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Abstract

Chain-of-thought prompting has popularized step-by-step reasoning in large lan-1

guage models, yet model performance still degrades as problem complexity and2

context length grow. By decomposing difficult tasks with long contexts into3

shorter, manageable ones, recent multi-agent paradigms offer a promising near-4

term solution to this problem. However, the fundamental capacities of such sys-5

tems are poorly understood. In this work, we propose a theoretical framework6

to analyze the expressivity of multi-agent systems. We apply our framework to7

three algorithmic families: state tracking, recall and multi-hop reasoning. We de-8

rive bounds on (i) the number of agents required, (ii) the quantity and structure9

of inter-agent communication, and (iii) the achievable speedups as problem size10

and context scale. Our results identify regimes where communication is prov-11

ably beneficial, delineate tradeoffs between agent count and bandwidth, and ex-12

pose intrinsic limitations when either resource is constrained. We complement13

our theoretical analysis with a set of experiments on pretrained LLMs using con-14

trolled synthetic benchmarks. Empirical outcomes confirm the tradeoffs between15

key quantities predicted by our theory. Collectively, our analysis offers principled16

guidance for designing scalable multi-agent reasoning systems.17

1 Introduction18

Chain-of-thought (CoT) prompting has become the de facto standard for tackling complex reason-19

ing problems. By encouraging models to ”think step-by-step,” CoT significantly improves per-20

formance on tasks requiring mathematical and logical reasoning (Wei et al., 2022). Building on21

this paradigm, recent approaches view reasoning as a structured traversal over thoughts, explor-22

ing methods such as self-consistency (Wang et al., 2022), tree-of-thoughts (Yao et al., 2023), and23

stream-of-search (Gandhi et al., 2024). In parallel, post-training for large reasoning models (LRMs)24

increasingly relies on reinforcement learning over generated chains of thought (OpenAI, 2025; Guo25

et al., 2025).26

Despite these advances, several limitations have emerged. The reasoning abilities of LRMs degrade27

as the complexity of problem instances increases or as the context length grows (Shojaee et al.,28

2025; Sun et al., 2025). To address these challenges, novel approaches such as multi-agent collab-29

oration (e.g. Zhang et al., 2024; Tran et al., 2025; Xiao et al., 2025; Hsu et al., 2025) and adaptive30

parallel reasoning (Pan et al., 2025) decompose complex tasks into simpler subproblems, coordinat-31

ing multiple agents to achieve stronger performance. These frameworks offer promising near-term32

solutions, yet the theoretical underpinnings of their expressive capacity remain poorly understood.33

While the expressive power of Transformers with CoT prompting has been studied in depth (Merrill34

& Sabharwal, 2023; Amiri et al., 2025), little is known about the fundamental limits and tradeoffs35

of communication and resource allocation in multi-agent reasoning schemes.36
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This gap motivates the central question of our work: From an algorithmic perspective, are there37

tasks that provably benefit from communication and dynamic resource allocation in multi-agent38

reasoning systems?39

We address this question by proposing a theoretical framework for analyzing the expressivity of40

multi-threaded and multi-agent reasoning strategies. Our analysis applies to settings where both41

problem complexity and context size scale, and focuses on three representative algorithmic families:42

state tracking, recall, and k-hop reasoning. For each task family, we establish bounds on the number43

of agents and the quantity of communication required, and we characterize the tradeoffs between44

these quantities. Finally, we complement our theoretical results with empirical validation using45

pretrained large language models. Our contributions are as follows:46

• We propose a formalization of multi-agent reasoning systems based on insights from the47

multi-party communication complexity and parallel processing literature48

• For three distinct families of algorithmic tasks—state tracking, recall, and k-hop reason-49

ing—we derive bounds on the number of agents and the communication required, high-50

lighting the tradeoffs between these resources. These tasks capture key aspects of practical51

reasoning problems, making the results broadly applicable.52

• We provide empirical validation of our theoretical insights by implementing the optimal53

communication protocols given by theory. Our analysis shows the performance in terms of54

accuracy, communication and token usage closely aligns with theoretical predictions.55

Throughout, we consider the setting where an input of size N is partitioned equally between w56

agents. Our results reveal three distinct regimes for multi-agent tasks (Table 1). First, there are tasks57

that can be solved efficiently with minimal chain-of-thought reasoning or communication when58

the input is partitioned between agents, such as key-query retrieval. Second, some tasks not only59

allow partitioning but also benefit from it, achieving reduced wall-clock time compared to a single-60

agent setup; state tracking is a prime example. Finally, there are tasks that can be solved through61

partitioning but require significant communication among agents, such as reasoning over multiple62

hops.

Depth Size Communication

State tracking Θ(Nw + logw) Θ(N) Θ(w)
Lookup by query Θ(1) Θ(w) Θ(1)
k-hop reasoning O(k) Θ(k) Θ(k)

Table 1: Summary of results, with w denoting the number of agents. N represents the length of the
input. O(·) indicates the existence of a protocol; Θ(·) indicates that we prove it optimal.

63 2 Background64

2.1 Notation65

We denote with N, Z and R the set of natural, integers and real numbers, respectively. We use bold66

letters for vectors (e.g. v ∈ Rd1 ), bold uppercase letters for matrices (e.g. M ∈ Rd1×d2 ). All67

vectors considered are column vectors unless otherwise specified. The i-th row and the j-th column68

of a matrix M are denoted by Mi,: and M:,j .69

Let Σ be a fixed finite alphabet of symbols, Σ∗ the set of all finite strings (words) with symbols in Σ70

and Σn the set of all finite strings of length n. We use ε to denote the empty string. Given p, s ∈ Σ∗,71

we denote with ps their concatenation.72

2.2 Model of Transformers73

Transformers. Each layer of a Transformer has an attention block followed by an MLP block.74

The attention block takes as input X ∈ RN×d and applies the operation75

Att(X) = fAtt(XWQW
⊤
KX⊤)XW⊤

V (1)
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where WQ,WK ,WV ∈ Rm×d and fAtt(·) = softmax(·) or fAtt(·) = UHAT(·). For any matrix76

A ∈ RN×M , we define the softmax operator row-wise as77

softmax(A)i,j =
exp(Ai,j)∑M
k=1 exp(Ai,k)

.

and we define UHAT row-wise as78

UHAT(A)i,j =

{
1 if j = argmaxAi,:

0 else
, (2)

where in case of a tie, the rightmost element is selected. For simplicity, we will use Q(xi) (and79

likewise K(xi) and V (xi)) to denote WQxi. The width of the Transformer is max(m, d), where80

m × d is the shape of the projection matrices WQ,WK . Multi-head attention with H heads is81

defined as M-AttH(X) = [Att1(X), . . . ,AttH(X)]WO where each Atti(X) has its own set of pa-82

rameters. The matrix WO ∈ RmH×d projects the concatenated vector to a vector of dimension d.83

For an input X ∈ RN×d, the output of a layer of Transformer will be ψ(M-AttH(X)) ∈ RN×d84

where ψ : Rd → Rd corresponds to the function computed by the MLP. We use y
(l)
i to denote the85

ith activation at layer l of a Transformer.86

Hard and soft attention Throughout, we will assume a model of Transformers with uniform hard87

attention, which we will refer to as UHAT for short (e.g. Hahn, 2020; Hao et al., 2022; Yang et al.,88

2024a; Amiri et al., 2025; Jerad et al., 2025). Although in practice soft attention is easier to train89

with gradient descent, analysis studies suggest that pretrained models typically concentrate their90

attention on only a few positions (Voita et al., 2019; Clark et al., 2019) and that the most important91

heads are those with peaky attention.92

Sequence-to-sequence vs. decoder-only The definition above considers an L-layer sequence-to-93

sequence Transformer which sends a sequence of token embeddings to another sequence of token94

embeddings s.t. T : RN×d → RN×d. Typically most models commonly used in practice are95

decoder-only: concretely this makes them functions T : RN×d → V with V ⊂ R|Σ|. Typically,96

V is a set of one hot encoded (OHE) vectors, each associated to a symbol in Σ Concretely, this97

is implemented by adding an output layer which maps y
(L)
n 7→ Oy

(L)
n for some linear map O ∈98

R|Σ|×d.99

Constant precision models In this work, we are interested in the expressive power of models100

with finite precision. Our constructions will work with p-bit numbers. Throughout, we will consider101

constant precision (w.r.t. input length): p = O(1).102

Size preserving functions We say a function f : {0, 1}∗ → {0, 1}∗ is size preserving if and only103

if there exists c, n such that ∀x |x| ≥ n =⇒ |f(x)| ≤ c|x|. Throughout, we will assume arbitrary104

size preserving MLPs. This means that the map ψ can compute any function so long as the input105

and output have a number of bits in the same order of magnitude.106

2.3 Formalization of Multi-Thread and Multi-Agent Systems107

We define multi-agent systems from a graph perspective:108

Definition 2.1 (K-way multi-agent system). Let Σ be a finite alphabet and Ξ ⊃ Σ a CoT alphabet109

s.t. |Ξ| ∈ O(poly(N)). A K-way multi-agent system, denoted AK({x(i)}Ki=1, N, b), is a labeled110

DAG with two edge types. Nodes correspond to the computational model (i.e., Transformers in our111

case) and edges correspond to a symbol from Ξ outputted by the model. Each node corresponds to112

a specific model i at a specific decoding step t. We denote T (t)
i , i ∈ [K] the ith model at timestep113

t of decoding. We define two types of edge labels: communication edges {c, σ}, σ ∈ Ξ represent114

communicating a symbol between two different models and CoT edges {a, σ}, σ ∈ Ξ correspond to115

autoregressive decoding of the model.116

Agents can only send or receive one symbol σ ∈ Ξ at a time. If a node receives n communication117

edges at once, the agent must process each edge one at a time, leading to n CoT steps. A given multi-118

agent system can communicate in many different ways. We denote C(AK) a specific communication119
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Figure 1: Example graphs of different multi-agent systems

protocol or strategy implemented under the constraints of AK . Finally, we define some terminology120

to characterize the complexity of a multi agent system:121

• Let depth represent the longest path on the graph, regardless of the edge type. Computation122

depth is the number of t-edges on this path.123

• Communication depth or communication rounds is the number of c-edges on the longest124

path.125

• Width of the graph corresponds to the number of agents in the system. Typically we use126

w(N) when the number of agents is a function of input length.127

• Size or work corresponds to the number of nodes in the graph.128

• Communication budget corresponds to the total number of c edges.129

Figure 1 illustrates examples of the proposed graph representation for multi-agent systems.130

Decision problems We say a K-way multi-agent system AK decides a function f : Σ∗ → {0, 1}131

if for all x ∈ Σ∗, and for all partitions x = x1 . . . xK , there exists a communication protocol C132

with a subset S ⊂ [K] of agents which terminate in f(x). For functions f : Σ∗ → Σ we say AK133

evaluates f . The definition is extended in the straightforward way. More concretely, Transformer134

models implement the protocol computation in the following way:135

Definition 2.2 (Agent computation). Let T (i) denote an agent, represented by a maximal path of136

CoT edges, possibly augmented with incoming and outgoing communication edges. The computa-137

tion of T (i) is defined as follows. The first step consists of passing the input chunk x(i) ∈ Σ∗ to the138

agent. The protocol then proceeds according to:139

1. Append the agent identifier ID(T (i)).140

2. Traverse the nodes along the agent’s path in order. Letting σ ∈ Ξ denote a communicated141

symbol, for each step:142

(a) If there is an outgoing communication edge:143

i. If the message is sent to a single agent T (j), append the token sequence144

[send] σ ID(T (j)).145

ii. If the message is broadcast to all agents, append the token sequence [broadcast] σ.146

(b) If there is an incoming communication edge, append the token sequence [receive] σ.147

(c) Append the corresponding CoT edge symbol {c, σ}.148

A transformer computes such a protocol if, when run autoregressively on this string, it predicts all149

tokens other than those in (a),(b) and (c).150
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3 Results151

3.1 General Results152

In this section, we present theoretical results which hold for all task families and all multi-agent153

systems following Definition 2.1. The first result we present relates to the size of the system:154

Proposition 3.1 (Conservation of size). Any protocol can be converted into an equivalent single-155

agent protocol with the same size up to constant factor.156

Sketch of proof. By constructing a single agent that alternates between simulating each of the157

agents of the original protocol. □158

In essence, this result implies that there is ”no free lunch” when it comes to multi-agent systems.159

Although one can obtain speedups in computation time (or depth), the quantity of work done remains160

the same. This result is simple, but critical to our analysis of multi-agent systems. The second result161

in this section situates multi-agent systems within the circuit complexity landscape.162

Proposition 3.2. Consider a decision problem on an input x ∈ {0, 1}N with a multi-agent system163

AK with depthO(logj(N)), i ∈ N. If a UHAT transformer computes AK , then the decision problem164

is in ACi.165

Sketch of proof. The key idea of the proof is to simulate the entire computation graph with a log-166

depth Transformer and leverage the known circuit complexity results for these models. In order to167

manage intermediary tokens from the CoT, we allow the model to have O(poly(N)) padding tokens168

in which in can store such intermediary values. Each depth in the graph is thus simulated by a single169

Transformer layer which stores the ”CoT tokens” in the corresponding padding tokens. Applying170

the results of Hao et al. (2022). □171

3.2 State Tracking172

The first family of problems we consider is state tracking. State tracking is at the heart of many173

reasoning problems, such as tracking chess moves in source-target notation, evaluating Python code,174

or entity tracking. We recall the formal definition of a state tracking problem:175

Definition 3.1 (State tracking problem). LetM be a finite set, and (M, ·) a finite monoid (M with an176

identity element and associativity). A state tracking problem on M is defined as sending a sequence177

m0m1 . . .mk ∈M∗ to m0 ·m1 · ... ·mk ∈M .178

This class of problems encompasses deciding membership for all regular languages such as PARITY.179

Previously, Amiri et al. (2025) showed that for PARITY, UHAT Transformers required a CoT of180

length Ω(N). Can a multi-agent system with a large amount of total communication do better? We181

show that in terms of the size of the underlying graph, this cannot be the case:182

Proposition 3.3. Let K ∈ N, any communication protocol C(AK) deciding PARITY using a UHAT183

Transformer requires size Ω(N).184

Proof. By proposition 3.1, we know that we can always obtain a serial CoT with equivalent expres-185

sivity. By applying Lemma 3.4 of Amiri et al. (2025), we thus directly obtain the result.186

However, if we consider a parallel computation budget, we can obtain a speedup in the depth of the187

computation graph. We assume the setup where each agent receives a disjoint contiguous substring188

of the input. Then:189

Proposition 3.4. Let M be a finite monoid. For any word m0 . . .mN ∈ MN , there exists a com-190

munication protocol with AN ({σi}Ni=1, log(N), N) which sends m0 . . .mN to m0 · . . . ·mN .191

The above protocol has a width of N agents, but we can generalize the above protocol to other192

widths given by some function w(N) of the input size N :193

Proposition 3.5. Given a monoid M and a constant depth Transformer T with context window194

of size N , there exists a O(logw(N) + N
w(N) ) depth and w(N) (e.g.,

√
N ) width and O(N) size195

parallel CoT which solves state tracking onM for sequences of length up toN , with communication196

budget w(N).197
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Effectively, this means that given enough parallel computation budget, we can indeed recover a198

speedup in terms of effective or wall-clock time. The proof for this result is given in Appendix A.1;199

Proposition 3.4 is simply a corollary of this proof. The above result is essentially optimal, in that200

essentially no shorter depth is attainable:201

Proposition 3.6 (Optimality). Assume M is a nontrivial group. Let w(N) be the number of agents,202

with each receiving a disjoint contiguous part of the string. Then O(w(N)) communication budget,203

O(logw(N)) communication depth, and computation depth Ω( N
w(N) ) are each optimal.204

Sketch of proof. Optimality of the computation budget holds because each agent’s portion matters205

for the result. An Ω(logw(N)) lower bound on the communication rounds follows by constructing206

a tree consisting of only the communication edges, and noting that in each round, an agent receives207

only one symbol. Now for the time/depth lower bound, we appeal to size conservation:208

N = Size ≤ Computation-Depth · Agents (3)

hence209
N

w(N)
≤ Computation-Depth (4)

From which the result follows. □210

We summarize our results for state tracking below:211

Tradeoffs for State Tracking Assume w(N) agents, each provided a disjoint contiguous portion
of the input. Then

1. Computation depth O(logw(N) + N
w(N) )

2. Number of agents: w(N) and partitioned input size per agent: N
w(N)

3. Communication depth O(logw(N))

Communication budget O(w(N))

4. Size: N
are both realizable and optimal for performing state tracking.

212

3.3 Simple Retrieval213

Another foundational task is to perform simple, associative retrieval. In this case, we obtain a very214

favorable result:215

Proposition 3.7. Given an input consisting of N pairs (xi, yi), and a query x, consider the task of216

retrieving the (unique) y such that (x, y) appears in the input. Assume that the input is partitioned217

disjointly into parts provided to k agents, which also have access to the query. Then they can solve218

the task with depth O(1).219

Sketch of proof. Each agent uses attention to check if the query x appears in the input, and uses220

an induction head to retrieve the associated y if it appears. By design, only one agent will find such221

a y; it then reports it to a designated manager agent that output y. □222

Thus:223

Tradeoffs for Simple Retrieval
1. Computation depth O(1)

2. Width w(N) and chunk size: N
w(N)

3. Communication depth O(1)

Communication budget O(1)

4. Size: O(w(N))

is both realizable and optimal for retrieval.

224
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3.4 Multi-Hop Reasoning225

A related task is k-hop composition (e.g. Yang et al., 2024b; Wang et al., 2025; Yao et al., 2025). In226

this task, we have a domain D of objects and a vocabulary F , intended to denote functions. We have227

a set of facts f(x) = y contextually given, where for each x and f at most one such fact is included.228

Each agent receives a disjoint equal sized partition of the set of facts, and a common query of the229

form f1(. . . (fk(x)) . . . ) where fi ∈ F , x ∈ D. The agents are tasked with jointly evaluating this230

composition based on the provided facts. Here, the domain and vocabulary may be arbitrarily large231

filling a context of potentially very large size N , but the computation depth and communication232

budget depend only on k:233

Proposition 3.8. The k-hop composition task can be solved with computation depth O(k), commu-234

nication budget O(k), and size O(k). Size and communication budget are optimal. Computation235

depth and communication depth O(k) are optimal at least up to a log(N + k) factor.236

The regime of this task is different from the previous ones in that, in the worst case, there is no237

reduction of computation depth when increasing the number of agents: Depending on how the238

facts relevant to the query are distributed among the agents, computation depth and communication239

budget may be Ω(k) in the worst case.240

We thus have:241

Tradeoffs for k-hop Composition for k-hop composition and N facts:
1. Computation depth O(k)

2. Number of agents: w(k) and chunk size: N
w(k)

3. Communication depth O(k)

Communication budget O(k)

4. Size: O(k)

are realizable for k-hop composition. Communication budget and size are optimal. Computation
depth and communication depth are optimal at least up to a log(N + k) factor.

242

4 Experimental Validation243

In this section, we aim to validate experimentally if the proposed communication protocols and con-244

structions of Section 3 also work in practice. To do so, we employ pretrained LLMs that are given245

a system prompt as well as a query to solve the task. We typically use hard coded communica-246

tion protocols similar to the protocol implementation of Zhang et al. (2024). For all experiments,247

we report the mean over 100 runs using the LGAI EXAONE-3.5-32B-Instruct (Research, 2024)248

model through the TogetherAI API. This model was chosen given it was a free, medium-sized and249

instruction-tuned. Future work will include analysis on a wider range of models.250

4.1 State Tracking251

We start by validating experimentally the abilities of different multi-agent systems to perform state252

tracking tasks. We consider two tasks: (i) PARITY i.e. determining if the number of 1s in a bitstring253

is even or odd (ii) S5 permutations, which we frame as a word problem where an each agent is given254

a prompt explaining there are 5 balls in 5 distinct bins and a sequence of swap commands such as255

”swap ball 1 and 3, swap ball 2 and 4”. In this task the agents must return the correct value of the256

ball in each bin. The bins numbers are only given at the beginning of the task making this a hard257

state tracking problem (Merrill et al., 2024).258

We compare our theoretical constructions to two baselines: self-consistency (Wang et al., 2022) with259

majority voting and Chain-of-Agents (Zhang et al., 2024). We ablate over the branching factor for260

Prefix Sum, the number of agents for Maj Voting and the chunk size for CoA. For more details about261

the experiments, please refer to the appendix. We report the mean accuracy over 100 runs for the262

best hyperparameter value found in each sweep.263
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Figure 2: Empirical validation for PARITY.

Parity As we can see in Figure 2(a), the Prefix Sum construction consistently outperforms all264

other methods. Interestingly, CoA outperforms self-consistency only shorter sequence lengths; as265

length increases, self-consistency has better accuracy. However, this gain in performance is not266

noteworthy: both methods have accuracy very close to random chance for large sequence lengths.267

Only Prefix sum retains a significant advantage over the random chance baseline of 0.5. In terms268

of communication, Figure 2(b) shows the tradeoff between the computation depth and the total269

amount of communication. This trend is consequent with the theoretical prediction of the tradeoff270

between communication and computation. Indeed, in Section 3.2 we predict a tradeoff between271

depth N/w(N) and total communication w(N)
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Figure 3: Per-element accuracy (left) and exact match (EM) (right) accuracy for the S5 permutations
task.272

S5 permutations Figure 3 gives the exact match (EM) and the per element accuracy for the per-273

mutation task. EM is calculated by either returning 1 if the entire sequence is correct or 0 otherwise.274

Once again, the prefix sum protocol consistently outperforms both other baselines. Interestingly,275

majority voting outperforms CoA on this task. This can be explained by the chosen implementation276

for the permutation problem: worker agents return a dictionary where keys represent bin and values277

represent balls. The manager agent must then combine together the composition maps given by278

these dictionaries. When the number of dictionaries to compose is high, this becomes quite difficult,279

thus limiting the abilities of CoA.280

4.2 k-hop Reasoning281

Finally, we investigate the abilities of models to perform a k-hop reasoning task. In this task, agents282

are given a series of facts e.g. Paula is the boss of Mary, Mary is a friend of George etc and a283

query e.g. ”Who is the boss of the friend of George?”. There are two parameters controlling the284

difficulty of this task; the number of facts and the number of hops in the query. For this task,285

we consider two baselines. MajorityVoting i.e. self-consistency with majority voting Wang et al.286
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(2022) and IterativeQuery, a protocol similar to the one optimal for the k-hop task; at each round,287

multiple agents are given disjoint subsets of the facts and a specific query (e.g. ”Who is the friend of288

George?”). If an agent finds the answer to the query it returns it, agents who do not return a response289

indicating they did not. The manager then aggregates the answer and updates the query for the next290

round. This goes on until the final query is answered.
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Figure 4: Accuracy vs. number of hops in the query. Left panel shows results for self-consistency
with majority voting. Right panel is IterativeQuery, a protocol implementing the optimal k-hop
construction. Each line represents a different number of facts in the knowledge base.291

As we can see in Figure 4, the IterativeQuery protocol outperforms MajorityVoting. This is espe-292

cially apparent in the regime where the number of facts is high. This highlights the advantage of293

separating long contexts for reasoning tasks.294

5 Discussion and Conclusion295

In summary, our work provides a principled foundation for understanding the algorithmic benefits296

and limitations of multi-agent reasoning. By formalizing communication and resource tradeoffs,297

we bridge theoretical analysis with empirical observations, shedding light on when collaboration298

enhances reasoning efficiency and when it imposes inherent costs. These results open new avenues299

for designing reasoning systems that balance scalability, expressivity, and practical performance.300

Practical Considerations Several of our theoretical and empirical observations may be of interest301

to practitioners or to researchers aiming to design better multi-agent LLM systems. First, we note302

that setups with multiple worker agents and a single manager (e.g. Zhang et al. (2024)) only shift303

the context bottleneck to the manager agent; if there is a large amount of workers, the manager304

must process all of their responses, which can lead to errors. To mitigate this issue, we propose305

an architecture akin to the prefix sum agent cascade. The key idea is that iterative summarization306

and processing reduces the bottleneck on the final agent This could be implemented with a con-307

stant branching factor and constant depth, left as hyperparameters for the user. We also believe308

the IterativeQuery protocol we give for k-hop reasoning may be of practical relevance. For tasks309

with complex queries, it could be interesting to implement a similar architecture, where, at first,310

a manager model splits the main query into subqueries which are each processed through iterative311

worker/manager communication rounds, with the manager updating the query after each round.312

Limitations and Future Work There are many directions in which this work could be extended.313

Firstly, it would be exciting to use the practical considerations we provide to design new multi-agent314

systems, and test them on real-world applications. As for the theoretical side, it would be interesting315

to extend our analysis to other domains such as graph reachability, where existing literature on316

parallel processing provides a starting point to analyze optimality of algorithms/number of agents.317

Finally, the proofs currently assume UHAT and arbitrary MLPs; the analysis could be strengthened318

by considering softmax attention and RELU feedforward nets.319
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A Appendix398

A.1 Proofs for State Tracking results399

We start by giving a formal proof of Proposition 3.5.400

Proposition A.1 (Repeated from Prop 3.5). Given a monoid M and a constant depth Transformer401

T with context window of size N , there exists a O(logw(N) + N
w(N) ) depth and w(N) (e.g.,

√
N )402

width and O(N) size parallel CoT which solves state tracking on M for sequences of length up to403

N , with communication budget w(N).404

Proof. Let an input x of length N be given, where each symbol is an element of M . We assume for405

simplicity (otherwise padding) that N is a multiple of the number w of agents. We build a DAG as406

follows.407

The context given to agent j is x1,j . . . xN/w,j# where # is the EOS token. The context length of408

the sequence given to each agent is thus N/w + 1.409
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For each agent j, we create nodes n1,j , n2,j , . . . , nN/w,j , with CoT edges ni,j → ni+1,j with410

{t, x1,j . . . xi+1,j}.411

An agent can use a call [send]σ, where [send] is a special token to transmit information to other412

agents. We assume WLOG that this command transmits the symbol σ to the next agent with ID413

j + 1. The final agent, which we call the receiver, only receives information and does not transmit.414

The protocol computes a prefix sum algorithm with branching factor 2: at the beginning of runtime,415

all agents compute the composition of their N/w elements. Then the agents with odd indices j send416

their result to those with even indices, who compute the composition of their result with that of their417

odd index neighbor and so on so forth in a prefix sum fashion.418

We show this is implementable in UHAT with 3 heads and a single layer, with width O(logN).419

Essentially we use 2 heads to extract the value of the monoid elements and then store them in the #420

token and use the MLP to perform the rest of the processing421

Embeddings We will use quasi-orthogonal vectors to keep track of the positions of different ele-422

ments in the sequence. Formally, let T (1), . . . , T (2N/w + 1) be 2N/w + 1 vectors of dimension423

k = O(logN) such that ⟨T (i), T (j)⟩ ≤ 1/4 for i ̸= j and ⟨T (i), T (j)⟩ ≥ 3/4 for i = j. Such424

vectors can be obtained through the Johnson-Lindenstrauss Lemma . We define E(σ) to be the425

embedding vector of some symbol σ ∈ Ξ. Embeddings have the following structure426

E(σ) = [ohe(σ) ohe(σ) T (i) 0 0 [send]] , (5)

where ohe(σ) ∈ {0, 1}|Ξ| is the one hot encoding (OHE) of σ ∈ Ξ, T (i) is a quasi orthogonal427

vector, the two last dimensions are also of dimension k and where, [send] ∈ {0, 1} are flags which428

are set to 0 by default. Equally, we define the embedding of the separator token $ as429

E(#) = [0 0 0 T (1) T (2) [send]] (6)

Construction for composition of monoid elements The construction for composition requires430

one layer and three heads. The key idea of the construction is to use two heads to extract the two431

elements to be composed at a given timestep, then concatenate them in the embedding of the $ token.432

The MLP can then perform the composition, which it returns in the embedding of the last token. The433

third head is only there to copy back the remaining embedding values. For the first head, we would434

have the following key, query and value matrices:435

WQ =


0
0
0
I
0

 WK =


0
0
I
0
0

 WV =


I 0 0 0 0
0 0 0 0 0
0 0 0 I 0
0 0 0 0 0
0 0 0 0 0

 (7)

The output of the attention layer is thus all zeros except for the embedding at the $ symbol which436

would be437

E(#) = [ohe(σ) 0 0 T (i) 0 [send]] , (8)

The construction for the second head is very similar, with the main differences being the query438

matrix has the all 0s and identity at the last block and the value matrix is like that of the previous439

head with the two last columns swapped. This would give us a similar sequence of all 0 vectors,440

except for the embedding at the # symbol which would be441

E(#) = [0 ohe(σ) 0 0 T (i) [send]] , (9)

The third head trivially computes the identity matrix (but with 0s at the # position) by using both442

key and query matrices to extract the J-L vectors found at the ”third” embedding block. We then use443

the WO matrix to select the relevant parts of out of each had. Once this is done, we use the MLP to444

compute composition.445

MLP The MLP uses conditional processing. if [send] flag is 0, it defines the following map:446

[ohe(σ1) ohe(σ2) 0 T (i1) T (i2) [send]] 7→
[ohe(σ1) ◦ ohe(σ2) ohe(σ1) ◦ ohe(σ2) 0 T (i1 + c) T (i2 + c) [send]] ,
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where c is the token count between the first token and the $ token. In the OHE positions, we define447

ohe(σ) ◦ ohe(σ) 7→ ohe(σ) and in the last two J-L positions, we define 0 7→ 0.448

At the last step of composition, using a conditional on based on T (i2 + c) = T (2N/w), the model449

computes this slightly different map:450 [
ohe(σ2N/w−1) ohe(σ2N/w) 0 T (2N/w − 1) T (2N/w) [send]

]
7→[

ohe([send]) ohe(σ2N/w−1) ◦ ohe(σ2N/w) T (2N + 1) T (2N/w + 1) 0 [send]
]
,

Thus at the next step of decoding the final vector would stay the same. If the [send] flag is equal to 1,451

the MLP simply swaps the values in the first |Ξ| dimensions with those in the second |Ξ| dimensions.452

Thus, once it is time to communicate the model outputs [send]σ453

This map is size preserving as it maps elements from Ξ back to Ξ and vectors T (i) back to vectors454

from the same set.455

Output matrix Every row of the output matrix is a OHE of one of the symbols in Ξ. The output456

matrix is a combined transformation which first selects the top |Ξ| dimensions and uses the OHE457

vector found there to put a 1 at the underlying position in the output vocabulary vector. Only the last458

token is used for prediction459

Receiving and sending communication We assume all agents decode synchronously. When an460

agent receives a symbol, the protocol takes the agent’s last symbol, and appends the received symbol461

as well as a # EOS token. The agent’s context is then wiped and it starts again. To make sure all the462

agents only send symbols at the appropriate time, one can easily change the number of J-L vectors463

which the agent receives as these decide at what point the agent sends information.464

Proposition A.2. Let L be a regular language over Σ. For any input x ∈ ΣN , there exists a465

communication protocol with AN ({σi}Ni=1, log(N), N) which decides L.466

Proof. This statement follows immediately as a consequence of Proposition 3.5.467

A.2 Proofs for Retrieval468

Proposition A.3. The k-hop composition task can be solved with computation depth O(k), commu-469

nication budget O(k), size O(k). Size and budget are optimal. Computation depth is optimal up to470

a log(N + k) factor.471

Proof. A construction is as follows: Each agent checks fk(x) against the facts in their context472

using an induction-head-like construction; one agent will find the answer y and reports it back to473

all agents. Now all agents check whether they have the value of fk−1(y) in their context, and474

so on. Once the agents have evaluated the final answer, the manager encodes it in its final node.475

Optimality of size follows because State Tracking is a special case of k-hop composition. Optimality476

of the communication budget follows because composition of k permutations over {1, . . . , 5} has477

communication complexity Ω(k) in the model where one agent has the even positions and the other478

the odd positions (Tesson & Thérien, 2002). To prove that the depth is worst-case optimal, we479

consider the case where all relevant facts happen to be distributed between two agents. Hence, these480

two agents must jointly emit Ω(k) communication bits. Because an agent emits only O(log(N+k))481

bits at a step of time, the communication must be lower-bounded by Ω( k
log k ).482

483
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