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Abstract

Retrieval-Augmented Generation (RAG) sys-001
tems have emerged as a pivotal methodology002
for enhancing Large Language Models (LLMs)003
through the dynamic integration of external004
knowledge. To further improve RAG’s flex-005
ibility, Agentic RAG introduces autonomous006
agents into the workflow. However, Agentic007
RAG faces several challenges: (1) the success008
of each step depends on both high-quality plan-009
ning and accurate searching, (2) the lack of su-010
pervision for intermediate reasoning steps, and011
(3) the exponentially large candidate space for012
planning and searching. To address these chal-013
lenges, we propose HRM, a novel framework014
that decouples planning and search processes015
using dual value models, enabling independent016
optimization of planning reasoning and search017
grounding. Our approach constructs a reason-018
ing tree, where each node represents planning019
and searching steps. We leverage Monte Carlo020
Tree Search to efficiently assess the quality of021
each step. During inference, Hierarchical Beam022
Search iteratively refines plan and search candi-023
dates through reward-guided optimization. Ex-024
tensive experiments on five datasets, across pol-025
icy models of varying parameter sizes, demon-026
strate the effectiveness of our method.027

1 Introduction028

Large Language Models (LLMs) (Taylor et al.,029

2022; Chowdhery et al., 2022; Zhao et al., 2023)030

have demonstrated remarkable performance across031

a wide range of downstream tasks (Xia et al.,032

2024; Yamauchi et al., 2023; Imani et al., 2023;033

Lewkowycz et al., 2022). Despite these advance-034

ments, LLMs remain susceptible to generating re-035

sponses that include hallucinated facts (Ji et al.,036

2023; Shuster et al., 2021; Zhang et al., 2023),037

undermining their reliability. To address this chal-038

lenge, Retrieval-Augmented Generation (RAG) has039

been proposed, integrating external knowledge to040

enhance the generation process (Ram et al., 2023;041
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Figure 1: The illustration of Hierarchical Beam Search.
During planning, the policy model generates and prunes
candidate plans using the planning value model. Dur-
ing searching, it generates queries, retrieves documents,
and prunes results using the search value model. This
process iterates until the final answer is reached.

Shi et al., 2023; Rashkin et al., 2021; Gao et al., 042

2022; Bohnet et al., 2022; Menick et al., 2022). 043

While RAG systems have led to significant im- 044

provements, they still face important limitations. 045

These systems rely on static workflows and strug- 046

gle to effectively handle multi-step reasoning or 047

complex tasks. A promising solution to these limi- 048

tations is Agentic Retrieval-Augmented Generation 049

(Agentic RAG), which introduces autonomous AI 050

agents into the RAG pipeline (Asai et al., 2023; Yu 051

et al., 2024; Chen et al., 2024c; Li et al., 2025). In 052

this framework, the reasoning process typically in- 053

volves two phases: planning and searching. During 054

the planning phase, the agent analyzes the current 055

reasoning process and determines which informa- 056

tion is still required. In the search phase, the agent 057

generates search queries to retrieve relevant exter- 058

nal documents. These phases alternate iteratively 059

until a final answer is produced. 060

Although Agentic RAG shows superior perfor- 061

mance, it faces several inherent challenges: (1) The 062
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success of the reasoning process depends not only063

on high-quality planning but also on the accuracy064

of the retrieved information. While planning can065

be improved with high-quality training data and066

sophisticated pipelines, ensuring accurate retrieval067

remains challenging, as it depends on both the qual-068

ity of the generated queries and the retrieval sys-069

tem’s performance. (2) Evaluating the quality of070

each reasoning step is difficult due to the lack of071

explicit supervision signals. Most RAG datasets072

only provide final answers without feedback on073

intermediate steps, making it hard to assess and074

improve the quality of individual reasoning stages.075

(3) The expansive candidate space for planning076

and searching creates a large, computationally in-077

tensive searching space, making it challenging to078

efficiently identify optimal paths.079

To address these challenges, we propose HRM080

a novel Agentic RAG framework with Hierarchical081

Reward Modeling. To enhance the success prob-082

ability of each reasoning step, we introduce plan-083

ning exploration and searching exploration phases.084

The policy model generates multiple potential085

plans, which are evaluated by a plan value model to086

select the most promising options. Based on these087

plans, the policy model generates multiple queries088

to retrieve relevant documents. These search re-089

sults are then ranked by the search value model090

to ensure the reliability of the retrieval process.091

To efficiently assess the quality of each reason-092

ing step, we introduce Monte Carlo Tree Search093

(MCTS) (Silver et al., 2017) to guide the explo-094

ration of potential reasoning paths. During MCTS095

simulations, the LLM acts as a Judge to evaluate096

the quality of both the planning and search results,097

separately. Through iterative MCTS simulations,098

the rewards derived from final answer correctness099

are back-propagated to update the LLM scores, re-100

fining the LLM’s scores and correcting potential101

inaccuracies. To combat the exponential search102

space, we propose pruning the planning and search103

spaces using a planning value model and a search104

value model. These models are trained on reward105

signals derived from the reasoning tree constructed106

through MCTS annotation. During inference, we107

employ Hierarchical Beam Search. At each step,108

the policy model generates multiple plans, which109

are evaluated by the planning value model to re-110

tain only the most promising ones. Based on these111

plans, the policy model generates search queries112

to retrieve relevant documents. The search value113

model then evaluates the retrieved results, preserv-114

ing only the most valuable ones. This iterative 115

process continues until either the maximum depth 116

is reached or no further nodes can be expanded, 117

ensuring efficient and effective reasoning. 118

To summarize, our contributions can be summa- 119

rized as follows: 120

• We introduce HRM, a novel Agentic RAG frame- 121

work that decouples planning-search processes 122

with dual value models, enabling independent 123

optimization of planning reasoning and search 124

grounding. 125

• We propose improving the success rate of each 126

step by fully exploring the planning and search 127

spaces. We utilize MCTS to accurately assess 128

planning and search quality, while Hierarchical 129

Beam Search is employed to efficiently prune 130

the exponential candidate space. 131

• Extensive experiments on five datasets across 132

policy models of different parameter sizes 133

demonstrate the effectiveness of our method. 134

2 Background 135

In Agentic RAG, given a user query q, the policy 136

model conducts multi-step reasoning and retrieves 137

external knowledge to produce the final answer. 138

Each step typically involves two stages: planning 139

and searching. In the planning stage, the policy 140

model M reasons based on the interaction history 141

τt−1 and generates a plan pt: 142

pt = M(τt−1), 143

where τt−1 = {q, p1, q1, d1, . . . , pt−1, qt−1, dt−1} 144

represents the previous reasoning path. 145

In the searching stage, the policy model gen- 146

erates search queries and retrieves external docu- 147

ments using an off-the-shelf search engine: 148

qt = M(τt−1, pt), (1) 149

dt = Retrieve(qt), (2) 150

where dt denotes the retrieved documents. 151

The success of each step depends on two interde- 152

pendent factors: the quality of the planning and the 153

precision of the searching. While planning quality 154

can be improved through high-quality training data, 155

retrieval accuracy is subject to uncertainties due 156

to challenges in query formulation and retriever 157

performance. 158

To enhance the success rate of each step, we 159

encourage the policy model to fully explore both 160

the planning and search spaces through sampling. 161
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Figure 2: Single iteration of MCTS Annotation. The iteration is repeated until the maximum number of iterations is
reached or no further nodes in the tree can be expanded.

These sampled paths are then refined using a plan-162

ning value model and a searching value model,163

respectively, ensuring more accurate outcomes.164

3 Approach165

3.1 Overview166

Figure 3 presents an overview of our framework.167

The process begins with the application of Monte168

Carlo Tree Search (MCTS) to construct a reasoning169

tree for the queries in the training dataset. Each170

node in the tree represents a reasoning step, encom-171

passing both planning and search results. From172

these trees, we extract both correct and incorrect173

paths, which are subsequently utilized to train the174

policy model and the value models, respectively.175

During the inference phase, we introduce a hierar-176

chical beam search algorithm, where at each layer,177

the policy model fully explores the planning and178

search spaces, and the value models select the best179

candidate for further refinement.180

3.2 MCTS Annotation181

During MCTS annotation, we prompt the LLM to182

generate plans and search queries, interactively col-183

laborating with the retriever to iteratively expand184

the reasoning tree. The process runs for multiple185

simulations and terminates when the maximum iter-186

ation number is reached, or no further paths can be187

expanded. For the i-th simulation, MCTS conducts188

four operations to expand the tree:189

Selection The i-th simulation begins with s0, rep-190

resenting the input query. The algorithm selects191

nodes according to the Upper Confidence Bound192

for Trees (UCT) criterion (Rosin, 2011):193

UCT (st) = Vs(st) + w

√
lnNparent(st)

N(st)
(3)194

where Vs(st) represents the reward of the search 195

result, and w controls the balance between explo- 196

ration and exploitation. The reason we choose 197

Vs(st) to calculate the UCT score is that the qual- 198

ity of the search results serves as a more reliable 199

indicator of a step’s potential to arrive at the correct 200

answer. 201

Expansion After selecting the node to be ex- 202

panded, the LLM generates the next plan and query 203

based on the reasoning status. For simplicity, as- 204

sume the chosen node st corresponds to the inter- 205

mediate reasoning trajectory τt−1. The expansion 206

process is as follows: 207

pt, qt = LLM(τt−1) (4) 208

dt = Retrieve(qt) (5) 209

To ensure diversity, we employ sampling genera- 210

tion with a higher temperature. 211

Simulation The simulation evaluates the quality 212

of planning and search at each step and assigns 213

reward values. For intermediate nodes, the LLM 214

assesses the quality of planning and searching, as- 215

signing a value between −1 and 1, where 1 indi- 216

cates high quality and −1 indicates low quality: 217

Rp(st), Rs(st) = LLM(τt−1, pt, qt) (6) 218

For terminal nodes, if the final answer is correct, 219

both planning and search rewards are set to 1; oth- 220

erwise, they are set to −1. 221

Backpropagation At the end of the i-th simula- 222

tion, each edge along the path from the leaf node 223

st to the root undergoes a backward pass update. 224

The updates to their values and visiting counts are 225

executed as follows: 226

N(st)← N(st) + 1

Vp(st)← Vp(st) +
1

N(st)
(Rp(st)− Vp(st))

Vs(st)← Vs(st) +
1

N(st)
(Rs(st)− Vs(st))

(7) 227
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Figure 3: Overview of the proposed method: The MCTS algorithm constructs reasoning trees for training queries,
from which correct and incorrect paths are extracted to train the policy and value models. During inference,
Hierarchical Beam Search iteratively refines planning and search candidates, ensuring high-quality reasoning and
retrieval outcomes.

This backpropagation process is crucial because it228

corrects potential inaccuracies in the LLM’s gener-229

ated scores using the answer correctness signal.230

3.3 Model Training231

In our framework, the policy model πθ is initial-232

ized with a pre-trained LLM. We extend this model233

to derive the planning value model Vϕ and search234

value model Vψ by adding two auxiliary linear lay-235

ers with a Tanh activation function. These layers236

operate alongside the traditional softmax layer re-237

sponsible for token prediction, as illustrated in the238

rightmost panel of Figure 3. This design ensures239

that the policy model and the value models share240

the majority of their parameters, promoting param-241

eter efficiency and joint optimization.242

To construct the training signals for the policy243

model and the value models, we sample solution244

paths from the tree constructed through multiple245

rounds of MCTS. These paths are denoted as x+246

(correct solutions) and x− (incorrect solutions). We247

then apply a multi-task loss function to jointly up-248

date all the models:249

L = − log πθ(x
+|q) + β ·

T (x)∑
t=1

(
∥Vϕ(st)− Vp(st)∥2

+∥Vψ(st)− Vs(st)∥2
) (8)250

Here, the first term represents the negative log-251

likelihood loss for next-token prediction in correct252

solutions, guiding the policy model to generate ac-253

curate predictions. The second term captures the254

loss in value prediction for both correct and incor-255

rect solutions, ensuring the value models provide256

reliable estimates of expected rewards at each node.257

T (x) denotes the number of steps in the solution258

path x, and β is a tunable hyperparameter that con- 259

trols the weight of the value loss term. 260

3.4 Model Inference 261

After obtaining the trained policy model, it can be 262

directly used to conduct reasoning. However, this 263

greedy decoding process fails to fully explore the 264

planning and search spaces, limiting its ability to 265

identify optimal reasoning paths. To address this 266

issue, we propose a hierarchical beam search algo- 267

rithm to encourage the policy model to thoroughly 268

explore both the planning and search spaces. 269

Hierarchical Beam Inference At each step, the 270

policy model first samples multiple possible plans, 271

which are ranked and filtered by the planning value 272

model. Based on the most promising plan, the pol- 273

icy model generates multiple search queries, which 274

are used to retrieve relevant documents. The re- 275

trieved documents are then evaluated by the search 276

value model to select the most valuable result. 277

This iterative process continues until the maximum 278

depth is reached or no further paths can be ex- 279

panded. Finally, the answers are evaluated by the 280

planning value model, and the answer with the high- 281

est value is selected as the output. This approach 282

ensures a more comprehensive exploration of both 283

the planning and search spaces, leading to higher 284

quality and more reliable results. 285

4 Experiments 286

4.1 Datasets and Metrics 287

We conduct experiments on five datasets spanning 288

both single-hop and multi-hop question-answering 289

(QA) tasks. Specifically, the multi-hop QA tasks 290

include the 2WikiMultiHopQA dataset (Ho et al., 291
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Method
HotpotQA 2WikiMulti MusiQue Bamboogle TriviaQA AVG

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Qwen-2.5-7B-Instruct
Direct 18.20 24.10 25.80 27.61 5.80 10.96 16.94 19.00 43.20 41.84 21.99 24.70
CoT 20.64 26.64 24.00 26.44 7.80 13.69 15.32 18.81 46.28 46.03 22.81 26.32
Standard 26.00 30.04 15.00 17.31 7.20 11.57 19.35 21.77 58.80 56.42 25.27 27.42

Iterative 13.20 16.40 7.80 9.59 3.80 6.39 20.97 24.60 40.00 37.66 17.15 18.93
Gen-Retrieve 24.40 28.15 18.80 19.68 8.20 12.95 19.35 21.41 55.20 52.93 25.19 27.02
Judge-Retrieve 25.80 30.88 17.40 19.96 7.60 12.18 19.35 21.77 55.20 52.92 25.07 27.54

RAgent 26.40 30.95 26.00 28.70 9.00 14.57 30.65 35.01 57.20 50.89 29.85 32.02
Search-o1 29.80 32.37 29.60 31.33 12.40 16.67 31.45 35.95 53.60 50.70 31.37 33.40
HRM (Greedy) 34.94 32.86 34.00 34.79 12.40 17.01 36.59 39.03 61.40 53.02 35.87 35.34
HRM (HBS) 38.62 36.60 35.87 35.03 17.20 17.73 42.28 46.52 65.66 58.08 39.93 38.79

Qwen-2.5-14B-Instruct
Direct 22.00 27.37 25.60 27.24 6.20 12.63 12.90 15.85 54.00 51.47 24.14 26.91
CoT 26.00 30.98 25.60 27.52 9.40 15.30 33.06 37.58 60.40 58.82 30.89 34.04
Standard 27.40 28.51 34.00 20.75 9.40 12.91 16.94 19.95 60.40 54.70 29.63 27.36

Iterative 15.00 16.24 5.40 6.74 5.21 8.70 10.48 15.16 42.20 36.30 15.66 16.63
Gen-Retrieve 26.80 27.10 33.20 21.23 8.40 11.70 19.35 21.41 61.60 57.30 29.87 27.75
Jud-Retrieve 27.40 28.38 33.40 20.16 9.00 11.49 18.55 21.11 60.40 55.32 29.75 27.29

RAgent 37.40 38.18 33.87 34.19 16.20 18.72 37.90 43.28 65.80 59.92 38.23 38.86
Search-o1 36.80 37.18 34.20 35.86 16.40 20.54 35.48 43.41 64.40 60.46 37.46 39.49
HRM (Greedy) 38.96 37.31 37.80 36.15 16.06 19.39 45.53 48.18 63.45 57.13 40.36 39.63
HRM (HBS) 43.35 39.56 41.84 38.37 18.38 21.82 47.15 49.77 72.44 62.98 44.63 42.50

Table 1: Evaluation results on five representative QA tasks. The bold fonts denote the best results in each dataset.

2020), the HotpotQA dataset (Yang et al., 2018),292

the Bamboogle dataset (Press et al., 2022) and the293

MuSiQue dataset (Trivedi et al., 2022), while the294

single-hop QA task is represented by the TriviaQA295

dataset (Joshi et al., 2017).296

To evaluate performance, we employ two key297

metrics: Exact Match (EM) and F1 Score. Under298

the EM metric, a predicted answer is deemed cor-299

rect if its normalized form exactly matches any of300

the normalized versions of the reference answers in301

the provided answer list. The F1 score, on the other302

hand, quantifies the word-level overlap between303

the normalized predicted answer and the reference304

answers, providing a measure of the answer’s pre-305

cision and recall.306

4.2 Baselines307

We compare HRM with the following three cate-308

gories of methods:309

Vanilla Prompting Methods This category in-310

cludes direct prompting, Chain-of-Thought (CoT),311

and standard Retrieval-Augmented Generation312

(RAG). Direct prompting instructs the model to313

generate answers directly without retrieving exter-314

nal resources. Chain-of-Thought guides the model 315

to reason step by step before arriving at the final 316

answer. Standard RAG first retrieves relevant doc- 317

uments from an external corpus and then generates 318

the answer based on the retrieved information. 319

Advanced RAG Methods This category in- 320

cludes Iterative RAG (Xu et al., 2024), Judge- 321

then-retrieve (Asai et al., 2023), and Generate- 322

then-retrieve (Wang et al., 2023). We implement 323

all these baselines in our experiments. Iterative 324

RAG decomposes the query into sub-queries, re- 325

trieves and generates answers for each, and then 326

combines them to produce the final answer. Judge- 327

then-retrieve first determines whether retrieval is 328

necessary and then generates the final answer us- 329

ing either internal knowledge or retrieved docu- 330

ments. Generate-then-retrieve directly generates an 331

answer, concatenates the answer with the question, 332

and then retrieves and generates a refined answer. 333

Agentic RAG Methods This category includes 334

RAgent (Li et al., 2025) and Search-o1 (Li et al., 335

2025). These methods operate by iteratively search- 336

ing for the necessary information to answer the 337

question. At each step, the policy model au- 338
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tonomously decides when and what to retrieve.339

Search-o1 enhances this approach by incorporating340

a Reason-in-Document module, which condenses341

retrieved documents into reasoning steps while pre-342

serving the logical flow of the reasoning chain.343

4.3 Implementation Details344

To demonstrate the generality of our method,345

we initialize the policy with two large language346

models (LLMs) of different parameter sizes:347

Qwen2.5-7B-Instruct1(Team, 2024) and Qwen2.5-348

14B-Instruct2(Team, 2024). During Monte Carlo349

Tree Search (MCTS) annotation, we employ Qwen-350

Turbo to predict the next action and evaluate the351

scores for planning and searching. The policy352

model and value models are fine-tuned over 10353

epochs with a batch size of 4 and a learning354

rate of 1e-6, utilizing 8 NVIDIA A100 80GB355

GPUs. For retrieval, we use the Wikipedia dump356

from January 27, 2020, as our corpus and employ357

DPR (Karpukhin et al., 2020) as our dense retriever.358

For each query, we retrieve the top-5 most relevant359

documents from the retrieval corpus. Additional360

training details can be found in Appendix B. To361

promote reproducibility, we plan to open-source362

the code upon acceptance of this work.363

4.4 Main Results364

In this section, we present the results of experi-365

ments conducted on five QA datasets using two366

model backbones, respectively. Based on the re-367

sults in Table 1, several observations can be made:368

First, our method achieves superior performance369

on all datasets across different readers, verify-370

ing the effectiveness of our approach. Notably,371

when using Qwen2.5-7B-Instruct-1M as the policy372

model, HRM achieves a 30% relative average im-373

provement over the best-performing baseline. This374

improvement is attributed to the application of plan375

beam search and search beam search, which en-376

ables the policy model to thoroughly explore the377

plan and search spaces, significantly increasing the378

likelihood of identifying the correct reasoning path.379

Second, among the baselines, agentic-RAG380

methods outperform both prompting methods and381

advanced RAG methods. This is primarily due to382

the flexibility agentic-RAG provides, allowing the383

policy model to dynamically decide what to retrieve384

and when to retrieve. This capability is particularly385

crucial for handling complex queries that require386

1
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

2
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct

Methods
HotpotQA TriviaQA

EM F1 EM F1

HRM 38.62 36.60 65.66 58.08
-w/o Planning 35.35 32.84 62.10 54.78
-w/o Searching 36.75 35.05 62.58 55.63
-w/o Both 34.94 32.86 61.40 53.02

Table 2: Ablation Study. We experiment by gradually
removing all model components.

multi-step reasoning, as evidenced by the substan- 387

tial performance gains on multi-hop datasets such 388

as Bamboogle. 389

Third, when comparing policy models of dif- 390

ferent sizes, larger models (e.g., Qwen2.5-14B- 391

Instruct) generally yield better performance, as ex- 392

pected, due to their higher model capacity. How- 393

ever, after applying Search Beam Search (SBS), the 394

performance of HRM with the 7B policy model be- 395

comes comparable to that of the 14B model, high- 396

lighting the potential for smaller models to achieve 397

competitive performance through inference-time 398

scaling techniques. 399

5 Analysis 400

5.1 Ablation Study 401

In this section, we analyze the effectiveness of 402

plan expansion and search expansion by remov- 403

ing these components and observing the resulting 404

performance changes, as shown in Table 2. 405

The results demonstrate that removing either 406

plan expansion or search expansion leads to a de- 407

cline in performance, underscoring the importance 408

of thoroughly exploring both the plan space and 409

the search space. Notably, the removal of plan ex- 410

pansion results in a more significant performance 411

drop. This is because the plan typically defines 412

the search space; if the plan is suboptimal, it be- 413

comes challenging to retrieve high-quality results. 414

Therefore, plan expansion plays a critical role in 415

ensuring robust performance. 416

5.2 Scaling with Planning and Searching 417

During inference, we employ hierarchical beam 418

search, which involves two key hyperparameters: 419

the plan expansion size B1 and the search expan- 420

sion size B2. To investigate their impact on model 421

performance, we conduct experiments on the Hot- 422

potQA, 2WikiMultihopQA, and MusiQue datasets, 423

varying these parameters within the range of 1 to 5. 424
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Size
HotpotQA 2WikiMulti MusiQue

EM F1 EM F1 EM F1

Plan Expansion Size
1 35.35 32.84 34.74 34.68 14.20 16.66
2 37.83 37.48 36.40 35.68 15.43 18.53
3 38.62 36.60 35.87 35.03 17.20 17.73
4 37.78 36.00 35.60 36.14 15.23 19.20
5 35.29 34.62 33.87 34.19 14.63 18.42

Search Expansion Size
1 36.75 35.05 33.40 34.04 14.80 17.78
2 38.87 37.68 34.07 33.85 15.03 18.19
3 38.18 36.85 33.87 34.38 16.23 18.92
4 37.78 35.36 35.34 34.79 15.43 17.78
5 40.20 37.46 35.34 35.99 17.60 19.59

Table 3: We vary the expansion sizes within the range
of 1 to 5 and observe the performance changes.

Based on the results presented in Table 3, several425

observations can be made.426

First, for the plan expansion size, model per-427

formance peaks when the expansion size is set to428

approximately 3. Values smaller or larger than this429

threshold result in a decline in performance. This is430

primarily because a larger plan expansion size pro-431

vides the model with more opportunities to identify432

the optimal plan. However, when the expansion433

size becomes too large, the plan value model strug-434

gles to effectively rank and select the best plan due435

to increased complexity.436

Second, for the search expansion size, we ob-437

serve that larger expansion sizes generally lead438

to improved performance. This is because a439

larger search expansion size increases the likeli-440

hood of retrieving optimal evidence that can lead441

to the correct answer. Compared to the plan value442

model, the search value model faces relatively less443

difficulty in ranking search results, as it can directly444

evaluate the retrieved evidence, whereas the plan445

value model must rely on complex patterns learned446

from training data to make decisions.447

5.3 Effectiveness of Value Models448

In this section, we analyze the accuracy of the plan449

value model and the search value model. Specif-450

ically, during the beam ranking stage, instead of451

using our value model to rank, we randomly select452

one plan or search result and compare the perfor-453

mance of random selection with ranking by the454

value model. Based on the results shown in Fig-455

ure 4, several observations can be made:456

First, for both plan expansion and search expan-457

sion, ranking by the learned value model achieves458

(a) Plan Expansion (b) Search Expansion

TriviaQA

Bamboogle

2WikiMulti

HotpotQA

Figure 4: We analyze the effectiveness of value models
by replacing the value ranking with random sampling.

better performance compared to random selection. 459

This verifies that both value models can accurately 460

measure the quality of plans and search results. 461

Second, the performance superiority is more pro- 462

nounced for search expansion. This is because 463

determining the value of search results is rela- 464

tively easier than evaluating plans. Typically, the 465

value of a search result can be directly assessed 466

by checking whether it contains the answer to the 467

search query. In contrast, evaluating the quality 468

of a plan involves greater uncertainty, as there are 469

no obvious patterns to determine its effectiveness. 470

Therefore, when resources are constrained, allocat- 471

ing more resources to search expansion may be a 472

more robust strategy. 473

5.4 Case Study 474

In this section, we present a case study from the 475

MusiQue dataset in Figure 5. 476

Given the query “Who is the father-in-law of 477

Gulcicek Hatun?”, the policy model generates 478

plans, such as searching for Gulcicek Hatun’s 479

spouse or lineage. The plan value model assigns 480

a higher reward to the spouse search plan, prun- 481

ing the lower-value alternative. The policy model 482

then creates search queries like “Who is Gulcicek 483

Hatun’s husband?” and “Gulcicek Hatun Spouse.” 484

The first query retrieves direct information about 485

her husband, Murad I, and receives a high posi- 486

tive reward, while the less relevant result is pruned. 487

Next, the policy model searches for Murad I’s fa- 488

ther, generating queries like “Who was Murad I’s 489

father?” The result identifying Orhan Ghazi as his 490

father receives a high reward, while irrelevant re- 491

sults are pruned. The final answer, Orhan Ghazi, 492

is output. This case study illustrates how plan 493

and search expansion broaden the candidate space, 494

while the value models identify the most valuable 495

candidates, validating our framework’s effective- 496

ness in handling complex queries. 497
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Who is the 
father-in-

law of 
Gulcicek
Hatun?

Plan: Knowing her 
spouse will allow us 
to find out his father, 
who was her father-
in-law.
Reward: 0.82

Plan: It's important 
to find historical 
sources that detail 
her lineage.
Reward: 0.78

Query: Who is Gulcicek
Hatun’s husband?
Result: Gulcicek Hatun was 
the first wife of Ottoman 
Sultan Murad I …
Reward: 0.92

Query: Gulcicek Hatun spouse?
Result: Gulcicek Hatun was a 
Greek woman from Bithynia 
who became…
Reward: -0.34

Plan: She was the first 
wife of Ottoman Sultan 
Murad I. To find her 
father-in-law, we need to 
identify Murad I's father.
Reward: 0.85

Plan: She was the 
mother of Bayezid. We 
need to identify Bayezid’s 
grandfather.
Reward: 0.52

Query: Who was Murad I's 
father?
Result: Murad I’s father 
was Orhan Ghazi, the 
second bey of nascent 
Ottoman…
Reward: 1.0

Query: Murad I's paternal 
lineage?
Result: Murad I was the 
sultan of the Ottoman 
Empire from 1362 to 1389. 
Reward: -0.12

Based on the 
search result, we 
know that 
Gulcicek Hatun’s
husband was 
Murad I, whose 
father was Orhan 
Ghazi. Therefore, 
the answer is 
Orhan Ghazi.

Output

Orhan Ghazi

Pruned Node

Selected Node

Input Query
✅Planning Searching SearchingPlanning

Final Answer
… … … …

Figure 5: Case Study of HRM in Hierarchical Agentic RAG. The example illustrates how HRM optimizes reasoning
by decoupling planning and search using hierarchical reward modeling. The reasoning tree dynamically selects
high-reward paths while pruning suboptimal ones, demonstrating the effectiveness of Hierarchical Beam Search.

6 Related Work498

6.1 Agentic Retrieval-Augmented Generation499

Despite significant advancements, Large Language500

Models (LLMs) often generate responses that in-501

clude hallucinated facts and inaccurate information502

(Ji et al., 2023; Shuster et al., 2021; Zhang et al.,503

2023), which compromises their reliability and lim-504

its their practical applicability in real-world scenar-505

ios. To mitigate this issue, researchers have turned506

to Retrieval-Augmented Generation (RAG), which507

integrates external knowledge to improve the accu-508

racy of responses (Ram et al., 2023; Shi et al., 2023;509

Rashkin et al., 2021; Gao et al., 2022; Bohnet et al.,510

2022; Menick et al., 2022). By dynamically retriev-511

ing relevant information from external databases512

or documents, RAG enables LLMs to ground their513

outputs in verifiable evidence.514

While RAG offers substantial improvements, it515

remains limited by its reliance on static workflows.516

Agentic RAG presents a more promising approach517

by incorporating agents into the RAG pipeline.518

For instance, Self-RAG (Asai et al., 2023) em-519

ploys a self-reflection mechanism to iteratively pre-520

dict reflection tokens during training. Auto-RAG521

(Yu et al., 2024) systematically plans retrievals522

and refines queries to acquire valuable knowledge523

through multi-turn iterations. MindSearch (Chen524

et al., 2024c) mimics human cognitive processes in525

web information seeking and integrates them with526

an LLM-based multi-agent framework. PlanxRAG527

(Verma et al., 2024) isolates the reasoning plan as528

a directed acyclic graph (DAG) outside the LM’s529

working memory. Search-o1 (Li et al., 2025) incor-530

porates an agentic search process into reasoning,531

allowing for the dynamic retrieval of information532

whenever LLMs face uncertain knowledge points.533

6.2 Enhancing LLMs with Search 534

The application of search techniques to enhance 535

LLMs has garnered considerable attention. Numer- 536

ous studies have demonstrated that Monte Carlo 537

Tree Search (MCTS) can significantly improve the 538

reasoning capabilities of LLMs by generating di- 539

verse reasoning paths. For example, AlphaMATH 540

(Chen et al., 2024a) utilizes MCTS to eliminate 541

the need for process annotations from humans or 542

GPTs. Similarly, SVPO (Chen et al., 2024b) em- 543

ploys MCTS to automatically annotate step-level 544

preferences for multi-step reasoning. Llama-berry 545

(Zhang et al., 2024b) leverages MCTS to facilitate 546

more efficient exploration of solution spaces. 547

Other notable works include CoAT (Pan et al., 548

2025), which integrates MCTS with associative 549

memory for structured reasoning, and MCTSr 550

(Zhang et al., 2024a), which applies MCTS to self- 551

refine mathematical solutions through tree-search 552

iterations. AirRAG (Feng et al., 2025) activates 553

intrinsic reasoning capabilities and expands the so- 554

lution space for specific tasks using MCTS. 555

7 Conclusion 556

In this paper, we propose HRM, a novel framework 557

that decouples planning and search processes using 558

dual value models, enabling independent optimiza- 559

tion of planning reasoning and search grounding. 560

Our approach constructs a reasoning tree, where 561

each node represents planning and searching steps. 562

We leverage Monte Carlo Tree Search (MCTS) to 563

efficiently assess the quality of each step. Dur- 564

ing inference, hierarchical beam search iteratively 565

refines plan and search candidates through reward- 566

guided optimization. Extensive experiments on five 567

datasets, across policy models of varying parameter 568

sizes, demonstrate the effectiveness of our method. 569
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Limitations570

In this paper, we propose an agentic RAG frame-571

work that fully explores the planning and search-572

ing spaces. We acknowledge two limitations of573

our method. First, the MCTS annotation process574

requires multiple simulations, which can lead to575

additional labeling costs. Second, our current ap-576

proach focuses on retaining only the single most577

promising plan and search result at each step. The578

exploration of retaining multiple promising plans579

and search results is left for future work.580

Ethics Statement581

This work complies with the ACL Ethics Policy.582

All datasets and LLMs used are publicly avail-583

able. Our research focuses on improving the per-584

formance of agentic RAG, and we do not anticipate585

any negative ethical impacts.586
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A Dataset Statistics 781

The dataset statistics used in this paper are shown in Table 4.

Settings TrivaQA Bamboogle HotpotQA 2WikiMultiHopQA MuSiQue
(Joshi et al., 2017) (Press et al., 2022) (Yang et al., 2018) (Ho et al., 2020) (Trivedi et al., 2022)

Dataset statistics
Task Single-Hop QA Multi-Hop QA Multi-Hop QA Multi-Hop QA Multi-Hop QA
Train Data 3,000 0 5,000 3,000 5,000
Test Data 500 125 500 500 500

Evaluation settings
Metrics EM, F1 EM, F1 EM, F1 EM, F1 EM, F1

Retrieval settings
Corpus Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia
Retriever DPR DPR DPR DPR DPR

Table 4: Statistics and experimental settings of different tasks/datasets.

782

B Training Details 783

Dataset Construction We sample 3000, 5000, 3000, 5000 queries from the training data of TriviaQA, 784

HotpotQA, 2WikiMultihopQA and MuSiQue datasets and conduct the MCTS annotations. During MCTS 785

annotation, following Chen et al. (2024a), the parameter w, β is set to 1.4 and 0.1, respectively. The 786

maximum number of iterations is configured to 20. we employ Qwen-Turbo to predict the next action and 787

evaluate the scores for planning and searching. We then sample 10,000 correct paths and 10,000 incorrect 788

paths and the correct paths are used to train the policy model, while both paths are used to train the value 789

models. 790

Training Process The policy model and value models are fine-tuned over 10 epochs with a batch size 791

of 4 and a learning rate of 1e-6, utilizing 8 NVIDIA A100 80GB GPUs. 792

Inference Process During inference, both the plan expansion size and the search expansion size are set 793

to 3. 794

C Prompts 795

The prompts used in MCTS annotations are list below: 796
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LLM Sample Prompt

**You are a highly capable web agent. Your task is to engage in multi-step reasoning and propose plans to reach a final
answer for the given question.**

For each step, please include the following elements:

**Thought:** Offer a comprehensive and detailed analysis. This section should cover:
- An analysis of the specific information required to address the question effectively and the information currently available.
- If the information is enough to answer the question, you should conduct deep analysis based on the information and then
answer the question.
- If the information is not enough to answer the question, you should analyze whether the current plan progresses well.
- If yes, predict the next action.
- If no, reflect on why the progress is not good and then propose a new plan.

**Action:** Provide the next action. This section should cover:
- If the information is enough to answer the question, you should output the final answer in format of Finish(put the answer
here) without extra content.
- If the information is not enough to answer the question, you should clearly specify the exact query for the next search in the
format Search([List of Queries]) without extra content. Ensure the queries convey the same semantic information but are
expressed differently to enhance the likelihood of finding the necessary information.

For the question: query, here is the reasoning process so far:
history

**The Output Format:**
- **Thought:** [Detailed analysis of the needed information, existing information, identifies whether information is enough.
If enough, conduct analysis to obtain the final answer, else, identify what still needs to be searched]
- **Action:** [Finish(put the answer here) or Search([List of Queries])]

Please provide the plan for the next step:

LLM Evaluation Prompt

**Task:** Assess the effectiveness of the thought and the search result in the last reasoning step.
As an advanced web search agent, your role is to systematically evaluate the current step step.
For the question: query, here is the reasoning process so far:
history

As an expert in web search, your tasks are as follows:
1. Analyze the thought in the last step: Evaluate the thought and determine its effectiveness in reaching the final answer.
Assign a score between -1 and 1, where -1 means the thought is useless and 1 means the thought is very effective.
2. Analyze the search result in the last step: Evaluate the search result and determine its effectiveness in reaching the final
answer. Assign a score between -1 and 1, where -1 means the search result was ineffective, and 1 means the search results
were highly useful.

You should output the following elements
**Analysis of the thought:**
- Analyze whether the thought from the last step were helpful in progressing toward the final answer.
- Assign a score between -1 and 1, where -1 means the step was ineffective, and 1 indicates high usefulness.
- You must conclude the analysis with the format of "the value of the thought is ***x***", where x represent the value and *
is the identifier. Remember that you must output the value x with identifier ***.

**Analysis of the search result:**
- Analyze whether the search query and search results from the last step were helpful in progressing toward the final answer.
- Assign a score between -1 and 1, where -1 means the step was ineffective, and 1 indicates high usefulness.
- You must conclude the analysis with the format of "the value of the search result is ***x***", where x represent the value
and * is the identifier. Remember that you must output the value x with identifier ***.

Please begin by analyzing the previous step: **Analysis of the thought:**
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