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ABSTRACT

Variational inference typically assumes normalized priors, limiting the expressive-
ness of generative models like Variational Autoencoders (VAEs). In this work,
we propose a novel approach by replacing the prior p(z) with an unnormalized
energy-based distribution exp (−E(z))/Z, where E(z) is the energy function and
Z is the partition function. This leads to a variational lower bound that allows
for two key innovations: (1) the incorporation of more powerful, flexible priors
into the VAE framework, resulting in improved likelihood estimates and enhanced
generative performance, and (2) the ability to train energy-based models (EBMs)
without the need for computationally expensive Markov chain sampling, requir-
ing only a small n > 1 importance samples from the posterior distribution. Our
approach bridges VAEs and EBMs, providing a scalable and efficient framework
for leveraging unnormalized priors in probabilistic models.

1 INTRODUCTION

Generative models are essential in unsupervised learning and data generation, with each approach
offering unique strengths and facing specific challenges. Among these, Variational Autoencoders
(Kingma & Welling, 2022), normalizing flows (Rezende & Mohamed, 2016; Kingma & Dhariwal,
2018), score-based/diffusion models (Song & Ermon, 2020; Sohl-Dickstein et al., 2015; Ho et al.,
2020), and energy-based models (Du & Mordatch, 2020; Grathwohl et al., 2020) represent some of
the most influential methods in modern generative modeling. Each of these models brings distinct
advantages but also limitations that impact their practical application and effectiveness.

Variational Autoencoders (VAEs) are a cornerstone in generative modeling due to their efficiency
and scalability. VAEs utilize the variational lower bound (VLB) to approximate complex posterior
distributions and have demonstrated considerable success in various tasks such as image generation
(Vahdat & Kautz, 2021; Child, 2021) and anomaly detection (Pol et al., 2020). The primary strength
of VAEs lies in their ability to efficiently model large datasets through a combination of variational
inference and neural network architectures. However, VAEs face a significant challenge due to
their use of simple, normalized priors, such as Gaussian distributions. This simplicity can lead
to a misalignment between the prior and the posterior, where the model struggles to capture the
true complexity and multi-modality of the data. Although efforts to enhance the flexibility of the
posterior have been made (Rezende & Mohamed, 2016; Kingma et al., 2017), these methods do not
fully resolve other issues pertaining to quality image generation (Dai & Wipf, 2019).

Normalizing flows offer an alternative by applying a series of invertible transformations to a base
distribution, allowing for the modeling of complex data distributions with exact likelihood compu-
tation. This flexibility makes normalizing flows highly expressive compared to VAEs. However,
the challenge lies in designing and training these transformations, which can become computation-
ally demanding and complex, particularly as the dimensionality of the data increases. As a result,
while normalizing flows provide powerful modeling capabilities, they may not always be practical
for large-scale or real-time applications.

Score-based models and diffusion models (SDMs) represent another innovative approach by learn-
ing to model the score function, or the gradient of the log-likelihood, of the data distribution. These
models refine noisy data through iterative denoising, leading to high-quality samples and the abil-
ity to model intricate data structures. Despite their impressive performance, SDMs face substantial
training and sampling challenges. Training involves optimizing the score function across multiple
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noise levels, which requires extensive computation. Additionally, the sampling process is typically
slow, as generating high-quality samples often involves many iterative refinement steps. These fac-
tors can limit the practicality of SDMs for large-scale or real-time generative tasks.

Energy-based models (EBMs) offer a different paradigm by defining probability distributions
through an unnormalized energy function. EBMs can capture highly complex and varied data
distributions due to their flexible energy function. However, the practical application of EBMs is
constrained by the need for computationally intensive sampling methods like Markov Chain Monte
Carlo (MCMC), which are necessary to approximate the intractable partition function. This reliance
on expensive sampling techniques makes EBMs less scalable and efficient compared to other gener-
ative models.

Among these approaches, Variational Autoencoders (VAEs) remain our primary focus due to their
foundational role in generative modeling and their widespread application in various domains. The
core limitation of VAEs lies in their posterior parameterization failing to effectively capture the com-
plexity of the prior distribution. While enhancing the flexibility of the posterior has been explored,
this does not fully capture the data distribution.

In this work, we address this limitation by introducing unnormalized energy-based priors into the
VAE framework. By incorporating flexible, unnormalized priors, we aim to improve the alignment
between the prior, posterior, and even the reconstruction likelihood. This novel approach leverages
the expressiveness of energy-based models while maintaining the computational efficiency of VAEs.
Our method provides a scalable solution that enhances generative performance and likelihood es-
timation, positioning unnormalized priors as a powerful tool for advancing VAE capabilities and
addressing their core limitations.

2 LIKELIHOOD ESTIMATOR FOR UNNORMALIZED PRIORS

Consider the following formulation of the variational lower bound:

ln p(x) ≥ E
q(z|x)

[ln p(x|z) + ln p(z)− ln q(z|x)] (1)

Where ln p(x|z) is the reconstruction likelihood, ln p(z) is the prior and ln q(z|x) is the approximate
posterior. We can represent the prior p(z) in terms of a Boltzmann distribution exp(−E(z))/Z,
where E(z) is the energy function and Z =

∫
exp(−E(z))dz is the partition function or normaliz-

ing constant. The VLB then becomes:

ln p(x) ≥ E
q(z|x)

[ln p(x|z)− E(z)− ln q(z|x)]− lnZ (2)

The main issue here pertains to the partition function as it is generally intractable to compute. When
training pure energy-based models, samples from the model are required to be generated during
training to approximate its gradient, which is a difficult endeavour in and of itself as it requires a high
quality sampler. For our purposes, we instead exploit the approximate posterior to our advantage to
estimate the partition function through self-normalized importance samples, leading to the following
biased but consistent estimator of the VLB:

ln p(x) ≥ E
q(z|x)

[ln p(x|z)− E(z)− ln q(z|x)]− ln( E
q(z|x)

[exp(−E(z)− ln q(z|x))]) (3)

Unlike pure EBMs with which likelihood computation is intractable and training requires expensive
Markov chain sampling, the EBM prior can be approximated in an unbiased fashion with Monte
Carlo samples from the approximate posterior. In effect, the unnormalized prior VLB gives us a
framework with which EBMs can be trained much more efficiently and within a rigorously justi-
fied maximum-likelihood framework. Thanks to the generality of this VLB, the choice of E(z)
can be arbitrary, ranging from simple restricted Boltzmann machines to large ResNets for higher-
dimensional datasets. For simplicity, we will be focusing only on Gaussian-Bernoulli RBMs as the
energy prior for the remainder of the paper. The Gaussian-Bernoulli RBM is a specific formulation
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of restricted Boltzmann machines in which the visible units parameterize a Gaussian distribution,
while the hidden units parameterize a Bernoulli distribution, realizing a universal approximator of
mixture models (Krause et al., 2013; Gu et al., 2022). The marginal energy of a Gaussian-Bernoulli
RBM is as follows (Liao et al., 2022):

E(z) =
1

2
(
z − µ

σ
)⊤(

z − µ

σ
)− Softplus(W⊤ z

σ2
+ b)⊤1 (4)

Where µ and σ are the per-visible unit mean and standard deviation vectors, b is the hidden bias
vector and W is the weight matrix of the RBM.

After model training, VAEs are often also evaluated using the importance-sampled negative log-
likelihood, which has a tighter bound over the VLB. We may compute this also using self-normalized
importance sampling as such:

ln p(x) = ln
∑
z

exp(ln p(x|z)− E(z)− ln q(z|x))− ln
∑
z

exp(−E(z)− ln q(z|x)) (5)

Although not explored in this work, one can also train energy-based importance-weighted autoen-
coders (Burda et al., 2016) by directly optimizing the above bound.

3 RELATED WORK

Incorporating flexible priors such as energy-based, score/diffusion-based, and mixture priors into
variational autoencoders (Vahdat et al., 2021; Han et al., 2020; Lee et al., 2023; Rombach et al.,
2022) and also regular autoencoders (Ghosh et al., 2020; Jing et al., 2020) is not a new concept,
and has seen some considerable success. However, these attempts have approached this concept
from a fundamentally different perspective that divorces the objective from its probabilistic roots,
resulting in what is essentially just a ”packaging” of two different models. This can have potentially
suboptimal effects, espcially for regular autoencoders due to the inherent nature of their structure.
Regular autoencoders, unlike VAEs, lack the probabilistic underpinnings that would enable them
to effectively handle complex priors. This is because regular autoencoders rely on a deterministic
encoder, where the posterior q(z|x) can be considered degenerate. As a result, attempts to enhance
the prior distribution, often through ex-post density (Ghosh et al., 2020; Jing et al., 2020) modeling
techniques, have not yielded substantial improvements.

One key reason for this limitation is the issue of disjoint and discontinuous energy landscapes in
regular autoencoders when incorporating sophisticated priors like energy-based models. Without
the probabilistic backbone of variational inference, the latent space in regular autoencoders can
become highly irregular, leading to poor generalization. In practice, this often results in samples
that contain significant artifacts, as the model struggles to reconcile the discontinuities in the energy
landscape. These artifacts are a consequence of the model’s inability to effectively smooth the
transitions between different modes in the data distribution, a problem exacerbated by the lack of a
robust posterior to regulate the latent space.

In contrast, our proposed method directly addresses this issue by unifying these flexible priors into
the rigorous framework of variational inference. By optimizing the variational lower bound in the
presence of an unnormalized energy-based prior, our approach ensures that the latent space remains
well-structured and continuous. Specifically, the VLB in our framework is expressed as in Equation
(3).

For a single-sample approximation, the VLB reduces to ln p(x|z), which is exactly the regular au-
toencoder objective. In this context, regular autoencoders can viewed as having a degenerate, deter-
ministic posterior which fails to fully capture the complexity of the latent space.

Our proposed method of incorporating unnormalized, flexible priors into the VAE framework is
orthogonal to the use of normalizing flows for improving posterior estimates (Rezende & Mohamed,
2016; Grathwohl et al., 2018). While both strategies aim to make models more expressive, they
address considerably different limitations.
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Normalizing flows focus on improving the posterior distribution q(z|x) by applying a series of in-
vertible transformations to a simple base distribution (typically Gaussian). These transformations
introduce more flexibility into the posterior, allowing it to better approximate the true latent distri-
bution. However, normalizing flows are subject to important design constraints. In order to ensure
computational efficiency, the transformations applied in normalizing flows must remain computa-
tionally cheap, which places a natural limit on how complex or expressive the posterior can be.
Although they are more flexible than traditional Gaussian posteriors, NFs may not fully capture the
complexity of highly multi-modal or intricate data distributions due to these computational con-
straints.

On the other hand, our approach addresses the prior distribution p(z) rather than the posterior. By
introducing energy-based priors, we make the prior more flexible and capable of capturing complex
latent structures, leading to better alignment with the posterior. Learning a more expressive prior
helps mitigate the limitations of normalizing flows, which might not be fully expressive on their
own due to the aforementioned computational trade-offs. Importantly, the use of unnormalized
priors ensures that the model remains efficient, while simultaneously providing it with a richer latent
space.

Another similar approach to normalizing flows is adversarial Variational Bayes (Mescheder et al.,
2018), where the posterior is matched to prior implicitly via an adversarial objective. AVB is the
closest to our approach, in that despite the implicitness, the resulting objective is still a valid vari-
ational lower bound. Unlike our energy-based approach, the AVB objective is inherently unstable,
since the density-matched KL estimate is an adversarial objective which are known to be trouble-
some to train. On the other hand, the auxiliary model in our energy-based objective is the model’s
prior, making the training objective complimentary and stable.

4 OPTIMIZATION DIFFICULTIES

Scaling VAEs to larger datasets, such as MNIST, comes with optimization difficulties due to the em-
phasis on maximizing likelihood during training. This often leads to compromised generative per-
formance as generative performance is neither sufficient nor necessary for good likelihoods (Theis
et al., 2016).

More specifically, the KL divergence between the prior and posterior becomes high, indicative of
mismatch or latent-space ”holes”. Sampling from these holes, which are areas of low energy, will
result in samples that contain noticable artifacts (Rezende & Viola, 2018). This often happens when
the prior is fixed, causing the model to trade-off between quality samples (which require a flexible
latent-space) and learning the perfect density (leading to posterior collapse).

A straight-forward way to work around this issue is to make the prior learnable, and this is a legit-
imate solution that can largely mitigate this issue. However, the simultaneous training of multiple
objectives may lead to unexpected behaviour such as an overpowered decoder that the prior has
difficulty catching up to. Moreover, in hierarchical models (Vahdat & Kautz, 2021; Hazami et al.,
2022) the optimization can become very unstable.

Instead, we use ex-post density estimation (XPDE) (Ghosh et al., 2020) to correct prior-posterior
mismatch. XPDE works because the density estimator models the aggregated posterior, which is
the empirical prior that the approximate posterior encompasses. The aggregated posterior is in
fact the optimal solution (Tomczak & Welling, 2018), resulting in a KL of zero. For this rea-
son, we use the log-likelihood of the XPDE prior in place of the original energy-based prior for
model evaluation. The energy prior is still very much useful as a latent-space regularizer, preventing
the latent-space from becoming too disjoint and thus difficult to capture while allowing for much
better log-likelihoods than the equivalent Gaussian VAE. We specifically use a Gaussian mixture
model, although more ”serious” datasets would use more sophisticated approaches like two-stage
VAE training (Dai & Wipf, 2019), which combines ex-post density estimation with hierarchical
modelling.
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5 EXPERIMENTS

We demonstrate the validity and effectiveness of the unnormalized prior VLB through density esti-
mation on both toy data as well as real data.

5.1 TOY 2D DATA

We first put to test the energy-based VAEs on a series of 2D toy data. In particular, we use the
8-Gaussians, checkerboard and 2-spirals from (Cao et al., 2019) as well as the four potentials from
(Rezende & Mohamed, 2016).

We test two different variations of the energy-based VAEs on each benchmark; one with an uncon-
strained (learnable variance) Gaussian posterior (EVAE), and one with a fixed-variance (σ = 1)
Gaussian posterior (ECVVAE). We do this to demonstrate how flexible posteriors can actually hurt
the learning of the energy-based prior as it will attempt to learn a degenerate distribution. We also
test a standard VAE with an isotropic Gaussian prior and factorized Gaussian posterior for reference
(VAE).

All of the VAEs tested have the same architecture of fully-connected DenseNet (Huang et al., 2018)
blocks with hidden size of 16 units and depth size of 4 in both the encoder and decoder. The two
energy-based VAEs have a Gaussian-Bernoulli RBM prior with 16 visible units and 32 hidden units.
Weight normalization (Salimans & Kingma, 2016) is applied to all of the layers in the encoder and
decoder. We use the Gibbs-Langevin sampler Liao et al. (2022) to sample from the energy VAEs.

RESULTS

The learned distributions of the VAE and our energy VAEs can be seen in Table 1. For the datasets
on the left, the VAE clearly has trouble learning the correct density for most of the data, while the
unrestricted EVAE outright fails due to it degenerating. The ECVVAE on the other hand displays
much better behaviour, successfully capturing two of the four datasets and showing a good attempt
at capturing the other two distributions. Similar behaviour is seen for the energy potentials, where
the regular VAE has trouble assigning energies correctly, and the ECVVAE displaying relatively
better mode coverage.

GT VAE EVAE ECVVAE GT VAE EVAE ECVVAE

Table 1: Left: density estimation on toy 2D data (top three are from (Cao et al., 2019)). Right:
density estimation on four potentials from Table 1 of Rezende & Mohamed (2016)

5.2 MNIST

To demonstrate its ability to scale to higher dimensions, we train a two-stage fully-connected ECV-
VAE of layers 784-256-64 in the encoder and 64-256-784 in the decoder on dynamically binarized
MNIST. The model is trained across three runs, and the training log is shown in Figure 1. Samples
from the energy prior, generated using block Gibbs sampling, are shown in Figure 2. Samples from
the GMM priors are shown in Figure 3.
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Figure 1: Left: variational lower bound across training iterations. Right: prior energy across training
iterations.

RESULTS

As descibed earlier, MNIST was much more difficult to model than the toy datasets, with the model
invariably preferring to maximize reconstruction error at the expense of the energy-function which
increases throughout training. This is the case even when incorporating design changes that discour-
age it, such as the aforementioned variance fixing.

We also experimented with both volume-preserving and non volume-preserving inverse autoregres-
sive flows in the posterior to see if they provided meaningful performance gains. Neither model
provided any meaningful gains, possibly due to the fact that both approaches are not very different
in practice Kingma et al. (2017).

Figure 2: Left: Test-set reconstructions from the ECVVAE. Right: Samples from ECVVAE (w/ 5
Gibbs steps).

Once again, as sample-generation and log-likelihoods are not mutually exclusive, the state-of-the-art
log-likelihoods attained on MNIST by the single-stage model (see Table 2) is completely justified
even though the samples are not remotely close to it. Similarly, the GMM samples are much better,
but they come with worse likelihood estimates.

Unnormalized samplers can still be useful though, especially for latent-space interpolation where
intermediate samples situated in low energy density regions can be corrected (Creswell et al., 2017;
Creswell & Bharath, 2018).
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Model ≈ p(x)
NVAE w/o flow (Vahdat & Kautz, 2021) 78.01

IAF-VAE Kingma & Dhariwal (2018) 79.10
CR-NVAE (Sinha & Dieng, 2022) 76.93

BFN Graves et al. (2024) 77.87
ECVVAE 69.36

ECVVAE w/ 4-comp GMM 161.86
ECVVAE w/ 10-comp GMM 154.54

Table 2: Comparison on binarized MNIST, test set average negative log likelihood (lower is better).

Figure 3: Left: Samples generated from a 4-component GMM. Right: Samples generated from 10-
component GMM.

6 CONCLUSION

In this paper, we proposed a novel variational inference framework that integrates unnormalized
energy-based priors into the Variational Autoencoder (VAE) model. By replacing the traditional
normalized prior with a more flexible energy-based distribution, we addressed key limitations of
VAEs, particularly their inability to model complex, multimodal data distributions. Our method
demonstrated both theoretical and practical advantages, including improved likelihood estimation
and generative performance, as well as scalable training of energy-based models without relying
on expensive Markov Chain Monte Carlo (MCMC) sampling. We empirically validated our ap-
proach on both toy and real-world datasets, showing that energy-based VAEs (EVAEs) outperform
traditional VAEs in terms of capturing complex data distributions and producing high-quality gener-
ative models. Although our experiments primarily focused on Gaussian-Bernoulli RBM priors, the
framework is versatile and can be applied to a wide range of unnormalized priors.

7 DISCUSSION

The introduction of unnormalized priors into VAEs offers a new perspective on generative model-
ing by bridging the gap between VAEs and energy-based models (EBMs). Unlike prior work that
seeks to enhance generative models by combining different techniques without a unified probabilis-
tic foundation, our approach maintains the rigor of variational inference. This not only ensures
the tractability of likelihood-based training but also leverages the expressiveness of energy-based
models to enrich the latent space of the VAE. By doing so, we have effectively addressed one of
the core limitations of VAEs—namely, the mismatch between simple priors and complex posterior
distributions.

Our experiments on toy datasets highlight the capability of our model to better capture multimodal
and intricate data distributions compared to standard VAEs. While the EVAE variant struggled
due to its flexibility, the ECVVAE, which constrained the posterior variance, demonstrated superior
performance, particularly in learning more robust and accurate latent representations. The results
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suggest that the interplay between posterior flexibility and energy-based priors must be carefully
balanced to avoid degenerate solutions, such as overfitting to posterior variances.

When scaling to more complex datasets like MNIST, our method faced challenges in maintain-
ing a balance between the reconstruction objective and energy minimization, particularly in high-
dimensional settings. Nonetheless, the experiments showed that our energy-based VAEs still
achieved state-of-the-art log-likelihood results, affirming the potential of unnormalized priors for
large-scale generative modeling tasks. Further exploration of architectural design, variance control,
and flexible posteriors could help refine the model’s ability to handle such datasets more effectively.

Future work could explore alternative strategies for posterior optimization, including hybrid ap-
proaches that combine energy-based priors with more expressive posterior distributions like normal-
izing flows or score-based methods. Using ECVVAEs as hierarchical priors could also potentially
improve the representation of complex data structures by conserving energy across layers. Addition-
ally, applying this framework to more diverse and complex datasets would provide further insights
into its generalizability and performance across various domains.
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