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Abstract

The proliferation of misinformation in the digital age has led to significant societal challenges.
Existing approaches often struggle with capturing long-range dependencies, complex seman-
tic relations, and the social dynamics influencing news dissemination. Furthermore, these
methods require extensive labelled datasets, making their deployment resource-intensive. In
this study, we propose a novel self-supervised misinformation detection framework that inte-
grates both complex semantic relations using Abstract Meaning Representation (AMR) and
news propagation dynamics. We introduce an LLM-based graph contrastive loss (LGCL)
that utilizes negative anchor points generated by a Large Language Model (LLM) to en-
hance feature separability in a zero-shot manner. To incorporate social context, we employ
a multi view graph masked autoencoder, which learns news propagation features from social
context graph. By combining these semantic and propagation-based features, our approach
effectively differentiates between fake and real news in a self-supervised manner. Extensive
experiments demonstrate that our self-supervised framework achieves superior performance
compared to other state-of-the-art methodologies, even with limited labelled datasets while
improving generalizabilityﬂ

1 Introduction

The spread of misinformation has become a significant problem in the digital age. It can lead to social unrest,
foster hatred, erode trust, and ultimately impede the overall progress and stability of the society (Dewatana,
& Adillah, [2021). Hence, effectively detecting misinformation has become an essential challenge to solve.
Yin et al.| (2008)) introduced the concept of ‘veracity problem on the web’ by designing a solution called
TruthFinder. The method verified news content by cross-referencing it with information from reputable
websites. Later, |[Feng et al| (2012)) employed manually crafted textual features for detecting misinformation.
However, manually crafted features are time-consuming to create and fail to capture the complex semantic
relations present in the text. Subsequently, many researchers turned to more advanced techniques, utilizing
RNN’s, and Transformer-based (Long et al., 2017 [Liu & Wul [2018]) models to address this issue. For exam-
ple, RNNs are employed to capture local and temporal dependencies within text data (Ma et al.l 2016bj; |Li
et al.l [2022) and BERT has been increasingly utilized to improve the comprehension of contextual relation-
ships in news articles Devlin et al.| (2019). Key limitations of these approaches are their struggle to maintain
longer text dependencies and they do not capture complex semantic relations, such as events, locations,
and trigger words. |Gupta et al| (2025) used semantic relations through Abstract Meaning Representation
(AMR) graph to solve this problem but their method requires label data for supervision. Additionally, these
models often neglect the social context and dynamics that influence news propagation [Yuan et al.| (2019).
Acknowledging this, researchers have introduced graph-based approaches that integrate social context re-
ferred as Social Context Graph (SCG) into the detection process (Min et all [2022; [Sun et all 2022; |Li
et al.l 2024)). Despite their effectiveness, these methods rely heavily on large, labelled datasets for training.
Collecting and annotating such extensive datasets is time-consuming and resource-intensive, limiting their
practical implementation. To address this [Yin et al. (2024)) propose a Graph Masked Autoencoder with
augmentations (GMA?) based model to generate unsupervised features from the social context graph but
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Table 1: Comparison of different methods based on their utilization of various graph-based learning compo-
nents.

Method | AMR SCG | GMA? GMA?+Remasking | Unsupervised
EA2N v X X X X
GACL X v X X X

(UMD)? X v X X v
GTUT X v X X v/

GAMC X v v X v

Ours v v v v v

do not consider the semantic relationship within the text. Therefore, we require a model that is capable of
incorporating semantic text features, a social context propagation graph and also perform well with minimal
labelled data as highlighted in Table [I]

This paper proposes a novel self-supervised misinformation detection methodology that considers complex
semantic relations among entities in the news and the propagation of the news as a social context graph. In
order to identify the semantic relations, this method incorporates a self-supervised AMR encoder using the
proposed graph contrastive loss. This loss helps in increasing the separation between fake and real classes in
the latent space by LLM guided negative anchor points. In order to integrate the social context and capture
the propagation of the news, our methodology also integrates a multi-view Graph Masked Autoencoder that
employs the context and content of the news propagation process as the self-supervised signal to enhance
the final feature space. These features, even with limited labelled data, achieve performance comparable or
better than supervised counterparts using a simple linear SVM layer. The key contributions of our research
are as follows:

A novel self-supervised learning based on AMR and social context graph is introduced in order to
validate the veracity of news articles, eliminating dependence on labelled data.

o In order to segregate the feature space among real and fake classes, graph contrastive loss is proposed.
An LLM-based negative sampler is designed to handle negatives in the loss.

e To capture the social context and propagation feature of the news, we propose an augmentation-
based multi-view masked graph autoencoder with remasking module.

e Comprehensive evaluation with SOTA methods, demonstrating its superior performance.

2 Related Work

In this section, we provide a concise overview of the approaches utilized for detecting misinformation. The
relevant studies are categorized into two main components: misinformation detection and self-supervised
graph learning methodologies.

2.1 Misinformation Detection Methods

Early research on misinformation detection focused on manually crafted linguistic features (Feng et al.
2012; [Ma et al., [2016a}; |[Long et all, |2017)), requiring significant effort for evaluation. EANN (Wang et al.,
2018) is proposed to effectively extract event-invariant features from multimedia content, thereby enhancing
the detection of misinformation on newly arrived events. In this line of work, FakeFlow (Ghanem et al.,
2021) classified news using lexical features and affective information. In a separate line of work, external
knowledge was integrated to improve model performance. Different source of external knowledge was used,
for example, |[Popat et al.| (2017) retrieved external articles to model interactions; KAN (Dun et al., [2021)
and CompareNet (Hu et all 2021) leveraged Wikidata for domain expansion, while KGML (Yao et al.
2021) bridged meta-training and meta-testing using knowledge bases. Further, researchers have developed
graph-based methods that incorporate social context into the detection process, for example, authors of
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GTUT (Gangireddy et al., [2020) construct a graph for initial fake news spreader identification, (UMD)?
(Silva et al.| [2024)) considers user credibility and propagation speed, GACL constructs a
tree of tweets for contrastive learning. All these methods do not leverage the complete propagation graph,
and GACL requires supervision. Other graph-based methods like Min et al.| (2022)); [Li et al| (2024)) rely
heavily on manual annotation and external data.

Recently, Abstract Meaning Representation (AMR)-based methods emerged to mitigate long-text depen-
dency. Abstract Meaning Representation (AMR), as introduced by Banarescu et al,| (2013), captures rela-
tionships between nodes using PropBank framesets. Recently, |Zhang et al.| (2023) utilized AMR to detect
out-of-context multimodal misinformation by identifying discrepancies between textual and visual data. In
(Gupta et al|2023)), authors encoded textual information using AMR and explored how its semantic relations
influence the veracity assessment of news. However, this study lacked sufficient evidence or justification for
entity relationships within the AMR graph. Further, in the integration of evidence in AMR, EA?N (Guptal
is proposed that effectively captures evidence among entities present in AMR. All of these
approaches rely on supervised data for and have not explored the potential of unsupervised methods.

2.2 Self-Supervised Graph Learning

Self-supervised graph learning harnesses the structural richness of graph data to derive meaningful represen-
tations without relying on explicit labels . A Graph Auto-Encoder (GAE) based model that
learns low-dimensional graph representations is proposed in (Kipf & Welling] 2016)). Later studies improved
GAEs by focusing on reconstructing masked node features to enhance self-supervised learning for classifi-
cation (Hou et al. 2022). Further, [Hou et al. (2023) improved the performance by introducing multi-view
random remasking. Recently, an unsupervised method for detecting misinformation GAMC
has been proposed by leveraging both the context and content of news propagation as self-supervised signals.
However, GAMC does not effectively handle complex semantic relations for longer text dependencies.
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Figure 1: Overview of the proposed method: The news article is converted to an AMR graph G*™". G*™" ig
then linked to external evidences from Wikipedia represented as GWHAME = This GWikAME graph is then
converted to latent space features 9" by the graph transformer £ based on Liger optimization. The
propagation graph of the same news article is then extracted and multiple augmentations are created. These
augmented graphs are then passed to our multi-view remasked graph autoencoder which is optimized using
Lprop- The propagation graph feature HI"" for each news is extracted from the trained GNN encoder. The
final features for misinformation classification are obtained by concatenating H9""" and H9"""".
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3 Methodology

An overview of the proposed methodology is presented in Figure[ll In this section we present these in more
detail.

3.1 Self-supervised AMR Graph Learning

Given an input text T, we first create the AMR graph G (V™" £4M7) capturing the relationships between
different entities. AMR generation process involves parsing the sentences to extract linguistic information,
including semantic roles, relations, and core events. In order to incorporate reasoning through AMR, we have
integrated the external evidence by using the Evidence Linking Algorithm (ELA) used in|Gupta et al. (2025)).
The graph after applying ELA is referred to as WikiAMR, represented as G"W**4AME T the paper, authors
have shown the importance of WikiAMR, over AMR. WikiAMR comprises interconnected undirected paths
between entity nodes in G*™" generated from the text. The WikiAMR representation helps to distinguish
the difference between real and fake articles.

AMR Graph Learning with Path Optimization: This module plays an important role in extracting
meaningful features from the given WikiAMR graph. Features extracted here capture essential semantic
relationships, enabling a deeper understanding of the underlying textual data. At the core of this module
is a Graph Transformer (Cai & Lam), [2020)), which employs various attention mechanisms to effectively
process the graph representation. This allows the model to reason about and learn from the text more
comprehensively.

The WikiAMR graph is first passed through a node initialization and relation encoder to transform it into
a representation in R"**%? where n, k, and d denote the batch size, maximum sequence length, and the
dimensionality of the graph encoding, respectively. To facilitate the model in identifying specific paths within
GWikiAME the relation encoder computes the shortest path between two entities. This sequence of the path
is subsequently converted into a relation vector using a Gated Recurrent Unit (GRU)-based RNN (Cho et al.|
2014). ¢q; is the sequence encoding extracted from GRU to get the relation vector r,,. The mathematical
formulation for this encoding is given by:

Tt =GRU(q -1, 5p:)
‘Tt = GRU (T o1, s00)

Here, sp; represents the shortest path between two entities. Formally, the shortest relation path sp;_;
= [e(u, k1), e(k1,k2), ..., e(kn,v)] between the node u and the node v, where e(-,-) indicates the edge label
and ki., are the relay nodes. To compute the attention scores, the final relational encoding 7., is split into
two distinct components, r,_,, and 7,_,,, via a linear transformation with a parameter matrix W,:

Tuv = [777.; ?OL [Tu—m; rv—)u} = Wrruv

Subsequently, attention scores 3y, are calculated by incorporating both entity and relation representations
from the graph GWikiAMR,

Buv = h(eua €us Tuv)
= (eu + Tu—M))WJWk (ev + T?)—)ﬂ)
= e W, Wiey + euW,) Wiry sy
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The attention weights computed here guide the focus on entities according to their relationships. Each term
in Equation [I| serves a distinct purpose: (a) models content-based attention, (b) captures biases related to
the source of the relationship, (c¢) addresses biases from the target, and (d) encodes a general relational
bias, providing a comprehensive view of entity interactions. Finally, the Graph Transformer (£s) encodes
GWikiAME " 1roducing the final graph representation as follows:

29" _ E5(GWIkKIAMEY ¢ grxkxd (2)

Here, H9""" represents the output graph embeddings generated by the Graph Transformer, and d is the
feature dimensionality.

Graph Contrastive Loss: Our proposed LLM-guided graph contrastive loss (LGCL) function comprises
two primary objectives. The first objective aims to ensure that the graph embedding remains close to its
original embedding space by minimizing the reconstruction error between the predicted feature and the
original feature. The second objective seeks to maximize the divergence between the predicted feature and
the negative sample feature. To quantify the similarity between features, we utilize the Scaled Cosine Error
(SCE) (Hou et al.| 2022). Formally, given the original feature ¥ and the reconstructed output Y’ SCE is
defined as:

1 Tyt K
Lsoe = 37 (1 [ ?ﬂﬁf'u) BRES )
neN Yi Yi

Here, ~ is a scaling factor. When predictions have high confidence, the resulting cosine errors are generally
less than 1 and diminish more quickly towards zero as the scaling factor v > 1.

The contrastive loss requires both a positive sample feature y,0s and a negative sample feature yye, to compare
against the predicted feature. In the proposed formulation, H9 " is used as 1/, Ypos is the original BERT-
derived feature of the input text, while ynee is a negative sample feature generated using an LLM-guided
negative sampler. The final contrastive loss for graph-based self-supervised learning (SSL) is formulated as
follows:

Liger =Lscu (Y, Ypos)

4
+ A -max (0,m — Lsce(Y, Yneg)) ()

Here, X is a weighting factor, and m is the margin to ensure negatives are pushed apart in cosine space.

LLM-guided Negative Sampler: Let X = {xy,29,...,2,} denote the set of input features. For each
input z; € X, an LLM (zero-shot inference) assigns a pseudo label g; € {0, 1}, where:

~ 1 if z; is labelled as real,
vi= 0 if x; is labelled as fake.

Using the LLM’s output labels, we partition the input samples into two groups:
Xreal = {1:1 | g? = 1}5 Xfake = {xl | g? = O}

We compute the centroids of the real and fake samples as,

1 1
Creal = fi; Cfake = E fi~
‘Xreeﬂ'm‘ex . |Xfake‘ 24 € Xare
i€ Xrea i ake

where a feature vector f; € R™"***? ig the initial BERT feature corresponding to x;. We use cgare as the
representative negative sample for the real input sample, while ce, is used as the negative sample for the
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fake input sample. The negative samples (yneg) thus chosen is used in the contrastive loss of Equation
Specifically, LLaMA3-7B is used to generate these negative samples (yneg). Note that the pseudo labels
generated by the LLM are noisy. However, the centroid thus identified shows stability in the practical
experiments. Further note that no other pseudo labels except the centroid is used in the main pipeline.

LLM’s Zero Shot Input Prompt:
Write in one word among ‘real’ or ‘fake’ whether given text is real or fake. {text}

LLM’s Output: fake/real

3.2 Multi-View Social Context and Propagation Graph Learning

Each news article is converted into a propagation graph GP™P = (V, E,F) as in |Dou et al.| (2021). Nodes
in V represent one news article and users who forward that article. An edge in E exists between two nodes
if there exists a forwarding relationship between them. The features for the news node are generated by
passing the news article to a pre-trained language model (BERT), and the features for the user nodes are
generated based on their recent 200 posts. The news and user node features are collectively referred to as

F.

Graph Augmentation: We use two augmentation strategies: (1) feature masking and @) random edge
removal for creating augmentations of the input graph as suggested in [Yin et al.| (2024). For input feature
masking, we randomly select 50% nodes in the graph and replace their features with a masked token. For
@), we randomly remove 20% edges from the graph. Each augmented graph for GP"°? is denoted as G¥"".

Graph Encoding: We encode each GP"” into a latent space representation using a GNN encoder. For
this, we use GIN (Xu et al.l 2019) represented using Equation [5| as it is theoretically proven to distinguish
between graph structures.

R =MLP | (1+e) - fF 0+ Y D (5)

uGN(v)

Here, fék) is embedding of node v at layer k, A (v) contains neighbors of node v and € is a learnable scalar

controlling residual connections. The final node embeddings from the encoder for each G is represented
prop
as Fenc

For downstream classification tasks on GP"? we use the graph embedding HE"*" calculated as:

Gp'mp o GPToP
H | V| Z f’U ]:enc (6)
veV

prop

Multi-View Graph Decoding: Now, from the encoded node representations }"egﬁc , we decode the input
node features F using GIN as a decoder. In |Yin et al. (2024]) the authors use a single stage remasking for

PTOP

each fenc to reconstruct the input features. But authors in Hou et al.| (2023) have shown that feature
reconstruction is susceptible to congruence among the input features, which single remasking cannot address.

prop

To address this, we introduce multi-view feature remasking of each augmented graph egnc . Each remasked

prop

encoded feature is denoted by EgncJ . It acts as a regularizer for the decoder, making it robust against
unexpected noises in input and helping to avoid overfitting. The final objective of the decoder is to reconstruct
the actual node features F from these masked encoded node features using the multi-view autoencoder loss
described next.

Multi-View Autoencoder Loss: Given k augmentations of the input graph GP™°P represented
as GU"P,...,GYP, and m remasked decoded output for each augmented graph represented as
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prop
g1

]: ]:gfv'op ]:gzrop

decy o2 Fdee, 1o Face, » we define the multi-view reconstruction loss as
- m

kom prop 2
Lonrec = ZZ ||F - -FdécJ ||2 (7)

i=1 j=1

To minimize the divergence across the views of the decoded features, we define the multi-view cosine similarity
loss as

gp'r‘op gp/'r'up
1 1
I _ M . ]:deci ']:deCj (8)
meos oo ' . prop GProp
Vi,i,j; if I=1" then i#j }—91 F V
1<k, i<m,j<m dec; . dec;

Here, M is the mean operation. Our final propagation loss is Lprop = Lmrec + Lmcos-

3.3 Final Loss

We combine the AMR and Propagation loss as £ = Lyge1 + Lyprop. We train our model using this loss, and the
final features of our model are H9"™" - H9""™" . These features are then used for misinformation classification.

4 Experiments and Results

Dataset Description and metrics: We perform experiments on the publicly available datasets Fake-
NewsNet (Shu et al. 2020) in order to assess the effectiveness of the model. This repository contains two
separate benchmark datasets, namely, PolitiFact and GossipCop. PolitiFact is dedicated to news coverage
revolving around U.S. political affairs, while GossipCop has stories about Hollywood celebrities. These
datasets also capture the broader social dynamics by including information about how news spreads through
networks and the posting patterns of users. We evaluate our model using Fl-score, and Accuracy (Acc).
Comprehensive details of the datasets are provided in Table

Table 2: Datasets Statistics

# News | # True | # Fake | # Nodes | # Edges
PolitiFact 314 157 157 41054 40740
GossipCop 5464 2732 2732 314262 308798

Baselines: In our evaluation, we contrast our model with various state-of-the-art baselines, categorized
into two groups. The first group utilizes only unsupervised methods (TruthFinder (Yin et al. 2008),
UFNDA (Li et al., 2021), UFD (Yang et al., [2022), GTUT (Gangireddy et al., 2020), (UMD)? (Silva
et all |2024), GraphMAE (Hou et al.l [2022), GAMC (Yin et al. 2024))), while the second incorporates
supervised methods (SAFE (Zhou et al.,2020), EANN (Wang et al., 2018)), dEFEND (Shu et al., 2019),
GACL (Sun et al., 2022), EA’N (BERT) (Gupta et al., 2025)).

5 Results

We conducted a comparative analysis of our model against various baselines as mentioned above on the
PolitiFact and GossipCop datasets. Results are shown in Table [3] Our model achieved the highest accuracy
(0.919) and Fl-score (0.918) among the unsupervised baselines. Compared to GAMC, the existing bench-
mark, our model outperforms it by a margin of 8.1% in accuracy and 8.7% in Fl-score (on the absolute
scale). Also, our model surpasses GTUT and (UMD)? by significant margins, 12 ~ 14% in accuracy and 14
~ 15% in the Fl-score, indicating a superior ability to differentiate between fake and real news. Similarly,
our model significantly outperforms existing unsupervised baselines on the GossipCop dataset. It achieves
the highest accuracy (0.968) and Fl-score (0.966), outperforming GAMC, which attained an accuracy of
0.946 and an Fl-score of 0.943. This represents a 2.2% improvement in accuracy and a 2.3% improvement in
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the Fl-score. This improvement can be attributed to the proposed model, which leverages a combination of
self-supervised AMR semantic features and news propagation features from multi-view social context graph
learning.

When we compare our model to supervised baselines on both PolitiFact and GossipCop datasets (Table |3)),
it consistently outperforms state-of-the-art approaches in terms of accuracy, while comparable results on
F1 score are observed. On PolitiFact, our model achieves an accuracy of 0.919 and an Fl-score of 0.933,
surpassing EA2N with BERT (0.911 accuracy, 0.915 Fl-score), GACL (0.867 accuracy, 0.866 Fl-score), and
EANN (0.804 accuracy, 0.798 Fl-score). However, it shows comparative performance with dEFEND in F1-
score. On GossipCop, our model outperforms all supervised baselines, achieving the highest accuracy (0.968)
and F1-score (0.966). It notably surpasses GACL (0.907 accuracy, 0.905 F1-score) and EA2N (0.844 accuracy,
0.872 Fl-score), as well as dEFEND, which lags significantly behind with 0.808 accuracy and 0.755 F1-score.
These results highlight that while supervised models perform well, our self-supervised approach not only
competes effectively on PolitiFact but outperforms all supervised baselines on GossipCop, demonstrating
superior performance across datasets. Our self-supervised pipeline may yield stronger representations than
shallow supervised models trained only on labels. One reason is that the datasets have known issues with
label reliability. In such cases, supervised models can overfit to spurious correlations or unreliable labels and
unsupervised models often rely on representation learning, which can be more robust to noise and generalize
better in low-label regimes.

Table 3: Comparative study of our model w.r.t. different baselines on PolitiFact and GossipCop datasets.

PolitiFact GossipCop
Acc F1 Acc F1
Unsupervised Methods
TruthFinder 0.581 0.573 0.668 0.669
UFNDA 0.685 0.670 0.692 0.673
UFD 0.697 0.647 0.662 0.667
GTUT 0.776 0.767 0.771 0.744
(UMD)? 0.802 0.761 0.792 0.783
GraphMAE 0.643 0.649 0.802 0.787

Methods

GAMC 0.838 0.831 0.946 0.943
Supervised Methods

SAFE 0.793 0.775 0.832 0.811
EANN 0.804 0.798 0.836 0.813
dEFEND 0.904 0.928 0.808 0.755
GACL 0.867 0.866 0.907 0.905
EA2N 0.911 0.915 0.844 0.872
Ours 0.919 0.918 0.968 0.966

variance + 0.019 £ 0.020 | £ 0.015 4 0.015

6 Ablation Study

Change in classification result with different values of \: Figure |2 shows the change in classification
accuracy of the method with the change in weightage to negative samples in Equation [d It is evident that
the accuracy improved initially with the value of A and obtained the maximum result when A = 0.5 for both
datasets. With a further increase in A, the accuracy decreases, indicating that our model overemphasizes
negative samples compared to being close to positive samples, thus decreasing feature separability. Based
on this, we set the value of A to 0.5 in our experiments.

Change in classification result with training size: We conduct a classification experiment using a
linear SVM with varying training sizes while keeping the test set fixed at 10%. The results shown in Table
[ clearly demonstrate that the classification accuracy improves as expected with larger training data. With
just 10% of the training data, our model achieves superior performance on both the GossipCop (0.951 of
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Figure 3: Change in accuracy with varying number of augmentation k& and multi-view remasking m.

ours vs 0.946 of GAMC and 0.907 of GACL) and PolitiFact (0.875 of ours vs 0.838 of GAMC), highlighting

its effectiveness in data-scarce scenarios.
learned representations.

This showcases the robustness and generalization ability of the

Change in results with varying number of augmentations ¥ and multi-view remaskings m: We
study the change in classification accuracy with different numbers of augmentations and remaskings for the
PolitiFact dataset (Figure . We can infer from the figure that the best results are obtained when we set

Table 4: Results on different split sizes for PolitiFact and GossipCop datasets.

o PolitiFact GossipCop

Train Size % Acc F1 Acc F1
10 0.875 | 0.867 | 0.951 | 0.951
20 0.875 | 0.867 | 0.948 | 0.949
30 0.875 | 0.867 | 0.951 | 0.951
40 0.906 | 0.903 | 0.952 | 0.953
50 0.906 | 0.903 | 0.952 | 0.953
60 0.906 | 0.903 | 0.952 | 0.953
70 0.906 | 0.909 | 0.952 | 0.953
80 0.938 | 0.938 | 0.954 | 0.955
90 0.938 | 0.941 | 0.956 | 0.957
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Table 5: Accuracy Score for different components of the model.

PolitiFact GossipCop

Acc F1 Acc F1
Mistral (Zero-shot) 0.747 | 0.636 | 0.610 | 0.320
LLaMA (Zero-shot) 0.804 | 0.749 | 0.680 | 0.535
Only Ligea+ Mistral 0.822 | 0.830 | 0.934 | 0.932
Only Ligei+ LLaMA 0.841 | 0.828 | 0.948 | 0.949
Only Lprop 0.846 | 0.845 | 0.946 | 0.945
Ligel + Lprop+ Mistral | 0.893 | 0.892 | 0.938 | 0.938
Liget + Lprop+ LLaMA | 0.919 | 0.918 | 0.968 | 0.966

Model

k =2 and m < 6. This shows that multi-view remaskings help the model achieve superior performance, but
more than three remaskings do not bring considerable improvements.

Change in classification results with different components of our model: In Table[5 we show the
importance of different components of our model. All the results shown here use 80% labelled data in the
final linear SVM for training. As we can see from the table, £i4; and L., individually produce comparable
results. But we get significant improvements in classification accuracy when we combine features generated
using £ = Liger + Lprop- We also compare the performance of our model with varying versions of the LLM,
Mistral-7B and LLaMA-7B. Our model significantly improves the classification results using LLM-guided
centroids and the proposed losses as compared to the independent LLMs. One must also note that there is a
significant difference between the results from the two LLMs when used independently. But, when used with
any component of our model, this difference reduces, thus showing the robustness of the extracted features
by the proposed method.

Figure 4: The TSNE plots showing the embeddings of PolitiFact (Row1) and GossipCop (Row2).

Qualitative results at different stages of our proposed pipeline In Figure [l we show the feature
separation between the real and fake news at different stages of our proposed pipeline. In the first row of
the Figure we see the results of PolitiFact dataset and the second row we show the results of the GossipCop
dataset. The first column of each row shows the TSNE embedding of the initial features. The second column
shows the TSNE plot of the original features after a single fully connected linear layer (MLP). The third

10
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column shows the TSNE plot of the features obtained after the self-supervised AMR graph learning (#9""")
phase trained with a linear layer. The last columns shows the TSNE plot of the final concatenated features
after self-supervised AMR graph learning and multi-view propagation graph learning (H9""" . H9"""") with
a linear layer. In all the cases we train the MLP with 80% labelled data.

To quantify the clustering quality, we compute the silhouette score at each stage. For the PolitiFact dataset,
the silhouette scores are 0.33, 0.54, 0.62, and 0.64, respectively, indicating progressively better separation
between real and fake news as the pipeline advances. Similarly, for the GossipCop dataset, the silhouette
scores are 0.16, 0.34, 0.38, and 0.40, again demonstrating consistent improvement. These quantitative results
further support the visual evidence, confirming that our model increasingly enhances feature discriminability
at each stage of the pipeline.

7 Implementation Details

In order to generate the AMR graph, we have used a pretrained STOG model (Zhang et all 2019)). For
LGCL, we use a = 0.5 and in order to integrate the evidence in the AMR graph, we use the same parameters
described in |Gupta et al| (2025). For social context and propagation graph learning we use 2 encoder layers
and 1 decoder layer. For multi-view remasking, we select £k = 2 and m = 2. We selected Support Vector
Machine (SVM) as the classifier in the downstream task and reported the results from 80 % of the training
data with 5-fold cross-validation. We have trained our model on RTX A5000 NVIDIA GPU with 24 GB
GPU memory. The training of AMR took 1 hour for PolitiFact and took 3 hours for the GossipCop dataset
with 50 epochs. Multi-view masked graph learning took 5 mins for the PolitiFact dataset and 15 minutes
for the GossipCop dataset.

8 Conclusion

This study presents a novel self-supervised approach for misinformation detection. The LLM-guided con-
trastive self-supervised AMR learning framework captures complex semantic relationships in text. This
method enhances feature separation between real and fake news by leveraging an LLM-guided negative sam-
pler. Additionally, we introduce a multi-view graph-masked autoencoder that integrates social context and
news propagation patterns for more robust detection. Through extensive experiments, the proposed method
is found to produce state-of-the-art performance.
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