset. In
NeurlPS, 2021.

Huang, X., Zhang, J., Li, D., and Li, P. Knowledge graph
embedding based question answering. In WSDM, 2019.

Karalias, N. and Loukas, A. Erdos goes neural: an unsuper-
vised learning framework for combinatorial optimization
on graphs. In NeurlIPS, 2020.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Kong, L., Feng, J., Liu, H., Huang, C., Huang, J., Chen, Y.,
and Zhang, M. Gofa: A generative one-for-all model for
joint graph language modeling. In ICLR, 2025.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In SIGOPS, 2023.

Li, X., Chen, W., Chu, Q., Li, H., Sun, Z., Li, R., Qian, C.,
Wei, Y., Shi, C., Liu, Z., et al. Can large language models
analyze graphs like professionals? a benchmark, datasets
and models. In NeurIPS, 2024.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Liu, H., Feng, J., Kong, L., Liang, N., Tao, D., Chen, Y.,
and Zhang, M. One for all: Towards training one graph
model for all classification tasks. In ICLR, 2024.

https://www.llama.com/models/llama-3/
https://www.llama.com/models/llama-3/
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2501.17161

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Luo, Z., Song, X., Huang, H., Lian, J., Zhang, C., Jiang,
J., and Xie, X. Graphinstruct: Empowering large lan-
guage models with graph understanding and reasoning
capability. arXiv preprint arXiv:2403.04483, 2024.

Mao, H., Chen, Z., Tang, W., Zhao, J., Ma, Y., Zhao, T.,
Shah, N., Galkin, M., and Tang, J. Position: Graph
foundation models are already here. In ICML, 2024.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W.,
Songhori, E., Wang, S., Lee, Y.-J., Johnson, E., Pathak,
0., Nova, A., et al. A graph placement methodology for
fast chip design. Nature, 594(7862):207-212, 2021.

OpenAl, :, Jaech, A., Kalai, A., Lerer, A., Richardson, A.,
El-Kishky, A., Low, A., Helyar, A., Madry, A., Beu-
tel, A., Carney, A., Iftimie, A., Karpenko, A., Passos,
A. T, Neitz, A., Prokofiev, A., Wei, A., Tam, A., Bennett,
A., Kumar, A., Saraiva, A., Vallone, A., Duberstein, A.,
Kondrich, A., Mishchenko, A., Applebaum, A., Jiang, A.,
Nair, A., Zoph, B., Ghorbani, B., Rossen, B., Sokolowsky,
B., Barak, B., McGrew, B., Minaiev, B., Hao, B., Baker,
B., Houghton, B., McKinzie, B., Eastman, B., Lugaresi,
C., Bassin, C., Hudson, C., Li, C. M., de Bourcy, C., Voss,
C., Shen, C., Zhang, C., Koch, C., Orsinger, C., Hesse,
C., Fischer, C., Chan, C., Roberts, D., Kappler, D., Levy,
D., Selsam, D., Dohan, D., Farhi, D., Mely, D., Robinson,
D., Tsipras, D., Li, D., Oprica, D., Freeman, E., Zhang,
E., Wong, E., Proehl, E., Cheung, E., Mitchell, E., Wal-
lace, E., Ritter, E., Mays, E., Wang, F., Such, F. P., Raso,
F., Leoni, F., Tsimpourlas, F., Song, F., von Lohmann,
F., Sulit, F., Salmon, G., Parascandolo, G., Chabot, G.,
Zhao, G., Brockman, G., Leclerc, G., Salman, H., Bao,
H., Sheng, H., Andrin, H., Bagherinezhad, H., Ren, H.,
Lightman, H., Chung, H. W., Kivlichan, 1., O’Connell,
I, Osband, 1., Gilaberte, 1. C., Akkaya, I., Kostrikov, .,
Sutskever, 1., Kofman, I., Pachocki, J., Lennon, J., Wei,
J., Harb, J., Twore, J., Feng, J., Yu, J., Weng, J., Tang, J.,
Yu, J., Candela, J. Q., Palermo, J., Parish, J., Heidecke,
J., Hallman, J., Rizzo, J., Gordon, J., Uesato, J., Ward,
J., Huizinga, J., Wang, J., Chen, K., Xiao, K., Singhal,
K., Nguyen, K., Cobbe, K., Shi, K., Wood, K., Rimbach,
K., Gu-Lemberg, K., Liu, K., Lu, K., Stone, K., Yu, K.,
Ahmad, L., Yang, L., Liu, L., Maksin, L., Ho, L., Fedus,
L., Weng, L., Li, L., McCallum, L., Held, L., Kuhn, L.,
Kondraciuk, L., Kaiser, L., Metz, L., Boyd, M., Trebacz,
M., Joglekar, M., Chen, M., Tintor, M., Meyer, M., Jones,
M., Kaufer, M., Schwarzer, M., Shah, M., Yatbaz, M.,
Guan, M. Y., Xu, M., Yan, M., Glaese, M., Chen, M.,
Lampe, M., Malek, M., Wang, M., Fradin, M., McClay,
M., Pavlov, M., Wang, M., Wang, M., Murati, M., Bavar-
ian, M., Rohaninejad, M., McAleese, N., Chowdhury,
N., Chowdhury, N., Ryder, N., Tezak, N., Brown, N.,
Nachum, O., Boiko, O., Murk, O., Watkins, O., Chao, P,,
Ashbourne, P., Izmailov, P., Zhokhov, P., Dias, R., Arora,
R., Lin, R., Lopes, R. G., Gaon, R., Miyara, R., Leike, R.,

Hwang, R., Garg, R., Brown, R., James, R., Shu, R., Cheu,
R., Greene, R., Jain, S., Altman, S., Toizer, S., Toyer, S.,
Miserendino, S., Agarwal, S., Hernandez, S., Baker, S.,
McKinney, S., Yan, S., Zhao, S., Hu, S., Santurkar, S.,
Chaudhuri, S. R., Zhang, S., Fu, S., Papay, S., Lin, S., Bal-
aji, S., Sanjeev, S., Sidor, S., Broda, T., Clark, A., Wang,
T., Gordon, T., Sanders, T., Patwardhan, T., Sottiaux, T.,
Degry, T., Dimson, T., Zheng, T., Garipov, T., Stasi, T.,
Bansal, T., Creech, T., Peterson, T., Eloundou, T., Qi, V.,
Kosaraju, V., Monaco, V., Pong, V., Fomenko, V., Zheng,
W., Zhou, W., McCabe, W., Zaremba, W., Dubois, Y., Lu,
Y., Chen, Y., Cha, Y., Bai, Y., He, Y., Zhang, Y., Wang, Y.,
Shao, Z., and Li, Z. Openai ol system card, 2024. URL
https://arxiv.org/abs/2412.16720.

Perozzi, B., Fatemi, B., Zelle, D., Tsitsulin, A., Kazemi,
M., Al-Rfou, R., and Halcrow, J. Let your graph do the
talking: Encoding structured data for llms. arXiv preprint
arXiv:2402.05862, 2024.

Qwen, :, Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B.,
Yu, B, Li, C., Liu, D., Huang, F., Wei, H., Lin, H., Yang,
J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou, J., Lin, J.,
Dang, K., Lu, K., Bao, K., Yang, K., Yu, L., Li, M., Xue,
M., Zhang, P., Zhu, Q., Men, R., Lin, R., Li, T., Tang,
T., Xia, T., Ren, X., Ren, X., Fan, Y., Su, Y., Zhang, Y.,
Wan, Y., Liu, Y., Cui, Z., Zhang, Z., and Qiu, Z. Qwen2.5
technical report, 2025.

Rossi, R. A. and Ahmed, N. K. The network data repository
with interactive graph analytics and visualization. In
AAAI 2015. URL http://networkrepository.
corm

Sanford, C., Fatemi, B., Hall, E., Tsitsulin, A., Kazemi, M.,
Halcrow, J., Perozzi, B., and Mirrokni, V. Understanding
transformer reasoning capabilities via graph algorithms.
In NeurIPS, 2024.

Sato, R., Yamada, M., and Kashima, H. Approximation ra-
tios of graph neural networks for combinatorial problems.
In NeurIPS, 2019.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Push-
ing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I, Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L.,
van den Driessche, G., Graepel, T., and Hassabis, D.
Mastering the game of go without human knowledge.
Nature, 550(7676):354-359, 2017.

Tang, J., Zhang, Q., Li, Y., and Li, J. Grapharena: Bench-
marking large language models on graph computational
problems. In ICLR, 2025.

https://arxiv.org/abs/2412.16720
http://networkrepository.com
http://networkrepository.com

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Team, Q. Qwen2.5: A party of foundation models, Septem-
ber 2024. URL https://gqwenlm.github.io/
blog/qwen2.5/l

Velickovié, P., Ying, R., Padovano, M., Hadsell, R., and
Blundell, C. Neural execution of graph algorithms. In
ICLR, 2020.

Wang, H., Wang, K., Yang, J., Shen, L., Sun, N., Lee, H.-S.,
and Han, S. Gen-rl circuit designer: Transferable transis-
tor sizing with graph neural networks and reinforcement
learning. In 2020 57th ACM/IEEE Design Automation
Conference (DAC), pp. 1-6. IEEE, 2020.

Wang, H., Feng, S., He, T., Tan, Z., Han, X., and Tsvetkov,
Y. Can language models solve graph problems in natural
language? In NeurIPS, 2023.

Wang, J., Wu, ., Hou, Y., Liu, Y., Gao, M., and McAuley, J.
Instructgraph: Boosting large language models via graph-
centric instruction tuning and preference alignment. In
ACL, 2024a.

Wang, Y., Ma, X., Zhang, G., Ni, Y., Chandra, A., Guo,
S., Ren, W., Arulraj, A., He, X, Jiang, Z., Li, T., Ku,
M., Wang, K., Zhuang, A., Fan, R., Yue, X., and Chen,
W. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark, 2024b. URL
https://arxiv.orqg/abs/2406.01574.

Wang, Y., Dai, X., Fan, W., and Ma, Y. Exploring graph
tasks with pure llms: A comprehensive benchmark and
investigation. arXiv preprint arXiv:2502.18771, 2025.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in

neural information processing systems, 35:24824-24837,
2022.

Wu, Q., Chen, Z., Corcoran, W., Sra, M., and Singh,
A. K. Grapheval2000: Benchmarking and improving
large language models on graph datasets. arXiv preprint
arXiv:2406.16176, 2024.

Wu, Y., Wang, Y., Du, T., Jegelka, S., and Wang, Y. When
more is less: Understanding chain-of-thought length in
llms. arXiv preprint arXiv:2502.07266, 2025.

Xu, H., Jian, X., Zhao, X., Pang, W., Zhang, C., Wang, S.,
Zhang, Q., Monteiro, J., Sun, Q., and Yu, T. Graphomni:
A comprehensive and extendable benchmark framework
for large language models on graph-theoretic tasks. arXiv
preprint arXiv:2504.12764, 2025.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S.
powerful are graph neural networks?
arXiv:1810.00826, 2018.

How
arXiv preprint

10

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In ICLR, 2019a.

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K.-i.,
and Jegelka, S. What can neural networks reason about?
arXiv preprint arXiv:1905.13211, 2019b.

Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B, Li, C., Liu, D.,
Tu, J., Zhou, J., Lin, J., Lu, K., Xue, M., Lin, R., Liu, T.,
Ren, X., and Zhang, Z. Qwen2.5-math technical report:
Toward mathematical expert model via self-improvement.
arXiv preprint arXiv:2409.12122, 2024.

Ye, R., Zhang, C., Wang, R., Xu, S., and Zhang, Y. Lan-
guage is all a graph needs. In ECAL, 2024.

Yuan, Z., Yuan, H., Li, C., Dong, G., Lu, K., Tan, C., Zhou,
C., and Zhou, J. Scaling relationship on learning math-
ematical reasoning with large language models. arXiv
preprint arXiv:2308.01825, 2023.

Yuan, Z., Liu, M., Wang, H., and Qin, B. Gracore: Bench-
marking graph comprehension and complex reasoning in
large language models. In COLING, 2025.

Zhang, M. and Chen, Y. Link prediction based on graph
neural networks. In NeurIPS, 2018.

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2406.01574

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

A. Related Work

Graph Reasoning. Graph reasoning problems fall into two categories: domain-specific, which require understanding both
graph structures and node/link attributes, e.g., node classification, link prediction, and knowledge-based QA (Hamilton et al.|
2017} [Zhang & Chenl 2018; Huang et al.,|2019); and domain-agnostic, also called graph-theoretic problems, which focus
solely on structural reasoning but find a lot of practical uses in various domains, e.g., shortest paths, Hamiltonian paths,
graph isomorphism (Xu et al., 2019a} |Sato et al., 2019). For the latter problems that we study in this paper, people have
studied the use of RL (Mirhoseini et al.|, [2021} Wang et al., | 2020) or unsupervised learning (Karalias & Loukas, [2020), often
in conjunction with Graph Neural Networks (GNNs) (Kipf & Welling), 2016; | Xu et al.,[2018]) that align with the solution
structure (Xu et al.,[2019b)). Yet these models are often built to solve each problem alone. Recently, Sanford et al.| (2024)
prove and validate the priority of the transformer models compared to GNNs on complex graph reasoning tasks requiring
long-range dependencies. In this work, we focus on building general-purpose graph reasoners that could solve a range of
graph-theoretic problems by exploiting the strength of LLM pretraining, and find that the ability also generalizes to the
former domain-specific graph tasks.

Benchmarking LLMs on Graph Reasoning. There is a growing interest in evaluating LLMs’ graph reasoning abilities.
NLGraph (Wang et al.,[2023) evaluate LLMs on graph-theoretic tasks and discover preliminary yet brittle reasoning abilities
in the face of spurious correlations and large graphs. Later, GraphArena (Tang et al.,|2025) and GraCoRe (Yuan et al.| [2025)
include a broader task coverage and recently released LLMs, finding that even OpenAl ol-mini struggles a lot with complex
tasks. Moreover, GraphEval2000 (Wu et al.|2024)) and ProGraph (Li et al.| [2024) emphasize code-oriented problem solving
using library-based prompts, and GraphOmni (Xu et al., [2025) unify varying graph types, encodings, and prompt styles
for a comprehensive evaluation. Overall, these benchmarks suggest that LLMs overall demonstrate moderate success on
simple tasks but struggle with abstraction, generalization, and larger or more complex graph instances. Nevertheless, these
datasets are either too small (e.g., thousands of examples) or not diverse enough (e.g., 8 tasks in NLGraph) for training
general-purpose graph reasoners, which motivates the design of Erdés.

Improving LLMs on Graph Reasoning. A major concern when using LLMs for graph tasks is the mismatch of data
structure: LLMs take text sequences as input, while graphs have no natural order. Fatemi et al.| (2023)) analyzed different
graph encoding schemes for LLMs, such as adjacency lists and real-name networks, revealing that no single strategy proved
universally optimal across all tasks and models. Subsequent explorations with different linearization orders (Chu et al.,
2025b), graph embeddings (Perozzi et al. [2024), or input modalities (Das et al., [2024) have generally resulted in only
modest improvements. Another thread of research proposes post-training LLMs using instruction tuning (Luo et al.| 2024}
Ye et al.}|2024) or preference tuning (Chen et al., 2024} [Wang et al.| 2024a; Velickovi€ et al., [2020) on curated datasets of
graph problems. However, the creation of diverse, high-quality instruction datasets at scale is challenging and expensive and
requires extra supervision. Furthermore, models trained via distillation may only learn to memorize patterns and overfit to
graph tasks (Chu et al., [2025a)); in Section@ we show that previous instruction-tuned models exhibit dramatic failures
when generalizing to other data formats and reasoning tasks, while our RL training yields consistently better performance.

Reinforcement Learning for LLMs Reasoning. Recent advances have demonstrated that LLMs can attain strong reasoning
abilities in math and coding domains through RL, with representative work like OpenAl ol (OpenAl et al., 2024} and
DeepSeek R1 (Guo et al., [2025). However, as discussed above, even ol struggles a lot with graph reasoning tasks (Yuan
et al.| 2025) and it is thus yet unclear whether RL can reliably and scalably improve LLMs’ graph reasoning abilities. Our
findings on G1 first confirm the effectiveness of RL on graph reasoning as well and suggest that applying RL to diverse
graph-theoretic tasks with verifiable rewards is a scalable path for eliciting generalizable graph reasoning abilities of LLMs.

B. Optional Warm-up with Supervised Fine-tuning

During RL training, we have noticed that for some challenging tasks like isomorphic mapping (see Table[I)), the initial
accuracy of the base model is often so low that we frequently end up with only incorrect rollouts, producing no useful signal
for RL training. This issue can be mitigated by using a stronger base model with higher initial performance; for example,
R1 uses DeepSeek V3 (671B parameters) as its base model, although this inevitably increases compute cost. We find that
introducing a short warm-up phase with supervised fine-tuning, aimed at teaching the model basic reasoning skills before the
RL phase, effectively improves overall learning efficiency. Specifically, in this paper we consider two types of supervised
fine-tuning.

Direct-SFT. The first is direct supervised fine-tuning on question-answer pairs (g, a), where g is the textual description of
the problem and a is the final answer without any intermediate reasoning steps. As discussed above, for graph-theoretic

11

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

tasks, these question-answer pairs can often be synthesized by programming. However, this approach does not include the
reasoning steps leading to the answers, meaning we cannot use it to explicitly teach the model reasoning processes.

CoT-SFT. Secondly, we can collect reasoning trajectories via sampling (g, ¢, a) triplets from another model (Yuan et al.,
2023)), where c represents the Chain-of-Thought (CoT) reasoning steps in natural language that lead to the final answer
a, and use them to fine-tune the base model. Specifically, we instruct a base model to generate potential solutions for
each question ¢, and only keep the correct responses that pass verification. This process is also called Rejection Sampling
Fine-tuning (RFT) (Yuan et al.,[2023). In practice, we use Qwen2.5-32B-Instruct (Team), |2024), a more capable model for
generating candidate solutions more reliably, ending up with around 4,500 training examples for the SFT phase.

C. Training Details
C.1. Setups for evaluation on Erdés

As shown in Table[2] in the interest of academic compute budgets, we focus on comparing relatively small models. We include
strong proprietary models (of unknown sizes) like GPT-40-mini (non-reasoning) and OpenAl o3-mini (state-of-the-art
reasoning), open-source instruction models like Qwen2.5-Instruct series (3B, 7B, 72B) (Team!, [2024)), Qwen2.5-Math-
Instruct (Yang et al.||2024), LLaMA-3 series (3B, 8B, 70B) (AlL|2024), and a strong baseline DeepSeek-R1-Distill-Qwen-7B
(Guo et al., [2025) that is distilled from DeepSeek R1 with 671B parameters. Additionally, for reference, we incorporate
previous training strategies for graph reasoning tasks such as GraphWiz-RFT and GraphWiz-DPO (Chen et al.,2024). We
finetune our model from Qwen2.5-Instruct models (3B and 7B) for 300 steps with batch size 512 on a cluster of 8 x A800
GPUs, using our dataset Erdés. More experimental details can be found in Appendix [C|

C.2. Rejection Sampling

We randomly extract a subset with 100 examples per task from the training dataset, and use Qwen2.5-32B-Instruct to sample
on the subset for k = § times with a temperature of 1.0. We filter the responses by keeping the reasoning steps that lead to the
right answer. If the task is difficult and the filtered responses are insufficient, we resample the subset with a different random
seed and repeat the process above. In the end, we obtain around 4,500 training examples (~90 per task) for the SFT phase.

C.3. Supervised Fine-tuning

The detailed training configurations of Naive SFT and RFT are presented in Table[§]

Table 8: Training configurations of Naive-SFT and RFT. In this table, batch size is abbreviated to BSZ, Max-Length refers
to the maximum response length during training and Data Num. reports the number of training examples.

| Setting | LR Weight Decay BSZ Max-Length DataNum. Epoch |
Naive-SFT | le-5 w/ 1% warm-up le-2 64 512 98.7k 1
RFT le-5 w/ 1% warm-up le-2 64 3072 4.4k 2

C4. Reinforcement Learning

Configurations for training and evaluation. Our experiments primarily adopt Qwen-2.5-3B/7B-Instruct (Qwen et al.,
2025)) for their moderate sizes and strong reasoning performance. For GRPO training, we set € to be 0.02, 3 to be 0.001,
group size G to be 5, and context length to be 4096 unless otherwise specified. We additionally incorporate an entropy loss
of weight 0.001 to encourage the policy to explore. Lastly, we train the models on 8xA800 GPUs with batch size of 512.
During evaluation, we use the VLLM (Kwon et al., 2023)) engine for efficient inference. For DeepSeek-R1-Distill-Qwen-7B,
we set the maximum token generation length to 4096 tokens except for DeepSeek-R1-Distill-Qwen-7B, which is extended to
30768 for its prolonged thinking process. Sampling is configured with a temperature of 0.6, top-p of 0.95, and top-k of 30.

The detailed RL training configurations are presented in Table 9]

12

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Table 9: Training configurations for Naive-SFT and RFT. For abbreviation, we refer the coefficient for entropy loss as Ent.
in this table. We report (batch size)/(number of gradient accumulation steps) in the BSZ column, and the temperature for
on-policy sampling as 7.

| Model | LR e |G| B ~ T Ent. BSZ Max-Length DataNum. Steps |
RL-3B le-6 0.2 5 le3 1.0 1.0 1le3 512/4 4096 98.7k 300
SFT-RL-3B le-6 0.2 5 le-3 1.0 1.0 1le3 512/4 4096 98.7k 300
SFT-RL-Hard-3B | le-6 02 16 5e-4 1.0 10 5e-4 512/8 8192 49.3k 150
SFT-RL-7B le-6 0.2 5 le-3 1.0 1.0 1le3 512/8 4096 98.7k 300

D. Evaluation Details
D.1. Benchmark Introduction

GraphWiz (Chen et al.,|2024)). GraphWiz employs the Erdés-Rényi (ER) model to generate random graphs and describe
graphs in the edge-list formation like (u,v). The tasks include four linear complexity tasks, Connectivity, Cycle Detection,
Bipartite Graph Checking, and Topological Sort; three polynomial complexity tasks, Shortest Path, Maximum Triangle Sum,
and Maximum Flow; and two NP-Complete tasks: Hamilton Path and Subgraph Matching. A prompt example is shown in
the following:

Maximum Triangle Sum Example in GraphWiz

Find the maximum sum of the weights of three interconnected nodes. In an undirected graph, [i, k] means that node
i has the weight k. (i,j) means that node i and node j are connected with an undirected edge. Given a graph, you
need to output the maximum sum of the weights of three interconnected nodes. Q: The nodes are numbered from O
to 4, weights of nodes are: [0, 8] [1, 5] [2, 3] [3, 6] [4, 3], and the edges are: (0, 4) (0, 3) (0, 1) (1, 3) (1, 2) (3, 4).
What is the maximum sum of the weights of three nodes?

GraphArena (Tang et al,[2025)). GraphArena samples subgraphs from real-world graphs, including knowledge graphs,
social networks, and molecular structures. The tasks include four polynomial-time tasks, Common Neighbor, Shortest
Distance, Connected Component, Graph Diameter, and six NP-complete tasks, Maximum Clique Problem (MCP), Maximum
Independent Set (MIS), Minimum Vertex Cover (MVC), Maximum Common Subgraph (MCS), Graph Edit Distance (GED),
and Traveling Salesman Problem (TSP). Each problem is contextualized within the real-world setting of the graph with an
example presented as below:

Connected Component Example in GraphArena

You are required to identify all connected components in the given social network and output one representative
node from each component. Within a connected component, any node can be reached from any other node through
the edges in the graph. Different connected components are isolated from each other.

Problem to Solve

- Names in the network: Veronica Garcia, Katherine Brennan, Angel Chavez, Steven Martin, Brett Johnson, Megan
Banks, Julia Dominguez, Rachel Mitchell - Fiendship connections: Veronica Garcia to Brett Johnson, Veronica
Garcia to Megan Banks, Katherine Brennan to Brett Johnson, Katherine Brennan to Megan Banks, Angel Chavez to
Megan Banks, Angel Chavez to Rachel Mitchell, Steven Martin to Megan Banks, Brett Johnson to Megan Banks,
Megan Banks to Julia Dominguez, Megan Banks to Rachel Mitchell.

Identify all connected components in this network. Note that for each connected component, you should only output
one of its nodes. Present your answer in the following format: [UserA, UserB, UserC, UserD, ...]

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Node Classification and Link Prediction (Wang et al.,[2025)). We adopt the benchmarks introduced by [Wang et al.| (2025),
which are constructed by subsampling from the widely used Cora and PubMed citation graphs. Each instance includes
a description of the target node (or node pair) containing the paper ID and title, along with the textual and structural
information of neighboring nodes. For node classification, we consider two cases that the description includes the attributes
of the target node and those of its 2-hop neighbors, with or without labels. For link prediction, we consider two cases where
target nodes are described using their own node attributes along with those of their 2-hop neighbors (excluding the other
targeting node), with or without titles. For each task, we randomly sample 2,000 examples per case from the benchmark and
report the average performance. A representative example for node classification is shown below:

Node Classification Example

You are a good graph reasoner. Give you a graph language that describes a graph structure and node information
from pubmed dataset. You need to understand the graph and the task definition and answer the question.

Target node: Paper id: 10695 Title: Haplotype structures and large-scale association testing of the 5’
AMP-activated protein kinase genes PRKAA?2, PRKAB1, and PRKAB?2 [corrected] with type 2 diabetes.

Known neighbor papers at hop 1 (partial, may be incomplete):
Paper id: 1155 Title: Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and
obesity candidate genes. Label: Type 2 diabetes

Known neighbor papers at hop 2 (partial, may be incomplete):

Paper id: 9816 Title: Mitochondrial dysfunction and type 2 diabetes. Label: Type 2 diabetes

Paper id: 1683 Title: A genome-wide search for type II diabetes susceptibility genes in Chinese Hans. Label: Type
2 diabetes

Paper id: 9916 Title: Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a
novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type
2-diabetes locus on chromosome 1q21-q24.

Paper id: 3793 Title: Association of amino acid variants in the activating transcription factor 6 gene (ATF6) on
1921-q23 with type 2 diabetes in Pima Indians. Label: Type 2 diabetes

Paper id: 4788 Title: Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in
NIDDM. Label: Type 2 diabetes

Please predict the most likely type of the Target node. Your answer should be chosen from: Type 1 diabetes Type 2
diabetes Experimentally induced diabetes

GSMSK (Cobbe et al.|[2021a). GSMS8K is a dataset of 8.5K high quality linguistically diverse grade school math word
problems created by human problem writers. We report the accuracies on the 1K test problems and the dataset is downloaded
viahttps://huggingface.co/datasets/openai/gsm8k.

Example in GSM8K

Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did
Natalia sell altogether in April and May?

MATHS00. The dataset contains a subset of 500 problems from the MATH benchmark that OpenAl created in their
Let’s Verify Step by Step paper (Lightman et al., [2023)). We download the dataset vialhttps://huggingface.co/
datasets/HuggingFaceH4/MATH-500.

14

https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/HuggingFaceH4/MATH-500
https://huggingface.co/datasets/HuggingFaceH4/MATH-500

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Example in MATHS500

Let 2z = 2+ /2 — 3+ 3\/5)1', and let ¢ = 2 — 3i. Let w be the result when z is rotated around c by 7
counter-clockwise.

[asy]

unitsize(0.6 cm);

pair C, W, Z;

Z = (2 + sqrt(2), -3 - 3*sqrt(2));
C=(2,-3);

W = rotate(45,C)*(Z);
draw(Z-C-W);

dot("c", C, N);

dot("w", W, SE);

dot("z", Z, S);

label(" %", C + (0.6,-1));

[/asy]

Find w.

MMLU-Pro. MMLU-Pro is enhanced version of the Massive Multitask Language Understanding benchmark. It
covers a wide range of disciplines, including Math, Law, Engineering, Health, Phycology, etc. We download the
dataset via https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro/viewer/default/test?g=
Health&row=5903.

Health Example in MMLU-pro

Question: Food supplements, including trace minerals and vitamins are frequently advertised with promising health
benefits. Which of the following substance could be consumed in excess, i.e. well above the recommended daily
requirement?

Options: ["Vitamin C", "Vitamin D", "Zinc", "Vitamin A"]

D.2. Inference Configuration

For inference, we adopt the vVLLM framework (Kwon et al}, [2023). We set the temperature to be 0.06 and the context
window to be 4096 for our evaluations unless otherwise specified.

D.3. Prompt and Answer Extraction

To facilitate answer extraction, we adopt the prompt shown in[D.3]to guide the models to reason step by step and place their
answers within \boxed{ }. We extract the last \boxed{ } shown in the model responses and do necessary format normalizations
to retrieve the answer, which includes operations like converting LaTeX-style fraction numbers to float numbers.

{Question Description}

Approach the problem methodically. Ensure all conclusions are based on precise calculations and logical deductions.
Feel free to explore various solution methods and cross-check results for consistency. Maintain dynamic thinking and
always verify each step of your reasoning.

Present the final answer in \boxed{ } format, like this: $\boxed{ ANSWER }$, where ANSWER is the final result or
expression.

Think carefully and break down the problem step by step.

15

https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro/viewer/default/test?q=Health&row=5903
https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro/viewer/default/test?q=Health&row=5903

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

E. Additional Experiment Results
E.1. Results for G1-Zero-7B

In Section4.3] we study the role of SFT as a cold-start mech-

anism for RL by comparing two variants: G1-Zero-3B that is e T Qwen2.5-7B-Instruct
directly trained from the base model Qwen2.5-3B-Instruct with - gif;m'm

RL, and G1-3B that initializes RL from the CoT-SFT check- g 624
point. We observe that G1-Zero-3B already achieves surpris- g . N\ 50.4

ingly strong performance, while G1-3B presents clear and con- 3 N 7% .
sistent improvements across all difficulty levels. Here, we pro- < . 26 |

vide additional results for comparing G1-Zero-7B and G1-7B. 137

As shown in Figure] for Easy and Medium tasks, the benefit 0 TR T Ci:”engmg P
brought by CoT-SFT initialization is marginal, with G1-Zero-7B Difficulty Level

(96.9%) even surpassing G1-7B (95.1%) on Easy tasks. How-

ever, on Hard and Challenging tasks, CoT-SFT as a preliminary ~ Figure 4: Test accuracy comparison of G1-7B and G1-
step has definite benefits by improving G1-Zero-7B from 13.7% Zero-7B on our benchmark.

to 23.6% on Challenging tasks. This observation agrees with

the case in -3B. Moreover, the average gap between G1-Zero-7B and G1-7B is less than -3B case, indicating G1-7B can
possibly be further improved with CoT-SFT generated by a stronger teacher model rather than Qwen2.5-32B-Instruct. We
leave this exploration for further work.

E.2. Detailed Results for GraphWiz

We present the test accuracy for each task in the GraphWiz benchmark in Table [I0] G1-7B achieves the highest overall
accuracy (57.11%) among all models and reaches the top in 5/7 tasks. It outperforms DeepSeek-R1-Distill-Qwen-7B
(51.86%) and even models specifically trained on GraphWiz data such as GraphWiz-7B-RFT (49.61%). Moreover, the
smaller variant G1-3B ranks first on all tasks among models of similar parameters, surpassing the base model (Qwen2.5-3B-
Instruct) by 13.64% on average and achieves comparable performance with DeepSeek-R1-Distill-Qwen-7B. The results in
the GraphWiz benchmark verify the strong zero-shot generalization ability of our G1 models.

Table 10: Test accuracy (%) on the GraphWiz benchmark.

DeepSeek-R1-Distill-Qwen-7B | 87.00 90.00 4275 11.00 1825 36.00 40.00 8475 57.00 | 51.86 |
Qwen2.5-7B-Instruct (base) | 79.00 7225 4075 425 1350 2875 1150 9125 61.00 | 44.69 |
G1-7B (Ours) | 9200 8000 7575 2425 2100 2950 4625 9525 50.00 | 57.11 |

¥ Q&@‘é & * S &\e’%\ & & %&Q &
Model & Sy ¥ K 5 & ¥ ¥ S ¥

| Llama-3.2-3B-Instruct | 3200 5375 2575 750 275 375 250 3825 1200 | 19.80 |
| Qwen2.5-3B-Instruct (base) | 58.00 6050 3850 400 575 1550 750 7500 6325 | 36.44 |
\ G1-3B (Ours) | 91.00 64.00 6425 13.00 14.00 2325 43.00 9600 4225 | 50.08 |
\ GraphWiz-RFT-7B | 8800 9025 7225 1975 2800 3675 2475 250 8425 | 4961 |
\ GraphWiz-DPO-7B | 86.50 8225 7175 1500 2675 37.00 4500 000 79.00 | 49.25 |
| Llama-3.1-8B-Instruct | 6475 81.00 5875 1150 350 425 925 1925 4500 | 33.03 |
|
|
|

E.3. Detailed Results for MMLU-Pro

We present the detailed results for our evaluations on MMLU-Pro in Table We first notice that although G1 models
share close accuracies with their base model on average, they excel at notably different disciplines: G1-3B does the best
in Physics (56.18%) while G1-7B is good at CS (53.32%). Interestingly, RL training on graph problems in some cases
improves G1lover Qwen on non-STEM subjects such as Health (53.0% v.s. 37.65%) for 3B models and Business (62.76%
v.s. 53.91%) for 7B models.

16

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning
Table 11: Test accuracy (%) on the MMLU-Pro benchmark.

& & & ¢ & %
Model & K & ¥ ¥

7.18 1479 1591 1339 650 13.69 1854 11.28 2391 1540 9.89 14.03 1325 9.71 ‘ 13.51 ‘
3849 31.18 46.21 37.34 5892 31.06 3123 4525 4624 18.07 1940 37.65 41.22 54.25 ‘ 38.54 ‘
3570 1399 3225 38.72 5329 3441 2565 30.04 18.16 42,71 28.08 3922 36.34 46.03 ‘ 34.23 ‘
56.18 4246 1626 43.73 37778 44.55 36.10 3180 4146 2095 3442 53.00 28.86 30.18 ‘ 37.12 ‘
17.13 3396 34.03 3228 41.83 2491 18.80 43.89 4645 3528 36.10 31.75 2826 ‘ 32.02 ‘
39.75 11.72 1920 49.81 4080 1995 2335 2565 47.39 3030 72.76 36.84 3459 4951 ‘ 37.21 ‘
44.17 4853 46.87 5589 6580 2144 5453 5391 27.04 4950 42.64 53.66 3327 3596 ‘ 45.75 ‘
4436 5551 44.61 29.82 51.08 64.84 4597 4145 4642 37.01 3387 4561 2144 52.01 ‘ 44.54 ‘
46.43 51.19 68.76 40.94 4770 5390 3240 62.76 2561 49.88 5150 51.71 53.32 36.07 ‘ 48.56 ‘

.) }
N O &
D

S .
< SR

| Llama-3.2-3B-Instruct

| Qwen2.5-3B-Instruct (base)
| CoT-SFT-3B

| G1-3B (Ours)

| Llama-3.1-8B-Instruct
\

\

\

\

DeepSeek-R1-Distill-Qwen-7B
Qwen?2.5-7B-Instruct (base)
CoT-SFT-7B
G1-7B (Ours)

[]
=3 h
~
=)

E.4. Detailed Results for GraphArena

We report the detailed results for evaluations on the easy/hard problems from GraphArena in Table and Table
respectively. We observe that G1 models perform equally or better compared to the other models on all tasks but Distance,
in which G1 performs slightly worse than the Qwen models.

Table 12: Test accuracy (%) on the easy problems from the GraphArena benchmark.

P & ¢ ¢ ©
Model oy Q & N N <$ K
Llama-3.2-3B-Instruct 8.00 16.00 15.00 50.00 9.00 2.00 15.00 10.00 7.00 5.00 |
Qwen2.5-3B-Instruct (base) 20.00 11.00 47.00 48.00 37.00 17.00 3.00 41.00 4.00 2.00 |

\
\
\ G1-3B (Ours) 5200 4200 47.00 89.00 30.00 17.00 27.00 20.00 32.00 22.00 |
\
\
\
\
\
\

LLaMA2-7B-RFT 0.00 7.00 1.00 1.00 4.00 0.00 0.00 1.00 0.00 0.00 |
LLaMA2-7B-DPO 0.00 1.00 0.00 0.00 3.00 0.00 000 100 0.00 0.00 |

DeepSeek-R1-Distill-Qwen-7B
Qwen?2.5-7B-Instruct (Ours)
G1-7B (Ours)

77.00 41.00 64.00 82.00 22.00 30.00 44.00 40.00 56.00 17.00 |
79.00 15.00 70.00 84.00 22.00 22.00 39.00 41.00 28.00 21.00 |

\
\
\
\
\
Llama-3.1-8B-Instruct | 33.00 29.00 45.00 81.00 24.00 14.00 32.00 18.00 24.00 20.00 |
\
\
| 86.00 63.00 62.00 99.00 30.00 38.00 52.00 51.00 50.00 63.00 |

Table 13: Test accuracy (%) on the hard problems from the GraphArena benchmark.

s & S {90& 9

5 o 5 5 P & & ¢ ©

Model & N F & ¥ ¥ F S
Llama-3.2-3B-Instruct 0.00 100 700 1900 300 000 000 000 000 1.00

| |
| Qwen2.5-3B-Instruct (base) | 400 400 2800 2200 7.00 000 100 000 000 1.00 |
| G1-3B (Ours) 1900 1200 2500 5100 300 000 000 000 1.00 7.00 |
| |
| |
| |
| |
| |
| |

|
|
|
LLaMA2-7B-RFT | 0.00 2.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
LLaMA2-7B-DPO | 0.00 3.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00
| 8.00 4.00 19.00 5400 3.00 100 200 0.00 000 7.00
| 18.00 4.00 33.00 36.00 1.00 0.00 3.00 0.00 1.00 4.00
| 27.00 4.00 44.00 68.00 200 000 5.00 0.00 1.00 5.00
| 31.00 27.00 35.00 84.00 3.00 000 3.00 0.00 6.00 39.00

Llama-3.1-8B-Instruct
DeepSeek-R1-Distill-Qwen-7B
Qwen2.5-7B-Instruct (base)
G1-7B (Ours)

E.5. Detailed Results for Exrdds

In Table[T4] we show the performance for each task in Erdésfor our models and baselines in detail.

17

ing

LLM:s to Reason on Graphs with Reinforcement Learni

: Teaching

Gl

00'1C 0001 00Ty 0081 0091 000 000 001 009 006 00°¢ 001z 008 007T 00°€ 001 1809 YOEL JOA00T AN U
00Z1 00 00S 0001 0001 000 000 00€ 601 00T 00'1 00T 00€ 0011 001 000 9Ly 000 yred uetuoyuey
00'L 00°L 00€l 00°€ 009 000 000 007 00 00 000 008 009 0041 001 000 89°€L 000 XopurTIoudLm
0001 00t 006 00'L 006 6v'S 0g's 0071 01’1 009 00°€ 00L 0001 008 00T 00 S608 000 Moy wnwIXeW
00°€1 00L 006L 00T 0061 000 000 001€ 00°€ 00T 00T 00€l 00T 00'9C 001 00T 95'¢S 985S 1esTjuapuadopur[ewxew
00°€ 001 00T 00 00 000 000 0011 00T 000 000 001 00°€ 0001 001 000 1L 9L¥ Kouatoyyo~[eqo[3
00'1 001 00Tl 0011 0011 000 000 001 000 000 00'1 001 000 0001 000 000 00 000 Suiddewrdsrydowost
66T LS'8T 00€C 00°0% 00'TH 000 000 00S 001 00°€ 000 0091 006 00t 000 001 606 000 sa8puq
00T 00'L 000€ 00L 006 00T 001 00LE 008 00S 00€ 0061 00°ST 00°LT 00°¢ 00T W8 69L Anenuso oruouLey
009 0029 0078 009¢ 00'1€ 009 00 008S 0067 00°0€ 0092 0089 00°SS 00'9¢ 00°L1 0091 19 L999 20130p~10quS1ouSaw
00°SS 00t 006L 00°0F 00'H 000 000 00vS 00'1T 00°0€ 002 00L9 008t 00'tS 00t 00°€1 885 6TSE sojSueLn
00 00L 006€ 00°LE 00'8¢ 00T 001 009 00°S 00'1 0072 006€ 00°0€ 00°8€ 00 00 000S 8ISl An[enuasssouuaamiaq
SLLY 90°0S 001€ 0067 00'LT 000 000 00ST 009 0011 00'1 002 0091 00°€€ 00°€ 001 885 I¥6T Kaoyduad
00+L 00°€L 008L 00'1L 00tL 00 009 0079 00'1T 00'sT 00'sT 00L9 00°8¢ 009L 001 0001 0087 0009 osearSojodoy
001 00 0089 00'8S 00°€9 00T 00'1 007S 00°SE 00'v€ 0092 0095 00'Lb 0099 00°€T 0021 0SL8 SL'89 snupex
19°Ly 1L€S 00'Ly 00705 006 101 101 0067 1111 00'TT 0002 006€ 009C 0095 0061 00'6 €769 69°L 101u00K1Eq
000 00°S 0067 00°6€ 001+ 00t 00°€ 006€ 00LT 00'1€ 001 009y 00'1€ 00°SS 008 0021 Y6 SOLI 1j0wEIp
Fats 6T 00SE 00°ST 00T 000 000 009 006 00'8 009 00sT 00°€l 00T 008 00t 1999 SO61 19u00
0009 0029 000L 00'8L 00LL 000 00°€ 0079 0011 00°s€ 00'1€ 0079 00'1S 00tL 0061 0011 9v'8€ €769 yredysanoys
0001 006 0065 0095 00°SS 000 000 00SE 00L 00111 00°¢ 008S 00T 00°€9 00°S 00 €CeL ggel JoquInu~pajoauuod”A|Suons
00°€r 00'Ly 001S 00T 00°ST 001 00 0079 001 001t 00°L1 00€y 00°0F 0062 00T 00'8 V68 ¥8'9E wojqoid uewsafes~Surjoae
0011 00°€1 0011 00°S 00t 000 000 001 00°€ 00°€ 00t 006 009 008 001 000 8SIE 000 K[enuL0ssauaso[d
009C 0072 00€r 00°ST 00°ST 000 000 000v 00T 0021 00'L 00vC 00T 00'ST 00€ 00T sULc Il Surgorew JyFrom ™ Xew
00'8L 00'9¢ 0076 0008 00°LL 00T 00T 0098 00°0F 00°st 00°s1 0076 00'6L 0008 0001 00T 00001 TI'v6 XOpUI~UONEIO][¥0IN0SI
00'L9 0029 0008 0006 00°€6 0049 001S 009L 00°€h 00'¢S 00°€S 006L 00°SS 0026 00'6€ 006 0026 00'89 amiediqst
0088 0061 00L6 008 0008 000 000 008 00°€T 00'8 00t 0068 00°6L 0018 00°L 000 1LS8 €FIL Anenuoooaisop
0008 0006 00L6 00°€6 00°€6 0065 00€E 006 0068 0018 008 0086 0068 006 0018 00'8L SHS6 9£98 ueLIR[No St
00°S1 0091 000S 00LI 0081 000 000 00LE 001 001 000 001S 00LI 00°€T 00T 001 8S'1E €501 SunoA00 98P I
00°€6 008 00001 00'9L 00'8L 00 00 0056 00°0L 00'LL 00'v 006 008 0018 008 00°€T 00001 007001 JuS1OYo00 ™ preodel
0069 00°LL 0096 00'86 00'L6 0099 00€S 0078 006L 00'L 00°€S 0006 0098 006 0029 00'LS 00001 SI'96 A1AROAUU0S ™ [200]
00°LE 0062 0048 00°€L 009L 000 000 00Ty 00°€ 0021 00°€1 0078 00'Lp 00°€S 0061 00 SISy pLOV Suryorew wnwixew-oyediq
0099 0079 0026 00718 0008 000 000 006L 00°0€ 00°s€ 00'v€ 006L 00°€9 0058 00'LT 006 1978 £809 Joqunu juduodwiod pajosuod
00'69 0061 0088 0099 00'L9 0001 009 0059 009¢ 00'vt 00'sT 0078 0095 00'1L 00'1€ 00°€1 re TTTL JuatoYye0s-BuLAs[D
0079 00'2S 0086 00°SL 009L 001 00°€ 0078 00T 00'6€ 0021 0076 0068 00tL 009 001 9v'88 1€6 Xopur_Iepeorwepe
001§ 00'1S 00L6 00S1 00ZI 000 000 00118 00°0F 00'8¢ 00Tk 0076 00°8€ 00°LI 00°€€ 00'9¢ 1606 81'89 Kysuap
006 0066 0066 00001 00001 008§ 00CC 0000T 008 0098 0008 0066 0066 0066 00°SL 0Lt 6888 007001 JUSWRWINOY ST
0078 0076 0066 008 0088 000 000 0096 00'6L 00'LL 00'TL 006 00°€6 006 00'8S 0092 00001 S¥'S6 20130p
00001 0066 00001 0066 0066 008 00LZ 0086 0066 0096 0026 00001 00'86 0086 0056 00'88 0056 007001 TenSorst
00001 00'86 00001 00'L6 0086 009S 00TS 000001 0078 00'96 00°€L 00001 00'L6 00001 0008 0009 00001 007001 20UdISIXTFPo
00°'6€ 00'82 0099 00°S9 00'59 000 000 009y 001 00°S1 00°L1 0018 00'LI 0029 008 00 98Ty 0I'SE o1~ Sutuueds wnwirurw
006 0062 0066 00705 00'ZS 000 000 00€C 0001 00'LT 0021 00001 00°€H 0019 006 000 £C€E €€EL sjp
00'tS 0079 0086 00°€6 00°S6 00€8 009 00€8 00FS 00°sS 00'9% 0068 00°€9 0086 00'1S 00'1S 00001 0008 ajokosey
00°€S 00'sT 0086 00t 00°cH 000 000 0071 006 0021 00 0056 00°0€ 007S 00°€ 000 65LT LIS s§q
£6'86 S0'€6 00€6 0068 0068 00T 00t 0076 0019 00'59 00Tk 0016 008 00'L8 00'9¢ 0092 91'€9 ITH8 JoquStou
0099 00CL 00L6 00+E 00°6€ 000 000 00%L 00'8€ 00'8S 0091 0096 0065 00'1€ 00'1€ 006 SLLL TTTL Joquinu—o8pa
66'68 16 006 00708 009L 000 000 006L 00'8H 00'TS 0098 0016 00'1L 00'1L 00t 00°€T 89°€L 89°€L JoquSiou”uowwod
00t 002 0066 0089 00'tL 008 00v€ 00LT 001 002 00°LE 0066 00'1€ 00ZL 00°€T 00'LS ILY9 I¥6C s Suneunop
00001 00°001 00001 00001 00001 000 000 00001 006 00'66 00'66 00001 00'L6 00001 0076 008 00001 007001 Joquinu—apou
qrL-womd gOLPwerT G-1D 9L-14SD GL14SA AZIMD W-ZIMD 4T gLWRN g-UeMD ds-twe] g6-1D gE-1dSD F€-ldSA UMD dE-Pwe[T IUIW-€0 Op-LdD seL

SY[SE} $S0I0. S[opowl Jo uosteduwod AoeInddy] 9[qeL,

18

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

F. Discussion on Reward Weighting

In Section[4.3] we analyze the factor of data mixture by introducing a model G1-Hard-3B trained exclusively on Hard and
Challenging tasks. We observe that G1-Hard-3B effectively improves performance on hard tasks, while on easier tasks still
lags behind G1-3B (Table[T3).

In this section, we further explore a soft data mixture strategy that scales the reward for each task according to its difficulty.
In detail, we fix the scaling factor s as 0.2, 0.4, 0.6, and 0.8 for Easy, Medium, Hard and Challenging tasks, respectively,
and name the resulting model as G1-Soft-3B. As shown in Table[T5] G1-Soft-3B achieves a balance between G1-3B and
G1-Hard-3B. On easy tasks, G1-Soft-3B largely surpasses G1-Hard-3B and is on par with G1-3B which applies uniform
scaling across all tasks. For hard tasks, G1-Soft-3B outperforms G1-3B (e.g., 11.71% v.s 7.57% for Challenging tasks), but
there is still a gap to G1-Hard-3B. The results show the soft scaling method take effects, but the RL optimization remains
dominated by easy tasks. This suggests that further reducing the reward scaling factor for easy tasks or a dynamic weighting
strategy could be beneficial—a direction we leave for future work.

Table 15: Test accuracy (%) on our benchmark. * denotes the tasks are excluded in model training. G1-Hard-3B is only
RL-trained on Hard and Challenging tasks. G1-Soft-3B is trained on all tasks but with different reward scaling factors based
on the task difficulty.

Category Model Easy Medium Hard Challenging Average
Base Model Qwen2.5-3B-Instruct 45.71 30.18 9.44 1.29 22.72
Direct-SFT-3B 74.43 7527 43.69 14.43 53.78
G1-3B 94.86 84.64 41.25 7.57 59.76
Ours
G1-Hard-3B 69.36* 70.64* 48.50 17.43 53.30
G1-Soft-3B 96.07 83.55 40.88 11.71 60.38

G. Detailed Description of Erdés
G.1. Comparing Erdés with Other Graph Reasoning Benchmarks for LL.Ms

There is a growing interest in evaluating LLMs’ graph reasoning abilities. NLGraph (Wang et al.| 2023) evaluate LLMs
on graph-theoretic tasks and discover preliminary yet brittle reasoning abilities in the face of spurious correlations and
large graphs. Later, GraphArena (Tang et al.,|2025) and GraCoRe (Yuan et al., [2025) include a broader task coverage and
recently released LLMs, finding that even OpenAl ol-mini struggles a lot with complex tasks. Moreover, GraphEval2000
(Wu et al.} 2024) and ProGraph (Li et al.l |2024) emphasize code-oriented problem solving using library-based prompts,
and GraphOmni (Xu et al., 2025) unify varying graph types, encodings, and prompt styles for a comprehensive evaluation.
Overall, these benchmarks suggest that LLMs overall demonstrate moderate success on simple tasks but struggle with
abstraction, generalization, and larger or more complex graph instances. Nevertheless, these datasets are either too small
(e.g., thousands of examples) or not diverse enough (e.g., 8 tasks in NLGraph) for training general-purpose graph reasoners,
which motivates the design of Erdds. We show the detailed comparison of existing graph reasoning benchmarks for LLM
with our Erdésin Table

Table 16: Comparison of existing graph-theoretic reasoning benchmarks for LLM with our Erdés.

Benchmark #Tasks # Q-A Samples Graph Types Node Size
NLGraph (Wang et al., [2023)) 8 5,902 Synthetic 5to 35
GraphWiz (Chen et al., [2024) 9 3,600 Synthetic 2 to 100
GraphArena (Tang et al., 2025) 10 10,000 Real-world 4t0 50
GraCoRe (Yuan et al.| 2025) 19 5,140 Synthetic & Real-world 8 to 30
GraphOmni (Xu et al.| 2025) 6 241,726 Synthetic 51t0 30
Erdds(ours) 50 100,000 Real-world 5to 35

19

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

G.2. Full list of tasks in Erdds

Table 17: Benchmark exmaples

Task Prompt Answer
adamic adar The task is to determine the Adamic-Adar index of two nodes in a graph. 1.5859
index The Adamic-Adar index is the sum of the inverse logarithm of the degrees of
the common neighbors of the two nodes.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 9. The edges are: (1,
5), (1,4), (1, 8),(1,2), (1, 3), (1,7), (5,2), 5, 3), (5,4, (5,9), 5, 6), (4, 8), (4,
9), (4,7, (8,2),(8,3),(8,6),(8,7),(8,9),(2,3),(2,7),(2,6),3,9), 3,7, (7,
6), (7,9).
Question: What is the Adamic-Adar index between node 4 and node 6?
You need to format your answer as a float number.
avg neighbor The task is to determine the average degree of the neighbors of a node in the 1.5
degree graph.
Here is an undirected graph containing nodes from 1 to 8. The edges are: (1,
7, (1,8),(1,4),(7,8),(8,5), (2,3),(2,6), (3, 5).
Question: What is the average neighbor degree of node 2 in the graph?
You need to format your answer as a float number.
barycenter The task is to determine the barycenter of a graph. [1,2,6,7]
The barycenter of a graph is also called the median. It includes the node that
minimizes the sum of shortest path lengths to all other nodes.
The input graph is guaranteed to be connected.
Here is an undirected graph containing nodes from 1 to 7. The edges are: (1,
2),(1,6),(1,5), (1,7, (1,4), (2, 6), (2,5), (2, 7), (2, 4), (6, 4), (6, 5), (6, 7), (7,
3), (7, 4).
Question: What is the barycenter of the graph?
You need to format your answer as a list of nodes in ascending order, e.g.,
[node-1, node-2, ..., node-n].
betweenness The task is to determine the betweenness centrality of a node in the graph. 0.0679
centrality Betweenness centrality of a node *u* is the sum of the fraction of all-pairs
shortest paths that pass through *u*.
Here is an undirected graph containing nodes from 1 to 9. The edges are: (1,
6), (1,4), (1, 8),(1,9), (6,2),(6,7), (4,7), (4,5), (8, 3), (8,5), (8,7), (9, 3), (9,
5), (2, 7).
Question: What is the betweenness centrality of node 5 in the graph?
You need to format your answer as a float number.
bfs The task is to determine the breadth-first search (BFS) traversal order givena | [(1, 2), (1,
starting node. 5), (2, 3),
Stop when the BFS cannot be continued. 2,4), 4,
Here is an undirected graph containing nodes from 1 to 7. The edges are: (1, 7, (7,6)]
2),(1,5),(2,3),(2,4),(5,3),(5,4),3,4),4,7), 7, 6).
Question: What is the breadth-first search (BFS) traversal order for the starting
node 1?
You need to format your answer as a list of edges, e.g., [(ul, vl), (u2, v2), ...,
(un, vn)].
bipartite maxi- The task is to determine the maximal matching in a bipartite graph. [(1,3), (2,
mum matching The input graph is guaranteed to be a bipartite graph. 4)]

Here is an undirected graph containing nodes from 1 to 4. The edges are: (1,
3),(1,4),(2,3),(2,4).

Question: What is the bipartite maximal matching of the bipartite graph?

You need to format your answer as a list of edges in ascending dictionary order,
e.g., [(ul, vl), (u2, v2), ..., (un, vn)].

20

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Continuing table 17

Task

Prompt

Answer

bridges

The task is to find all bridges of a graph.

A bridge is an edge in a graph whose removal increases the number of con-
nected components.

The input graph is guaranteed to be undirected.

Here is an undirected graph containing nodes from 1 to 5. The edges are: (1,
2),(1,3),(1,4),(2,3),(2,4),(2,5), (3, 4), (3, 5).

Question: What are the bridges of the graph?

You need to format your answer as a list of edges in ascending dictionary order,
e.g., [(ul, vl), (u2, v2), ..., (un, vn)]J.

[l

center

The task is to determine the center of a graph.

The center of a graph includes the node that minimizes the maximum distance
to any other nodes in the graph.

The input graph is guaranteed to be connected.

Here is an undirected graph containing nodes from 1 to 6. The edges are: (1,
5),(5,2),(2,6),(6,4), (3,4).

Question: What is the center of the graph?

You need to format your answer as a list of nodes in ascending order, e.g.,
[node-1, node-2, ..., node-n].

(2, 6]

closeness central-
ity

The task is to determine the closeness centrality of a node in the graph.

For a node *u*, closeness centrality is the reciprocal of the average shortest
path distance to *u* over all *n-1* reachable nodes. For directed graphs, it
computes the incoming distance to *u*.

Here is an undirected graph containing nodes from 1 to 8. The edges are: (1,
3),(3,6),(2,8),(2,6),(8,6),(8,7),4,7),(,5).

Question: What is the closeness centrality of node 2 in the graph?

You need to format your answer as a float number.

0.4667

clustering coeffi-
cient

The task is to compute the clustering coefficient for a given node.

For unweighted graphs, the clustering of a node is the fraction of possible
triangles through that node that exist.

Here is an undirected graph containing nodes from 1 to 7. The edges are: (1,
4),(1,5),(1,3),(4,2),(4,3), (4,5),(4,6),(4,7),(5,2),(5,3),(5,6), 5, D), (2,
6), (2,7), (6, 7).

Question: What is the clustering coefficient of node 67

You need to format your answer as a float number.

1.0

common neigh-
bor

The task is to determine common neighbors between two nodes in the graph.
The input graph is guaranteed to be undirected.

Here is an undirected graph containing nodes from 1 to 7. The edges are: (1,
7, (1,6), (1,4), (1,5),(7,2), (7, 3), (6, 2), (4, 3), (5, 3).

Question: What are the common neighbors between node 2 and node 3?

You need to format your answer as a list of nodes in ascending order, e.g.,
[node-1, node-2, ..., node-n].

(71

connected com-
ponent number

The task is to determine the number of connected components in an undirected
graph.

A connected component is a subgraph where any two nodes are connected to
each other by paths.

Here is an undirected graph containing nodes from 1 to 10. The edges are: (1,
4), (1,7, (1,5), (1,9), (1, 10), (1, 6), (1, 2), (4, 2), (4, 3), (4, 8), (4, 5), (4, 9),
(4,10),(7,2),(7,3),(7,5),(7,6), (7, 8),(7,9), (5, 2), (5, 3), (5, 8), (5,9), (5,
10), (9, 2), (9, 3), (9, 6), (9, 8), (9, 10), (10, 2), (10, 3), (10, 8), (6, 2), (6, 3), (6,
8), (2, 8), (2, 3).

Question: How many connected components are there in the graph?

Your answer should be an integer.

21

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Continuing table 17

Task

Prompt

Answer

degree

The task is to determine the degree of a node in the graph.

For the undirected graph, you should count the edge between two nodes only
once.

Here is an undirected graph containing nodes from 1 to 6. The edges are: (1,
6), (6,5), (2,3),(2,4), (3, 95).

Question: What is the degree of node 6 in the graph?

Your answer should be an integer.

2

degree centrality

The task is to determine the degree centrality of a node in the graph.

Degree centrality for a node is the fraction of nodes it is connected to.

Here is an undirected graph containing nodes from 1 to 7. The edges are: (1,
2),(1,4),(1,5),(2,3),(2,4), (2,5),(2,6), (4, 3),(4,5),(4,7), (5, 3).
Question: What is the degree centrality of node 3 in the graph?

You need to format your answer as a float number.

0.5

density

The task is to determine the density of the graph.

Density is defined as the ratio of the number of edges in the graph to the num-
ber of possible edges.

Here is an undirected graph containing nodes from 1 to 5. The edges are: (1,
2),(1,3),(2,3),(2,4),(2,5),3,4), 4,5).

Question: What is the density of the graph?

You need to format your answer as a float number.

0.7

dfs

The task is to determine the depth-first search (DFS) traversal order given a
starting node.

Stop when the DFS cannot be continued.

Here is an undirected graph containing nodes from 1 to 9. The edges are: (1,
2),(1,3),(1,6),(3,9), (4, 8),(4,5), (8, 7).

Question: What is the depth-first search (DFS) traversal order for the starting
node 1?

You need to format your answer as a list of edges, e.g., [(ul, vl), (u2, v2), ...,
(un, vn)].

(1, 2), (1,
3), (3,9,
1, 6)]

diameter

The task is to determine the diameter of a graph.

The diameter of a graph is the longest shortest path between any two nodes in
the graph.

The input graph is guaranteed to be connected.

Here is an undirected graph containing nodes from 1 to 7. The edges are: (1,
5), (1,7),(1,4), (5, 6), (2, 6), (2, 3).

Question: What is the diameter of the graph?

You need to format your answer as a float number.

dominating set

The task is to determine the dominating set of a graph.

A dominating set is a subset of nodes such that every node in the graph is
either in the set or adjacent to a node in the set.

For directed graphs, any node not in the dominating set must be a successor of
a node within the set.

Here is an undirected graph containing nodes from 1 to 7. The edges are: (1,
2),(1,5),(1,6),(1,7),(2,3),(2,4),(5,6),(7,3), (7,4).

Question: What is the dominating set of the graph?

You need to format your answer as a list of nodes in ascending order, e.g.,
[node-1, node-2, ..., node-n].

[1,3,4]

22

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Continuing table 17

Task Prompt Answer
edge existence The task is to determine if there is an edge connecting two nodes. No
For an undirected graph, determine if there is an edge between nodes *u* and
v. For a directed graph, determine if there is an edge from *u* to *v*.
Here is an undirected graph containing nodes from 1 to 8. The edges are: (1,
2),(1,6),(3,8),(3,4),(8,4),(8,5), (8, 7),(4,7), (4,5), (7,5).
Question: Is there an edge between node 5 and node 3?
Your answer should be Yes or No.
edge number The task is to determine the number of edges in the graph. 12
For the undirected graph, you should count the edge between two nodes only
once.
Here is an undirected graph containing nodes from 1 to 10. The edges are: (1,
10), (1, 8), (10, 7), (8, 6), (2, 5), (2,4), (2, 6), (5,4), (5,9), 4, 3), (4,9), (3, 7).
Question: How many edges are there in the graph?
Your answer should be an integer.
global efficiency | The task is to determine the global efficiency of a graph. 0.5310
Global efficiency is the average efficiency of all pairs of nodes. The efficiency
of a pair of nodes is the multiplicative inverse of the shortest path distance
between the nodes.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 7. The edges are: (1,
5),(1,4),(5,2),(2,7), (7, 3), (3, 6).
Question: What is the global efficiency of the graph?
You need to format your answer as a float number.
hamiltonian The task is to return a Hamiltonian path in a directed graph. [2,1,4,5,
path A Hamiltonian path is a path in a directed graph that visits each vertex exactly | 3, 8, 7, 6]
once.
The input graph is guaranteed to be directed and tournable.
Here is a directed graph containing nodes from 1 to 8. The edges are: (2, 1), (2,
4),(2,5),(2,6),(2,D, (1,3),(1,4),(1,7),3,2), (3, 7), (3, 8), (4,3), (4, 5), (4,
7,5, 1), (5,3),(5,8),(6, 1), (6,3), (6,4), (6,5), (7,5), (7, 6), 8, 1), (8, 2), (8,
4), (8,6), (8, 7).
Question: Return a Hamiltonian path in the graph.
You need to format your answer as a list of nodes, e.g., [node-1, node-2, ...,
node-n].
harmonic cen- The task is to determine the harmonic centrality of a node in the graph. 1.0
trality Harmonic centrality of a node *u* is the sum of the reciprocal of the shortest
path distances from all other nodes to u.
Here is a directed graph containing nodes from 1 to 8. The edges are: (6, 2), (6,
1), (6,4), (6, 5), (6, 3), (7, 8).
Question: What is the harmonic centrality of node 3 in the graph?
You need to format your answer as a float number.
has cycle The task is to determine if the graph has a cycle. Yes
Here is an undirected graph containing nodes from 1 to 9. The edges are: (1,
2),(1,4),(1,5),(2,4),(2,5),(4,9), (5, 3), (3, 6), (3, 8), (6, 8), (9, 7).
Question: Does the graph have a cycle?
Your answer should be Yes or No.
is bipartite The task is to determine if the graph is bipartite. Yes

A bipartite graph is a graph whose nodes can be divided into two disjoint sets
such that no two graph vertices within the same set are adjacent.

Here is an undirected graph containing nodes from 1 to 6. The edges are: (1,
4), 4,3),(2,5),(2,3),(5,6), (3, 6).

Question: Is the graph bipartite?

Your answer should be Yes or No.

23

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Continuing table 17

Task Prompt Answer
is eularian The task is to determine if the graph is Eulerian. Yes
An Eulerian graph is a graph that contains an Eulerian circuit, which is a cycle
that visits every edge exactly once.
Here is an undirected graph containing nodes from 1 to 6. The edges are: (1,
5), (1, 3), (1,2), (1,4),(5,2),(3,2),(3,4), (3, 6), (2,4), 4, 6).
Question: Is the graph Eulerian?
Your answer should be Yes or No.
is regular The task is to determine if the graph is regular. No
A regular graph is a graph where every node has the same degree.
Here is an undirected graph containing nodes from 1 to 10. The edges are: (1,
5), (1,7), (1, 10), (5, 2), (5, 10), (7, 8), (7, 10), (3, 9), (3, 8), (3, 4), (9, 4), (4,
6).
Question: Is the graph regular?
Your answer should be Yes or No.
is tournament The task is to determine if the graph is a tournament. No
A tournament is a directed graph where every pair of nodes is connected by a
single directed edge.
The input graph is guaranteed to be directed.
Here is a directed graph containing nodes from 1 to 10. The edges are: (1, 2),
(2,1, (2,4),(4,2),(4,3),3, 1), (5,2), (5,4), (6,2),(6,5), (7, 8), (8,6), 9, 7),
(10, 7).
Question: Is the graph a tournament?
Your answer should be Yes or No.
isomophic map- | Given a pair of isomorphic graphs, determine the node correspondence be- {0: 102, 3:
ping tween the two graphs. 101, 2: 105,
The first graph is: G describes an undirected graph among 0, 1, 2, 3,4, 5, and | 4: 103, 1:
6. In this graph: Node O is connected to nodes 6, 3, 4. Node 1 is connected to | 106, 5: 100,
nodes 4, 5, 6. Node 2 is connected to nodes 3, 4. Node 3 is connected to nodes | 6: 104}
0, 2, 5. Node 4 is connected to nodes 0, 1, 2. Node 5 is connected to nodes 1, 3.
Node 6 is connected to nodes 0, 1.
The second graph is: G describes an undirected graph among 102, 106, 105,
101, 103, 100, and 104. In this graph: Node 100 is connected to nodes 106,
101. Node 101 is connected to nodes 102, 105, 100. Node 102 is connected
to nodes 104, 101, 103. Node 103 is connected to nodes 102, 106, 105. Node
104 is connected to nodes 102, 106. Node 105 is connected to nodes 101, 103.
Node 106 is connected to nodes 103, 100, 104.
Provide a node matching dictionary such as {Graphl #Nodel: Graph2 #Nodel,
Graphl #Node2: Graph2 #Node2, ...}
jaccard coeffi- The task is to determine the Jaccard coefficient of two nodes in a graph. 0.3333

cient

The Jaccard coefficient is the size of the intersection divided by the size of the
union of the neighbors of the two nodes.

The input graph is guaranteed to be undirected.

Here is an undirected graph containing nodes from 1 to 5. The edges are: (1,
2),(1,3),(2,5),(2,3),3,5), (5, 4).

Question: What is the Jaccard coefficient between node 2 and node 47?

You need to format your answer as a float number.

24

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Continuing table 17

Task Prompt Answer
local connectiv- The task is to determine the local connectivity of two nodes in the graph. No
ity Local connectivity is whether there exists at least one path between the two
nodes.
Here is a directed graph containing nodes from 1 to 7. The edges are: (1, 7), (7,
6), (3, 1), (4, 3),(5,4), (6, 2).
Question: What is the local connectivity between node 7 and node 4 in the
graph?
Your answer should be Yes or No.
max weight The task is to determine the maximum weight matching of a graph. [(2,4), (5,
matching A matching is a set of edges without common vertices. A maximal matching | 7), (6, 3)]
cannot add more edges and still be a matching. The weight of a matching is
the sum of the weights of its edges. If not specified, all edges have equal edge
weights.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 7. The edges are: (1,
7, (1,5),(2,4),(2,5), 4, 3), (3, 6).
Question: What is the maximum weight matching of the graph?
You need to format your answer as a list of edges in ascending dictionary order,
e.g., [(ul, vl), (u2, v2), ..., (un, vn)].
maximal inde- The task is to determine the maximal independent set guaranteed to containa | [3, 4, 6]
pendent set given node in the graph.
An independent set is a set of nodes such that the subgraph induced by these
nodes contains no edges. A maximal independent set is an independent set
such that it is not possible to add a new node and still get an independent set.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 6. The edges are: (1,
2),(1,6),(1,3),(2,3),(2,4),(2,5),(3,5), (4, 5).
Question: What is the maximal independent set that includes node 4 of the
graph?
You need to format your answer as a list of nodes in ascending order, e.g.,
[node-1, node-2, ..., node-n].
maximum flow The task is to determine the value of the maximum flow for the given source 0.0
node and sink node.
The maximum flow is the greatest amount of flow that can be sent from the
source to the sink without violating capacity constraints.
Here is a directed graph containing nodes from 1 to 5. The edges are: (2, 5, 8),
3,1,9),@3,5,3),4,2,4). (u,v, w) denotes the edge from node *u* to node
v has a capacity of *w*.
Question: What is the value of the maximum flow from node 3 to node 2?
You need to format your answer as a float number.
min edge cover- | The task is to determine the minimum edge covering of a graph. [(2, 1), (5,
ing An edge cover is a set of edges such that every vertex in the graph is incident | 2), (7, 4),
to at least one edge in the set. The minimum edge cover is the edge cover with | (8, 3), (9,
the smallest number of edges. 6)]

The input graph is guaranteed to be undirected.

Here is an undirected graph containing nodes from 1 to 9. The edges are: (1,
2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,6),(3,7), (3, 8),(3,5), (4, 7), (4,
8),(5,6),(5,7),(6,7),(6,9), (7,9).

Question: What is the minimum edge covering of the graph?

You need to format your answer as a list of edges in ascending dictionary order,
e.g., [(ul, vl), (u2, v2), ..., (un, vn)].

25

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Continuing table 17

Task Prompt Answer
min vertex cover | The task is to determine the minimum vertex cover of a graph. [2, 5]
A vertex cover is a set of nodes such that every edge in the graph is incident to
at least one node in the set.
Here is an undirected graph containing nodes from 1 to 5. The edges are: (1,
2),(2,3),(3,5),(5,4).
Question: What is the minimum vertex cover of the graph?
You need to format your answer as a list of nodes in ascending order, e.g.,
[node-1, node-2, ..., node-n].
minimum span- | The task is to determine the minimum spanning tree of a graph. [(1,2), (1,
ning tree A minimum spanning tree is a subset of the edges that connects all vertices in | 4), (1, 5),
the graph with the minimum possible total edge weight. If not specified, all (1, 6), (1,
edges have equal edge weights. 7, (1, 8),
The input graph is guaranteed to be undirected and connected. (1,9), (2,
Here is an undirected graph containing nodes from 1 to 9. The edges are: (1, 3)]
2), (1,8),(1,5),(1,6), (1,4), (1,7), (1,9), (2, 5), (2,6), (2, 4), (2, 7), (2, 3), (8,
3),(8,4),(8,6),(8,7),(5,3),(5,4), (5,6), (5, 7), (5,9), (6, 3), (6, 4), (6, 7), (6,
9),4,3),4,7),4,9),(,9), (9, 3).
Question: What is the minimum spanning tree of the graph?
You need to format your answer as a list of edges in ascending dictionary order,
e.g., [(ul, vl), (u2, v2), ..., (un, vn)].
neighbor The task is to determine the neighbors of a node in the graph. [3, 10]
For directed graph, you should return the successors of the node.
Here is an undirected graph containing nodes from 1 to 10. The edges are: (1,
3),(1,9),(1,6),(1,7),(3,2),3,8),3,9), (6, 7), (2, 10), (10, 8), (4, 5).
Question: What are the neighbors of node 2 in the graph?
You need to format your answer as a list of nodes in ascending order, e.g.,
[node-1, node-2, ..., node-n].
node number The task is to determine the number of nodes in the graph. 10
Here is an undirected graph containing nodes from 1 to 10. The edges are: (1,
10), (1, 3), (10, 6), (10, 8), (3,7), (3,4), (2,7), (2,5), (2,9), (5, 9), (5, 8), (9,
4), (8, 6).
Question: How many nodes are there in the graph?
Your answer should be an integer.
periphery The task is to determine the periphery of a graph. [1,2,4,5,
The periphery of a graph is the set of nodes with the maximum eccentricity. 6]
The eccentricity of a node is the maximum distance from this node to all other
nodes in the graph.
The input graph is guaranteed to be connected.
Here is an undirected graph containing nodes from 1 to 6. The edges are: (1,
3),(3,2),3,4),3,5),(3,6).
Question: What is the periphery of the graph?
You need to format your answer as a list of nodes in ascending order, e.g.,
[node-1, node-2, ..., node-n].
radius The task is to determine the radius of a graph. 2

The radius of a graph is the minimum eccentricity of any node in the graph.
The eccentricity of a node is the maximum distance from this node to all other
nodes in the graph.

The input graph is guaranteed to be connected.

Here is an undirected graph containing nodes from 1 to 5. The edges are: (1,
2),(2,3),(3,4),3,5),4,5).

Question: What is the radius of the graph?

You need to format your answer as a float number.

26

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Continuing table 17

Task Prompt Answer
resource alloca- | The task is to determine the resource allocation index of two nodes in a graph. | 0.25
tion index The resource allocation index of two nodes is the sum of the inverse of the
degrees of the common neighbors of the two nodes.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 5. The edges are: (1,
2),(1,3),(2,3),(3,4),(3,5), 4,5).
Question: What is the resource allocation index between node 1 and node 4?
You need to format your answer as a float number.
shortest path The task is to determine the shortest path between two nodes. [1,2,4,6]
The input nodes are guaranteed to be connected.
Here is an undirected graph containing nodes from 1 to 6. The edges are: (1,
2),(1,3),(2,4),(2,3),(2,5),3,4),(3,5), (4, 6).
Question: What is the shortest path between node 1 and node 6?
You need to format your answer as a list of nodes, e.g., [node-1, node-2, ...,
node-n].
strongly con- The task is to determine the number of strongly connected components in a 6
nected number directed graph.
A strongly connected component is a maximal subgraph where every node is
reachable from every other node.
Here is a directed graph containing nodes from 1 to 6. The edges are: (2, 5), (5,
1), (3, 4), (6, 2).
Question: How many strongly connected components are there in the graph?
Your answer should be an integer.
topological sort The task is to determine the topological sort of a directed acyclic graph (DAG). | [1,6, 5, 4,
Here is a directed graph containing nodes from 1 to 6. The edges are: (1, 6), (1, | 3, 2]
5),(1,4),(1,3),(1,2).
Question: What is the topological sort of the directed acyclic graph (DAG)?
You need to format your answer as a list of nodes, e.g., [node-1, node-2, ...,
node-n].
traveling sales- The task is to determine the minimal cost of the Traveling Salesman Problem | 27.0
man problem (TSP).
The Traveling Salesman Problem asks for the shortest possible route that visits
each vertex exactly once and returns to the starting vertex.
The input graph is guaranteed to be a complete graph.
Here is an undirected graph containing nodes from 1 to 8. The edges are: (1, 2,
9),(1,3,3),(1,4,6),(1,5,8),(1,6,7),(1,7,4), (1, 8,9), (2, 3, 10), (2, 4, 11),
(2,5,5),(2,6,11),(2,7,1),(2,8,9),(3,4,11),(3,5,1),3,6,9), (3,7, 2), (3,
8,9),4,5,8),(4,6,3),4,7,4),4,8,8),(5,6,3),(5,7,3), (5, 8, 10), (6, 7,
8), (6, 8, 1), (7, 8, 10). (u,v, w) denotes the edge from node *u* to node *v*
has a weight of *w*.
Question: What is the minimal cost of the Traveling Salesman Problem on the
graph?
You need to format your answer as a float number.
triangles The task is to find the number of triangles that include a specific node as one 21

vertex.

A triangle is a set of three nodes that are all connected to each other.

The input graph is guaranteed to be undirected.

Here is an undirected graph containing nodes from 1 to 8. The edges are: (1,
2),(1,3), (1,4, (1,5), (1,6), (1,7), (1, 8), (2, 3), (2, 4), (2,5), (2, 6), (2, 7), (2,
8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5), (4,6),(4,7),(4,8),(5,6), (5.7, (5,
8), (6,7), (6, 8), (7, 8).

Question: How many triangles include node 1 in the graph?

Your answer should be an integer.

27

G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning

Continuing table 17

Task

Prompt

Answer

weighted mini-
mum spanning
tree

The task is to determine the minimum spanning tree of a weighted graph.

A minimum spanning tree is a subset of the edges that connects all vertices in
the graph with the minimum possible total edge weights. If not specified, all
edges have equal edge weights.

The input graph is guaranteed to be undirected and connected.

Here is an undirected graph containing nodes from 1 to 5. The edges are: (1, 4,
5), (2,4, 11), (2, 3, 10), (3, 4, 2), (3, 5, 2). (u,v, w) denotes the edge from node
u to node *v* has a weight of *w*.

Question: What is the minimum spanning tree of the weighted graph?

You need to format your answer as a list of edges in ascending dictionary order,
e.g., [(ul, vl), (u2, v2), ..., (un, vn)].

[(1,4), 2,
3), (3, 4),
(3, 5)]

weighted short-
est path

The task is to determine the shortest path between two nodes of a weighted
graph.

The input nodes are guaranteed to be connected.

Here is a directed graph containing nodes from 1 to 8. The edges are: (1, 2, 5),
(1,4,3),(1,7,9), (2, 3,10), (2,4, 10), (3,1, 11),(3,4,2),(3,5,6), (4, 1, 1),
4,2,4),(4,6,8),(4,8,2),(5,1,7),(5,2,11),(5,6,2), (5,7, 5), (5, 8, 11), (6,
1,7),(6,2,11),(6,3,4),(6,5,1),(6,8,11),(7,1,3),(7,2,8),(7,4,7), (7, 6,
6),(7,8,3),(8,1,11),(8,2,7),(8,4,5),(8,7,5). (u,v, w) denotes the edge
from node *u* to node *v* has a weight of *w*.

Question: What is the shortest path between node 1 and node 5?

You need to format your answer as a list of nodes, e.g., [node-1, node-2, ...,
node-n].

[1,4,6,5]

wiener index

The task is to determine the Wiener index of a connected graph.

The Wiener index of a graph is the sum of the shortest-path distances between
each pair of reachable nodes. For pairs of nodes in undirected graphs, only one
orientation of the pair is counted.

In the input graph, all node pairs are guaranteed to be reachable.

Here is an undirected graph containing nodes from 1 to 5. The edges are: (1,
2),(1,4),(2,3),4,5),3,9).

Question: What is the Wiener index of the graph?

You need to format your answer as a float number.

15.0

28

	Introduction
	Erdős: A Comprehensive Collection of Graph-theoretic Reasoning Tasks on Real-world Graphs
	Training LLMs to Reason on Graphs
	Reinforcement Learning of LLMs on Graphs
	Optional Warm-up with Supervised Fine-tuning

	Experiments
	Benchmarking G1 on Graph-theoretic Reasoning Tasks
	Transferability of G1 to Unseen Tasks and Domains
	G1's Transferability to Other Graph Reasoning Benchmarks
	G1 on Real-world, Non-graph-theoretic Graph-reasoning Tasks
	G1's Reasoning Ability beyond Graphs

	Training Analysis
	Understanding the Benefits of RL Training for Graph Reasoning

	Discussion
	Related Work
	Optional Warm-up with Supervised Fine-tuning
	Training Details
	Setups for evaluation on Erdős
	Rejection Sampling
	Supervised Fine-tuning
	Reinforcement Learning

	Evaluation Details
	Benchmark Introduction
	Inference Configuration
	Prompt and Answer Extraction

	Additional Experiment Results
	Results for G1-Zero-7B
	Detailed Results for GraphWiz
	Detailed Results for MMLU-Pro
	Detailed Results for GraphArena
	Detailed Results for Erdős

	Discussion on Reward Weighting
	Detailed Description of Erdős
	Comparing Erdős with Other Graph Reasoning Benchmarks for LLMs
	Full list of tasks in Erdős

