© © N O O A W N =

Benefits and Limitations of Communication in
Multi-Agent Reasoning

Anonymous Author(s)
Affiliation
Address

email

Abstract

Chain-of-thought prompting has popularized step-by-step reasoning in large lan-
guage models, yet model performance still degrades as problem complexity and
context length grow. By decomposing difficult tasks with long contexts into
shorter, manageable ones, recent multi-agent paradigms offer a promising near-
term solution to this problem. However, the fundamental capacities of such sys-
tems are poorly understood. In this work, we propose a theoretical framework
to analyze the expressivity of multi-agent systems. We apply our framework to
three algorithmic families: state tracking, recall and multi-hop reasoning. We de-
rive bounds on (i) the number of agents required, (ii) the quantity and structure
of inter-agent communication, and (iii) the achievable speedups as problem size
and context scale. Our results identify regimes where communication is prov-
ably beneficial, delineate tradeoffs between agent count and bandwidth, and ex-
pose intrinsic limitations when either resource is constrained. We complement
our theoretical analysis with a set of experiments on pretrained LLMs using con-
trolled synthetic benchmarks. Empirical outcomes confirm the tradeoffs between
key quantities predicted by our theory. Collectively, our analysis offers principled
guidance for designing scalable multi-agent reasoning systems.

1 Introduction

Chain-of-thought (CoT) prompting has become the de facto standard for tackling complex reason-
ing problems. By encouraging models to “think step-by-step,” CoT significantly improves per-
formance on tasks requiring mathematical and logical reasoning (Wei et al., 2022). Building on
this paradigm, recent approaches view reasoning as a structured traversal over thoughts, explor-
ing methods such as self-consistency (Wang et al.l [2022), tree-of-thoughts (Yao et al., 2023), and
stream-of-search (Gandhi et al.|[2024). In parallel, post-training for large reasoning models (LRMs)
increasingly relies on reinforcement learning over generated chains of thought (OpenAl, 20255 |Guo
et al.l [2025).

Despite these advances, several limitations have emerged. The reasoning abilities of LRMs degrade
as the complexity of problem instances increases or as the context length grows (Shojaee et al.,
20255 |Sun et al., [2025)). To address these challenges, novel approaches such as multi-agent collab-
oration (e.g. Zhang et al., 2024; [Tran et al., 2025; |Xiao et al., 2025 |Hsu et al., [2025) and adaptive
parallel reasoning (Pan et al.|[2025) decompose complex tasks into simpler subproblems, coordinat-
ing multiple agents to achieve stronger performance. These frameworks offer promising near-term
solutions, yet the theoretical underpinnings of their expressive capacity remain poorly understood.
While the expressive power of Transformers with CoT prompting has been studied in depth (Merrill
& Sabharwall, 2023 |[Amiri et al.| [2025)), little is known about the fundamental limits and tradeoffs
of communication and resource allocation in multi-agent reasoning schemes.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39

40
41
42
43
44
45
46

47
48

49
50
51
52

53
54
55

56
57
58
59
60
61
62

&1

65

66
67
68
69

70
71
72

73

74
75

This gap motivates the central question of our work: From an algorithmic perspective, are there
tasks that provably benefit from communication and dynamic resource allocation in multi-agent
reasoning systems?

We address this question by proposing a theoretical framework for analyzing the expressivity of
multi-threaded and multi-agent reasoning strategies. Our analysis applies to settings where both
problem complexity and context size scale, and focuses on three representative algorithmic families:
state tracking, recall, and k-hop reasoning. For each task family, we establish bounds on the number
of agents and the quantity of communication required, and we characterize the tradeoffs between
these quantities. Finally, we complement our theoretical results with empirical validation using
pretrained large language models. Our contributions are as follows:

* We propose a formalization of multi-agent reasoning systems based on insights from the
multi-party communication complexity and parallel processing literature

* For three distinct families of algorithmic tasks—state tracking, recall, and k-hop reason-
ing—we derive bounds on the number of agents and the communication required, high-
lighting the tradeoffs between these resources. These tasks capture key aspects of practical
reasoning problems, making the results broadly applicable.

* We provide empirical validation of our theoretical insights by implementing the optimal
communication protocols given by theory. Our analysis shows the performance in terms of
accuracy, communication and token usage closely aligns with theoretical predictions.

Throughout, we consider the setting where an input of size N is partitioned equally between w
agents. Our results reveal three distinct regimes for multi-agent tasks (Table[T). First, there are tasks
that can be solved efficiently with minimal chain-of-thought reasoning or communication when
the input is partitioned between agents, such as key-query retrieval. Second, some tasks not only
allow partitioning but also benefit from it, achieving reduced wall-clock time compared to a single-
agent setup; state tracking is a prime example. Finally, there are tasks that can be solved through
partitioning but require significant communication among agents, such as reasoning over multiple
hops.

Depth Size ~ Communication
State tracking O(X +logw) O(N) O(w)
Lookup by query O(1) O(w) O(1)
k-hop reasoning O(k) O(k) O(k)

Table 1: Summary of results, with w denoting the number of agents. /N represents the length of the
input. O(-) indicates the existence of a protocol; ©(-) indicates that we prove it optimal.

2 Background

2.1 Notation

We denote with N, Z and R the set of natural, integers and real numbers, respectively. We use bold
letters for vectors (e.g. v € R%), bold uppercase letters for matrices (e.g. M € R%1xd2) A]l
vectors considered are column vectors unless otherwise specified. The i-th row and the j-th column
of a matrix M are denoted by M; . and M. ;.

Let X be a fixed finite alphabet of symbols, ¥* the set of all finite strings (words) with symbols in X
and X" the set of all finite strings of length n. We use ¢ to denote the empty string. Given p, s € X%,
we denote with ps their concatenation.

2.2 Model of Transformers

Transformers. Each layer of a Transformer has an attention block followed by an MLP block.
The attention block takes as input X € RV *? and applies the operation

Att(X) = FAYXWOW LX) XW/, (1)

76
77

78

79
80
81
82
83
84

85
86

87
88
89
90
91
92

93
94
95
96
97

98
99

100
101
102

103
104
105

107

108

109
110
111
112

113
114
115
116

117
118
119

where Wo, Wx, Wy, € R™*? and fAY(.) = softmax(-) or fA%(-) = UHAT(-). For any matrix
A € RV*M e define the softmax operator row-wise as

GXp(AZ"j)

softmax(A); ; = m

and we define UHAT row-wise as
1 if j = argmax A, .
0 else

UHAT(A); ; = { ,)
where in case of a tie, the rightmost element is selected. For simplicity, we will use Q(x;) (and
likewise K (x;) and V' (x;)) to denote W ox;. The width of the Transformer is max(m, d), where
m x d is the shape of the projection matrices W, W . Multi-head attention with H heads is
defined as M-Attg (X) = [Att; (X), ..., Attg (X)W where each Att;(X) has its own set of pa-
rameters. The matrix Wo € R™H >4 projects the concatenated vector to a vector of dimension d.
For an input X € RM*4 the output of a layer of Transformer will be 1)(M-Atty (X)) € RV*d
O]

where ¢ : R? — R? corresponds to the function computed by the MLP. We use y;’ to denote the

ith activation at layer [of a Transformer.

Hard and soft attention Throughout, we will assume a model of Transformers with uniform hard
attention, which we will refer to as UHAT for short (e.g. Hahnl 2020} |Hao et al., [2022; [Yang et al.,
2024a; |Amiri et al., 2025} Jerad et al.l [2025). Although in practice soft attention is easier to train
with gradient descent, analysis studies suggest that pretrained models typically concentrate their
attention on only a few positions (Voita et al.,[2019; |Clark et al.,[2019) and that the most important
heads are those with peaky attention.

Sequence-to-sequence vs. decoder-only The definition above considers an L-layer sequence-to-
sequence Transformer which sends a sequence of token embeddings to another sequence of token
embeddings s.t. T : RVX4 — RN*d_ Typically most models commonly used in practice are
decoder-only: concretely this makes them functions 7' : RV*4 — V with V C RI*|. Typically,
V is a set of one hot encoded (OHE) vectors, each associated to a symbol in ¥ Concretely, this

is implemented by adding an output layer which maps y%L) — OyglL) for some linear map O €
p y g p y p p

R|Z\><d

Constant precision models In this work, we are interested in the expressive power of models
with finite precision. Our constructions will work with p-bit numbers. Throughout, we will consider
constant precision (w.r.t. input length): p = O(1).

Size preserving functions We say a function f : {0,1}* — {0, 1}* is size preserving if and only
if there exists ¢, n such that Vz || > n = |f(z)| < c|z|. Throughout, we will assume arbitrary
size preserving MLPs. This means that the map v can compute any function so long as the input
and output have a number of bits in the same order of magnitude.

2.3 Formalization of Multi-Thread and Multi-Agent Systems

We define multi-agent systems from a graph perspective:

Definition 2.1 (K -way multi-agent system). Let 3 be a finite alphabet and = D ¥ a CoT alphabet
s.t. |Z] € O(poly(N)). A K-way multi-agent system, denoted A ({xD}<, N, b), is a labeled
DAG with two edge types. Nodes correspond to the computational model (i.e., Transformers in our
case) and edges correspond to a symbol from = outputted by the model. Each node corresponds to

a specific model ¢ at a specific decoding step t. We denote Ti(t), i € [K] the ith model at timestep
t of decoding. We define two types of edge labels: communication edges {c,c},0 € = represent
communicating a symbol between two different models and CoT edges {a, o}, o € E correspond to
autoregressive decoding of the model.

Agents can only send or receive one symbol o € = at a time. If a node receives n communication
edges at once, the agent must process each edge one at a time, leading to n CoT steps. A given multi-
agent system can communicate in many different ways. We denote C(.Af) a specific communication

120
121

122
123
124
125
126
127
128
129

131
132
133
134
135

136
137
138
139

140

141

142

143

144
145

146

147

148

149
150

@ """" -) @

(a) Example of a K-way
multi-agent protocol with
K = 3, CoT depth 5, and
3 communication edges.

(b) Example of a multi
agent setup with 3 worker
agents and one manager
agent

(c) Example of a prefix sum
agent cascade

Figure 1: Example graphs of different multi-agent systems

protocol or strategy implemented under the constraints of A . Finally, we define some terminology
to characterize the complexity of a multi agent system:

 Let depth represent the longest path on the graph, regardless of the edge type. Computation
depth is the number of ¢-edges on this path.

* Communication depth or communication rounds is the number of c-edges on the longest
path.

» Width of the graph corresponds to the number of agents in the system. Typically we use
w(N) when the number of agents is a function of input length.

* Size or work corresponds to the number of nodes in the graph.

» Communication budget corresponds to the total number of ¢ edges.

Figure[T]illustrates examples of the proposed graph representation for multi-agent systems.

Decision problems We say a K-way multi-agent system Ay decides a function f : ¥* — {0,1}
if for all z € X*, and for all partitions * = z; ...z, there exists a communication protocol C
with a subset S C [K] of agents which terminate in f(z). For functions f : ¥* — ¥ we say Ag
evaluates f. The definition is extended in the straightforward way. More concretely, Transformer
models implement the protocol computation in the following way:

Definition 2.2 (Agent computation). Let 7(*) denote an agent, represented by a maximal path of
CoT edges, possibly augmented with incoming and outgoing communication edges. The computa-
tion of T(*) is defined as follows. The first step consists of passing the input chunk z(*) € ¥* to the
agent. The protocol then proceeds according to:

1. Append the agent identifier ID(T(*).

2. Traverse the nodes along the agent’s path in order. Letting 0 € = denote a communicated
symbol, for each step:
(a) If there is an outgoing communication edge:

i. If the message is sent to a single agent 7). append the token sequence
[send] o ID(T'V)).
ii. If the message is broadcast to all agents, append the token sequence [broadcast] o.
(b) If there is an incoming communication edge, append the token sequence [receive] o.

(c) Append the corresponding CoT edge symbol {¢, o }.

A transformer computes such a protocol if, when run autoregressively on this string, it predicts all
tokens other than those in (a),(b) and (c).

151

152

153
154

155

157
158

159
160
161
162

163

164
165

166
167
168
169
170
171

172

173
174
175

176
177
178

179
180
181
182

183
184

185
186

187
188
189

190
191

192
193

194

196
197

3 Results

3.1 General Results

In this section, we present theoretical results which hold for all task families and all multi-agent
systems following Definition [2.1] The first result we present relates to the size of the system:

Proposition 3.1 (Conservation of size). Any protocol can be converted into an equivalent single-
agent protocol with the same size up to constant factor.

Sketch of proof. By constructing a single agent that alternates between simulating each of the
agents of the original protocol. |

In essence, this result implies that there is “no free lunch” when it comes to multi-agent systems.
Although one can obtain speedups in computation time (or depth), the quantity of work done remains
the same. This result is simple, but critical to our analysis of multi-agent systems. The second result
in this section situates multi-agent systems within the circuit complexity landscape.

Proposition 3.2. Consider a decision problem on an input x € {0, 1}~ with a multi-agent system

A with depth O(log’? (N)),i € N. Ifa UHAT transformer computes Ay, then the decision problem
is in AC".

Sketch of proof. The key idea of the proof is to simulate the entire computation graph with a log-
depth Transformer and leverage the known circuit complexity results for these models. In order to
manage intermediary tokens from the CoT, we allow the model to have O(poly(/N)) padding tokens
in which in can store such intermediary values. Each depth in the graph is thus simulated by a single
Transformer layer which stores the ”CoT tokens” in the corresponding padding tokens. Applying
the results of Hao et al.| (2022). [l

3.2 State Tracking

The first family of problems we consider is state tracking. State tracking is at the heart of many
reasoning problems, such as tracking chess moves in source-target notation, evaluating Python code,
or entity tracking. We recall the formal definition of a state tracking problem:

Definition 3.1 (State tracking problem). Let M be a finite set, and (M, -) a finite monoid (M with an
identity element and associativity). A state tracking problem on M is defined as sending a sequence
momy ... mg € M*tomg-mq-...-my € M.

This class of problems encompasses deciding membership for all regular languages such as PARITY.
Previously, |Amiri et al.| (2025) showed that for PARITY, UHAT Transformers required a CoT of
length (V). Can a multi-agent system with a large amount of total communication do better? We
show that in terms of the size of the underlying graph, this cannot be the case:

Proposition 3.3. Let K € N, any communication protocol C(Ay) deciding PARITY using a UHAT
Transformer requires size QQ(N).

Proof. By proposition[3.1} we know that we can always obtain a serial CoT with equivalent expres-
sivity. By applying Lemma 3.4 of Amiri et al.|(2025)), we thus directly obtain the result. O

However, if we consider a parallel computation budget, we can obtain a speedup in the depth of the
computation graph. We assume the setup where each agent receives a disjoint contiguous substring
of the input. Then:

Proposition 3.4. Let M be a finite monoid. For any word my ... my € MY, there exists a com-
munication protocol with Ax ({o;}_,,log(N), N) which sends mg ... my tomg - ... - mx.

The above protocol has a width of IV agents, but we can generalize the above protocol to other
widths given by some function w(N) of the input size N:

Proposition 3.5. Given a monoid M and a constant depth Transformer T' with context window

of size N, there exists a O(logw(N) + %) depth and w(N) (e.g., V'N) width and O(N) size

parallel CoT which solves state tracking on M for sequences of length up to N, with communication
budget w(N).

198
199
200
201

202

204

205
206
207

209

210

211

212

213

214
215

216
217
218
219

220
221
222

223

224

Effectively, this means that given enough parallel computation budget, we can indeed recover a
speedup in terms of effective or wall-clock time. The proof for this result is given in Appendix
Proposition [3.4] is simply a corollary of this proof. The above result is essentially optimal, in that
essentially no shorter depth is attainable:

Proposition 3.6 (Optimality). Assume M is a nontrivial group. Let w(N) be the number of agents,
with each receiving a disjoint contiguous part of the string. Then O(w(N)) communication budget,
O(logw(N)) communication depth, and computation depth Q(%) are each optimal.

Sketch of proof. ~ Optimality of the computation budget holds because each agent’s portion matters
for the result. An Q(log w(N)) lower bound on the communication rounds follows by constructing
a tree consisting of only the communication edges, and noting that in each round, an agent receives
only one symbol. Now for the time/depth lower bound, we appeal to size conservation:

N = Size < Computation-Depth - Agents 3)
hence
L < Computation-Depth @)
w(N) — P P
From which the result follows. O

We summarize our results for state tracking below:

Tradeoffs for State Tracking Assume w(N) agents, each provided a disjoint contiguous portion
of the input. Then

1. Computation depth O(log w(N) + %)
2. Number of agents: w(/N) and partitioned input size per agent: %

3. Communication depth O(log w(N))
Communication budget O(w(V))
4. Size: N

are both realizable and optimal for performing state tracking.

3.3 Simple Retrieval
Another foundational task is to perform simple, associative retrieval. In this case, we obtain a very
favorable result:

Proposition 3.7. Given an input consisting of N pairs (x;,y;), and a query x, consider the task of
retrieving the (unique) y such that (x,y) appears in the input. Assume that the input is partitioned
disjointly into parts provided to k agents, which also have access to the query. Then they can solve
the task with depth O(1).

Sketch of proof. Each agent uses attention to check if the query x appears in the input, and uses
an induction head to retrieve the associated y if it appears. By design, only one agent will find such
a y; it then reports it to a designated manager agent that output y. (|

Thus:

Tradeoffs for Simple Retrieval
1. Computation depth O(1)

2. Width w(N) and chunk size: 5y

3. Communication depth O(1)
Communication budget O(1)
4. Size: O(w(N))
is both realizable and optimal for retrieval.

225

226
227
228
229
230
231
232
233

234
235
236

237
238
239
240

241

242

243

244
245
246
247
248
249
250

251

252
253
254
255
256
257

259
260
261
262
263

3.4 Multi-Hop Reasoning

A related task is k-hop composition (e.g. Yang et al.|[2024b; [Wang et al., 2025} |Yao et al.| [2025). In
this task, we have a domain D of objects and a vocabulary F, intended to denote functions. We have
a set of facts f(x) = y contextually given, where for each x and f at most one such fact is included.
Each agent receives a disjoint equal sized partition of the set of facts, and a common query of the
form f1(...(fr(x))...) where f; € F, x € D. The agents are tasked with jointly evaluating this
composition based on the provided facts. Here, the domain and vocabulary may be arbitrarily large
filling a context of potentially very large size /N, but the computation depth and communication
budget depend only on k:

Proposition 3.8. The k-hop composition task can be solved with computation depth O(k), commu-
nication budget O(k), and size O(k). Size and communication budget are optimal. Computation
depth and communication depth O(k) are optimal at least up to a log(N + k) factor.

The regime of this task is different from the previous ones in that, in the worst case, there is no
reduction of computation depth when increasing the number of agents: Depending on how the
facts relevant to the query are distributed among the agents, computation depth and communication
budget may be (k) in the worst case.

We thus have:

Tradeoffs for k-hop Compoesition for k-hop composition and V facts:
1. Computation depth O (k)

2. Number of agents: w(k) and chunk size: %

3. Communication depth O(k)
Communication budget O(k)

4. Size: O(k)

are realizable for k-hop composition. Communication budget and size are optimal. Computation
depth and communication depth are optimal at least up to a log(N + k) factor.

4 Experimental Validation

In this section, we aim to validate experimentally if the proposed communication protocols and con-
structions of Section [3|also work in practice. To do so, we employ pretrained LLMs that are given
a system prompt as well as a query to solve the task. We typically use hard coded communica-
tion protocols similar to the protocol implementation of [Zhang et al.| (2024). For all experiments,
we report the mean over 100 runs using the LGAI EXAONE-3.5-32B-Instruct (Research) [2024)
model through the TogetherAl API. This model was chosen given it was a free, medium-sized and
instruction-tuned. Future work will include analysis on a wider range of models.

4.1 State Tracking

We start by validating experimentally the abilities of different multi-agent systems to perform state
tracking tasks. We consider two tasks: (i) PARITY i.e. determining if the number of 1s in a bitstring
is even or odd (ii) S5 permutations, which we frame as a word problem where an each agent is given
a prompt explaining there are 5 balls in 5 distinct bins and a sequence of swap commands such as
”swap ball 1 and 3, swap ball 2 and 4”. In this task the agents must return the correct value of the
ball in each bin. The bins numbers are only given at the beginning of the task making this a hard
state tracking problem (Merrill et al.| [2024)).

We compare our theoretical constructions to two baselines: self-consistency (Wang et al.,[2022) with
majority voting and Chain-of-Agents (Zhang et al.,|2024). We ablate over the branching factor for
Prefix Sum, the number of agents for Maj Voting and the chunk size for CoA. For more details about
the experiments, please refer to the appendix. We report the mean accuracy over 100 runs for the
best hyperparameter value found in each sweep.

264
265
266
267

269
270
271

272

273
274
275
276
277
278
279
280

281

282
283
284
285
286

1400

T T
BN Prefix Sum]
W Maj Voting

. Coa 9

1200 [

1000

800 [

Accuracy

600

- i X

I I I I I I
8 16 32 64 128 256 50 100 150 200 250 300 350

o
>
Total Computation (Tokens)

Se;;uence Length Total Communication (Edges)

(a) Accuracy of models on PARITY for differ- (b) Computation depth (calculated by sum-
ent sequence lengths. Prefix Sum represents ming the average token usage at each level of
the theoretically optimal communication pro- the protocol) against the total amount of com-
tocol, Majority Voting is self-consistency munication used. This trend is consistent with
with majority voting decision the N/w(N') computation depth vs w(N) to-
[2022) and CoA is Chain-of-agents proto- tal communication tradeoff predicted in Sec-
col (Zhang et al}, 2024). tion B2

Figure 2: Empirical validation for PARITY.

Parity As we can see in Figure the Prefix Sum construction consistently outperforms all
other methods. Interestingly, CoA outperforms self-consistency only shorter sequence lengths; as
length increases, self-consistency has better accuracy. However, this gain in performance is not
noteworthy: both methods have accuracy very close to random chance for large sequence lengths.
Only Prefix sum retains a significant advantage over the random chance baseline of 0.5. In terms
of communication, Figure 2(b)] shows the tradeoff between the computation depth and the total
amount of communication. This trend is consequent with the theoretical prediction of the tradeoff
between communication and computation. Indeed, in Section 3.2 we predict a tradeoff between
depth N/w(N) and total communication w (V)

1.0 T T T T T T 1.0 T T
=@ Prefix Sum
./W ~®— Maj Voting
0.8 F @ — 08 @ C 1
LIS "_',A\ 5 ®- Coa
z o N\ £
E 0.6 N - \ § 0.6 Q
E Tl NS 7 r 1
g (3 o ..a. o~ _ z N
P ‘e.. .. N 2 - N
g (e, e« % | = o A . N
go4r et - WYY S e >
E (] ‘o1 % L 2 \
=1 5 0..,_._.‘_..'“ N
02 ~®— Prefix Sum _| 02k 0..‘ ~o--e
~&~ Maj Voting CTEEL TE NS ook)
+®: Coa . &]
00 | I | I I . 00 I I | I .
6 8 10 12 14 16 6 8 10 12 14 16
Number of Swaps Number of Swaps

Figure 3: Per-element accuracy (left) and exact match (EM) (right) accuracy for the S5 permutations
task.

S5 permutations Figure 3] gives the exact match (EM) and the per element accuracy for the per-
mutation task. EM is calculated by either returning 1 if the entire sequence is correct or O otherwise.
Once again, the prefix sum protocol consistently outperforms both other baselines. Interestingly,
majority voting outperforms CoA on this task. This can be explained by the chosen implementation
for the permutation problem: worker agents return a dictionary where keys represent bin and values
represent balls. The manager agent must then combine together the composition maps given by
these dictionaries. When the number of dictionaries to compose is high, this becomes quite difficult,
thus limiting the abilities of CoA.

4.2 k-hop Reasoning

Finally, we investigate the abilities of models to perform a k-hop reasoning task. In this task, agents
are given a series of facts e.g. Paula is the boss of Mary, Mary is a friend of George etc and a
query e.g. "Who is the boss of the friend of George?”. There are two parameters controlling the
difficulty of this task; the number of facts and the number of hops in the query. For this task,
we consider two baselines. MajorityVoting i.e. self-consistency with majority voting

287
288
289
290

291

292
293
294

295

297
298
299
300

301
302
303
304
305
306
307
308
309
310
311
312

313
314
315
316
317
318
319

(2022) and IterativeQuery, a protocol similar to the one optimal for the k-hop task; at each round,
multiple agents are given disjoint subsets of the facts and a specific query (e.g. "Who is the friend of
George?”). If an agent finds the answer to the query it returns it, agents who do not return a response
indicating they did not. The manager then aggregates the answer and updates the query for the next
round. This goes on until the final query is answered.

Majority Voting Agents TterativeQuery Agents
T T T T

1.0 T T T 1.0 T T T
=@ 50 facts =@ 50 facts
@~ 100 facts —~ ~®~ 100 facts
08 c@ 200facs] 08 &% + 200 facts 7
Z 06 ®... 4 N 1 06 ‘e
g e oag N ®--...
£ MEEL NN e
2 S ° ®
1 D\ ===
< 04 & o] 04r
.
02+ 4 02t
0.0 I | I I I I I 0.0 I I I I I I
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Number of Hops Number of Hops

Figure 4: Accuracy vs. number of hops in the query. Left panel shows results for self-consistency
with majority voting. Right panel is IterativeQuery, a protocol implementing the optimal k-hop
construction. Each line represents a different number of facts in the knowledge base.

As we can see in Figure [] the IterativeQuery protocol outperforms Majority Voting. This is espe-
cially apparent in the regime where the number of facts is high. This highlights the advantage of
separating long contexts for reasoning tasks.

5 Discussion and Conclusion

In summary, our work provides a principled foundation for understanding the algorithmic benefits
and limitations of multi-agent reasoning. By formalizing communication and resource tradeoffs,
we bridge theoretical analysis with empirical observations, shedding light on when collaboration
enhances reasoning efficiency and when it imposes inherent costs. These results open new avenues
for designing reasoning systems that balance scalability, expressivity, and practical performance.

Practical Considerations Several of our theoretical and empirical observations may be of interest
to practitioners or to researchers aiming to design better multi-agent LLM systems. First, we note
that setups with multiple worker agents and a single manager (e.g. Zhang et al.| (2024))) only shift
the context bottleneck to the manager agent; if there is a large amount of workers, the manager
must process all of their responses, which can lead to errors. To mitigate this issue, we propose
an architecture akin to the prefix sum agent cascade. The key idea is that iterative summarization
and processing reduces the bottleneck on the final agent This could be implemented with a con-
stant branching factor and constant depth, left as hyperparameters for the user. We also believe
the IterativeQuery protocol we give for k-hop reasoning may be of practical relevance. For tasks
with complex queries, it could be interesting to implement a similar architecture, where, at first,
a manager model splits the main query into subqueries which are each processed through iterative
worker/manager communication rounds, with the manager updating the query after each round.

Limitations and Future Work There are many directions in which this work could be extended.
Firstly, it would be exciting to use the practical considerations we provide to design new multi-agent
systems, and test them on real-world applications. As for the theoretical side, it would be interesting
to extend our analysis to other domains such as graph reachability, where existing literature on
parallel processing provides a starting point to analyze optimality of algorithms/number of agents.
Finally, the proofs currently assume UHAT and arbitrary MLPs; the analysis could be strengthened
by considering softmax attention and RELU feedforward nets.

320

321
322

323
324

325

327

328
329
330

331
332

333

335

336
337
338

339
340
341
342
343
344

345
346

347

349
350
351
352

353
354
355

356
357

358
359
360

361
362
363

364
365

References

Alireza Amiri, Xinting Huang, Mark Rofin, and Michael Hahn. Lower bounds for chain-of-thought
reasoning in hard-attention transformers. arXiv preprint arXiv:2502.02393, 2025.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look
at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D Goodman. Stream of search (sos): Learning to search in language. arXiv preprint
arXiv:2404.03683, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156—171, 2020.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800-810, 2022.

Chan-Jan Hsu, Davide Buffelli, Jamie McGowan, Feng-Ting Liao, Yi-Chang Chen, Sattar Vakili,
and Da-shan Shiu. Group think: Multiple concurrent reasoning agents collaborating at token level
granularity. arXiv preprint arXiv:2505.11107, 2025.

Selim Jerad, Anej Svete, Jiaoda Li, and Ryan Cotterell. Unique hard attention: A tale of two
sides. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pp. 977-996, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-252-7. doi: 10.18653/v1/2025.acl-short.76. URL
https://aclanthology.org/2025.acl-short.76/.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
arXiv preprint arXiv:2310.07923, 2023.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
arXiv preprint arXiv:2404.08819, 2024.

OpenAl OpenAl 03 and o4-mini System Card. Technical report,
OpenAl, San Francisco, CA, April 2025. URL https://cdn.
openail.com/pdf/2221c875-02dc—-4789-800b—-e7758f£3722cl/
o3-and-o4-mini-system—card.pdf. PDF available online.

Jiayi Pan, Xiuyu Li, Long Lian, Charlie Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt Keutzer,
and Alane Suhr. Learning adaptive parallel reasoning with language models. arXiv preprint
arXiv:2504.15466, 2025.

LG AI Research. Exaone 3.5: Series of large language models for real-world use cases. arXiv
preprint arXiv:https://arxiv.org/abs/2412.04862, 2024.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity. arXiv preprint arXiv:2506.06941, 2025.

Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, and Dawn
Song. Omega: Can llms reason outside the box in math? evaluating exploratory, compositional,
and transformative generalization. arXiv preprint arXiv:2506.18880, 2025.

Pascal Tesson and Denis Thérien. Diamonds are forever: The variety da. In Semigroups, algorithms,
automata and languages, pp. 475-499. World Scientific, 2002.

10

https://aclanthology.org/2025.acl-short.76/
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf

366
367
368

369
370
371

372
373
374

375
376
377

378

380

381
382

383
384
385

386
387
388

389
390
391

392

394

395
396
397

398

399

400

401
402

403
404

405
406
407

408
409

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. arXiv preprint
arXiv:2501.06322, 2025.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Zixuan Wang, Eshaan Nichani, Alberto Bietti, Alex Damian, Daniel Hsu, Jason D Lee, and Denny
Wu. Learning compositional functions with transformers from easy-to-hard data. arXiv preprint
arXiv:2505.23683, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Sibo Xiao, Zixin Lin, Wenyang Gao, and Yue Zhang. Long context scaling: Divide and conquer via
multi-agent question-driven collaboration. arXiv preprint arXiv:2505.20625, 2025.

Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recognize ex-
actly the star-free languages. In The Thirty-eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024a. URL https://openreview.net/forum?id=FBMsBdHOyz.

Sohee Yang, Nora Kassner, Elena Gribovskaya, Sebastian Riedel, and Mor Geva. Do large lan-
guage models perform latent multi-hop reasoning without exploiting shortcuts? arXiv preprint
arXiv:2411.16679, 2024b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023.

Yuekun Yao, Yupei Du, Dawei Zhu, Michael Hahn, and Alexander Koller. Language models can
learn implicit multi-hop reasoning, but only if they have lots of training data. arXiv preprint
arXiv:2505.17923, 2025.

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Arik. Chain of agents:
Large language models collaborating on long-context tasks. Advances in Neural Information
Processing Systems, 37:132208—-132237, 2024.

A Appendix

A.1 Proofs for State Tracking results

We start by giving a formal proof of Proposition [3.5]

Proposition A.1 (Repeated from Prop[3.3). Given a monoid M and a constant depth Transformer
T with context window of size N, there exists a O(logw(N) + ﬁ) depth and w(N) (e.g., V'N)

width and O(N) size parallel CoT which solves state tracking on M for sequences of length up to
N, with communication budget w(N).

Proof. Let an input = of length N be given, where each symbol is an element of M. We assume for
simplicity (otherwise padding) that IV is a multiple of the number w of agents. We build a DAG as
follows.

The context given to agent j is 1 j ... T N/, ;# Where # is the EOS token. The context length of
the sequence given to each agent is thus N/w + 1.

11

https://openreview.net/forum?id=FBMsBdH0yz

410
411

412
413
414
415
416
417
418

419
420
421

422
423
424
425
426

427
428
429

430
431
432
433
434
435

436
437

438
439
440
441

442
443
444
445

446

For each agent j, we create nodes ny j,n2 4, .., MN/w,;> With CoT edges n;; — n;y1; with
{t, LT1,5--- .’L'7;+1$j}.

An agent can use a call [send]o, where [send] is a special token to transmit information to other
agents. We assume WLOG that this command transmits the symbol ¢ to the next agent with ID
7 + 1. The final agent, which we call the receiver, only receives information and does not transmit.
The protocol computes a prefix sum algorithm with branching factor 2: at the beginning of runtime,
all agents compute the composition of their NV/w elements. Then the agents with odd indices j send
their result to those with even indices, who compute the composition of their result with that of their
odd index neighbor and so on so forth in a prefix sum fashion.

We show this is implementable in UHAT with 3 heads and a single layer, with width O(log N).
Essentially we use 2 heads to extract the value of the monoid elements and then store them in the #
token and use the MLP to perform the rest of the processing

Embeddings We will use quasi-orthogonal vectors to keep track of the positions of different ele-
ments in the sequence. Formally, let 7(1),..., 7 (2N/w + 1) be 2N/w + 1 vectors of dimension
k = O(log N) such that (7 (¢),7 (j)) < 1/4 fori # j and (T (i), T(j)) > 3/4 fori = j. Such
vectors can be obtained through the Johnson-Lindenstrauss Lemma . We define E(o) to be the
embedding vector of some symbol ¢ € =. Embeddings have the following structure

E(0) = [ohe(o) ohe(c) T(i) O O [send]], (5)

where ohe(c) € {0,1}5l is the one hot encoding (OHE) of o € =, T (i) is a quasi orthogonal
vector, the two last dimensions are also of dimension k and where, [send] € {0,1} are flags which
are set to 0 by default. Equally, we define the embedding of the separator token $ as

E#)=[0 0 0 7T(1) 7T(2) [send]] (6)

Construction for composition of monoid elements The construction for composition requires
one layer and three heads. The key idea of the construction is to use two heads to extract the two
elements to be composed at a given timestep, then concatenate them in the embedding of the $ token.
The MLP can then perform the composition, which it returns in the embedding of the last token. The
third head is only there to copy back the remaining embedding values. For the first head, we would
have the following key, query and value matrices:

0 0 I 0000
0 0 0 00O O
W, = |0 Wy = |I Wy=(0 0 010 7)
I 0 0 00O O
0 0 0 00O O

The output of the attention layer is thus all zeros except for the embedding at the $ symbol which
would be

E(#)=[ohe(c) 0 0 7T(i) 0 [send]], (8)

The construction for the second head is very similar, with the main differences being the query
matrix has the all Os and identity at the last block and the value matrix is like that of the previous
head with the two last columns swapped. This would give us a similar sequence of all O vectors,
except for the embedding at the # symbol which would be

E(#)=1[0 ohe(c) 0 0 7T(i) [send]], 9)

The third head trivially computes the identity matrix (but with Os at the # position) by using both
key and query matrices to extract the J-L vectors found at the "third” embedding block. We then use
the W matrix to select the relevant parts of out of each had. Once this is done, we use the MLP to
compute composition.

MLP The MLP uses conditional processing. if [send] flag is 0, it defines the following map:
[ohe(o1) ohe(o2) O T (i1) T(i2) [send]] —
[ohe(o1) o ohe(oz) ohe(op) oohe(oz) O T(ix+c¢) T(iz+c) [send]],

12

447
448

449
450

451
452
453

454
455

456
457

459

460
461
462
463
464

465

467

468

470
471

472
473
474
475
476
477
478
479

481
482

483

where c is the token count between the first token and the $ token. In the OHE positions, we define
ohe(o) o ohe(c) — ohe(o) and in the last two J-L positions, we define 0 — 0.

At the last step of composition, using a conditional on based on T (iz 4+ ¢) = T (2N/w), the model
computes this slightly different map:

[ohe(oan/w—1) ohe(oanyw) O T(2N/w—1) T(2N/w) [send]] —
[ohe([send]) ohe(ogn/w—1) 0 Ohe(oan/w) TN +1) T@2N/w+1) 0 [send]],

Thus at the next step of decoding the final vector would stay the same. If the [send] flag is equal to 1,
the MLP simply swaps the values in the first |Z| dimensions with those in the second |=| dimensions.
Thus, once it is time to communicate the model outputs [send]o

This map is size preserving as it maps elements from E back to = and vectors 7 (i) back to vectors
from the same set.

Output matrix Every row of the output matrix is a OHE of one of the symbols in =. The output
matrix is a combined transformation which first selects the top |=| dimensions and uses the OHE
vector found there to put a 1 at the underlying position in the output vocabulary vector. Only the last
token is used for prediction

Receiving and sending communication We assume all agents decode synchronously. When an
agent receives a symbol, the protocol takes the agent’s last symbol, and appends the received symbol
as well as a # EOS token. The agent’s context is then wiped and it starts again. To make sure all the
agents only send symbols at the appropriate time, one can easily change the number of J-L vectors
which the agent receives as these decide at what point the agent sends information. O

Proposition A.2. Let L be a regular language over Y. For any input x € LN, there exists a
communication protocol with Ay ({o:}X, , 1og(N), N) which decides L.

Proof. This statement follows immediately as a consequence of Proposition [3.3] O

A.2 Proofs for Retrieval

Proposition A.3. The k-hop composition task can be solved with computation depth O(k), commu-
nication budget O(k), size O(k). Size and budget are optimal. Computation depth is optimal up to
alog(N + k) factor.

Proof. A construction is as follows: Each agent checks fy(x) against the facts in their context
using an induction-head-like construction; one agent will find the answer y and reports it back to
all agents. Now all agents check whether they have the value of f;_1(y) in their context, and
so on. Once the agents have evaluated the final answer, the manager encodes it in its final node.
Optimality of size follows because State Tracking is a special case of k-hop composition. Optimality
of the communication budget follows because composition of k¥ permutations over {1,...,5} has
communication complexity 2(k) in the model where one agent has the even positions and the other
the odd positions (Tesson & Thérien, [2002). To prove that the depth is worst-case optimal, we
consider the case where all relevant facts happen to be distributed between two agents. Hence, these
two agents must jointly emit {2(k) communication bits. Because an agent emits only O(log(N +k))

bits at a step of time, the communication must be lower-bounded by (10’; 7)-

O

13

	Introduction
	Background
	Notation
	Model of Transformers
	Formalization of Multi-Thread and Multi-Agent Systems

	Results
	General Results
	State Tracking
	Simple Retrieval
	Multi-Hop Reasoning

	Experimental Validation
	State Tracking
	k-hop Reasoning

	Discussion and Conclusion
	Appendix
	Proofs for State Tracking results
	Proofs for Retrieval

