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Abstract

We study fast algorithms for statistical regression problems under the strong con-
tamination model, where the goal is to approximately optimize a generalized linear
model (GLM) given adversarially corrupted samples. Prior works in this line of
research were based on the robust gradient descent framework of [PSBR20], a first-
order method using biased gradient queries, or the Sever framework of [DKK+19],
an iterative outlier-removal method calling a stationary point finder.
We present nearly-linear time algorithms for robust regression problems with
improved runtime or estimation guarantees compared to the state-of-the-art. For
the general case of smooth GLMs (e.g. logistic regression), we show that the
robust gradient descent framework of [PSBR20] can be accelerated, and show our
algorithm extends to optimizing the Moreau envelopes of Lipschitz GLMs (e.g.
support vector machines), answering several open questions in the literature.
For the well-studied case of robust linear regression, we present an alternative
approach obtaining improved estimation rates over prior nearly-linear time algo-
rithms. Interestingly, our algorithm starts with an identifiability proof introduced
in the context of the sum-of-squares algorithm of [BP21], which achieved optimal
error rates while requiring large polynomial runtime and sample complexity. We
reinterpret their proof within the Sever framework and obtain a dramatically faster
and more sample-efficient algorithm under fewer distributional assumptions.

1 Introduction

Parameter estimation in generalized linear models (GLMs), such as linear and logistic regression
problems, is among the most fundamental and well-studied statistical optimization problems. It
serves as the primary workhorse in statistical studies arising from a variety of disciplines, ranging
from economics [Smi12], biology [VGSM05], and the social sciences [Gor10]. Formally, given a
link function γ : R2 → R and a dataset of covariates and labels {(Xi, yi)}i∈[n] ⊂ Rd × R drawn
from an underlying distribution DXy , the problem of statistical (generalized linear) regression asks to

estimate θ? := argminθ∈Rd

{
E

(X,y)∼DXy

[γ(〈θ,X〉 , y)]

}
. (1)

For example, when γ(v, y) = 1
2 (v−y)2, (1) corresponds to (statistical) linear regression. The problem

(1) also has an interpretation as computing a maximum likelihood estimate for a parameterized
distributional model for data generation, and indeed is only tractable under certain distributional
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assumptions, since we only have access to samples from DXy rather than the underlying distribution
itself (see e.g. [BP21] for tractability results in the linear regression setting).

However, in many modern settings these strong distributional assumptions fail to hold. In practically
relevant settings, regression is often performed on massive datasets, where the data come from a
poorly-understood distribution and have not been thoroughly vetted or cleaned of outliers. This
has prompted the study of robust regression, i.e. regression under weak distributional or corruption
assumptions. In this work, we study (1) in the strong contamination model. In this model, we assume
the data points we receive are independently drawn from DXy, but that an arbitrary ε-fraction of
the samples are then adversarially contaminated or replaced. The strong contamination model has
garnered significant recent interest in the algorithmic statistics and learning communities for several
reasons. Firstly, it is a flexible model of corruption and can be used to study both truly adversarial
data poisoning attacks (where e.g. part of the dataset is sourced from malicious respondents), as
well as model misspecification, where the generative DXy does not exactly satisfy our distributional
assumptions, but is close in total variation to a distribution that does. Furthermore, a line of work
building upon [DKK+16, LRV16] (discussed in our survey of prior work in Section 1.2) has achieved
remarkable positive results for mean estimation and related problems under strong contamination,
with statistical guarantees scaling independently of the dimension d. This dimension-free error
promise is important in modern high-dimensional settings.

1.1 Our results

We give multiple nearly-linear time algorithms1 for problem (1) under the strong contamination
model, with improved statistical or runtime guarantees compared to the state-of-the-art. Prior
algorithms for (1) under the strong contamination model in the literature typically followed one of
two frameworks. The first, which we refer to as robust gradient descent, was pioneered by [PSBR20],
and is based on reframing (1) as a problem where we have noisy gradient access to an unknown
function we wish to optimize, coupled with the design of a noisy gradient oracle based on a robust
mean estimation primitive. The second, which we refer to as Sever, originated in work of [DKK+19],
and uses the guarantees of stationary point finders such as stochastic gradient descent to repeatedly
perform outlier removal. Interestingly, we show that both approaches can be dramatically sped up,
and give two complementary types of algorithms within these frameworks.

Robust acceleration. We demonstrate that under the noisy gradient estimation framework for solving
well-conditioned regression problems (1), an accelerated rate of optimization can be achieved,
answering an open question of [PSBR20]. We give the following result for smooth statistical
regression, where we assume the uncorrupted data is drawn from DXy with marginals DX and Dy;
throughout, Õ hides polylogarithmic factors in problem parameters and failure probabilities. Finally,
we remove κ dependences in sample complexity statements, as they are subsumed by ε dependences
due to assumed bounds on εκ or εκ2.
Theorem 1 (informal, cf. Theorem 7, supplement). Suppose γ : R2 → R is such that γy(v) :=
γ(v, y) is convex and has (absolute) first and second derivatives at most 1 for all y in the support of
Dy , and DX has second moment matrix Σ? � LI. For some µ ≥ 0, let κ := max(1, Lµ ) and let

θ?reg := argminθ∈Rd

{
E

(X,y)∼DXy

{γ (〈θ,X〉 , y)}+
µ

2
‖θ‖22

}
be the solution to the true regularized statistical regression problem.2 There is an algorithm that
given n := Õ(dε ) ε-corrupted samples from DXy, for εκ2 at most an absolute constant, obtains θ

with
∥∥θ − θ?reg

∥∥
2

= O
(√

κε
µ

)
with high probability in time Õ(nd

√
κ).

A canonical example of a link function γ satisfying assumptions of Theorem 1 is the logit function
γ(v, y) = log(1 + exp(−vy)), when the labels y are ±1. To contextualize Theorem 1, [PSBR20]

1Throughout, we reserve the description “nearly-linear” for runtimes scaling linearly in the dataset size nd,
and polynomially in ε−1 and the condition number, up to a polylogarithmic overhead in problem parameters.

2To simplify bounds and avoid estimation error for non-strongly convex statistical regression problems scaling
with the initial search radius (which may be dimension-dependent), we focus on regularized problems. There is a
substantial line of work on reductions between rates for strongly convex and convex smooth optimization in the
non-robust setting, see e.g. [ZH16], and we defer an analogous exploration in the robust setting to future work.
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obtains a similar statistical guarantee in its setting, using Õ(κ) calls to a noisy gradient oracle,
implemented via a subroutine based on robust mean estimation. Since then, [CAT+20] showed
that for the case of linear regression (see Theorem 3 for the formal setup, as the linear regression
link function is not Lipschitz), the framework was amenable to nearly-linear time mean estimation
techniques of [CDG19], and gave an algorithm with runtime Õ(ndκε−6). Theorem 1 represents an
improvement to these results on two fronts: we apply tools from [DHL19] to remove the poly(ε−1)
runtime dependence for a general class of regression problems, and we achieve an iteration count
of Õ(

√
κ), matching the accelerated runtime of [Nes83] for (non-robust) smooth optimization. We

remark that the application of tools inspired by [DHL19] is fairly straightforward, and not a primary
contribution of our work compared to the accelerated dependence on κ.

We demonstrate the generality of our acceleration framework by applying it to optimizing the Moreau
envelope for Lipschitz, but possibly non-smooth, link functions γ; a canonical example is the hinge
loss γ(v, y) = max(0, 1 − vy) with ±1 labels, used in training support vector machines. The
Moreau envelope is an extremely well-studied smooth approximation, and is an everywhere additive
approximation if the original function is Lipschitz (see e.g. [Sho97]). In the non-robust setting
many state-of-the-art rates for Lipschitz optimization are attainable by accelerated optimization of an
appropriate Moreau envelope [TJNO20]. We show that even without explicit access to the Moreau
envelope, we can approximately minimize it with our robust acceleration framework.

Theorem 2 (informal, cf. Theorem 8, supplement). Suppose γ : R2 → R is such that γy(v) :=
γ(v, y) is convex and has (absolute) first derivative at most 1 for all y in the support of Dy , and DX
has bounded second moment matrix. For some µ, λ ≥ 0, let κ = max(1, 1

λµ ) and let

θ?env := argminθ∈Rd

{
F ?λ (θ) +

µ

2
‖θ‖22

}
, where F ?λ (θ) := inf

θ′

{
F ?(θ′) +

1

2λ
‖θ − θ′‖22

}
is the Moreau envelope of F ?(θ) := E

(X,y)∼DXy

{γ (〈θ,X〉 , y)} .

There is an algorithm that given n := Õ(dε ) ε-corrupted samples from DXy, for εκ2 at most an

absolute constant, obtains θ with
∥∥θ − θ?reg

∥∥
2

= O
(√

κε
µ

)
with high probability in time Õ(nd

√
κ

ε ).

To obtain this result, we give a nearly-linear time construction of a noisy gradient oracle for the
Moreau envelope, which may be of independent interest; we note similar gradient oracle constructions
in different settings have been developed in the optimization literature (see e.g. [CJJS21]).

Robust linear regression. Perhaps the most ubiquitous example of statistical regression, the specific
problem of robust linear regression has received substantial attention in the literature (cf. Section 1.2).
Amongst the algorithms developed for the variant of this problem that we study, the only nearly-
linear time algorithm is the recent work of [CAT+20].3 For a robust linear regression problem
with noise variance bounded by σ2 and covariate second moment matrix Σ? := EX∼DX

[XX>],
[DKK+19, PSBR20, CAT+20] attain distance to the true regression minimizer θ? scaling as σκ

√
ε

in the Σ? norm (the “Mahalanobis distance”)4 under a bounded 4th moment assumption. We give one
result (Theorem 3) which improves the runtime of [DKK+19, PSBR20, CAT+20] under the noisy
gradient descent framework, and one result (Theorem 4) which improves its estimation rate, under
the Sever framework.

We first demonstrate that applying our robust acceleration framework leads to a similar estimation
guarantee as [DKK+19, PSBR20, CAT+20] under the same assumptions, but with improved runtime.

Theorem 3 (informal, cf. Theorem 6, supplement). Suppose DX is 2-to-4 hypercontractive with
second moment matrix Σ? = EX∼DX

[XX>] satisfying µI � Σ? � LI, and y ∼ Dy is generated
as 〈θ?, X〉 + δ, for δ ∼ Dδ with variance at most σ2 independent of X . Let κ := L

µ . There is an

algorithm that given n := Õ(dε ) ε-corrupted samples fromDXy , for εκ2 at most an absolute constant,
obtains θ with ‖θ − θ?‖Σ? = O(σκ

√
ε) with high probability in time Õ(nd

√
κ).

3Another algorithm was recently given by [] under different assumptions, most notably a known second
moment matrix.

4We measure error in the Σ? norm as it is scale invariant and the natural norm to measure the underlying
(quadratic) statistical regression problem under; some prior works gave `2 norm guarantees, which we convert.
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We give a formal definition of 2-to-4 hypercontractivity in Section 2. We remark that attaining
estimation rates for robust linear regression scaling polynomially in ε is known to be impossible
under only bounded second moments ([BP21]); the 4th moment bound we require is the minimal
assumption known in the literature under which such robust estimation is possible.5 Theorem 3
matches the distribution assumptions and error of [CAT+20], while obtaining an accelerated runtime.

Interestingly, under the 4th moment bound used in Theorem 3, [BP21] showed that the information-
theoretically optimal rate of estimation in the Σ? norm is independent of κ, and presented a matching
upper bound under an analogous, but more stringent, distributional assumption.6 However, thus far
robust linear regression algorithms have broadly fallen under two categories. The first family (e.g.
[KKM18, ZJS20, BP21]), based on the sum-of-squares paradigm for algorithm design, sacrifices
practicality to obtain improved error rates by paying a large runtime and sample complexity overhead
(as well as requiring stronger distributional assumptions). The second (e.g. [DKK+19, PSBR20,
CAT+20]), which opts for more practical approaches to algorithm design, has been bottlenecked at
Mahalanobis distance O(σκ

√
ε) and the requirement that εκ2 = O(1).

We present a nearly-linear time method for robust linear regression overcoming this bottleneck for
the first time amongst non-sum-of-squares algorithms, attaining improved statistical rates compared
to Theorem 3 while only requiring εκ = O(1).

Theorem 4 (informal, cf. Theorem 5, supplement). Suppose DX is 2-to-4 hypercontractive with
second moment matrix Σ? = EX∼DX

[XX>] satisfying µI � Σ? � LI, and y ∼ Dy is generated as
〈θ?, X〉+ δ, for δ ∼ Dδ , a 2-to-4 hypercontractive distribution with variance at most σ2 independent
of X . Let κ := L

µ . There is an algorithm that given n := Õ((d
2

ε + d
ε4 )) samples from DXy , for εκ at

most an absolute constant, uses Õ( 1
ε ) calls to an empirical risk minimization algorithm7 and Õ(ndε )

additional runtime, and obtains θ with ‖θ − θ?‖Σ? = O(σ
√
κε) with probability at least 9

10 .

This second algorithm does require more resources than that of Theorem 3: the sample complexity
scales quadratically in d, and the runtime is never faster. Further, we make the slightly stronger
assumption of hypercontractive noise for the uncorrupted samples. On the other hand, the improved
dependence on the condition number in the error can be significant for distributions in practice, which
may be far from isotropic. All told, Theorem 4 presents an intermediate tradeoff inheriting some
statistical gains of the sum-of-squares approach (albeit still depending on κ) without sacrificing a
nearly-linear runtime. Interestingly, we obtain Theorem 4 by reinterpreting an identifiability proof
used in the algorithm of [BP21], and combining it with tools inspired by the Sever robust estimation
framework. We note that our sample complexity dramatically improves that of [DKK+17]’s original
linear regression algorithm in the Sever framework in terms of the dependence on d (but not ε), which
requires Õ(d

5

ε2 ) samples (in addition to beating their weaker error guarantee). We elaborate on these
points further in Section 4; we believe it is an interesting open problem to understand if the worse
sample complexity of Theorem 4 is truly necessary for the improved statistical guarantees.

1.2 Prior work

We give a general overview contextualizing our work in this section, and defer the comparison of
technical components we develop in this work to the relevant sections. Specifically, in Section 3 we
discuss prior work on acceleration with noisy gradients, and how it compares to our results.

The study of learning in the presence of adversarial noise is known as robust statistics, with a long
history dating back over 60 years [Ans60, Tuk60, Hub64, Tuk75, Hub04]. Despite this, the first
efficient algorithms with near-optimal error for many fundamental high dimensional robust statistics
problems were only recently developed [DKK+16, LRV16, DKK+17]. Since these works, efficient
robust estimators have been developed for a variety of more complex problems; a comprehensive
overview may be found in [DK19, Li18, Ste18].

5This is true not only for efficient algorithms but even information-theoretically in the case of DX .
6The algorithm of [BP21] requires DX to be certifiably hypercontractive, an algebraic condition frequently

required by the sum-of-squares algorithmic paradigm to apply to robust statistical estimation problems.
7The empirical risk minimization algorithm used is up to the practitioner; its runtime will never scale worse

than Õ(nd
√
κ) by applying (non-robust) accelerated gradient descent, but can be substantially better if recent

advances in stochastic gradient methods are used, e.g. [Zhu17].
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Table 1: Robust linear regression results in the κ � 1 regime. All listed results assume 2-to-4
hypercontractivity and independent noise (although some also give rates for non-independent noise).
Error guarantees are in Mahalanobis distance. We omit polylogarithmic factors for simplicity.

Reference Runtime Error guarantee Range of ε Comments
[KKM18] poly(d) σε

1
4 N/A Certifiable hypercontractivity

[ZJS20] poly(d) σε
1
2 N/A Certifiable hypercontractivity

[BP21] poly(d) σε
3
4 N/A Certifiable hypercontractivity

[DKK+19] poly(d) σκε
1
2 O(κ−2) Linear sample size

[CAT+20] ndκ · poly(ε−1) σκε
1
2 O(κ−2) Linear sample size

Theorem 3 nd
√
κ σκε

1
2 O(κ−2) Linear sample size

Theorem 4 nd · poly(ε−1) σ(κε)
1
2 O(κ−1) Quadratic sample size

Our results sit within the line of work in this field on robust stochastic optimization. The first works
which achieved dimension-independent error rates with efficient algorithms for the problems we
consider in this paper are the aforementioned works of [PSBR20, DKK+19]. Similar problems
were previously considered in [CSV17a, BDLS17]. In [CSV17a], the authors consider a setting
where a majority of the data is corrupted, and the goal is to output a short list of hypotheses so that
at least one is close to the true regressor. However, because most of their data is corrupted, they
achieve weaker statistical rates; in particular, their techniques do not achieve vanishing error as the
fraction of error goes to zero. In [BDLS17], the authors consider a somewhat different model with
stronger assumptions on the structure of the functions. In particular, they assume that the uncorrupted
covariates are Gaussian with identity covariance, and are primarily concerned with the case where
the regressors are sparse. Their main goal is to achieve sublinear sample complexities by leveraging
sparsity. We also remark that the algorithms in [CSV17a, BDLS17] are also much more cumbersome,
requiring heavy-duty machinery such as black-box SDP solvers and cutting plane methods, and as a
result are more computationally intensive than those considered in [PSBR20, DKK+17].

There has been a large body of subsequent work on the special case of robust linear regres-
sion [KKM18, KKK19, DKS19, ZJS20, CAT+20, BP21]; however, the majority of this line of
work focuses on achieving improved error rates under additional distributional assumptions by using
the sum-of-squares hierachy. As a result, their algorithms are likely impractical in high dimensions,
and require large (albeit polynomial) sample complexity and runtime. Of particular interest to us
is [CAT+20], who combine the framework of [PSBR20] with the robust mean estimation algorithm
of [CDG19] to achieve nearly-linear runtimes in the problem dimension and the number of samples.
Our Theorem 3 can be thought of as the natural accelerated version of [CAT+20], with an additional
ε−6 runtime overhead removed using more sophisticated mean estimation techniques.

After the initial submission of this paper, we were made aware of another recent work [PJL20]
preventing a different approach to robust regression based on covariate filtering. Their work focuses
on the highly well-conditioned setting, where the true second moment matrix has constant condition
number, whereas our work primarily aims to improve various rates in terms of dependence on the
condition number κ in the ill-conditioned regime (i.e. κ� 1).

2 Preliminaries

Notation. For d ∈ N we let [d] := {j | j ∈ N, 1 ≤ j ≤ d}. The `p norm of a vector is ‖·‖p. The
all-ones vector (of appropriate dimension from context) is 1, and the identity matrix is I. The (solid)
probability simplex is ∆n := {w ∈ Rn≥0, ‖w‖1 ≤ 1}. For v ∈ Rn and S ⊆ [n], we let vS ∈ Rn
zero out coordinates [n] \ S. We call S1, S2 a bipartition of S if S1 ∩ S2 = ∅ and S1 ∪ S2 = S. For
symmetric d× dA,B we write A � B to mean B−A is positive semidefinite. For positive definite
M, we define the induced norm ‖v‖M :=

√
v>Mv. We use ‖·‖op to mean the `2-`2 operator norm.

Functions. We say differentiable f : Rd → R is λ-Lipschitz in ‖·‖M if ‖∇f(θ)‖M−1 ≤ λ for all
θ ∈ Rd, and that twice-differentiable f : Rd → R is L-smooth and µ-strongly convex in ‖·‖M if
µM � ∇2f(θ) � LM, for all θ ∈ Rd. When M is not specified, we assume M = I.
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Distributions. For w ∈ ∆n and a set of vectors X := {Xi}i∈[n], the empirical second moment
matrix is denoted Covw (X) :=

∑
i∈[n]

wi

‖w‖1
XiX

>
i . We say distributionD supported on Rd is 2-to-4

hypercontractive if for all v ∈ Rd, EX∼D[〈X, v〉4] ≤ O(1)EX∼D[〈X, v〉2]2.

Corruption model. We provide provable guarantees for statistical problems captured by the follow-
ing standard statistical model (the “strong contamination model”): given link function γ : R2 → R
and a “true” underlying distributionDXy on Rd×R with marginalsDX ,Dy , a dataset {(X̃i, ỹi)}i∈[n]

is independently sampled from DXy, and an arbitrary (unknown) subset B ⊂ [n] is replaced by
arbitrary points in supp(DXy). For i ∈ B, we observe the corrupted (Xi, yi), and otherwise
we observe (Xi, yi) ← (X̃i, ỹi). When |B| = εn, we say the dataset is ε-corrupted. We define
fi(θ) := γ(〈Xi, θ〉 , yi), gi(θ) := ∇fi(θ), and for w ∈ ∆n, Fw(θ) :=

∑
i∈[n] wifi(θ).

Filtering. Our algorithms make frequent use of an algorithmic primitive we call “filtering” [ABL14,
DKK+17, SCV18]. Here, we have an index set [n] with fixed unknown bipartition G∪B; intuitively,
G is a “good” set of indices we wish to keep, and B is a “bad” set we would like to remove. Naively,
one would expect that we would chooseG to be the set of remaining uncorrupted points. For technical
reasons, we will often have to choose (large) subsets of the set of remaining uncorrupted points.

The filtering algorithm maintains weightsw ∈ ∆n it iteratively downweights using “scores” τ ∈ Rn≥0,
with the goal of producing weights close to the uniform distribution onG. We callw ∈ ∆n c-saturated
(or saturated for short if c = 0) if w ≤ 1

n1 entrywise and
∥∥[ 1
n1− w]G

∥∥
1
≤
∥∥[ 1
n1− w]B

∥∥
1

+ c. The
following lemma (implicit in [DKK+17, CSV17b, Li18, Ste18]) is representative of this technique.
Lemma 1. Suppose G ∪B is a bipartition of [n], and 〈wG, τ〉 ≤ 〈wB , τ〉 for c-saturated w ∈ ∆n,
τ ∈ Rn≥0. Then if w′i ← (1− τi

τmax
)wi ∀i ∈ [n] and τmax := maxi∈[n]|wi 6=0 τi, w′ is also c-saturated.

In other words, we can keep weights saturated (retaining most of the weight on G) by repeatedly
identifying scores whose empirical average is large due to B. We use a variety of different scores;
one subroutine which follows as a consequence of this paradigm, which is implicit in [DHL19], is a
way to rapidly decrease the operator norm of an empirical second moment matrix whose restriction
to a “good” majority set is bounded. Many of our algorithms use this subroutine, stated here.
Lemma 2 (cf. Proposition 5, supplement). There is an algorithm, FastCovFilter, taking inputs
V := {vi}i∈[n] ∈ Rn×d, saturated w ∈ ∆n with respect to [n] = G ∪B with |B| = εn, and R ≥ 0

with the promise that ‖ 1
|G|
∑
i∈G viv

>
i ‖op ≤ R. Then, FastCovFilter returns saturated w′ ∈ ∆n

such that ‖
∑
i∈[n] w

′
iviv

>
i ‖op = O(R) with high probability in time Õ(nd).

Organization. In Section 3, we describe a general framework for attaining accelerated optimization
rates under a “noisy gradient oracle” model, which we use to obtain Theorems 1, 2, and 3 by
efficiently constructing appropriate oracles. In Section 4, we overview techniques used in designing
the nearly-linear time linear regression algorithm of Theorem 4. Due to space constraints, we defer
proofs, a precise statement of our statistical models and assumptions, and an extended exposition of
our techniques to the unabridged version of this paper in the supplementary material.

3 Acceleration under noisy gradient oracle access

Our robust acceleration framework, which we use to prove Theorems 1, 2, and 3, addresses the
following problem formulation: there is an unknown function F ? with minimizer θ? which is L-
smooth and µ-strongly convex, and we wish to estimate θ?, but our only mode of accessing F ? is
through a noisy gradient oracle Ong. Namely, for some σ, ε, we can query Ong with some θ ∈ Rd
and an upper bound R ≥ ‖θ − θ?‖2 and receive an estimate G(θ) such that

‖G(θ)−∇F ?(θ)‖2 = O
(√

Lεσ + L
√
εR
)
. (2)

In other words, we receive gradients perturbed by both fixed additive noise, and multiplicative noise
depending on (a known upper bound on) distance to θ?. Prior works observed that by using tools
from robust mean estimation, appropriate noisy gradient oracles could be constructed for the “mean”
functions E(X,y)∼DXy

[γ(〈X, θ〉 , y)] arising from the distributional assumptions in Theorems 1 and 3.

EfficientOng construction. Our first contribution is speeding up the implementation ofOng to run in
nearly-linear time Õ(nd), leveraging recent advances by [DHL19] for robust mean estimation. This
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improves a similar construction by [CAT+20], running in time Õ(nd · ε−6) in the linear regression
setting. To obtain this construction, we use the following lemma implicit in [DHL19].

Lemma 3 (Lemma 11, supplement). Letw ∈ ∆n be saturated with respect to bipartition [n] = G∪B,
and let w?G := 1

|G|1G, w̃ := w
‖w‖1

. Then,∥∥∇Fw̃(θ)−∇Fw?
G

(θ)
∥∥

2
= O

(√
ε
) (∥∥Covw?

G
{gi(θ)}i∈[n]

∥∥ 1
2

op
+
∥∥Covw̃{gi(θ)}i∈[n]

∥∥ 1
2

op

)
.

By demonstrating that our “uncorrupted” dataset has function gradients which are appropriately
bounded under our distributional assumptions, we can apply FastCovFilter (Lemma 2) in conjunction
with the above lemma to produce an weighting w̃ ∈ ∆n whose empirical gradient satisfies (2), in time
Õ(nd). We give aOng construction for linear regression in the distributional model of Theorem 3 and
a radiusless Ong construction for smooth GLMs (satisfying (2) with no dependence on R and σ = 1)
in the distributional model of Theorem 1, in Corollaries 1 and 2 of the supplement. Finally, in the
setting of Theorem 2 (Lipschitz GLMs), we give a reduction from constructing a noisy gradient oracle
for Moreau envelopes to Õ(ε−1) queries of a noisy gradient oracle (cf. Corollary 3, supplement)
using a characterization of the Moreau gradient as a solution to a regularized objective.

Noisy proximal oracle construction. For the remainder of this section, we assume access to Ong
satisfying (2). Our second, and much more technically involved, contribution is demonstrating that
acceleration is achievable under the noise model (2). Designing accelerated algorithms under noisy
gradient access is extremely well-studied, and there are both strong positive results [d’A08, MS13,
DG16, CDO18, MRJ19, BJL+19] as well as negative results [DGN14] showing under certain noise
assumptions, accelerated gradient descent may be outperformed by unaccelerated methods. Motivated
by these negative results, [PSBR20] posed the question of whether acceleration was possible under
(2). We demonstrate the accelerated proximal point framework of [MS13] is amenable to such noise.

In the noiseless setting, accelerated proximal point algorithms (introduced by [Gül92]) are a reduction
from optimization of a function F ? to iteratively solving proximal subproblems of the form

θ?θ̄ ← argminθ∈Rd

{
F ?(θ) +

1

2λ

∥∥θ − θ̄∥∥2

2

}
, (3)

for some θ̄ ∈ Rd. By tuning λ we can trade off how efficiently we can solve the subproblem
with how many times we need to solve them. In our accelerated algorithm, we will always set
λ = 1

L in proximal subproblems. We first use the (unaccelerated) robust gradient descent analysis
of [PSBR20, CAT+20] to show that given a current upper bound R on

∥∥θ̄ − θ?∥∥
2
, we can solve the

proximal subproblems (3) to appropriate accuracy, yielding a “noisy proximal oracle.”

Lemma 4 (Definition 5, Proposition 7, supplement). There is an algorithm, NoisyProximalOracle,
which given θ̄ ∈ Rd, R ≥

∥∥θ̄ − θ?∥∥
2
, and Ong giving noisy gradient estimates satisfying (2), returns

θ̂ satisfying ‖θ̂ − θ?
θ̄
‖ = O(σ

√
ε
L +
√
εR), where θ?

θ̄
is the minimizer to (3). The complexity of the

algorithm is dominated by Õ(1) calls to a noisy gradient oracle Ong.

In other words, NoisyProximalOracle runs in Õ(nd) time (as expected, since (3) with λ = L−1 has
condition number ≤ 2). We now discuss how to use NoisyProximalOracle in our main subroutine.

Halving the radius with NoisyProximalOracle. Our accelerated algorithm runs in logarithmically
many phases, each halving an upper bound on the distance to the optimizer (while above a certain noise
floor, Ω(σ(κεµ )

1
2 ), due to the additive error in (2)). We state one phase of our accelerated algorithm

below as HalfRadiusAccel, assuming access to oracle Onp with the guarantees of Lemma 4.8

In Line 5, scalars {at, At} are parameters used by acceleration potential analyses, defined by
recursions A0 = 0, At = La2

t , At+1 = At + at+1. We remark HalfRadiusAccel is simply the
proximal framework of [MS13], where we call NoisyProximalOracle in place of a (classical) proximal
oracle in Line 6, and constrain Line 7. Our main technical innovation is to show the analysis of
[MS13] is robust to guarantees of NoisyProximalOracle, by carefully balancing accumulated errors.

8Though our algorithm is randomized, we omit discussion of failure here for brevity. Our algorithm succeeds
with high probability (with sample sizes and runtimes depending polylogarithmically on failure probabilities).
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Algorithm 1 HalfRadiusAccel(θ̄, R,Onp)

1: Input: θ̄ ∈ Rd, R ≥
∥∥θ̄ − θ?∥∥

2
with R = Ω(σ(κεµ )

1
2 ), Onp satisfying guarantees of Lemma 4

2: Output: θ̂ ∈ Rd with ‖θ̂ − θ?‖2 ≤ 1
2R

3: T ← O(
√
κ) for a sufficiently large constant, t← 0, θ0 ← θ̄, v0 ← θ̄

4: while t < T do
5: yt ← At

At+1
θt + at+1

At+1
vt

6: θt+1 ← Onp(yt, 3R)

7: vt+1 ← argminv∈B{at+1 〈yt − θt+1, v〉+ 1
2L ‖v − vt‖

2
2}, where B := {v |

∥∥v − θ̄∥∥
2
≤ R}

8: t← t+ 1
9: end while

10: return θt

To make the analysis more modular, we first observe via characterizing proximal minimizers θ?yt
(following (3)) that though iterates of Algorithm 1 may drift more than R away from θ? (due to
error in Onp), they never drift too far. Formally, Lemma 13 of the supplement shows all yt satisfy
‖yt − θ?‖2 ≤ 3R, validating calls to Onp. We then give our main noisy potential bound.
Lemma 5 (main potential bound, Lemma 14, supplement). For all 0 ≤ t ≤ T , define Et :=

F ?(θt)− F ?(θ?), Dt := 1
2 ‖vt − θ

?‖22, and Φt := AtEt +Dt. Then for all 0 ≤ t < T ,

Φt+1 − Φt ≤ O
(
tσ

√
ε

L
R+ t

√
εR2 + t2σ2 ε

L
+ t2εR2

)
.

The potential Φt defined in Lemma 5 is typical in acceleration analyses, and indeed the (non-robust)
analysis of [MS13] shows Φt+1 ≤ Φt under an exact proximal oracle. Since the coefficient of
function error in the potential, At, grows as Ω( t

2

L ), it is straightforward (via strong convexity) to show
HalfRadiusAccel halves the radius in O(

√
κ) iterations classically. We demonstrate the analysis still

goes through under the potential increase of Lemma 5 in the same number of iterations (up to constant
factors), concluding analysis of HalfRadiusAccel. Our final algorithm iterates HalfRadiusAccel until
reaching the noise floor, requiring Õ(

√
κ) iterations dominated by calls to Ong.

Discussion. Our result builds upon recent studies of the noise tolerance of proximal point methods,
e.g. [BJL+19], who used a model with fixed additive gradient error, and [CJJS21], who used noisy
solutions to (3) with fixed additive error. Our model crucially tolerates both additive and multiplicative
guarantees for both gradient and proximal solution estimates. An interesting open question is whether
a similar result is obtainable without a proximal point abstraction, e.g. by extending [CDO18]. We
view our result as a proof-of-concept that acceleration is possible under (2). We believe a unified
study of acceleration under models encompassing (2) warrants further exploration, and defer it to
interesting future work.

4 Improved statistical rates for robust linear regression

We now overview the algorithm that achieves Theorem 4, and describe its correctness proof. We
define the following, strong deterministic condition on the uncorrupted points.
Assumption 1 (deterministic regularity for linear regression). Let ε be sufficiently small, and let
r ∈ (0, ε2). Assume {(Xi, yi)}i∈[n] ⊂ Rd × R is (ε, r)-good for linear regression (or (ε, r)-good if
context is clear), which means there is a partition [n] = G ∪B with |G| ≥ (1− ε)n which satisfies:

1. For any w ∈ ∆n with ‖wG‖1 ≥ 1− 4ε, 1
2Σ? � CovwG

(X) � 3
2Σ?.

2. There is a constant Cest such that for all θ ∈ Rd and all ε-saturated w ∈ ∆n, there exists a
G′ ⊆ G satisfying |G′| ≥ (1− r)|G| so that if we let w̃ := wG′

‖wG′‖1
,

‖∇Fw̃(θ)−∇F ?(θ)‖2 ≤ Cest
√
Lε (σ + ‖θ − θ?‖Σ?) , (4)∥∥Covw̃

(
{gi(θ)}i∈G

)∥∥
op ≤ CestL

(
‖θ − θ?‖2Σ? + σ2

)
. (5)
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3. There is a constantCub such that
∑
i∈G

1
|G|fi(θ

?) = 1
2|G|

∑
i∈G (〈Xi, θ

?〉 − yi)2 ≤ Cubσ
2.

The following claim establishes that Assumption 1 (up to constants in definitions) holds with good
probability under the statistical model in Theorem 4. We give the proof in the supplement.
Proposition 1 (Proposition 2, supplement). Let α ≥ 1 and ε > 0 be sufficiently small. Let
{(Xi, yi)}i∈[n] ⊂ Rd × R be ε-corrupted samples from DXy as in Theorem 4. Then, if

n = O

(
dα2 log d

ε4
+
d2α log(d/ε)

ε2

)
,

the set {(Xi, yi)}i∈[n] is (2ε, ε
2

α )-good for linear regression with probability at least 9
10 .

Through this section, we will assume that our set of points is (2ε, ε
2

α )-good, where we choose α =

O
(
max

(
1, εκ log R0

σ

))
. Here, R0 is an initial distance bound on ‖θ0 − θ?‖Σ? . This assumption

inflates the sample complexity of Proposition 1 by a factor depending on α.

Filtering under goodness. Enforcing Assumption 1, and in particular, Assumption 1.2 holds
inductively introduces some additional technical difficulties for our algorithm. However, our choice
of α ensures that we never remove more than 3ε mass from G, and that our weights are always
ε-saturated with respect to G ∪B, allowing for inductive application of Assumption 1. This holds
because we show that our algorithm uses at most α

2ε distinct subsets of G for filtering. Each distinct
set satisfies Lemma 1 up to a 2ε2

α additive discrepancy, whose accumulation loses an additive ε.

Algorithms through identifiability. We now describe our algorithm, assuming Assumption 1 holds
throughout. We begin with the following (slight) reinterpretation of an identifiability proof in [BP21].
Proposition 2 (Proposition 6, supplement). Let w ∈ ∆n be ε-saturated with respect to bipartition
[n] = G ∪B, and let θ ∈ Rd. Assuming εκ is sufficiently small,

‖θ − θ?‖Σ? = O

(√
ε

(
σ
√
κ+

√∥∥∥Covw
(
{gi(θ)}i∈[n]

)∥∥∥
op
· µ−1

)
+ ‖∇Fw(θ)‖(Σ?)−1

)
.

This shows if ‖∇Fw(θ)‖(Σ?)−1 and ‖Covw({gi(θ)}i∈[n])‖op are simultaneously bounded, then we
obtain a distance bound to θ?. We can bound the former at fixed w by setting θ to minimize Fw,
and the latter at fixed θ by filtering w via FastCovFilter. This introduces a chicken-and-egg problem
of obtaining both bounds at once; we accomplish this via an alternating approach, and argue fast
termination using a third potential monotone under both subroutines, the function value Fw(θ).

Halving the radius. We design a procedure, HalfRadiusLinReg, with the following guarantee.
Suppose w̄ ∈ ∆n is ε-saturated and θ̄ ∈ Rd, and we knowR = Ω(σ) with the promise

∥∥θ̄ − θ?∥∥
Σ? ≤

R. HalfRadiusLinReg then returns a new θ with ‖θ − θ?‖Σ? ≤ 1
2R. We do so by using saturated

weights to guide a potential analysis via Proposition 2. Before stating HalfRadiusLinReg, we give
subroutines achieving our earlier stated goals. The first is an approximate optimizer.
Definition 1. We call OERM a γ-approximate ERM oracle if on input F : Rd → R it returns a point
θ̂ such that F (θ̂)− F (θ?F ) ≤ γ, for θ?F := argminθ∈RdF (θ).

The second controls the initial error, which we use to yield distance bounds via strong convexity.
Lemma 6 (Lemma 6, supplement). FunctionFilter takes as input ε-saturated w ∈ ∆n, θ ∈ Rd, and
R ≥ ‖θ − θ?‖Σ? , and produces ε-saturated w′ ∈ ∆n with Fw′(θ) ≤ 2Cub(σ2 +R2), in time Õ(nd).

FunctionFilter is a straightforward implementation of the filtering paradigm using Assumption 1.3,
and we formally define it in the supplementary material. We can now state (a simplified version of)
HalfRadiusLinReg, which iteratively filters weights initially set to uniform. It calls FunctionFilter
to preprocess, and then alternates calls to OERM and FastCovFilter, which respectively decrease the
gradient norm and operator norm in Proposition 1. It finally terminates when the function value
decrease between consecutive iterations is small, whence we conclude an OERM call was not actually
necessary for Proposition 2 to imply progress.
Lemma 7 (Lemma 7, supplement). HalfRadiusLinReg correctly returns (w, θ) such that w ∈ ∆n is
ε-saturated and ‖θ − θ?‖Σ? ≤ 1

2R in κ calls to OERM and Õ(ndκ) additional time.
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Algorithm 2 HalfRadiusLinReg(X, y, w̄, θ̄, R,OERM)

1: Input: Dataset X = {Xi}i∈[n] ∈ Rn×d, y = {yi}i∈[n] ∈ Rn, satisfying Assumption 1, ε-
saturated w̄ ∈ ∆n with respect to bipartition [n] = G ∪B with X>diag (w̄) X � 8LI, θ̄ ∈ Rd

with
∥∥θ̄ − θ?∥∥

Σ? ≤ R for R = Ω(σ), O(σ
2

κ )-approximate ERM oracle OERM.
2: Output: Saturated w with respect to G ∪B, and θ with ‖θ − θ?‖Σ? ≤ 1

2R.
3: t← 0, w(0) ← FunctionFilter(w, θ̄, R), ∆0 ←∞
4: while ∆t = Ω(R

2

κ ) do
5: θ(t) ← OERM(Fw(t))
6: w(t+1) ← FastCovFilter({gi

(
θ(t)
)
}i∈[n], w

(t), O(LR2))

7: ∆t+1 ← Fw(t+1)

(
θ(t)
)
− Fw(t+1)

(
θ(t+1)

)
8: t← t+ 1
9: end while

10: return
(
w(t), θ(t−1)

)
We prove Lemma 7 by using the proof strategy outlined earlier: first, strong convexity, our initial
function error bound, and monotonicity of function error ensure that

∥∥θ(t) − θ?
∥∥

Σ? = O(R) through-
out. Next, if ∆t is ever too small, the gradient norm in Proposition 2 was small even before we ran
the loop, so we could have terminated with the prior θ(t). Finally, the whole algorithm runs O(κ)
times, since each loop decreases function error (initially at O(R2)) substantially.

Putting it all together. We iteratively apply Lemma 7 O(log R0

σ ) times, at which point we are within
distanceO(σ) in the Σ? norm. To achieve distanceO(σ

√
κε), the natural bottleneck of Proposition 2,

we define LastPhase, a variant of Algorithm 2 with a more stringent termination condition in Line 4,
and use a similar argument to show it iterates O( 1

ε ) times before concluding. Finally, we verify that
throughout we only filtered against at most O(κ log R0

σ + 1
ε ) distinct sets, where the summands are

due to calls to HalfRadiusLinReg and LastPhase respectively. This fulfills the premise of using α
2ε

distinct sets for the α defined at the beginning of the section, and concludes our analysis.
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