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Abstract

Chain-of-thought prompting has popularized step-by-step reasoning in large lan-
guage models, yet model performance still degrades as problem complexity and
context length grow. By decomposing difficult tasks with long contexts into
shorter, manageable ones, recent multi-agent paradigms offer a promising near-
term solution to this problem. However, the fundamental capacities of such sys-
tems are poorly understood. In this work, we propose a theoretical framework
to analyze the expressivity of multi-agent systems. We apply our framework to
three algorithmic families: state tracking, recall and multi-hop reasoning. We de-
rive bounds on (i) the number of agents required, (ii) the quantity and structure
of inter-agent communication, and (iii) the achievable speedups as problem size
and context scale. Our results identify regimes where communication is prov-
ably beneficial, delineate tradeoffs between agent count and bandwidth, and ex-
pose intrinsic limitations when either resource is constrained. We complement
our theoretical analysis with a set of experiments on pretrained LLMs using con-
trolled synthetic benchmarks. Empirical outcomes confirm the tradeoffs between
key quantities predicted by our theory. Collectively, our analysis offers principled
guidance for designing scalable multi-agent reasoning systems.

1 Introduction

Chain-of-thought (CoT) prompting has become the de facto standard for tackling complex reason-
ing problems. By encouraging models to “think step-by-step,” CoT significantly improves per-
formance on tasks requiring mathematical and logical reasoning (Wei et al., 2022). Building on
this paradigm, recent approaches view reasoning as a structured traversal over thoughts, explor-
ing methods such as self-consistency (Wang et al.l [2022), tree-of-thoughts (Yao et al., 2023), and
stream-of-search (Gandhi et al.|[2024). In parallel, post-training for large reasoning models (LRMs)
increasingly relies on reinforcement learning over generated chains of thought (OpenAl, 20255 |Guo
et al.l [2025).

Despite these advances, several limitations have emerged. The reasoning abilities of LRMs degrade
as the complexity of problem instances increases or as the context length grows (Shojaee et al.,
20255 |Sun et al., [2025)). To address these challenges, novel approaches such as multi-agent collab-
oration (e.g. Zhang et al., 2024; [Tran et al., 2025; |Xiao et al., 2025 |Hsu et al., [2025) and adaptive
parallel reasoning (Pan et al.|[2025) decompose complex tasks into simpler subproblems, coordinat-
ing multiple agents to achieve stronger performance. These frameworks offer promising near-term
solutions, yet the theoretical underpinnings of their expressive capacity remain poorly understood.
While the expressive power of Transformers with CoT prompting has been studied in depth (Merrill
& Sabharwall, 2023 |[Amiri et al.| [2025)), little is known about the fundamental limits and tradeoffs
of communication and resource allocation in multi-agent reasoning schemes.
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This gap motivates the central question of our work: From an algorithmic perspective, are there
tasks that provably benefit from communication and dynamic resource allocation in multi-agent
reasoning systems?

We address this question by proposing a theoretical framework for analyzing the expressivity of
multi-threaded and multi-agent reasoning strategies. Our analysis applies to settings where both
problem complexity and context size scale, and focuses on three representative algorithmic families:
state tracking, recall, and k-hop reasoning. For each task family, we establish bounds on the number
of agents and the quantity of communication required, and we characterize the tradeoffs between
these quantities. Finally, we complement our theoretical results with empirical validation using
pretrained large language models. Our contributions are as follows:

* We propose a formalization of multi-agent reasoning systems based on insights from the
multi-party communication complexity and parallel processing literature

* For three distinct families of algorithmic tasks—state tracking, recall, and k-hop reason-
ing—we derive bounds on the number of agents and the communication required, high-
lighting the tradeoffs between these resources. These tasks capture key aspects of practical
reasoning problems, making the results broadly applicable.

* We provide empirical validation of our theoretical insights by implementing the optimal
communication protocols given by theory. Our analysis shows the performance in terms of
accuracy, communication and token usage closely aligns with theoretical predictions.

Throughout, we consider the setting where an input of size N is partitioned equally between w
agents. Our results reveal three distinct regimes for multi-agent tasks (Table[T). First, there are tasks
that can be solved efficiently with minimal chain-of-thought reasoning or communication when
the input is partitioned between agents, such as key-query retrieval. Second, some tasks not only
allow partitioning but also benefit from it, achieving reduced wall-clock time compared to a single-
agent setup; state tracking is a prime example. Finally, there are tasks that can be solved through
partitioning but require significant communication among agents, such as reasoning over multiple
hops.

Depth Size ~ Communication
State tracking O(X +logw) O(N) O(w)
Lookup by query O(1) O(w) O(1)
k-hop reasoning O(k) O(k) O(k)

Table 1: Summary of results, with w denoting the number of agents. /N represents the length of the
input. O(-) indicates the existence of a protocol; ©(-) indicates that we prove it optimal.

2 Background

2.1 Notation

We denote with N, Z and R the set of natural, integers and real numbers, respectively. We use bold
letters for vectors (e.g. v € R%), bold uppercase letters for matrices (e.g. M € R%1xd2) A]l
vectors considered are column vectors unless otherwise specified. The i-th row and the j-th column
of a matrix M are denoted by M; . and M. ;.

Let X be a fixed finite alphabet of symbols, ¥* the set of all finite strings (words) with symbols in X
and X" the set of all finite strings of length n. We use ¢ to denote the empty string. Given p, s € X%,
we denote with ps their concatenation.

2.2 Model of Transformers

Transformers. Each layer of a Transformer has an attention block followed by an MLP block.
The attention block takes as input X € RV *? and applies the operation

Att(X) = FAYXWOW LX) XW/, (1)
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where Wo, Wx, Wy, € R™*? and fAY(.) = softmax(-) or fA%(-) = UHAT(-). For any matrix
A € RV*M e define the softmax operator row-wise as

GXp(AZ"j)

softmax(A); ; = m

and we define UHAT row-wise as
1 if j = argmax A, .
0 else

UHAT(A); ; = { , )
where in case of a tie, the rightmost element is selected. For simplicity, we will use Q(x;) (and
likewise K (x;) and V' (x;)) to denote W ox;. The width of the Transformer is max(m, d), where
m x d is the shape of the projection matrices W, W . Multi-head attention with H heads is
defined as M-Attg (X) = [Att; (X), ..., Attg (X)W where each Att;(X) has its own set of pa-
rameters. The matrix Wo € R™H >4 projects the concatenated vector to a vector of dimension d.
For an input X € RM*4 the output of a layer of Transformer will be 1)(M-Atty (X)) € RV*d
O]

where ¢ : R? — R? corresponds to the function computed by the MLP. We use y;’ to denote the

ith activation at layer [ of a Transformer.

Hard and soft attention Throughout, we will assume a model of Transformers with uniform hard
attention, which we will refer to as UHAT for short (e.g. Hahnl 2020} |Hao et al., [2022; [Yang et al.,
2024a; |Amiri et al., 2025} Jerad et al.l [2025). Although in practice soft attention is easier to train
with gradient descent, analysis studies suggest that pretrained models typically concentrate their
attention on only a few positions (Voita et al.,[2019; |Clark et al.,[2019) and that the most important
heads are those with peaky attention.

Sequence-to-sequence vs. decoder-only The definition above considers an L-layer sequence-to-
sequence Transformer which sends a sequence of token embeddings to another sequence of token
embeddings s.t. T : RVX4 — RN*d_ Typically most models commonly used in practice are
decoder-only: concretely this makes them functions 7' : RV*4 — V with V C RI*|. Typically,
V is a set of one hot encoded (OHE) vectors, each associated to a symbol in ¥ Concretely, this

is implemented by adding an output layer which maps y%L) — OyglL) for some linear map O €
p y g p y p p

R|Z\><d

Constant precision models In this work, we are interested in the expressive power of models
with finite precision. Our constructions will work with p-bit numbers. Throughout, we will consider
constant precision (w.r.t. input length): p = O(1).

Size preserving functions We say a function f : {0,1}* — {0, 1}* is size preserving if and only
if there exists ¢, n such that Vz || > n = |f(z)| < c|z|. Throughout, we will assume arbitrary
size preserving MLPs. This means that the map v can compute any function so long as the input
and output have a number of bits in the same order of magnitude.

2.3 Formalization of Multi-Thread and Multi-Agent Systems

We define multi-agent systems from a graph perspective:

Definition 2.1 (K -way multi-agent system). Let 3 be a finite alphabet and = D ¥ a CoT alphabet
s.t. |Z] € O(poly(N)). A K-way multi-agent system, denoted A ({xD}<, N, b), is a labeled
DAG with two edge types. Nodes correspond to the computational model (i.e., Transformers in our
case) and edges correspond to a symbol from = outputted by the model. Each node corresponds to

a specific model ¢ at a specific decoding step t. We denote Ti(t), i € [K] the ith model at timestep
t of decoding. We define two types of edge labels: communication edges {c,c},0 € = represent
communicating a symbol between two different models and CoT edges {a, o}, o € E correspond to
autoregressive decoding of the model.

Agents can only send or receive one symbol o € = at a time. If a node receives n communication
edges at once, the agent must process each edge one at a time, leading to n CoT steps. A given multi-
agent system can communicate in many different ways. We denote C(.Af ) a specific communication
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(a) Example of a K-way
multi-agent protocol with
K = 3, CoT depth 5, and
3 communication edges.

(b) Example of a multi
agent setup with 3 worker
agents and one manager
agent

(c) Example of a prefix sum
agent cascade

Figure 1: Example graphs of different multi-agent systems

protocol or strategy implemented under the constraints of A . Finally, we define some terminology
to characterize the complexity of a multi agent system:

 Let depth represent the longest path on the graph, regardless of the edge type. Computation
depth is the number of ¢-edges on this path.

* Communication depth or communication rounds is the number of c-edges on the longest
path.

» Width of the graph corresponds to the number of agents in the system. Typically we use
w(N) when the number of agents is a function of input length.

* Size or work corresponds to the number of nodes in the graph.

» Communication budget corresponds to the total number of ¢ edges.

Figure[T]illustrates examples of the proposed graph representation for multi-agent systems.

Decision problems We say a K-way multi-agent system Ay decides a function f : ¥* — {0,1}
if for all z € X*, and for all partitions * = z; ...z, there exists a communication protocol C
with a subset S C [K] of agents which terminate in f(z). For functions f : ¥* — ¥ we say Ag
evaluates f. The definition is extended in the straightforward way. More concretely, Transformer
models implement the protocol computation in the following way:

Definition 2.2 (Agent computation). Let 7(*) denote an agent, represented by a maximal path of
CoT edges, possibly augmented with incoming and outgoing communication edges. The computa-
tion of T(*) is defined as follows. The first step consists of passing the input chunk z(*) € ¥* to the
agent. The protocol then proceeds according to:

1. Append the agent identifier ID(T(*).

2. Traverse the nodes along the agent’s path in order. Letting 0 € = denote a communicated
symbol, for each step:
(a) If there is an outgoing communication edge:

i. If the message is sent to a single agent 7). append the token sequence
[send] o ID(T'V)).
ii. If the message is broadcast to all agents, append the token sequence [broadcast] o.
(b) If there is an incoming communication edge, append the token sequence [receive] o.

(c) Append the corresponding CoT edge symbol {¢, o }.

A transformer computes such a protocol if, when run autoregressively on this string, it predicts all
tokens other than those in (a),(b) and (c).
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3 Results

3.1 General Results

In this section, we present theoretical results which hold for all task families and all multi-agent
systems following Definition [2.1] The first result we present relates to the size of the system:

Proposition 3.1 (Conservation of size). Any protocol can be converted into an equivalent single-
agent protocol with the same size up to constant factor.

Sketch of proof. By constructing a single agent that alternates between simulating each of the
agents of the original protocol. |

In essence, this result implies that there is “no free lunch” when it comes to multi-agent systems.
Although one can obtain speedups in computation time (or depth), the quantity of work done remains
the same. This result is simple, but critical to our analysis of multi-agent systems. The second result
in this section situates multi-agent systems within the circuit complexity landscape.

Proposition 3.2. Consider a decision problem on an input x € {0, 1}~ with a multi-agent system

A with depth O(log’? (N)),i € N. Ifa UHAT transformer computes Ay, then the decision problem
is in AC".

Sketch of proof.  The key idea of the proof is to simulate the entire computation graph with a log-
depth Transformer and leverage the known circuit complexity results for these models. In order to
manage intermediary tokens from the CoT, we allow the model to have O(poly(/N)) padding tokens
in which in can store such intermediary values. Each depth in the graph is thus simulated by a single
Transformer layer which stores the ”CoT tokens” in the corresponding padding tokens. Applying
the results of Hao et al.| (2022). [l

3.2 State Tracking

The first family of problems we consider is state tracking. State tracking is at the heart of many
reasoning problems, such as tracking chess moves in source-target notation, evaluating Python code,
or entity tracking. We recall the formal definition of a state tracking problem:

Definition 3.1 (State tracking problem). Let M be a finite set, and (M, -) a finite monoid (M with an
identity element and associativity). A state tracking problem on M is defined as sending a sequence
momy ... mg € M*tomg-mq-...-my € M.

This class of problems encompasses deciding membership for all regular languages such as PARITY.
Previously, |Amiri et al.| (2025) showed that for PARITY, UHAT Transformers required a CoT of
length (V). Can a multi-agent system with a large amount of total communication do better? We
show that in terms of the size of the underlying graph, this cannot be the case:

Proposition 3.3. Let K € N, any communication protocol C( Ay ) deciding PARITY using a UHAT
Transformer requires size QQ(N).

Proof. By proposition[3.1} we know that we can always obtain a serial CoT with equivalent expres-
sivity. By applying Lemma 3.4 of Amiri et al.|(2025)), we thus directly obtain the result. O

However, if we consider a parallel computation budget, we can obtain a speedup in the depth of the
computation graph. We assume the setup where each agent receives a disjoint contiguous substring
of the input. Then:

Proposition 3.4. Let M be a finite monoid. For any word my ... my € MY, there exists a com-
munication protocol with Ax ({o;}_,,log(N), N) which sends mg ... my tomg - ... - mx.

The above protocol has a width of IV agents, but we can generalize the above protocol to other
widths given by some function w(N) of the input size N:

Proposition 3.5. Given a monoid M and a constant depth Transformer T' with context window

of size N, there exists a O(logw(N) + %) depth and w(N) (e.g., V'N) width and O(N) size

parallel CoT which solves state tracking on M for sequences of length up to N, with communication
budget w(N).
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Effectively, this means that given enough parallel computation budget, we can indeed recover a
speedup in terms of effective or wall-clock time. The proof for this result is given in Appendix
Proposition [3.4] is simply a corollary of this proof. The above result is essentially optimal, in that
essentially no shorter depth is attainable:

Proposition 3.6 (Optimality). Assume M is a nontrivial group. Let w(N) be the number of agents,
with each receiving a disjoint contiguous part of the string. Then O(w(N)) communication budget,
O(logw(N)) communication depth, and computation depth Q(%) are each optimal.

Sketch of proof. ~ Optimality of the computation budget holds because each agent’s portion matters
for the result. An Q(log w(N)) lower bound on the communication rounds follows by constructing
a tree consisting of only the communication edges, and noting that in each round, an agent receives
only one symbol. Now for the time/depth lower bound, we appeal to size conservation:

N = Size < Computation-Depth - Agents 3)
hence
L < Computation-Depth @)
w(N) — P P
From which the result follows. O

We summarize our results for state tracking below:

Tradeoffs for State Tracking Assume w(N) agents, each provided a disjoint contiguous portion
of the input. Then

1. Computation depth O(log w(N) + %)
2. Number of agents: w(/N) and partitioned input size per agent: %

3. Communication depth O(log w(N))
Communication budget O(w(V))
4. Size: N

are both realizable and optimal for performing state tracking.

3.3 Simple Retrieval
Another foundational task is to perform simple, associative retrieval. In this case, we obtain a very
favorable result:

Proposition 3.7. Given an input consisting of N pairs (x;,y;), and a query x, consider the task of
retrieving the (unique) y such that (x,y) appears in the input. Assume that the input is partitioned
disjointly into parts provided to k agents, which also have access to the query. Then they can solve
the task with depth O(1).

Sketch of proof.  Each agent uses attention to check if the query x appears in the input, and uses
an induction head to retrieve the associated y if it appears. By design, only one agent will find such
a y; it then reports it to a designated manager agent that output y. (|

Thus:

Tradeoffs for Simple Retrieval
1. Computation depth O(1)

2. Width w(N) and chunk size: 5y

3. Communication depth O(1)
Communication budget O(1)
4. Size: O(w(N))
is both realizable and optimal for retrieval.
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3.4 Multi-Hop Reasoning

A related task is k-hop composition (e.g. Yang et al.|[2024b; [Wang et al., 2025} |Yao et al.| [2025). In
this task, we have a domain D of objects and a vocabulary F, intended to denote functions. We have
a set of facts f(x) = y contextually given, where for each x and f at most one such fact is included.
Each agent receives a disjoint equal sized partition of the set of facts, and a common query of the
form f1(...(fr(x))...) where f; € F, x € D. The agents are tasked with jointly evaluating this
composition based on the provided facts. Here, the domain and vocabulary may be arbitrarily large
filling a context of potentially very large size /N, but the computation depth and communication
budget depend only on k:

Proposition 3.8. The k-hop composition task can be solved with computation depth O(k), commu-
nication budget O(k), and size O(k). Size and communication budget are optimal. Computation
depth and communication depth O(k) are optimal at least up to a log(N + k) factor.

The regime of this task is different from the previous ones in that, in the worst case, there is no
reduction of computation depth when increasing the number of agents: Depending on how the
facts relevant to the query are distributed among the agents, computation depth and communication
budget may be (k) in the worst case.

We thus have:

Tradeoffs for k-hop Compoesition for k-hop composition and V facts:
1. Computation depth O (k)

2. Number of agents: w(k) and chunk size: %

3. Communication depth O(k)
Communication budget O(k)

4. Size: O(k)

are realizable for k-hop composition. Communication budget and size are optimal. Computation
depth and communication depth are optimal at least up to a log(N + k) factor.

4 Experimental Validation

In this section, we aim to validate experimentally if the proposed communication protocols and con-
structions of Section [3|also work in practice. To do so, we employ pretrained LLMs that are given
a system prompt as well as a query to solve the task. We typically use hard coded communica-
tion protocols similar to the protocol implementation of [Zhang et al.| (2024). For all experiments,
we report the mean over 100 runs using the LGAI EXAONE-3.5-32B-Instruct (Research) [2024)
model through the TogetherAl API. This model was chosen given it was a free, medium-sized and
instruction-tuned. Future work will include analysis on a wider range of models.

4.1 State Tracking

We start by validating experimentally the abilities of different multi-agent systems to perform state
tracking tasks. We consider two tasks: (i) PARITY i.e. determining if the number of 1s in a bitstring
is even or odd (ii) S5 permutations, which we frame as a word problem where an each agent is given
a prompt explaining there are 5 balls in 5 distinct bins and a sequence of swap commands such as
”swap ball 1 and 3, swap ball 2 and 4”. In this task the agents must return the correct value of the
ball in each bin. The bins numbers are only given at the beginning of the task making this a hard
state tracking problem (Merrill et al.| [2024)).

We compare our theoretical constructions to two baselines: self-consistency (Wang et al.,[2022) with
majority voting and Chain-of-Agents (Zhang et al.,|2024). We ablate over the branching factor for
Prefix Sum, the number of agents for Maj Voting and the chunk size for CoA. For more details about
the experiments, please refer to the appendix. We report the mean accuracy over 100 runs for the
best hyperparameter value found in each sweep.
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(a) Accuracy of models on PARITY for differ- (b) Computation depth (calculated by sum-
ent sequence lengths. Prefix Sum represents ming the average token usage at each level of
the theoretically optimal communication pro- the protocol) against the total amount of com-
tocol, Majority Voting is self-consistency munication used. This trend is consistent with
with majority voting decision the N/w(N') computation depth vs w(N) to-
[2022) and CoA is Chain-of-agents proto- tal communication tradeoff predicted in Sec-
col (Zhang et al}, 2024). tion B2

Figure 2: Empirical validation for PARITY.

Parity As we can see in Figure the Prefix Sum construction consistently outperforms all
other methods. Interestingly, CoA outperforms self-consistency only shorter sequence lengths; as
length increases, self-consistency has better accuracy. However, this gain in performance is not
noteworthy: both methods have accuracy very close to random chance for large sequence lengths.
Only Prefix sum retains a significant advantage over the random chance baseline of 0.5. In terms
of communication, Figure 2(b)] shows the tradeoff between the computation depth and the total
amount of communication. This trend is consequent with the theoretical prediction of the tradeoff
between communication and computation. Indeed, in Section 3.2 we predict a tradeoff between
depth N/w(N) and total communication w (V)

1.0 T T T T T T 1.0 T T
=@ Prefix Sum
./W ~®—  Maj Voting
0.8 F @ — 08 @ C 1
LIS "_',A\ 5 ®- Coa
z o N\ £
E 0.6 N - \ § 0.6 Q
E Tl NS 7 r 1
g (3 o ..a. o~ _ z N
P ‘e.. .. N 2 - N
g (e, e« % | = o A . N
go4r et - WYY S e >
E (] ‘o1 % L 2 \
=1 5 0..,_._.‘_..'“ N
02 ~®— Prefix Sum _| 02k 0..‘ ~o--e
~&~ Maj Voting CTEEL TE NS ook )
+®: Coa . & ]
00 | I | I I . 00 I I | I .
6 8 10 12 14 16 6 8 10 12 14 16
Number of Swaps Number of Swaps

Figure 3: Per-element accuracy (left) and exact match (EM) (right) accuracy for the S5 permutations
task.

S5 permutations Figure 3] gives the exact match (EM) and the per element accuracy for the per-
mutation task. EM is calculated by either returning 1 if the entire sequence is correct or O otherwise.
Once again, the prefix sum protocol consistently outperforms both other baselines. Interestingly,
majority voting outperforms CoA on this task. This can be explained by the chosen implementation
for the permutation problem: worker agents return a dictionary where keys represent bin and values
represent balls. The manager agent must then combine together the composition maps given by
these dictionaries. When the number of dictionaries to compose is high, this becomes quite difficult,
thus limiting the abilities of CoA.

4.2 k-hop Reasoning

Finally, we investigate the abilities of models to perform a k-hop reasoning task. In this task, agents
are given a series of facts e.g. Paula is the boss of Mary, Mary is a friend of George etc and a
query e.g. "Who is the boss of the friend of George?”. There are two parameters controlling the
difficulty of this task; the number of facts and the number of hops in the query. For this task,
we consider two baselines. MajorityVoting i.e. self-consistency with majority voting
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(2022) and IterativeQuery, a protocol similar to the one optimal for the k-hop task; at each round,
multiple agents are given disjoint subsets of the facts and a specific query (e.g. "Who is the friend of
George?”). If an agent finds the answer to the query it returns it, agents who do not return a response
indicating they did not. The manager then aggregates the answer and updates the query for the next
round. This goes on until the final query is answered.

Majority Voting Agents TterativeQuery Agents
T T T T
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Figure 4: Accuracy vs. number of hops in the query. Left panel shows results for self-consistency
with majority voting. Right panel is IterativeQuery, a protocol implementing the optimal k-hop
construction. Each line represents a different number of facts in the knowledge base.

As we can see in Figure [] the IterativeQuery protocol outperforms Majority Voting. This is espe-
cially apparent in the regime where the number of facts is high. This highlights the advantage of
separating long contexts for reasoning tasks.

5 Discussion and Conclusion

In summary, our work provides a principled foundation for understanding the algorithmic benefits
and limitations of multi-agent reasoning. By formalizing communication and resource tradeoffs,
we bridge theoretical analysis with empirical observations, shedding light on when collaboration
enhances reasoning efficiency and when it imposes inherent costs. These results open new avenues
for designing reasoning systems that balance scalability, expressivity, and practical performance.

Practical Considerations Several of our theoretical and empirical observations may be of interest
to practitioners or to researchers aiming to design better multi-agent LLM systems. First, we note
that setups with multiple worker agents and a single manager (e.g. Zhang et al.| (2024))) only shift
the context bottleneck to the manager agent; if there is a large amount of workers, the manager
must process all of their responses, which can lead to errors. To mitigate this issue, we propose
an architecture akin to the prefix sum agent cascade. The key idea is that iterative summarization
and processing reduces the bottleneck on the final agent This could be implemented with a con-
stant branching factor and constant depth, left as hyperparameters for the user. We also believe
the IterativeQuery protocol we give for k-hop reasoning may be of practical relevance. For tasks
with complex queries, it could be interesting to implement a similar architecture, where, at first,
a manager model splits the main query into subqueries which are each processed through iterative
worker/manager communication rounds, with the manager updating the query after each round.

Limitations and Future Work There are many directions in which this work could be extended.
Firstly, it would be exciting to use the practical considerations we provide to design new multi-agent
systems, and test them on real-world applications. As for the theoretical side, it would be interesting
to extend our analysis to other domains such as graph reachability, where existing literature on
parallel processing provides a starting point to analyze optimality of algorithms/number of agents.
Finally, the proofs currently assume UHAT and arbitrary MLPs; the analysis could be strengthened
by considering softmax attention and RELU feedforward nets.
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A Appendix

A.1 Proofs for State Tracking results

We start by giving a formal proof of Proposition [3.5]

Proposition A.1 (Repeated from Prop[3.3). Given a monoid M and a constant depth Transformer
T with context window of size N, there exists a O(logw(N) + ﬁ) depth and w(N) (e.g., V'N)

width and O(N) size parallel CoT which solves state tracking on M for sequences of length up to
N, with communication budget w(N).

Proof. Let an input = of length N be given, where each symbol is an element of M. We assume for
simplicity (otherwise padding) that IV is a multiple of the number w of agents. We build a DAG as
follows.

The context given to agent j is 1 j ... T N/, ;# Where # is the EOS token. The context length of
the sequence given to each agent is thus N/w + 1.
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For each agent j, we create nodes ny j,n2 4, .., MN/w,;> With CoT edges n;; — n;y1; with
{t, LT1,5--- .’L'7;+1$j}.

An agent can use a call [send]o, where [send] is a special token to transmit information to other
agents. We assume WLOG that this command transmits the symbol ¢ to the next agent with ID
7 + 1. The final agent, which we call the receiver, only receives information and does not transmit.
The protocol computes a prefix sum algorithm with branching factor 2: at the beginning of runtime,
all agents compute the composition of their NV/w elements. Then the agents with odd indices j send
their result to those with even indices, who compute the composition of their result with that of their
odd index neighbor and so on so forth in a prefix sum fashion.

We show this is implementable in UHAT with 3 heads and a single layer, with width O(log N).
Essentially we use 2 heads to extract the value of the monoid elements and then store them in the #
token and use the MLP to perform the rest of the processing

Embeddings We will use quasi-orthogonal vectors to keep track of the positions of different ele-
ments in the sequence. Formally, let 7(1),..., 7 (2N/w + 1) be 2N/w + 1 vectors of dimension
k = O(log N) such that (7 (¢),7 (j)) < 1/4 fori # j and (T (i), T(j)) > 3/4 fori = j. Such
vectors can be obtained through the Johnson-Lindenstrauss Lemma . We define E(o) to be the
embedding vector of some symbol ¢ € =. Embeddings have the following structure

E(0) = [ohe(o) ohe(c) T(i) O O [send]], (5)

where ohe(c) € {0,1}5l is the one hot encoding (OHE) of o € =, T (i) is a quasi orthogonal
vector, the two last dimensions are also of dimension k and where, [send] € {0,1} are flags which
are set to 0 by default. Equally, we define the embedding of the separator token $ as

E#)=[0 0 0 7T(1) 7T(2) [send]] (6)

Construction for composition of monoid elements The construction for composition requires
one layer and three heads. The key idea of the construction is to use two heads to extract the two
elements to be composed at a given timestep, then concatenate them in the embedding of the $ token.
The MLP can then perform the composition, which it returns in the embedding of the last token. The
third head is only there to copy back the remaining embedding values. For the first head, we would
have the following key, query and value matrices:

0 0 I 0000
0 0 0 00O O
W, = |0 Wy = |I Wy=(0 0 010 7)
I 0 0 00O O
0 0 0 00O O

The output of the attention layer is thus all zeros except for the embedding at the $ symbol which
would be

E(#)=[ohe(c) 0 0 7T(i) 0 [send]], (8)

The construction for the second head is very similar, with the main differences being the query
matrix has the all Os and identity at the last block and the value matrix is like that of the previous
head with the two last columns swapped. This would give us a similar sequence of all O vectors,
except for the embedding at the # symbol which would be

E(#)=1[0 ohe(c) 0 0 7T(i) [send]], 9)

The third head trivially computes the identity matrix (but with Os at the # position) by using both
key and query matrices to extract the J-L vectors found at the "third” embedding block. We then use
the W matrix to select the relevant parts of out of each had. Once this is done, we use the MLP to
compute composition.

MLP The MLP uses conditional processing. if [send] flag is 0, it defines the following map:
[ohe(o1) ohe(o2) O T (i1) T(i2) [send]] —
[ohe(o1) o ohe(oz) ohe(op) oohe(oz) O T(ix+c¢) T(iz+c) [send]],
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where c is the token count between the first token and the $ token. In the OHE positions, we define
ohe(o) o ohe(c) — ohe(o) and in the last two J-L positions, we define 0 — 0.

At the last step of composition, using a conditional on based on T (iz 4+ ¢) = T (2N/w), the model
computes this slightly different map:

[ohe(oan/w—1) ohe(oanyw) O T(2N/w—1) T(2N/w) [send]] —
[ohe([send])  ohe(ogn/w—1) 0 Ohe(oan/w) TN +1) T@2N/w+1) 0 [send]],

Thus at the next step of decoding the final vector would stay the same. If the [send] flag is equal to 1,
the MLP simply swaps the values in the first |Z| dimensions with those in the second |=| dimensions.
Thus, once it is time to communicate the model outputs [send]o

This map is size preserving as it maps elements from E back to = and vectors 7 (i) back to vectors
from the same set.

Output matrix Every row of the output matrix is a OHE of one of the symbols in =. The output
matrix is a combined transformation which first selects the top |=| dimensions and uses the OHE
vector found there to put a 1 at the underlying position in the output vocabulary vector. Only the last
token is used for prediction

Receiving and sending communication We assume all agents decode synchronously. When an
agent receives a symbol, the protocol takes the agent’s last symbol, and appends the received symbol
as well as a # EOS token. The agent’s context is then wiped and it starts again. To make sure all the
agents only send symbols at the appropriate time, one can easily change the number of J-L vectors
which the agent receives as these decide at what point the agent sends information. O

Proposition A.2. Let L be a regular language over Y. For any input x € LN, there exists a
communication protocol with Ay ({o:}X, , 1og(N), N) which decides L.

Proof. This statement follows immediately as a consequence of Proposition [3.3] O

A.2 Proofs for Retrieval

Proposition A.3. The k-hop composition task can be solved with computation depth O(k), commu-
nication budget O(k), size O(k). Size and budget are optimal. Computation depth is optimal up to
alog(N + k) factor.

Proof. A construction is as follows: Each agent checks fy(x) against the facts in their context
using an induction-head-like construction; one agent will find the answer y and reports it back to
all agents. Now all agents check whether they have the value of f;_1(y) in their context, and
so on. Once the agents have evaluated the final answer, the manager encodes it in its final node.
Optimality of size follows because State Tracking is a special case of k-hop composition. Optimality
of the communication budget follows because composition of k¥ permutations over {1,...,5} has
communication complexity 2(k) in the model where one agent has the even positions and the other
the odd positions (Tesson & Thérien, [2002). To prove that the depth is worst-case optimal, we
consider the case where all relevant facts happen to be distributed between two agents. Hence, these
two agents must jointly emit {2(k) communication bits. Because an agent emits only O(log(N +k))

bits at a step of time, the communication must be lower-bounded by ( 10’; 7)-

O
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