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ABSTRACT

Adversarial attacks in deep learning represent a significant threat to the integrity and
reliability of machine learning models. These attacks involve intentionally crafting
perturbations to input data that, while often imperceptible to humans, can lead
to incorrect predictions by the model. This phenomenon exposes vulnerabilities
in deep learning systems across various applications, from image recognition to
natural language processing. Adversarial training has been a popular defence
technique against these adversarial attacks. The research community has been
increasingly interested in interpreting robust models and understanding how they
defend against attacks.
In this work, we capitalize on a network architecture, namely Deep Linearly Gated
Networks (DLGN), which has better interpretation capabilities than regular network
architectures. Using this architecture, we interpret robust models trained using PGD
adversarial training (9) and compare them with standard training. Feature networks
in these architectures act as feature extractors, making them the only medium
through which an adversary can attack the model. So, we use the feature network
in this architecture with fully connected layers to analyse properties like alignment
of the hyperplanes, hyperplane relation with PCA, and sub-network overlap among
classes and compare these properties between robust and standard models. We
also consider this architecture having CNN layers wherein we qualitatively and
quantitatively contrast gating patterns between robust and standard models. We
use ideas from visualization to understand the representations used by robust and
standard models.

1 INTRODUCTION AND RELATED WORKS

Relu activation can be viewed as the product of input and gates that are off/on. These gates trigger
certain pathways in the network to be active/inactive. Lakshminarayanan & Vikram Singh (2020)
propose a unique approach by viewing model training as active sub-network learning in Relu-activated
neural networks. Neural networks can be viewed as model input being mapped into the path space
(path space representation given by neural path features (NPF)) wherein they are combined together
in the path space to generate model output logits. The coefficients of these combinations in path space
are provided by the model weights, captured using neural path value (NPV). They introduce Deep
Gated Neural Network (DGN) architecture to demonstrate the role of active sub-network learning that
has two nearly identical sub-networks: feature network, which is responsible for extracting features
and providing gating signals (thereby solely encoding NPFs); value network, which aggregates the
features extracted by the feature network (thereby solely encoding NPVs) to produce the final model
prediction. A follow-up study by Lakshminarayanan et al. (2022) show that interpreting the value
network visually is meaningless in DGN networks. However interpreting feature network is still hard
due to the non-linearity in the feature network layers. So, to improve interpretability of DGNs, they
propose new architecture namely Deep Linearly Gated Neural Networks (DLGN) wherein the gating
signals are completely moved out of the feature network, rendering the transformations in the feature
network entirely linear. The DLGN architecture offer significant interpretability advantages due to
the feature network being entirely linear, facilitating understanding and analysis.
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Though machine learning algorithms perform well under normal conditions, they can fail with
cleverly crafted inputs called adversarial samples, raising security concerns in many applications.
White-box attacks are attacks wherein the attacker can access model predictions, parameters and
training data. Popular attacks in this setting are BIM(Kurakin et al. (2016)), MIM(Dong et al. (2018)),
FGSM(Goodfellow et al. (2015)) and PGD(Madry et al. (2017)) among which PGD attacks are
considered one of the strongest white-box attacks in practice. Prior works have proposed various
defence techniques against adversarial attacks, among which the seminal work of Madry et al. (2017)
stands out as one of the principled methods. They view defending adversarial attacks as solving
a min-max optimization problem wherein the inner maximization aims to get the best possible
adversarial samples at a given model state. They solve the inner maximization by using the PGD
attack and call it adversarial training (Algorithm 1) (abbreviated as PGD-AT henceforth). This arms
race between adversarial attacks and defenses has also lead to many works which instead analyse the
adversarial attacks in several ways like distribution shift analysis3, Fourier spectrum analysis (8, 11,
13, 12, 10), principal component (analysis3), shapely value analysis (1) and so on.

Algorithm 1 PGD adversarial training for M epochs, given some radius ϵ, adversarial step size α, T
PGD steps and a dataset of size N for a network Fθ

for j = 1 . . .M do
for i = 1 . . . N do

// Perform PGD adversarial attack
δ = U(−ϵ, ϵ)
for t = 1 . . . T do

δ = δ + α · sign(∇δL(Fθ(xi + δ), ytruei ))
δ = max(min(δ, ϵ),−ϵ)

end for
θ = θ −∇θL(Fθ(xi + δ), yi) // Update model weights with some optimizer, e.g. SGD

end for
end for

We use the enhanced interpretation capabilities of DLGN model (see Appendix A for network
architecture) to compare and contrast standard training (henceforth abbreviated as STD-TR) and
adversarial training by analysing the model’s internals, which was previously challenging in traditional
architectures due to the non-linearity between the layers.

Our Contributions

• We merge layers in the feature network of DLGN architectures to obtain a single effective
linear transformation per layer. This reveals novel insights into hyperplanes and their
resemblance to principal components in PGD-AT and STD-TR models. Our analyses show
that hyperplanes in PGD-AT (FC) models are farther from data points compared to STD-TR
(FC) models and play a key role in enhancing robustness.

• We analyze path activity among classes by examining the active-subnetwork overlap in
PGD-AT and STD-TR FC models. Our findings indicate that PGD-AT models generate
more diverse active subnetworks and can avoid active subnetwork overlaps with different
classes during an attack.

• We quantitatively compare active gate overlaps among classes using the intersection-over-
union metric. This reveals that adversarially trained models can prevent significant gating
pattern changes and avoid overlap of attack-induced gating changes with those of other
classes. Using feature inversion visualization techniques, we interpret the representations
used by PGD-AT and STD-TR models.

Notations The following are the notations in fully connected architectures: Let θf and θv be
parameters of the model with L layers in feature network and value network respectively and more
specifically with Wl ∈ Rml−1,ml being the weight at layer l of feature network, bl ∈ Rml being the
bias at layer l of the feature network. Let xl ∈ Rml be the feature network output at layer l, p be one
of the paths among total P paths passing from each input node to each output node, Gl,p

x,θf
be the

gate for input x at the node contained in path p at layer l and xp be the input node at node contained
in path p. Then from work [6], the gate information is encoded in the neural path features (NPF)
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Φx,θf ∈ RP as per Equation (1b) and the weight information is encoded in the neural path value
(NPV) ϑθv ∈ RP as per Equation (1c). The final model output logits is given by ŷ(x), which can be
expressed as per Equation (1d).

Gl
x,θf

= σ(β ∗ (WT
l xl−1 + bl)) (1a)

Φx,θf = {xpΠ
L
l=1G

l,p
x,θf

, p ∈ [P ]} ∈ RP (1b)

ϑθv = {ΠL
l=1θ

l,p
v , p ∈ [P ]} ∈ RP (1c)

ŷ(x) =< Φx,θf , ϑθv > (1d)

where σ is the sigmoid activation i.e σ(x) =
1

1 + e−x

2 ANALYSIS OF HYPERPLANES IN FEATURE NETWORK OF FULLY CONNECTED
ROBUST AND STANDARD MODELS

Consider a DLGN architecture with fully connected layers where the feature network is entirely
linear. At each feature network layer l, the effective linear transformation can be obtained by merging
all preceding layers up to l, with effective weights El ∈ Rm0,ml and bias pl ∈ Rml . The output at
layer l would produce ml gates and each gate’s effective weight ∈ Rm0 would be a hyperplane acting
on input in m0-dimensional space. A gate is active/inactive based on which side of the hyperplane
the input x lies.

ŷ(x+ δ) =

P∑
p=1

Φx+δ,θf ∗ ϑθv =

P∑
p=1

[(xp + δp)ΠL
l=1σ{E

p
l (x+ δ) + pl)}] ∗ ϑθv

ŷ(x+ δ) =

P∑
p=1

[(xp + δp)ΠL
l=1σ{E

p
l x+ Ep

l δ + pl)}] ∗ ϑθv (2a)

From Equation (2a) for a perturbation δ in input x, larger values of Ep
l x + pl reduce the gate’s

sensitivity in path p, enhancing robustness by preventing changes in model output ŷ for perturbed
inputs. Informally, if a point is farther from a hyperplane, it requires either larger dimension-wise
perturbations or small perturbations across many dimensions to flip the gate1.

2.1 HYPERPLANE ANALYSIS IN REAL-WORLD DATASET

We trained a DLGN with 4 fully connected layers (width 128) on the MNIST and Fashion MNIST
datasets using both standard training and adversarial training (PGD-AT, ϵ = 0.3, α = 0.1, T = 40).
Adversarial attacks used PGD with 40 steps and ϵ = 0.3. When an adversarial example crosses to the
opposite side of the hyperplane compared to the original input, the gate is considered flipped (from
active to inactive or vice versa). As shown in Figure 1, fewer data points flipped at each hyperplane
in PGD-AT models than in STD-TR models. We inspect the projection distance of points from each
hyperplane of fully connected layers in the feature network of DLGN given by the expression ET

l x+pl

||El||2 .
Guided by the mathematical intuition at Equation (2a), we experimentally (in Figure 2 & Figure 3)
show that larger median projection distances results in less gate flipping thereby enhancing robustness.
We plot the median projection distance over all samples from each hyperplane across all layers (see
Figure 4 and Appendix A.1) and found that the median distance from hyperplane is relatively higher
in PGD-AT models than STD-TR models at many hyperplane indices. This trend is also reflected
in projection distance histograms, which show significant differences between standard and robust
models (see Appendix A.1). We compare masking gates with the highest median projection distance,
masking gates with lowest median projection distance and masking gates randomly in PGD-AT
and STD-TR models (see Figure 5). Results show that median-based masking significantly reduces
PGD-40 and clean accuracies in PGD-AT models, highlighting the importance of gates with higher
median distances for robustness.

1In experiments, β is set high to approximate a step function
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Figure 1: PGD-AT vs STD-TR FC-DLGN-W128-D4 flip distribution. The left image is on MNIST,
and the right image is on the Fashion MNIST dataset. The Y-axis denotes the fraction of points that
flipped the gate at node indices on the X-axis.
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Figure 2: PGD-AT per hyperplane flip distri-
bution vs. median projection distance
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Figure 3: STD-TR per hyperplane flip distri-
bution vs. median projection distance
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Figure 4: PGD-AT vs STD-TR FC-DLGN-W128-D4 median projection distance. The left image is
on MNIST, and the right image is on the Fashion MNIST dataset. The Y-axis denotes the median
projection distance of data points at node/hyperplane indices on the X-axis.
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Figure 5: Robust and clean accuracies of PGD-AT and STD-TR FC-DLGN _W128_D4 models with
random gate masking vs. masking gates with the highest median projection distance vs masking
gates with lowest median projection distance. Dotted lines are for STD-TR models and solid lines
are for PGD-AT models.
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Figure 6: Hyperplane plots of PGD-AT vs STD-TR models in FC-DLGN-W4-D3. Row 1 indicates
the PGD-AT model, and row 2 indicates the STD-TR model. Columns 1-3 indicate layers 1-3. Each
image contains 4 hyperplanes since width at each layer is 4.

2.2 HYPERPLANE ANALYSIS IN SYNTHETIC XOR DATASET

We constructed a 2D XOR dataset (see Appendix A.2) with a gap λ from the axes, ensuring that
points satisfy |x| > λ and |y| > λ. This design allows setting ϵ ≤ λ during adversarial training,
where ϵ represents the perturbation boundary without changing the ground truth labels. Using a
DLGN with 3 fully connected layers (width 4), we trained models via both standard (STD-TR) and
adversarial training (PGD-AT, ϵ = 0.3, T = 40). The decision boundaries of PGD-AT models are
closer to optimal compared to STD-TR (see Appendix A.2), ensuring that adversarial examples
within L∞ bounds (ϵ = 0.3) are correctly classified only by PGD-AT. Visualization of hyperplanes
at each layer of the feature network (see Figure 6) shows that PGD-AT models learn hyperplanes
positioned farther from the data points than STD-TR models. This trend increases in deeper layers as
compared to earlier ones. So, we conclude that hyperplanes with larger projection distances from
data points are key in enhancing robustness.

3 PCA ANALYSIS IN ROBUST AND STANDARD MODELS

Principal Component Analysis (PCA) minimizes point-to-hyperplane distances, while we saw that
the PGD-AT process increases these distances to improve robustness. This fundamental difference
motivates us to investigate the impact of PCA on adversarially training. We embedded PCA projection
operation into the input layer of a DLGN architecture, ensuring both training and inference accounted
for the transformation. This also ensures that adversary has knowledge of the operation and doesn’t
change dimensions of the model input. To offset the reduced capacity from PCA’s dimensionality
reduction, we increased the model’s width at all layers to keep the capacity constant across all models
under comparision. Experiments on MNIST and Fashion MNIST (see Figure 7) reveal a significant
drop in both PGD-40 and clean accuracy in PGD-AT models compared to STD-TR models, indicating
that PCA negatively affects adversarial robustness. This suggests that PCA’s dimensionality reduction
conflicts with the robustness objectives of adversarial training.

To further investigate the relation of principal components with hyperplanes in PGD-AT models,
we computed the top k principal components P ∈ Rm0×k of the MNIST and Fashion MNIST
training datasets and analyzed their similarity with the effective weights El ∈ Rm0×ml of the

5
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Figure 7: DLGN model trained with PCA embedded layer at different levels of dimensionality
reduction on MNIST and Fashion MNIST datasets.
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Figure 8: Effective weights with top PCA components in PGD-AT(bottom row) and STD-TR(top
row) using FC-DLGN-W128-D4 architecture.

feature network layers in models, given by Cl = PTEl ∈ Rk×ml . Results show higher alignment
between principal components and hyperplanes in STD-TR models compared to PGD-AT models (see
Figure 8 and Appendix A.3). This supports the observation that PGD-AT hyperplanes are positioned
to maximize robustness rather than minimize point-to-hyperplane distance, leading to lower similarity
with principal components.

4 ACTIVE SUBNETWORK OVERLAP IN FULLY CONNECTED ROBUST VS
STANDARD MODELS

Adversaries can alter the output only by changing the active pathways (i.e., NPF). Due to this
significance, we measure the overlap in active pathways among samples of the same class and
between different classes. The Neural Path Kernel (NPK) Ψ (as per Equation (3a)) is the gram-matrix
of NPFs that measures the overlap of active pathways between pairs of examples. We consider a
binary classification task and define two metrics to measure overall NPK overlap between different
classes ΨD and between the same classes ΨS as defined in Equation (4).

Ψθ(s, s
‘) =< Φxs,θ,Φx

s‘
,θ > s, s‘ ∈ [n]} ∈ Rn,n (3a)

where θ is parameters of the model, Φx,θ ∈ RP is the NPF

ΨS =
∑
i,j

Ψθ(i, j) ∀i, j : yitrue = yjtrue ΨD =
∑
i,j

Ψθ(i, j) ∀i, j : yitrue ̸= yjtrue (4)

We obtain these two metrics among adversarial (Ψadv), original samples (Ψorig) and between
adversarial and original samples (Ψadv,org) for models trained using PGD-AT and STD-TR on two
class datasets (see Table 1 for MNIST dataset and Appendix A.4 for Fashion MNIST dataset). Firstly,
ΨD

orig < ΨD
adv & ΨD

orig < ΨD
adv,org for both PGD-AT and STD-TR models. This indicates that

adversarial attacks increase active subnetwork overlap between different classes as compared to
original samples in an attempt to change the model prediction. Secondly, ΨD

adv,org for PGD-AT is
always lesser than ΨD

adv,org for STD-TR models. Also ΨD
adv for PGD-AT is lesser than ΨD

adv for
STD-TR models in most cases. These indicate that the active pathways triggered by adversarial
examples overlap less with original examples or adversarial examples of another class in the PGD-AT
model. Thirdly, ΨS

adv & ΨS
orig for PGD-AT is always lesser than that in STD-TR. So, the trends so far

indicate that the PGD-AT training process learns to map the input to a more diverse path space where
overlap among the same class is lesser and PGD-AT models control subnetwork overlap between
different classes during an attack compared to STD-TR models.
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Dataset Train
Type

PGD-
40 Acc.

Clean
Acc.

log2
ΨD

orig

log2
ΨS

orig

log2
ΨD

adv

log2
ΨS

adv

log2
ΨD

adv,or

log2
ΨS

adv,or

MNIST
3vs8

PGD-AT 76.4% 83.8% 24.8 26.9 25 26.4 24.8 26.1
STD-TR 0% 99.2% 24.6 27.3 27.1 28 26.9 26.2

MNIST
1vs7

PGD-AT 90.6% 95.5% 22.8 27.3 25 26.9 23.9 26.3
STD-TR 0.7% 99.7% 20 27 27.3 28 25.8 26.2

MNIST
0vs6

PGD-AT 79.5% 86.5% 22.9 27.1 24.7 26.4 24 26.3
STD-TR 0% 99.4% 21.2 27.6 27.8 28.4 26.5 26.3

MNIST
1vs5

PGD-AT 85.8% 94.7% 22.9 26.9 25 26.4 24.1 26.1
STD-TR 0.4% 99.8% 20.42 27.5 21 28.4 27.2 20.7

MNIST
3vs9

PGD-AT 78.2% 84.5% 24.4 26.8 24.6 26.2 24.4 26
STD-TR 0% 99.5% 23.7 27.4 26 28.3 27 25

MNIST
2vs9

PGD-AT 81.4% 86.7% 24 27.1 24.6 26.7 24.2 26.5
STD-TR 0% 99.6% 23.3 27.3 23.5 28.5 27 23.5

Table 1: FC-DLGN-W128-D4 architecture PGD-AT vs STD-TR model subnetwork overlap metrics
over original and adversarial examples. The task is binary classification over the MNIST dataset in
column 1, and the model has a single output node for classification. PGD-AT rows are highlighted in
bold for better readability.

Notations The following are the notations in convolutional architectures: Let X ∈ RN,1,W,H be the
whole training dataset with the size of each sample being 1×W ×H . Let Xc ∈ RNc,1,W,H be the
training dataset per class with Nc being the number of samples of class c. Let L be the number of
layers, Cl be the number of output channels in layer l of feature network (in our experiments for
simplicity, we keep Cl same across all layers) and W,H be the width, height of output at all feature
network layers (since we fix padding=1, kernel size=3, width and height of the output stays same
across all layers). Let the output at each feature network layer per class be Fl ∈ RNc,Cl,W,H . For
original examples, let the output combined across all feature network layers be F orig ∈ RL,Nc,Cl,W,H

and for adversarial examples let it be F adv ∈ RL,Nc,Cl,W,H . "mode" is either adversarial or original
examples throughout the paper.

5 ANALYSIS AND INTERPRETATION OF GATING PATTERNS IN ROBUST VS
STANDARD MODELS IN CONVOLUTIONAL ARCHITECTURES

The gates generated in the feature network are the only input representations accessible to the model’s
value network; hence, their study throws light on the behaviour of robust models.

5.1 ANALYSIS OF GATING PATTERNS IN ROBUST AND STANDARD MODELS

Our goal is to measure the extent of active gate overlap among different class-pairs in convolutional
DLGN architectures quantitatively using the idea of intersection-over-union(IOU) and qualitatively by
visually inspecting the difference in active gate counts with and without attacks (refer Appendix A.5).
The number of active gates per class at each pixel in Fl across all L layers is given by Equation (5).

Gate(x) =

{
1, if x > 0

0, otherwise
Λmode
c =

Nc∑
i=1

Gate(Fmode(Xc)),∈ RL,Cl,W,H (5)

The following is the procedure to obtain IOU of active gate count of class c1 and c2 (IOUagc(c1, c2)):

1. Compute union of active gate counts at all pixels
Amode

c1,c2 : Amode
c1,c2 (i) = Λmode

c1 (i) + Λmode
c2 (i) ∀i ∈ RL,Cl,W,H

2. Compute intersection of active gate counts at all pixels
Bmode

c1,c2 : Bmode
c1,c2 (i) = min(Λmode

c1 (i),Λmode
c2 (i)) ∀i ∈ RL,Cl,W,H

3. Record the indices of Umode
c1,c2 whose value is such that Amode

c1,c2 (i) > 0.1 ∗ (|Xc1 | + |Xc2 |).
Let such an index vector be ιc1,c2 ∈ Rd. The intent of this stage is to remove outliers in the
union of active gate counts of both classes.
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Src
Class

Train
Type Quantity Class

0
Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Class
8

Class
9

0

PGD-
AT

IOUadv
agc 100 70.2 83 82.7 81.8 83.9 82.7 77.4 84 80.6

IOUorg
agc 100 66.2 79.3 79.4 77.9 81.3 78.5 72.7 81.2 76

STD-
TR

IOUadv
agc 100 78.1 84.7 82 81 84.5 84 80 78.2 82.6

IOUorg
agc 100 59.7 74.7 75 73.1 77.6 73.2 66.2 77.5 69.7

1

PGD-
AT

IOUadv
agc 70.2 100 74.9 75.8 74.7 74.2 75 77.2 76.3 75.6

IOUorg
agc 66.2 100 71.9 74.3 71.9 71 71.6 75 74.2 73.6

STD-
TR

IOUadv
agc 78.1 100 82.7 79.5 80 80 79.3 83.3 74.9 80.4

IOUorg
agc 59.7 100 63.7 66.5 65.6 64.4 64.7 67.4 68.4 67.2

2

PGD-
AT

IOUadv
agc 83 74.9 100 86.9 84.3 83.5 85.8 79.7 86.1 82.4

IOUorg
agc 79.3 71.9 100 84.7 80.5 80.1 82.7 74.9 83.4 78.3

STD-
TR

IOUadv
agc 84.7 82.7 100 82.4 83.9 83.3 85.7 82 79.2 83

IOUorg
agc 74.7 63.7 100 80.7 74.2 74.9 77 68.2 77.5 70.5

3

PGD-
AT

IOUadv
agc 82.8 75.8 86.9 100 82.7 86.3 82.1 81.7 87.4 83

IOUorg
agc 79.4 74.3 84.7 100 78.6 84.7 78 77.8 85.4 79

STD-
TR

IOUadv
agc 82 79.5 82.4 100 77.5 85.4 77.6 83.6 75.7 81.8

IOUorg
agc 75 66.5 80.7 100 73.4 80.8 72.3 71.9 81.4 73

4

PGD-
AT

IOUadv
agc 81.8 74.7 84.3 82.7 100 85.8 84.7 85.4 86.9 91.1

IOUorg
agc 77.9 71.9 80.5 78.6 100 82.3 81.3 82.8 84.5 90.6

STD-
TR

IOUadv
agc 81 80.2 83.9 77.8 100 81.2 82.5 80.7 80.8 87.2

IOUorg
agc 73.1 65.6 74.2 73.4 100 78.5 75 77.7 80 85.9

Table 2: CONV DLGN-N128-D4 PGD-AT vs STD-TR model IOU of active gate count between
class-pairs over adversarial and original examples in MNIST dataset.

4. Obtain the final intersection as Imode
c1,c2 = Bc1,c2 [ι

mode
c1,c2 ] ∈ Rd. Obtain the final union region

as Umode
c1,c2 = Amode

c1,c2 [ι
mode
c1,c2 ] ∈ Rd

5. Obtain overall average IOU between classes c1,c2 as

IOUmode
agc (c1, c2) =

1
d

∑d
i=1

Imode
c1,c2

(i)

Umode
c1,c2

(i)

We trained a DLGN with 4 convolutional layers, each having 128 filters (padding 1, stride 1, kernel
size 3), followed by an adaptive average pooling layer and a fully connected classification layer.
Adversarial training (PGD-AT) was performed on the MNIST dataset with ϵ = 0.3, T = 40, α =
0.005, and we measured the Intersection-over-Union (IOU) of active gate overlaps between different
class pairs over original (IOUorg

agc ) and adversarial (IOUadv
agc ) samples (see Table 2 for MNIST

and Appendix A.6 for Fashion MNIST). First, IOUorg
agc for PGD-AT models is consistently higher

than for STD-TR models, indicating that gate overlap among classes is initially larger in PGD-AT
models. Second, for both PGD-AT and STD-TR, adversarial attacks increase the gate overlap, as
IOUadv

agc > IOUorg
agc across all class pairs. Third, the increase in gate overlap (IOUadv

agc − IOUorg
agc ) is

larger in STD-TR models compared to PGD-AT models, demonstrating that minimizing gate overlap
among different classes during adversarial attacks is a key feature of PGD-AT models.

5.2 INTERPRETATION OF GATING PATTERNS IN ROBUST VS STANDARD MODELS

We aim to further analyze gating patterns by identifying the images that most effectively trigger them.
We begin by inverting gating signals in the DLGN model trained in both PGD-AT and STD-TR
modes. Then, we explore more complex gating patterns through inversion. We start by asking: What
is the input image that best simulates the dominant gating signals of an entire class?. The procedure
to obtain such an input image I for class c is as follows:

1. Obtain the active gate count per pixel Λmode
c as per Equation (5). Also obtain the inactive

gate count per pixel ηmode
c : ηmode

c (i) = Nc − Λmode
c (i).

2. Obtain the dominating gate active-inactive trend per pixel ρmode
c,λ as per Equation (6).Here λ

is the threshold which indicates the percentage of gates that has to be active(inactive) among

8
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PGD-AT
Iorgc5

PGD-AT
Iadvc5

STD-TR
Iorgc5

STD-TR
Iadvc5

PGD-AT
Iorgc8

PGD-AT
Iadvc8

STD-TR
Iorgc8

STD-TR
Iadvc8

PGD-AT
IorgcSneaker

PGD-AT
IadvcSneaker

STD-TR
IorgcSneaker

STD-TR
IadvcSneaker

PGD-AT
IorgcCoat

PGD-AT
IadvcCoat

STD-TR
IorgcCoat

STD-TR
IadvcCoat

Figure 9: Image I which triggers dominating gating pattern per class over CONV DLGN-N128-
D4 model obtained on adversarial examples (even columns) and original examples (odd columns).
Columns 1,2,5,6 are on the PGD-AT model, and columns 3,4,7,8 are on the STD-TR model. Visual-
ization loss function is as per Equation (7),λ = 0.9, α = 0.1,optimization is as per Equation (8).We
have reported a few classes for brevity. Detailed results are in Table 8.

all the class samples to be considered as active(inactive) overall.

ρmode
c,λ (i) =

{
1, iffΛmode

c (i) > λ ∗Nc

−1, iffηmode
c (i) > λ ∗Nc

(6)

3. Let I be the input image under optimization, Fmode be the feature maps at the feature
network for input I as usual as per our notations. Then, we define a loss function L(I, ρmode)
as per Equation (7). This loss function objective is to obtain I such that its feature maps
sign at each pixel matches with the dominating gate pattern.

L(I, ρmode) =
∑
i

log(1 + e−ρ(i)∗tanh(F (i))) (7)

4. Now we need to optimize I over the loss function. We explored gaussian blur on gradient
and I route but found the results to be satisfactory. However we found the optimization
mentioned in Equation (8) provides good results.

It = It−1 + αsign(∇ItL) (8)

5. Start with I0 = 0 and perform optimization as per Equation (8) on the loss function
Equation (7) for T steps. That is, repeat step 3,4 T times.

In our experiments, we set α = 0.1, T = 50, and λ = 0.9. The visualizations for DLGN _N128_D4
trained on the MNIST, Fashion MNIST dataset are presented in Figure 9. Dominant gating patterns
from original examples capture critical class information, with images inverting these patterns (Iorg)
clearly resembling their respective classes. The PGD-AT model produces sharper, more distinct class
features than the STD-TR model, indicating better utilization of model capacity by PGD-AT. In the
STD-TR model, for example, Iorg5 can be made to resemble Iorg8 with less changes, indicating that
one can change input image that triggers dominant gates of class 5 to the image that triggers dominant
gates of class 8 easily, thereby showing the brittle nature of representations used by STD-TR models.
Furthermore, in PGD-AT, Iadv retain class resemblance, while STD-TR’s Iadv images are noisy.
This indicates PGD-AT prevents adversaries from activating semantically unrelated gating patterns,
maintaining class information with slight degradation.

Next, we aim to find the input images (Iado) that best simulate gating signals dominantly active
during adversarial attacks but not in original examples for an entire class and the images (Iamo)
that simulate gate patterns active in both adversarial and original examples for an entire class. The
visualization process remains the same, except for changes in the computation of ρ. Iadoc is derived
using ρadoc , while Iamo

c uses ρamo
c as per Equation (9).

ρadoc,λ (i) = Gate{ρadvc,λ (i)−Gate(ρorgc,λ (i))} ρamo
c,λ (i) = ρadvc,λ (i) ∗Gate(ρorgc,λ (i)) (9)

9
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PGD-AT
Iadoc5

PGD-AT
Iamo
c5

STD-TR
Iadoc5

STD-TR
Iamo
c5

PGD-AT
Iadoc8

PGD-AT
Iamo
c8

STD-TR
Iadoc8

STD-TR
Iamo
c8

PGD-AT
IadocSneaker

PGD-AT
Iamo
cSneaker

STD-TR
IadocSneaker

STD-TR
Iamo
cSneaker

PGD-AT
IadocCoat

PGD-AT
Iamo
cCoat

STD-TR
IadocCoat

STD-TR
Iamo
cCoat

Figure 10: Image I which triggers dominating active gating pattern per class over CONV DLGN-
N128-D4 model obtained on adversarial examples alone but not on original examples (odd columns)
and obtained both on original examples and adversarial examples(even columns). Column 1,2,5,6 is on
PGD-AT model and column 3,4,7,8 is on STD-TR models.Loss function is as per Equation (7),λ =
0.9, α = 0.1,optimization is as per Equation (8).For brevity, we have reported few class results.
Detailed results are in Table 9.

We report visualized images Iadoc , Iamo
c for both DLGN PGD-AT and STD-TR models as before

trained on MNIST, Fashion MNIST dataset in Figure 10. In the PGD-AT model, Iadoc does not
produce meaningful inputs, as these patterns are framed images with no resemblance to any class,
even using the same visualization method and parameters. This contrasts with Iadvc , where adversarial
examples resemble class images, indicating that only the dominant active gating patterns from original
examples are meaningful in PGD-AT models. In the STD-TR model, both Iadvc and Iadoc appear
similar, with Iamo

c showing little resemblance to class images, highlighting significant differences
between active gates triggered by adversarial and original examples. In PGD-AT, Iamo

c shows
that adversarial examples trigger a subset of original class gating patterns, maintaining some class
resemblance.

6 CONCLUSION AND FUTURE DIRECTIONS

In this work we utilized DLGN architectures to thoroughly study the difference in properties exhibited
by PGD-AT and STD-TR models. We analyzed fully connected networks, focusing on properties
such as hyperplane alignment, path-activity and found that PGD-AT models exhibit larger datapoint
separation distances from hyperplanes, active pathways triggered during adversarial attacks in PGD-
AT models show less overlap with original examples of other classes and less overlap among original
samples of same class suggesting better capacity utilization. We examined convolutional networks to
show that PGD-AT models reduce gating overlap among different classes during adversarial attacks.
Additionally, we used visualization techniques to understand the dominant gating patterns triggered
per class in various scenarios for both STD-TR and PGD-AT models shedding light on the nature of
representations used by these models.

We believe that leveraging the results of our analysis to develop novel algorithms that account for the
properties examined could effectively enhance robustness. Extending this analysis to larger and more
complex models, such as transformers or other deep architectures, could provide further insights into
the generalizability of our findings. While this work focused on PGD-AT, other adversarial training
methods could be explored to generalize the understanding of robustness.
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A APPENDIX

Network architecture of DLGN is shown in Figure 11.

PGD-40 and clean accuracies over MNIST and Fashion MNIST dataset using various architectures
are reported at Table 3.
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Figure 11: Deep Linearly Gated Networks (DLGN) network architecture. GALU = x ∗Gate(x ‘)

Dataset Architecture Training
Type

PGD-40 Test Acc.
(@ϵ = 0.3,@ϵ =
0.2)

Clean
Test
Acc.

MNIST

FC-DLGN-
W128-D4

PGD-
AT (49.8%,54.5%) 66.4%

FC-DLGN-
W128-D4

STD-
TR (1.6%,2.7%) 97.7%

CONV-
DLGN-N128-
D4

PGD-
AT (78.9%,88.9%) 97.5%

CONV-
DLGN-N128-
D4

STD-
TR (0.05%,0.06%) 98.4%

Fashion
MNIST

FC-DLGN-
W128-D4

PGD-
AT (40.2%,48.3%) 62.6%

FC-DLGN-
W128-D4

STD-
TR (3.7%,5.1%) 88.6%

CONV-
DLGN-N128-
D4

PGD-
AT (49.8%,88.9%) 67.8%

CONV-
DLGN-N128-
D4

STD-
TR (0%,0%) 88.9%

Table 3: PGD-AT vs STD-TR model PGD accuracies and clean accuracies
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Figure 12: PGD-AT vs STD-TR FC-DLGN-W256-D4 median projection distance. The top image is
on MNIST, and the bottom image is on the Fashion MNIST dataset. The Y-axis denotes the median
projection distance of data points at node/hyperplane indices on the X-axis.
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Figure 13: PGD-AT vs STD-TR FC-DLGN-W64-D4 median projection distance. The left image is
on MNIST, and the right image is on the Fashion MNIST dataset. The Y-axis denotes the median
projection distance of data points at node/hyperplane indices on the X-axis.

A.1 MORE ANALYSIS OF HYPERPLANES IN FEATURE NETWORK OF PGD-AT AND STD-TR
MODELS

The median projection distance at each hyperplane in PGD-AT and STD-TR models of DLGN with
width 256 (see Figure 12) and 64 (see Figure 13) also clearly shows that median distances increase in
robust models.

The projection distance histogram at hyperplanes, which shows significant differences in median
projection distance between standard and robust models (see Figure 14), also shows that the projection
distance of datapoints is shifted to larger distances in PGD-AT than STD-TR models.

A.2 HYPERPLANE ANALYSIS IN SYNTHETIC XOR DATASET

The synthetic XOR 2D dataset constructed with a gap from x=0.5 and y=0.5 axis is shown in Figure 15.
The decision boundaries of PGD-AT models (see Figure 16) are closer to optimal compared to STD-
TR (see Figure 17), ensuring that adversarial examples within L∞ bounds (ϵ = 0.3) are correctly
classified only by PGD-AT.
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Figure 14: Projection distance distribution at hyperplanes whose medians differ significantly(by 0.5)
between standard and robust DLGN models. Each row in each image denotes a hyperplane, with
the Y-axis indicating the frequency of occurrence and the X-axis being the distance from that row’s
hyperplane. Columns 1,3 are for the STD-TR model, and columns 2,4 are for the PGD-AT model.
Both X & Y axis is shared per row. First-row images correspond to the MNIST dataset, and the
second-row images correspond to the Fashion MNIST dataset.
.
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Figure 15: 2D XOR dataset with
gap from x=0.5,y=0.5 being 0.32
to facilitate PGD-AT with eps <
0.32
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Figure 16: PGD-AT decision
boundary
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Figure 17: STD-TR decision
boundary
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Figure 18: Effective weights with top PCA components in PGD-AT(bottom row) and STD-TR(top
row) using FC-DLGN-W256-D4 architecture.

A.3 PCA ANALYSIS IN ROBUST AND STANDARD MODELS

We report similarity of principal components with hyperplanes of feature network of DLGN with
width 256 in Figure 18 and width 64 in Figure 19 respectively.

A.4 MORE RESULTS IN ACTIVE SUBNETWORK OVERLAP IN PGD-AT VS STD-TR MODELS

The subnetwork overlap metrics for FC-DLGN _W128_D4 architecture trained over the Fashion
MNIST dataset is shown in Table 4.

A.5 QUALITATIVE ANALYSIS OF GATING PATTERNS IN PGD-AT AND STD-TR MODELS

We qualitatively inspect the difference in active gate counts with and without attacks using
Λadv_diff_org
c in Equation (10b) that measures the difference in active gate count for adversar-

ial and original examples and is plotted per class for both PGD-AT and STD-TR models as an image
of size L ∗ Cl,W,H in Table 5 and Table 6.

Λmode
c =

Nc∑
i=1

Gate(Fmode(Xc)), ∈ RL,Cl,W,H (10a)

where mode is either original examples or adversarial examples

Λadv_diff _org
c (i) = Λadv

c (i)− Λorg
c (i), ∀ i ∈ RL,Cl,W,H (10b)
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Figure 19: Effective weights with top PCA components in PGD-AT(bottom row) and STD-TR(top
row) using FC-DLGN-W64-D4 architecture.
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Dataset Train
Type

PGD-
40 Acc.

Clean
Acc.

log2
ΨD

orig

log2
ΨS

orig

log2
ΨD

adv

log2
ΨS

adv

log2
ΨD

adv,or

log2
ΨS

adv,or

FaMNIST
1vs9

PGD-AT 93.90% 99.70% 22.78 30.45 28.60 31.01 26.43 29.81
STD-TR 0.00% 100.00% 28.37 31.31 31.25 32.41 31.26 30.01

FaMNIST
3vs8

PGD-AT 76.75% 90.45% 25.92 29.60 28.58 29.29 27.53 28.74
STD-TR 4.65% 99.30% 25.88 30.39 30.41 31.68 29.04 30.01

FaMNIST
7vs9

PGD-AT 80.75% 87.30% 26.28 29.05 28.29 28.98 27.38 28.54
STD-TR 0.00% 97.00% 26.58 29.47 31.27 31.67 29.48 29.61

FaMNIST
0vs2

PGD-AT 74.25% 90.10% 26.68 30.04 27.61 29.00 27.06 29.01
STD-TR 0.00% 97.10% 28.74 30.79 30.10 32.15 30.73 29.17

FaMNIST
4vs5

PGD-AT 92.75% 98.90% 22.70 29.82 29.87 30.24 28.87 29.09
STD-TR 23.80% 99.00% 27.88 31.16 31.31 31.91 30.55 30.08

FaMNIST
6vs7

PGD-AT 89.00% 98.40% 23.36 29.98 28.47 31.02 31.32 30.30
STD-TR 23.80% 100.00% 27.35 31.50 23.50 29.21 27.44 28.73

Table 4: FC-DLGN-W128-D4 architecture PGD-AT vs STD-TR model path overlaps metrics over
original and adversarial examples. The task is binary classification over the Fashion MNIST dataset
in column 2, and the model has a single output node for classification. PGD-AT rows are highlighted
in bold for better readability.

A.6 QUANTITATIVE ANALYSIS OF GATING PATTERNS IN PGD-AT AND STD-TR MODELS

The IOUorg
agc , IOUadv

agc is measured for each pair of classes in Table 7 for Fashion MNIST dataset.

A.7 INTERPRETATION OF GATING PATTERNS IN PGD-AT VS STD-TR MODELS

The visualizations (Iorg ,Iadv) for CONV-DLGN _N128_D4 trained on the MNIST, Fashion MNIST
dataset are presented in Table 8. We report visualized images Iadoc , Iamo

c for both CONV-DLGN
_N128_D4 PGD-AT and STD-TR models as before trained on MNIST, Fashion MNIST dataset in
Table 9.
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Class
(c) PGD-AT Λadv_diff _org

c STD-TR Λadv_diff _org
c
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Table 5: Λadv_diff _org
c for PGD-AT and STD-TR models with CONV_N128_D4 DLGN architecture

on MNIST dataset. In each cell of the image, every four rows represent a layer’s Λadv_diff _org
l,c
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Class
(c) PGD-AT Λadv_diff _org

c STD-TR Λadv_diff _org
c
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Table 6: Λadv_diff _org
c for PGD-AT and STD-TR models with CONV_N128_D4 DLGN architecture

on MNIST dataset. In each cell of the image, every four rows represent a layer’s Λadv_diff _org
l,c
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Src
Class

Train
Type Quantity Class

0
Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Class
8

Class
9

0

PGD-
AT

IOUadv
agc 100.0 81.0 86.9 86.4 86.0 75.0 89.6 73.5 80.9 75.6

IOUorg
agc 100.0 75.6 84.3 83.0 80.9 68.1 86.5 67.4 74.9 69.4

STD-
TR

IOUadv
agc 100.0 72.1 78.6 79.4 76.9 67.9 83.2 65.3 73.9 67.7

IOUorg
agc 100.0 57.1 69.2 69.9 65.4 47.3 76.6 44.4 59.6 49.4

1

PGD-
AT

IOUadv
agc 81.0 100.0 77.8 88.2 80.2 74.2 77.8 74.4 74.0 73.6

IOUorg
agc 75.6 100.0 72.1 85.2 74.5 66.2 71.6 67.5 65.9 66.4

STD-
TR

IOUadv
agc 72.1 100.0 68.5 82.4 71.1 64.9 70.9 65.5 66.7 64.2

IOUorg
agc 57.1 100.0 51.0 72.8 55.1 45.9 52.1 44.9 46.8 45.4

2

PGD-
AT

IOUadv
agc 86.9 77.8 100.0 82.3 91.3 76.0 93.1 73.5 84.8 77.5

IOUorg
agc 84.3 72.1 100.0 77.4 89.8 69.2 91.4 67.2 78.8 72.6

STD-
TR

IOUadv
agc 78.6 68.5 100.0 73.1 86.3 67.0 83.7 65.4 76.9 68.8

IOUorg
agc 69.2 51.0 100.0 58.4 81.0 48.5 81.9 45.3 65.2 54.4

3

PGD-
AT

IOUadv
agc 86.4 88.2 82.3 100.0 84.7 75.0 83.0 74.7 77.7 75.2

IOUorg
agc 83.0 85.2 77.4 100.0 79.7 67.7 78.0 68.3 70.8 68.5

STD-
TR

IOUadv
agc 79.4 82.4 73.1 100.0 75.4 68.4 77.5 68.2 71.6 68.3

IOUorg
agc 69.9 72.8 58.4 100.0 62.2 49.4 62.8 47.2 54.7 49.4

4

PGD-
AT

IOUadv
agc 86.0 80.2 91.3 84.7 100.0 76.1 91.3 74.4 84.1 78.2

IOUorg
agc 80.9 74.5 89.8 79.7 100.0 68.0 87.9 67.1 78.0 72.5

STD-
TR

IOUadv
agc 76.9 71.1 86.3 75.4 100.0 66.4 83.5 65.4 76.1 69.0

IOUorg
agc 65.4 55.1 81.0 62.2 100.0 48.9 79.4 46.0 64.9 54.8

Table 7: CONV DLGN-N128-D4 PGD-AT vs STD-TR model IOU of active gate count between
class-pairs over adversarial and original examples for Fashion MNIST dataset.
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MN
Class
(c)

PGD-
AT
Iorg

PGD-
AT
Iadv

STD-
TR
Iorg

STD-
TR
Iadv

Fashion
MN
(c)

PGD-
AT
Iorg

PGD-
AT
Iadv

STD-
TR
Iorg

STD-
TR
Iadv

0 Ankle-
boot

1 Bag

2 Coat

3 Dress

4 Pullover

5 Sandal

6 Shirt

7 Sneaker

8 T-
shirt

9 Trouser

Table 8: Image I which triggers dominating gating pattern per class obtained on adversarial examples
(column 3,5,8,10) and original examples (column 2,4,7,9). Columns 2,3,7,8 are on the PGD-AT
model, and columns 4,5,9,10 are on the STD-TR model. Loss function is as per Equation (7),λ =
0.9, α = 0.1,optimization is as per Equation (8)
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MN
Class
(c)

PGD-
AT
Iado

PGD-
AT
Iamo

STD-
TR
Iado

STD-
TR
Iamo

Fashion
MN
(c)

PGD-
AT
Iado

PGD-
AT
Iamo

STD-
TR
Iado

STD-
TR
Iamo

0 Ankle-
boot

1 Bag

2 Coat

3 Dress

4 Pullover

5 Sandal

6 Shirt

7 Sneaker

8 T-
shirt

9 Trouser

Table 9: Image I which triggers dominating active gating pattern per class obtained on adversarial
examples alone but not on original examples (columns 2,4,7,9) and obtained both on original
examples and adversarial examples(columns 3,5,8,10). Columns 2,3,7,8 are on the PGD-AT model,
and columns 4,5,9,10 are on the STD-TR models. Loss function is as per Equation (7),λ = 0.9, α =
0.1,optimization is as per Equation (8)
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