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STORY-ITER: A TRAINING-FREE ITERATIVE
PARADIGM FOR LONG STORY VISUALIZATION

Anonymous authors
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Figure 1: A long story of “snowman” visualized by our Story-Iter from different iterations, compared
with those visualized by previous StoryDiffusion Zhou et al. (2024) and StoryGen Liu et al. (2024).
Notable differences are highlighted in green and red. Zoom in for a better view.

ABSTRACT

This paper introduces Story-Iter, a new training-free iterative paradigm to en-
hance long-story generation. Unlike existing methods that rely on fixed reference
images to construct a complete story, our approach features a novel external it-
erative paradigm, extending beyond the internal iterative denoising steps of dif-
fusion models, to continuously refine each generated image by incorporating all
reference images from the previous round. To achieve this, we propose a plug-
and-play, training-free global reference cross-attention (GRCA) module, model-
ing all reference frames with global embeddings, ensuring semantic consistency
in long sequences. By progressively incorporating holistic visual context and text
constraints, our iterative paradigm enables precise generation with fine-grained in-
teractions, optimizing the story visualization step-by-step. Extensive experiments
in the official story visualization dataset and our long story benchmark demon-
strate that Story-Iter’s state-of-the-art performance in long-story visualization (up
to 100 frames) excels in both semantic consistency and fine-grained interactions.
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Figure 2: Comparison of paradigms for long story visualization: (A) Auto-Regressive (AR): gen-
erates frames sequentially referencing previous finite frames (e.g. the previous three frames); (B)
Reference-Image (RI): employs fixed reference images (e.g. the beginning four frames) as reference
images; (C) Iterative Paradigm: leverages all frames from the previous iteration as reference images.

1 INTRODUCTION

Story visualization aims to generate a sequence of coherent images from text prompts, reflecting the
narrative’s progression and enabling users, even without an artistic background, to visually present
their stories (Li et al., 2019; Maharana & Bansal, 2021; Chen et al., 2022). Recent advancements
in text-to-image models, particularly diffusion models, have significantly improved the quality of
generated visuals, producing high-quality, creative, and aesthetically pleasing images (Saharia et al.,
2022; Rombach et al., 2022; Kang et al., 2023). These models greatly outperform earlier approaches,
such as generative adversarial networks (Brock, 2018) in terms of image quality.

However, story visualization remains challenging, particularly in maintaining semantic consistency
and synthesizing interactions as the story length increases. Two main paradigms have emerged in
this domain. The Auto-Regressive Paradigm (Fig. 2 (A)), which generates frames sequentially
referencing previous finite frames (Pan et al., 2024; Liu et al., 2024), often struggles with semantic
consistency due to error accumulation and the inability to reference future frames. Although tech-
niques like Consistent Self-Attention (CSA) (Zhou et al., 2024) can help mitigate these inconsisten-
cies, their reliance on intermediate denoising features results in high memory consumption, limiting
scalability for longer stories. To address these challenges, Zhou et al. (2024) further proposes the
Reference-Image Paradigm (Fig. 2 (B)), which employs fixed reference images to guide the visual-
ization. However, while using only the initial frames as reference images alleviates scalability issues,
it fails to provide the global semantic coherence necessary for long-story visualization, resulting in
error propagation from the reference images to subsequent frames. As such, both paradigms expe-
rience quality degradation when visualizing long stories. Additionally, they inherit the limitations
from Stable Diffusion Model (SDM) (Rombach et al., 2022), particularly in generating fine-grained
interactions in the story (Fig. 1).

To address the limitations in existing story generation methods, we present Story-Iter, a new It-
erative Paradigm. Unlike existing methods that use multiple fixed reference frames but do not
refine them over time or incorporate a holistic visual context (Fig. 2 A&B, e.g. StoryGen (Liu et al.,
2024) and StoryDiffusion (Zhou et al., 2024)), our approach continuously refines each generated
story frame, utilizing the full-length reference images generated from the previous iteration. Here,
iteration refers to the external round beyond the internal denoising steps of diffusion models.

The proposed iterative paradigm offers two key advantages. 1) It progressively approximates the
distribution of reference image global embeddings across iterations, ultimately ensuring visual co-
herence (see Fig. 4). 2) By iteratively engaging the full-length story frames and text prompts, it
optimizes fine-grained control based on both global and local semantic contexts. Shown in Fig. 1,
Story-Iter enhances both visual consistency and fine control across iterations, resulting in more
coherent and higher-quality visualizations. For example, the image depicting complex character
interactions, such as “snowman saw a fox” demonstrates substantial improvement over iterations
compared to previous methods (Liu et al., 2024; Zhou et al., 2024).

Specifically, during initialization, only text prompts of the story are utilized to generate the full
story frames without any reference. In the subsequent iterations, the global embeddings of the full-
length story frames from the previous iteration as the reference, along with the text embeddings,
collaboratively guide story generation. To implement the iterative paradigm, we introduce a plug-
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Figure 3: Attention maps for each generated
image in our Global Reference Cross-Attention.
Zoom in for a better view.

Figure 4: Distribution among the global embed-
dings of full-length reference images as itera-
tions progress.

and-play Global Reference Cross-Attention (GRCA) for long story visualization. Some subject-
consistent generation methods, such as the decoupled cross-attention in IP-Adapter (Ye et al., 2023),
also contribute to story visualization. However, they are designed to maintain semantic consistency
in individual images, whereas story visualization requires connections across all frames, making
them not directly applicable. Different from the IP-Adapter, the global embeddings of the full-
length reference images act as keys and values in GRCA. Unlike the intermediate denoising features
used in CSA in StoryDiffusion (Zhou et al., 2024), the global embeddings in GRCA allow more
image frames to be referenced to maintain global semantic consistency. The processes of computing
the token similarity matrix and merging tokens in GRCA adaptively aggregate visual features from
reference images similar to the currently generated image (Fig. 3). This ultimately ensures the
semantic consistency in the iterative paradigm and reduces the influence from noisy references.
Additionally, to strike a balance between visual consistency and text controllability, we introduce a
linear weighting strategy to fuse both modalities.

Extensive experiments demonstrate that Story-Iter consistently outperforms existing methods for
visualizing both regular-length and long stories (up to 100 frames). Specifically, in the context
of regular-length story visualization using the StorySalon benchmark (Liu et al., 2024), Story-Iter
exceeds the baseline model, StoryGen (Liu et al., 2024), achieving a 9.4% improvement in aver-
age Character-Character Similarity (aCCS) (Cheng et al., 2024b) and a 21.71 reduction in average
Fréchet Inception Distance (aFID) (Cheng et al., 2024b). For long story visualization, Story-Iter also
demonstrates solid advancements, achieving gains of 3.4% in aCCS and 8.14 in aFID compared to
StoryDiffusion (Zhou et al., 2024), demonstrating the superior generative quality of Story-Iter, par-
ticularly in semantic consistency and fine-grained interactions.

Our contributions are summarized as follows:

• A new iterative paradigm that enhances story consistency by continuously updating ref-
erence images in each external iteration, beyond the diffusion model’s internal denoising
steps.

• A new global attention mechanism GRCA that enables modeling all frames as reference
images, thus ensuring semantic consistency in long sequences.

• State-of-the-art story visualization performance on various benchmarks, especially in
long-story scenarios.

2 RELATED WORK

Story Visualization Story visualization (Chen et al., 2022; Li, 2022; Tao et al., 2025; Papadim-
itriou et al., 2024; Bugliarello et al., 2024; Ahn et al., 2023; Rahman et al., 2023; Tsakas et al.,
2023; Wu et al., 2024) has evolved from GAN-based approaches like StoryGAN (Li et al., 2019)
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Figure 5: Overview of Story-Iter. The full-length story frames are generated with only text prompts
during initialization (Sec. 3.1). In the subsequent external iterations, the story frames are generated
referencing the full-length story frames from the previous iteration (Sec. 3.2). The Global Reference
Cross-Attention (GRCA) adaptively aggregates features from full-length reference images to ensure
semantic consistency (Sec. 3.3).

to more advanced techniques. Recent developments leverage diffusion models (Shen et al., 2024;
Tao et al., 2024) and combine them with the auto-regressive paradigm, as seen in AR-LDM (Pan
et al., 2024) and StoryGen (Liu et al., 2024). StoryDiffusion (Zhou et al., 2024), on the other hand,
uses a reference-image paradigm with fixed reference images. DreamStory (He et al., 2024), Sto-
ryGPT (Shen & Elhoseiny, 2023), and MovieDreamer (Zhao et al., 2024) introduce LLM-generated
guidance for story visualization. There are also attempts on interactive story visualization (Cheng
et al., 2024a;b; Gong et al., 2023; Yang et al., 2024). However, challenges remain in maintaining
semantic consistency for the whole story and avoiding error accumulation, especially for longer
narratives (Wang et al., 2023; Tewel et al., 2024; Zhou et al., 2024; Liu et al., 2024). Unlike Story-
Diffusion (Zhou et al., 2024), which uses fixed reference frames but does not refine them or incor-
porate holistic visual context, our paradigm continuously refines each generated frame, utilizing the
full-length story frames generated from the previous external iteration.

3 METHOD

3.1 INITIALIZATION

To build the initialization for iteration, we only employ text prompt Tk for the kth image in the story
to guide the pretrained Stable Diffusion Model (Rombach et al., 2022) SDM(z, Tk) in generating
the initial images, where z is the random noise. All generated images from the initial step will be
stored as reference images for the first iteration. We denote i = 0 as the initialization of Story-Iter.
Thus, the initially generated story frames can be represented as:

xi=0
k = SDM(z, Tk), k ∈ [1, B],

xi=0
1···B = [xi=0

1 , xi=0
2 , · · · , xi=0

k , · · · , xi=0
B−1, x

i=0
B ],

(1)

where B denotes the story length. Compared to subject-consistent image generation methods (Ye
et al., 2023) that introduce reference image guidance, Story-Iter is initialized only by text prompts
to outline the story faithfully.
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Figure 6: Qualitative comparisons for regular-length story visualization. Zoom in for a better view.

3.2 ITERATIVE PARADIGM

In this subsection, we describe how each image is updated within an external iteration beyond the
internal denoising steps of diffusion models (see Fig. 5). Formally, for the ith iteration, we use the
full-length B story frames from the (i − 1)th iteration xi−1

1···B (i ∈ [1, L], L refers to total iteration
number) as the reference images to refine story visualization. With SDMGRCA(z, Tk, x

i−1
1···B) repre-

senting the whole denoising process with our Global Reference Cross-Attention in pretrained Stable
Diffusion Model (Sec. 3.3), the kth story frame generated from the ith iteration can be expressed as:

xi
k = SDMGRCA(z, Tk, x

i−1
1···B), k ∈ [1, B],

xi
1···B = [xi

1, x
i
2, · · · , xi

k, · · · , xi
B−1, x

i
B ],

(2)

As the iterations progress, the distribution of reference image global embeddings gradually con-
verges, thereby assisting Story-Iter in continuously enhancing the semantic consistency of the
global view. As shown in Fig. 4, Story-Iter does not enforce consistency in a single step. In-
stead, through successive external iterations, it progressively refines GRCA by aligning the current
frame’s features with semantically relevant content from reference frames. Fine-grained interactions
(limitation for SDM) are also optimized as Story-Iter repeatedly engages text constraints Tk in the
iterative paradigm.

3.3 GLOBAL REFERENCE CROSS-ATTENTION

We propose a plug-and-play augmentation module to equip Stable Diffusion models, called Global
Reference Cross-Attention (GRCA). We utilize pre-trained CLIP (Radford et al., 2021) as the image
encoder and project the global embedding (termed c) for each reference image into a few tokens.
This global embedding enables guidance of structural and visual similarity to reference images dur-
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Figure 7: Qualitative comparisons for long story visualization. Story-Iter shows advantages in gen-
erating semantic consistency (consistency and differences are highlighted in green and red boxes)
and character interactions (correct and incorrect interactions are highlighted in green and red cir-
cles). For the complete story, refer to the Fig. 20.

ing the denoising process. Furthermore, with fewer tokens, GRCA can incorporate more reference
images.

Given full-length B images generated from the (i − 1)th iteration xi−1
1···B ∈ RB×h×w×3 (h: height,

w: width), we define Attention(Q,K, V ) to indicate the attention calculation, where Q, K, and V
represent the query, key, and value respectively. GRCA of the kth image in the ith iteration:

ci1···B = CLIP(xi−1
1···B), ci1···B ∈ RB×d,

ĉi1···B = ci1···BWc, Wc ∈ Rd×(n×e),

c̃i1···B = flatten(ĉi1···B), c̃i1···B ∈ R1×(B×n)×e,

Qi
k = IkWq, K

i
k = c̃i1···BWk, V

i
k = c̃i1···BWv,

GRCA(Iik, x
i−1
1···B) = Attention(Qi

k, K
i
k, V

i
k ).

(3)

The dimension of global embedding cik and the projected dimension are denoted by d and e, respec-
tively. n indicates the length of reference tokens, n = 4 if not specified. flatten(.) represents a
flatten operation on vectors. Wc is the projection matrix transforming the global embeddings into
reference tokens. Wq is the weight matrix of the intermediate denoising feature Iik in SDM. Wk and
Wv are the weight matrices of the reference tokens. The proposed plug-and-play GRCA directly
reuses the cross-attention weights from IP-Adapter (Ye et al., 2023) in subject-consistent single-
image generation without training. Finally, we merge the outputs from GRCA with the outputs from
cross-attention on texts, to guide the kth story frame generation. With corresponding text prompt Tk

and the full-length reference images xi−1
1···B , the intermediate denoising feature Iik is updated as:

Iik = Attention(Iik, Tk, Tk) + λiGRCA(Iik, x
i−1
1···B) (4)

where the weight factor λi of the ith iteration is adjusted as λi = λ1 + q × (i − 1) with q fixed.
λi increases linearly with a lower bound λ1 to balance visual consistency and text alignment in the
iterative paradigm. Leveraging pretrained weights, GRCA adaptively re-weights attention at each
iteration, thereby mitigating the accumulation of noise from irrelevant historical states and instead
prioritizing information most pertinent to the current frame (see Fig. 3). The global embedding

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparison for
regular-length stories.

Method CLIP-T ↑aCCS ↑aFID ↓
SDM (Rombach et al., 2022) 0.323 0.662 23.10
Prompt-SDM (Rombach et al., 2022) 0.289 0.699 18.18
Finetuned-SDM (Rombach et al., 2022) 0.309 0.639 23.05
AR-LDM (Pan et al., 2024) 0.239 0.684 42.55
StoryGen (Liu et al., 2024) 0.255 0.724 36.34
IP-Adapter (Ye et al., 2023) 0.241 0.737 25.18
Story-Iter (Ours) 0.305 0.760 16.52
IP-AdapterXL (Ye et al., 2023) 0.244 0.758 14.70
StoryDiffusion (Zhou et al., 2024) 0.311 0.765 14.84
Story-IterXL (Ours) 0.310 0.818 14.63

Table 2: Quantitative comparison for long
story visualization.

Method CLIP-T ↑aCCS ↑aFID ↓
AR-LDM (Pan et al., 2024) 0.216 0.673 133.62
StoryGen (Liu et al., 2024) 0.223 0.740 126.13
IP-Adapter (Ye et al., 2023) 0.274 0.751 93.70
Story-Iter (Ours) 0.307 0.754 98.51
IP-AdapterXL (Ye et al., 2023) 0.297 0.787 88.69
DALL·E 3 (Betker et al., 2023) 0.301 0.674 251.71
SEED-LLaMA (Ge et al., 2023) 0.279 0.688 88.96
ConsiStory (Tewel et al., 2024) 0.316 0.761 108.83
1prompt1story (Liu et al., 2025) 0.316 0.790 99.25
StoryDiffusion (Zhou et al., 2024) 0.315 0.768 102.44
Story-IterXL (Ours) 0.318 0.802 94.30

undergoes progressive updates, serving as a soft forgetting mechanism that attenuates contextual
drift and naturally suppresses obsolete or extraneous information throughout the iterative refinement
process. We demonstrate Pseudo-code of Story-Iter in Algo. 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

We use the StorySalon dataset (Liu et al., 2024) to benchmark performance for regular-length story
visualization. Compared to the closed Flintstones (Gupta et al., 2018) and Pororo (Kim et al., 2017)
benchmarks, the open-ended StorySalon benchmark provides an evaluation of more diverse scenar-
ios. For long story visualization, we curate multiple long stories using GPT-4o (OpenAI, 2024). To
evaluate the efficacy of Story-Iter, we report CLIP text-image similarity (CLIP-T) (Radford et al.,
2021), average Fréchet Inception Distance (aFID) (Cheng et al., 2024b), and Character-Character
Similarity (aCCS) (Cheng et al., 2024b). CLIP-T is to measure image-text alignment, and both aFID
and aCCS are used to evaluate semantic consistency among generated images. We use 10 iterations
and the fixed random seed for Story-Iter in experiments by default. For story visualization within
100 frames, 10 iterations are sufficient to maintain the consistency of the story sequence. Iteration
number ablation in Sec. D. Human evaluation and diversity can be found in Sec. B and Sec. F.2.

4.2 REGULAR-LENGTH STORY VISUALIZATION

Based on the standard setup on StorySalon dataset (Liu et al., 2024), we compare with the following
baselines: StoryDiffusion (Zhou et al., 2024), StoryGen (Liu et al., 2024), AR-LDM (Pan et al.,
2024), SDM (Rombach et al., 2022), Prompt-SDM (Rombach et al., 2022), Finetuned-SDM (fine-
tuned on StorySalon) (Rombach et al., 2022), and IP-Adapter (individual image generation) (Ye
et al., 2023). Autostudio (Cheng et al., 2024a) requires the additional bounding boxes as prompt,
thus it is not included in comparison. For Prompt-SDM, we use prompts of “cartoon-style images”.
For StoryDiffusion, we follow the official setup by using the initial four generated images as the
reference. To adhere to copyright restrictions and ensure fair comparisons, we exclusively utilize
text prompts from the open-source subset of the StorySalon test set for evaluation. This subset
comprises 6,026 prompts, with an average of 14 frames per story and the longest story up to 44
frames.

Quantitative Evaluation. CLIP-T results in Tab. 1 show that Story-Iter and StoryDiffusion (Zhou
et al., 2024) visualize content more aligned to the text prompt than previous story visualization
models (AR-LDM (Pan et al., 2024) and StoryGen (Liu et al., 2024)). Since the story visualization
framework introduces additional image conditioning, it inevitably affects text alignment compared
to SDM, which is conditioned only on text. Meanwhile, since neither Story-Iter nor most baselines
are trained on the StorySalon dataset, we introduce aFID and aCCS metrics for a fair evaluation of
the character consistency among generated story images. aFID and aCCS in Tab. 1 illustrate that
Story-Iter achieves higher semantic consistency of the generated images compared to most baselines.

Qualitative Evaluation. In Fig. 6, we provide the qualitative comparison results of the open-ended
story visualization. Although AR-LDM (Pan et al., 2024) and StoryGen (Liu et al., 2024) generate
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Figure 8: Ablation study of the weighting strategies in the iterative paradigm: linear weighting
strategy λi = λ1+q×(i−1) for the ith iteration or fixed weighting strategy (e.g. λ = 0.3, λ = 0.5).
Zoom in for a better view. See Sec. D for results with more iterations.

coherent image sequences based on story prompts, the quality of the generated images degrades
when story length increases due to the error accumulation issue of the AR paradigm. Results of
StoryDiffusion (Zhou et al., 2024) and Story-Iter show satisfactory story visualization performance.
However, StoryDiffusion cannot maintain consistency between certain subjects due to lacking global
story comprehension (e.g., “cat” in Fig. 6). Additionally, since StoryDiffusion requires the first few
generated images as references, the visualization results are affected by the reference image flaws
(e.g., “closed-eye issue” in Fig. 6). In comparison, Story-Iter outperforms in regular-length story
visualization by generating coherent image sequences. These findings highlight the effectiveness of
GRCA, as it incorporates all reference images to ensure semantic consistency.

4.3 LONG STORY VISUALIZATION

To better evaluate generative quality for long story visualization (i.e., up to 100 frames (Fig. 27 and
Fig. 28)), we compare to existing story visualization methods and reference-guided image generation
methods. We use GPT-4o to generate 20 long story cases of 10 50-sentence and 10 100-sentence
narratives.

Quantitative Evaluation. The quantitative results in Tab. 2 show that Story-Iter significantly im-
proves the semantic consistency and the generative coherence for fine-grained interactions for long
story visualization compared to existing models (Pan et al., 2024; Liu et al., 2024; Betker et al.,
2023; Ge et al., 2023; Tewel et al., 2024; Liu et al., 2025). A key difference between our Story-
Iter and StoryDiffusion (Zhou et al., 2024) lies in the paradigm: by refining frame generation with
global (visual) and local (text) semantic context in the iteration paradigm, Story-Iter achieves higher
consistency compared to StoryDiffusion, which relies on the fixed reference images. IP-Adapter (Ye
et al., 2023) employs the same single reference image that leads to less aFID. In contrast, referencing
full-length frames in our paradigm, our method ensures both visual consistency and text alignment.

Qualitative Evaluation. Fig. 7 shows the visualization results for long stories, indicating that
Story-Iter can generate high-quality, thematically consistent long image sequences based on the
text prompts. The results of the IP-Adapter (Ye et al., 2023) exhibit significant missing or incor-
rect interactions due to limited text controllability. Our method outperforms IP-Adapter in global
context visualization, benefiting from the proposed iterative paradigm and referencing full-length
story-frames, in contrast to single-image guided generation. StoryGen (Liu et al., 2024) suffers from
a more serious error accumulation issue from the AR paradigm during extended storytelling. With-
out modeling the holistic visual context, StoryDiffusion (Zhou et al., 2024) and ConsiStory (Tewel
et al., 2024) fail to generate faithful character interactions and maintain consistency throughout the
story. Our Story-Iter refers to the full-length story frames and individual text prompts in external
iterations, thus achieving more accurate character interactions and maintaining subject consistency.

8
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4.4 ABLATION STUDY

Global Reference Cross-Attention. We ablate the effect of global semantics modeling by GRCA
for long story visualization. Specifically, for each image visualization in the sequence, we only
use the single reference image at the corresponding index during the iteration as guidance. By
establishing a global comprehension of the story for the diffusion model, Story-Iter maintains the
semantic consistency in the generated image sequence (Tab. 3 and Fig. 9). For further discussion on
GRCA, please refer to the Sec. A.5.

Figure 9: Qualitative ablation studies of initializa-
tion and GRCA. Zoom in for a better view.

Table 3: Ablation of the design choices of
Story-Iter.

Setting CLIP-T ↑ aCCS ↑ aFID ↓
w/o Initialization 0.302 0.788 90.30
w/o GRCA 0.319 0.740 97.86
w/o Iteration Paradigm 0.322 0.757 105.17
Ours 0.318 0.802 94.30

Table 4: Effect of different weighting strate-
gies in the Story-Iter. [λ1, λL] denotes a lin-
ear weighting strategy with a lower bound of
λ1 and an upper term of λL in 10 iterations.

fixed weighting strategy CLIP-T ↑ aCCS ↑ aFID ↓
λ = 0.3 0.320 0.760 101.55
λ = 0.5 0.261 0.753 81.72

linear weighting strategy CLIP-T ↑ aCCS ↑ aFID ↓
[λ1, λL] = [0.2, 0.5] 0.320 0.781 101.44
[λ1, λL] = [0.3, 0.4] 0.318 0.790 98.16
[λ1, λL] = [0.3, 0.5] 0.318 0.802 94.30
[λ1, λL] = [0.3, 0.6] 0.309 0.811 90.92
[λ1, λL] = [0.4, 0.5] 0.310 0.808 95.73

Iterative Paradigm. We conduct ablation experiments to evaluate the effect of the proposed iterative
paradigm for long story visualization. As shown in Tab. 3 and Fig. 8, the iterative paradigm improves
generation quality for fine-grained interactions and semantic consistency. This is mainly because
the iterative paradigm offers a global view of the entire story, thus reducing error accumulation and
alleviating the propagation of the reference image flaws.

In Tab. 4 and Fig. 8, we validate our linear weighting strategy by comparing it with the fixed weight-
ing strategy. While a smaller fixed weight factor enhances early text-image alignment, it limits
consistency in later stages. Conversely, a larger fixed weight factor enforces excessive consistency
across iterations, reducing flexibility. Thus, the fixed weighting strategy proves to be suboptimal.
Based on the ablation results in Tab. 4, we adopt a linear weighting strategy: [λ1, λL] = [0.3, 0.5] in
10 iterations. This enables greater flexibility within the iterative paradigm.

Initialization. To ablate the effect of the initialization, we use a sequence of images consisting
of the characters as reference images (i.e., w/o initialization). Adopting the same character as the
reference image for the story sequence resulted in a high consistency of all story visualization results,
triggering a better aFID. However, Tab. 3 shows that when removing the initialization, there is a
significant decrease in the image-text alignment of Story-Iter in terms of CLIP-T. Fig. 9 illustrates
that without initialization, the diffusion model fails to generate required objects according to texts.

5 CONCLUSIONS AND DISCUSSIONS

We introduce Story-Iter, a training-free iterative paradigm for long story visualization. By using
full-length generated images from the previous external iteration as reference images, our frame-
work maintains semantic consistency and enhances generative quality for fine-grained interactions
throughout the story, effectively reducing error accumulation and avoiding the propagation of flaws.
Extensive experiments demonstrate that Story-Iter outperforms existing methods on the regular-
length story visualization dataset, and shows strong results in long story visualization. These indi-
cate the potential of the proposed iterative paradigm to advance long story visualization.
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TECHNICAL APPENDICES

A PARADIGMS

Existing story visualization methods usually employ the Auto-Regressive (AR) or Reference-Image
(RI) paradigms. In this work, we propose a novel iterative paradigm for story visualization. Next,
we will discuss different story visualization paradigms in detail.

Figure 10: Different paradigms for story visualization. Zoom in for a better view.

A.1 AUTO-REGRESSIVE PARADIGM

Setting. As shown in Fig. 10, AR paradigm-based methods typically use a limited number of previ-
ous frames and the corresponding text prompt of the current frame to guide current image generation.
This helps the methods maintain semantic consistency between consecutive frames.

Discussion. However, the AR paradigm cannot consider future frames when synthesizing the current
image, which makes the AR paradigm only maintain semantic consistency in neighboring frames
but not throughout the story. Besides, the AR paradigm easily suffers from error accumulation.
Therefore, the image quality of the AR paradigm gets worse as the length of the story increases.

A.2 REFERENCE-IMAGE PARADIGM

Setting. RI paradigm-based methods employ the beginning visualized frames as reference images
to guide the visualization of the rest of the story when performing long story visualization (see
Fig. 10). Bootstrapping based on fixed reference images helps the methods to effectively maintain
identity consistency in long story visualizations.

Discussion. However, such a setup ignores the consistency of emerging characters in the story, and
all visualizations are affected by flaws in the reference images. Both issues affect the quality of long
story visualizations with the RI paradigm.

A.3 ITERATIVE PARADIGM

Setting. To address the aforementioned limitations, we propose an iterative paradigm in Story-Iter
(Fig. 10). We constantly consider all generated images in the previous iteration with an iterative
mechanism and model on the global embeddings. Specifically, when generating for the kth image,
we propose to implement Global Reference Cross-Attention (GRCA) on global embeddings from
all generated images in the previous iteration.

Discussion. By using all generated images from the previous iteration as reference images to guide
the current generation, we effectively maintain semantic consistency throughout the story. More-
over, all the generated images as references are updated through each iteration. We illustrate in
Fig. 11 how different reference images contribute to the generation of each image within the itera-
tive paradigm. Taken together, the iterative paradigm effectively avoids the influence of defects in
some reference images. We demonstrate the procedure of Story-Iter in Algo. 1.
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Algorithm 1 Pseudo-Code of Story-Iter.

# diffusion model:θ, iteration epochs:L, starting weight factor:λs,
ending weight factor:λe, ith iteration jth diffusion step kth
intermediate denoising features:Iik,j, story length:B, diffusion steps
:J, decoder:D

# Initialize I0k,j, Iik,j˜N(0, I), k˜(1, B), i˜(1, L), j˜(0, J)
# Initialize Story-Iter iteration
for j in reversed(range(0, J)):

# Init z˜N(0, I) if j>1 else z=0
I0k,j−1=(1/sqrt(αj))*I

0
k,j-(1-αj)*θ(I

0
k,j,j,Tk)/sqrt(1-αj))+σt*z

R=concat([x0
1,...,x

0
k,...,x

0
B]), x0

k=D(I
0
k,0)

# Insert GRCA to θ and initialize weighting factor list λlist

λlist=linspace(λs,λe,L)
# Story-Iter Iteration
for i,λ in enumerate(λlist):

for j in reversed(range(0, J)):

Iik,j−1=(1/sqrt(αj))*(I
i
k,j-(1-αj)*θ(I

i
k,j,j,Tk,R,λ)/sqrt(1-αj))+σt*z

R=concat([xi
1,...,x

i
k,...,x

i
B]), xi

k=D(I
i
k,0)

Figure 11: Attention maps for each reference im-
age in the ith iteration of Story-Iter for each image
generation.

Table 5: GRCA vs. CSA.

Setting CLIP-T ↑ aCCS ↑ aFID ↓
GRCA 0.322 0.757 105.17
CSA 0.315 0.768 102.44

Setting FLOPs ↓ Time ↓ VRAM ↓
GRCA 44.09T 15S 19GB
CSA 22.32P 19S 40GB

Figure 12: Computational feasibility with
scaling reference images.

A.4 IMPLEMENTATION DETAILS

To ensure a fair comparison, we used the weights of IP-Adapter (Ye et al., 2023) and IP-
AdapterXL (Ye et al., 2023), respectively, resulting in two models: Story-Iter and Story-IterXL.
We utilized DDIM (Song et al., 2020) for 50-step sampling with a Classifier-Free Guidance score
set to 7.5. For the hyperparameters in our iterative paradigm, we set the number of story iterations
to 10 by default. The weight factor λ is set to 0.3 for the initial iteration and 0.5 for the final itera-
tion, with linearly interpolated values for the intermediate iterations by our linear weighting strategy.
Story-Iter is implemented in the NVIDIA RTX A6000.
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Figure 13: Qualitative comparison of GRCA and CSA.

A.5 GRCA VS CSA

We investigate GRCA and CSA in Tab. 5 and Fig. 13, using the outputs of the first iteration from
Story-Iter and StoryDiffusion, respectively. Though GRCA generates less visual consistency during
the first iteration than CSA in terms of aCCS and aFID in Tab. 5, GRCA’s global comprehension
improves the consistency of multiple characters throughout stories shown in Fig. 13. For example,
GRCA effectively preserves the consistency of emerging characters (e.g., “the character 1900”),
while CSA fails.

Establishing global story comprehension is fundamental to long-story visualization. Although the
CSA can establish connections among all generated images during the generation process, its scal-
ability for reference image scaling is limited, particularly for long stories, due to the high memory
consumption of latent denoising representations. In Fig. 12, we analyze reference scaling of GRCA
in single iteration and CSA in StoryDiffusion, without adopting the RI paradigm. FLOPs are calcu-
lated within the diffusion UNet. As shown in Fig. 12, as the number of reference images increases,
StoryDiffusion experiences a significant rise in computation in terms of FLOPs, eventually becom-
ing computationally prohibitive and can’t maintain global story comprehension of long narratives.
While Story-Iter and Story-IterXL are slightly affected. This lays the foundation for GRCA to pre-
serve global story semantics in long story visualizations.

Though our focus is on addressing the fundamental modeling challenges in long story visualization,
rather than optimizing for computational efficiency, we still discuss the computational cost of 50
diffusion steps for 1024-resolution image generation with 100 reference frames in Tab. 5. Since
the Story-Iter paradigm involves multiple iterations, generating a full 100-frame story incurs high
computational complexity (100 frames of 1024-resolution story visualization externally iterates one
round at a cost of 4.30 PFLOPs/25 minutes). With that said, it is still easily scalable across a wide
range of hardware devices since the generation or update of a single frame, the computational cost
of 50 diffusion steps is only 44.09 TFLOPs and takes 15 seconds with 100 reference frames. The
required VRAM is just 19 GB at 1024x1024 resolution. In comparison, for 1024x1024 resolution
story visualization, StoryDiffusion generates 22.32 PFLOPS and occupies 31minutes. For each gen-
erated image, VRAM consumption is 40 GB, and inference time is 19 seconds. Moreover, with the
introduction of global embedding in GRCA, Story-Iter can be easily expanded to 200 frames of
story visualization. The actual computational limit mainly depends on the VRAM, e.g., 100 fps
story visualization VRAM is 19GB, 200 fps story visualization VRAM is 24GB. Additionally, with
200 reference frames, the image generation time of Story-Iter is 17 seconds. This indicates that in-
creasing the number of frames has minimal impact on the memory consumption and inference time
of Story-Iter. Also, we note that these costs can be reduced(∼50×) using MeanFlow (Geng et al.,
2025), distilled diffusion models (Kim et al., 2023a;b), or latent consistency models (Luo et al.,
2023). As shown in Tab. 8 and Fig. 15, Story-Iter achieves high-quality results within just 10 itera-
tions for 100-frame stories. Depending on the length and complexity of the given story, the number
of external iterations in Story-Iter can be reduced accordingly, thereby further improving efficiency
while still achieving high-quality story visualization. With these improvements, Story-Iter requires
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Table 6: Human evaluation comparison of subject-consistent image generation, regular-length story
visualization, and long story visualization. The best is highlighted in red.

Subject-Consistent Image Generation

Model Align. ↑ Inter. ↑ Cons. ↑ Pref. ↑
IP-Adapter (Ye et al., 2023) 2.51 3.27 4.58 4.19

IP-AdapterXL (Ye et al., 2023) 2.66 3.36 4.72 4.26
PhotoMaker (Li et al., 2024b) 3.79 4.18 4.25 4.11

StoryDiffusion (Zhou et al., 2024) 4.15 4.28 4.50 4.48
Story-Iter 4.02 4.20 4.41 4.33

Story-IterXL 4.20 4.35 4.58 4.54

Regular-Length Story Visualization

SDM (Rombach et al., 2022) 4.11 2.37 2.01 1.14
Prompt-SDM (Rombach et al., 2022) 4.03 3.49 1.99 1.26

Finetuned-SDM (Rombach et al., 2022) 3.35 3.82 2.15 1.60
AR-LDM (Pan et al., 2024) 3.08 3.64 2.90 2.05
StoryGen (Liu et al., 2024) 3.72 4.17 3.83 3.39

StoryDiffusion (Zhou et al., 2024) 3.96 4.48 4.52 4.37
Story-Iter 3.89 4.21 4.36 4.10

Story-IterXL 4.06 4.60 4.74 4.62

Long Story Visualization

AR-LDM (Pan et al., 2024) 3.30 3.68 3.42 3.27
StoryGen (Liu et al., 2024) 3.51 4.06 3.88 3.51
IP-Adapter (Ye et al., 2023) 3.79 4.27 4.30 4.06

IP-AdapterXL (Ye et al., 2023) 3.83 4.23 4.61 4.11
StoryDiffusion (Zhou et al., 2024) 4.16 4.30 4.53 4.35

Story-Iter 3.97 4.15 4.42 4.29
Story-Iter 4.35 4.47 4.70 4.65

only about 5 minutes per external iteration to generate a 100-frame story at 1024×1024 resolution.
Therefore, efficiency is unlikely to pose a limitation for Story-Iter in long story visualization.

B HUMAN EVALUATION

Setting. To complement the evaluation metrics to accurately reflect the quality of the generated
stories, we involve human evaluation to further compare Story-Iter and baselines. Referring to the
setting in StoryGen (Liu et al., 2024), we invite participants to rate various aspects: text-image
alignment (Align.), character interaction (Inter.), content consistency (Cons.), and preference (Pref.)
on a scale from 1 to 5. The higher the better.

Results. Tab. 6 shows that our Story-Iter receives more preference from the participants. It is worth
noting that although IP-Adapter receives higher scores for consistency in the subject-consistent im-
age generation task, Story-Iter is more favored in text-image alignment and generating character
interactions. For regular-length and long story visualization, Story-Iter is more preferred compared
to baselines in most evaluation aspects, especially visual consistency and capability to generate
character interactions. This is aligned with the quantitative measurement.

C SUBJECT-CONSISTENT GENERATION COMPARISON

Related Work. Subject consistency is critical for tasks such as story visualization and video gener-
ation. Recent advancements in subject-consistent image generation have focused on reducing com-
putation while maintaining consistency. Early approaches like Gal et al. (2022); Ruiz et al. (2023)
require extensive fine-tuning, prompting more efficient methods (Ryu, 2023; Han et al., 2023; Ku-
mari et al., 2023; Yuan et al., 2023; Tewel et al., 2024; Cao et al., 2023; Xiao et al., 2024). Notable
progress (Li et al., 2024b; Avrahami et al., 2024; Ye et al., 2023; Li et al., 2024a; Wei et al., 2023;
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Figure 14: Qualitative comparison of subject-consistent image generation methods.

Xu et al., 2024) includes IP-Adapter (Ye et al., 2023) with its decoupled cross-attention module.
However, IP-Adapter is a single image generation model, which cannot be directly applied to story
visualization that requires establishing connections for all frames.

In the evaluation phase, we employ GPT-4o (OpenAI, 2024) according to the settings of StoryD-
iffusion (Zhou et al., 2024) to generate 20 character descriptions and 100 specific activity descrip-
tions, respectively. We combine them as 2000 test descriptions, to compare Story-Iter and subject-
consistent image generation baselines, including IP-Adapter (Ye et al., 2023), PhotoMaker (Li et al.,
2024b), and StoryDiffusion (Zhou et al., 2024).

Quantitative Evaluation. For quantitative comparisons on subject-consistent image generation,
we employ CLIP text-to-image similarity (CLIP-T) and image-image similarity (CLIP-I) to mea-
sure consistency between the character images and generated images. Tab. 7 shows that Story-Iter
achieves SoTA performance in terms of both quantitative metrics, which demonstrates Story-Iter’s
ability to generate subject-consistent image sequences based on text prompts or image prompts.

Qualitative Evaluation. Fig. 14 shows the qualitative comparison results. Story-Iter generates
higher-quality images in subject-consistent and detailed interactions. In contrast, IP-Adapter fails
to generate correctly, e.g., “paper”, “whiteboard”, and “chainsaw”. PhotoMaker cannot generate
images consistently, e.g., maintaining details of the attire. Despite accurately generating content
according to text prompts with visual consistency, StoryDiffusion suffers from visualizing complex
details due to lacking global story comprehension. By incorporating a global story view in our
iterative paradigm, Story-Iter can maintain visual consistency, especially in details throughout the
story.
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Figure 15: Story visualization results from different iterations by Story-Iter. Accurate interactions
are denoted in green, wrong or missing ones are in red.

Table 7: Quantitative comparison in subject-
consistent image generation tasks.

Method CLIP-T ↑CLIP-I ↑
IP-Adapter (Ye et al., 2023) 0.307 0.872
Story-Iter (Ours) 0.326 0.877
IP-AdapterXL (Ye et al., 2023) 0.312 0.879
PhotoMaker (Li et al., 2024b) 0.317 0.880
StoryDiffusion (Zhou et al., 2024) 0.330 0.882
Story-IterXL (Ours) 0.332 0.884

Table 8: Quantitative comparison of multiple
iterations.

Iteration CLIP-T ↑aCCS ↑aFID ↑
initialization 0.330 0.502 214.94
1th iteration 0.322 0.757 105.17
5th iteration 0.319 0.783 100.81
10th iteration 0.306 0.840 91.35
15th iteration 0.297 0.848 90.62

D MORE ITERATIONS

Setting. In this section, we compare results on different iterations in the iterative paradigm and
investigate the impact of longer iterations on story visualization. Specifically, we study the visual-
ization results in the initialization, 1st, 5th, 10th, and 15th iterations, respectively.

Results. Tab. 8 shows that as iteration increases, Story-Iter achieves significant improvement in vi-
sual consistency (aCCs and aFID) while text-image alignment (CLIP-T) drops slightly. This further
demonstrates the contribution of the iterative paradigm to the semantic consistency of the over-
all story. However, we also note that a further increase in iterations harms text-image alignment,
with limited gain in visual content consistency. This indicates that while Global Reference Cross-
Attention (GRCA) effectively improves the content consistency of the long story, the increasing
weighting factor of GRCA during the iterations poses a challenge to aligning the text prompts.

Fig. 15 demonstrates a significant improvement in generative quality for fine-grained interactions as
the iteration proceeds. The iterative paradigm effectively alleviates the diffusion model’s limitations
on complex interaction generation by continuously creating input channels for text prompts. But
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more iterations wouldn’t improve the generation quality further. Therefore, based on the above
results, fewer than 10 iterations are sufficient to achieve high-quality story visualization, with any
further iterations yielding negligible improvements.

This trade-off between consistency and text-image alignment is analogous to autoregressive models,
where increased sequence length may introduce compounding errors, yet also allows for stronger
global coherence. This tradeoff does not indicate inefficiency in our iterative refinement process,
but rather highlights the importance of balancing local fidelity and global consistency. Importantly,
this trade-off can be effectively mitigated. Also, as demonstrated in Tab. 8, adjusting the hyperpa-
rameters based on the specific story length and content, as well as terminating the external iteration
of Story-Iter earlier, can offer a better trade-off. This opens promising directions for future work,
where we plan to integrate content-aware and length-sensitive hyperparameter scheduling, guided
by automatic evaluations (e.g., GPT-based metrics), to further optimize both consistency and align-
ment.

E LIMITATION

While Story-Iter demonstrates great potential in long-story visualization, there remains an inherent
trade-off between consistency and diversity. Although our initialization and linear weighting strat-
egy help maintain global diversity throughout the story, certain local frames still exhibit diversity
limitations. In future work, we aim to incorporate pose or layout conditional controls to further
encourage diversity between consecutive frames.

At the same time, multiple external iterations for long story generation may affect the practical ef-
ficiency of Story-Iter. However, this limitation can be fundamentally addressed through accelerated
generation methods such as MeanFlow (Geng et al., 2025), which we discuss in Sec. A.5.

Additionally, we observe a trade-off between iterations and text–image alignment: longer iterations
enhance global consistency but weaken alignment. This does not indicate inefficiency of the iterative
refinement process, but rather reflects the balance between local fidelity and global consistency.
Notably, this trade-off can be mitigated by tuning hyperparameters or terminating iterations earlier,
as discussed in Sec. D.

F MORE VISUALIZATION RESULTS

In this section, we provide more visualization results from Story-Iter and the baselines.

F.1 VISUAL COMPARISON

We compare the long story visualization results of representative work with AR-based, RI-based,
and iterative paradigms, respectively. Specifically, Fig. 20, Fig. 16, Fig. 17, Fig. 19, and Fig. 18
show the generated results of the same “Robinson” story from the proposed Story-Iter (iterative),
StoryGen (Liu et al., 2024) (AR-based), IP-Adapter (Ye et al., 2023) (subject-consistent image gen-
eration), ConsiStory (Tewel et al., 2024) (RI-based), and StoryDiffusion (Zhou et al., 2024) (RI-
based), respectively.

Results. Fig. 16 shows that the visualization quality from StoryGen constantly gets worse as the
length of the story increases. The visualization results of the IP-Adapter in Fig. 17 show obvious
interaction missing or wrong interactions. In Fig. 18, StoryDiffusion maintains high visual quality
throughout the story but suffers from some shortcomings in multi-character interactions. In contrast,
our Story-Iter effectively achieves high-quality story visualization and addresses the aforementioned
limitations (see Fig. 20).

We also observe that, although Story-Iter employs global embeddings, it still preserves fine-grained
consistency compared to methods relying heavily on local visual embeddings—such as StoryDif-
fusion, StoryGen, and ConsiStory. By summarizing an entire image into a compact representation,
global embeddings enable computationally affordable processing while preserving subject relevance
and semantic consistency across full-length story sequences. At the same time, our method lever-
ages latent denoising features that retain pixel-wise, fine-grained visual information, guided by
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Figure 16: Visualization results of StoryGen for the “Robinson” story. Zoom in for a better view.

Figure 17: Visualization results of IP-Adapter for the “Robinson” story. Zoom in for a better view.

the global embedding. This combination helps preserve important local details, such as clothing
and facial features, as illustrated in Fig. 20. In contrast, StoryDiffusion, StoryGen, and ConsiStory
paradoxically yield inconsistent details, as they are substantially disrupted by irrelevant noise due to
their excessive emphasis on local features.

F.2 DIFFERENT STYLE

We visualize scenes of the same long story in different styles in Fig. 21, Fig. 22, and Fig. 23.
Meanwhile, we provide more long story visualization examples from Story-Iter in different styles
in Fig. 24, Fig. 25, and Fig. 26. The experiment results suggest that Story-Iter can be applied to
different visual styles as well. Furthermore, these results demonstrate that Story-Iter consistently
generates high-quality visual narratives across a variety of initialization conditions—including dif-
ferent styles, content types, story lengths, and random seeds—highlighting its robustness and gen-
eralizability.
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Figure 18: Visualization results of StoryDiffusion for the “Robinson” story. Zoom in for a better
view.

Figure 19: Visualization results of ConsiStory for the “Robinson” story. Zoom in for a better view.

F.3 LONGER STORY VISUALIZATION RESULTS

In Fig. 27 and Fig. 28, we show the visualization results of the long story (up to 100 frames).

G DECLARATION OF LLM TOOL USAGE

During the preparation of this manuscript, I used OpenAI’s GPT-4.1 model for minor language re-
finement and smoothing of the writing. The LLM tool was not used for generating original content,
conducting data analysis, or formulating core scientific ideas. All conceptual development, exper-
imentation, and interpretation were conducted independently without reliance on LLM tools. The
other points involving the use of LLMs have already been highlighted in the paper.
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Figure 20: Visualization results of our Story-Iter for “Robinson”. Zoom in for a better view.

Figure 21: Our comic style story visualization results for “Robinson”. Zoom in for a better view.

Figure 22: Our realistic style story visualization results for “Robinson”. Zoom in for a better view.
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Figure 23: Our film style story visualization results for “Robinson”. Zoom in for a better view.

Figure 24: Our realistic style story visualization results for “loyal dog”. Zoom in for a better view.

Figure 25: Our monochrome style regular story visualization results in StorySalon (Liu et al., 2024).
Zoom in for a better view.
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Figure 26: Our realistic style story visualization results for “The Prince and the Princess”. Zoom in
for a better view.
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Figure 27: Our long story visualization results for “Tortoise and the Hare race”. Zoom in for a
better view.
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Figure 28: Our long story visualization results for “Winnie the Pooh”. Zoom in for a better view.
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