Under review as a conference paper at ICLR 2026

PLANTRSR: A NEW PLANT DATASET AND METHOD
FOR REFERENCE-BASED SUPER-RESOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Single image super-resolution (SISR) often struggles to reconstruct high-
resolution (HR) details from heavily degraded low-resolution (LR) inputs. In-
stead, reference-based super-resolution (RefSR) methods offer an alternative so-
lution to generate promising results using high-quality reference (Ref) images to
guide reconstruction. However, existing RefSR datasets focus on limited scene
types, primarily featuring human activities and architectural scenes. Plant scenes
exhibit complex textures and fine details, essential for advancing RefSR in natural
and highly detailed scenes. To this end, we meticulously captured and manually
selected high-quality images containing rich textures to construct a large-scale
plant dataset, PlantRSR, comprising 16,585 HR—Ref pairs. The dataset captures
the complexity and variability of plant scenes through extensive variations. In ad-
dition, we propose a novel RefSR method specifically designed to tackle the dis-
tinct challenges posed by plant imagery. It incorporates a Selective Key-Region
Matching (SKRM) that selectively identifies and performs matching between LR
and Ref images, focusing on distinctive botanical textures to improve matching ef-
ficiency. Additionally, a Texture-Guided Diffusion Module (TGDM) is proposed
to refine LR textures by leveraging a diffusion process conditioned on the matched
Ref textures. TGDM is effective in modeling irregular and fine textures, thereby
facilitating more accurate SR results. The proposed method achieves significant
improvements over state-of-the-art (SOTA) approaches on our PlantRSR dataset
and other benchmarks.

1 INTRODUCTION

SISR aims to reconstruct an HR image from an LR input, and has been widely applied in various
fields, including critical uses in plant phenotyping, where high-resolution imagery is crucial for de-
tailed morphological analysis, disease diagnosis, and growth monitoring in precision agriculture.
While SISR has shown promising results [Dai et al.[(2019); Niu et al.[| (2020); Huang et al.| (2021);
Kong et al.|(2021); |Wang et al.[(2021); |Zhou et al.| (2023)); Wang et al.| (2024a)); |Guo et al.|(2025), it
often fails to reconstruct precisely detailed textures of the ground-truth HR image when the original
high-frequency information is severely lost during the degradation. To address this issue, RefSR
methods [Zhang et al| (2019); |Yang et al.| (2020); |Lu et al.[ (2021); Jiang et al.| (2021); [Xia et al.
(2022);|Cao et al.| (2022)); Zhou et al.|(2025)) incorporates external Ref images as guidance, leverag-
ing external high-quality textural details to enhance texture recovery.

Recent RefSR methods leverage feature alignment, attention mechanisms, or implicit correspon-
dence learning to fuse textures from Ref images. Despite significant progress, existing studies pri-
marily focus on limited scenes such as human daily life and architectural structures, as reflected by
datasets like CUFEDS [Zhang et al.| (2019) and LMR Zhang et al.| (2023). As shown in Fig.[I](a) and
(b), CUFEDS and LMR mainly contain scenes with rigid structures and limited geometric variations.
In contrast, plant scenes, as shown in Fig. [1| (c), exhibit distinct characteristics such as significant
shape deformation, subtle texture variations, and frequent defocused backgrounds, which introduce
additional challenges for RefSR. Moreover, the lack of publicly available RefSR datasets tailored
to plant imagery restricts the development of methods capable of handling its unique challenges.
Although the DRefSR Zhou et al.[(2025) expands upon CUFEDS by increasing data diversity and
includes certain plant images, it is not specifically designed for plant scenes and suffers from in-
sufficient quantity and variety. As a result, existing approaches often struggle to generalize to such
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complex and diverse scenarios. In particular, plant imagery presents unique challenges, such as ir-
regular structures and diverse textures, that differ significantly from the relatively structured content
found in current datasets. This highlights the necessity for RefSR datasets and strategies specifically
tailored to plant imagery.

HR

Ref

(a) CUFEDS dataset b) LMR dataset (c) Our PlantRSR dataset

Figure 1: Example image pairs from different RefSR datasets. (a) CUFEDS dataset |Zhang et al.
(2019), primarily featuring scenes of human daily activities. (b) LMR dataset Zhang et al.| (2023),
focused on architectural scenes. (c) Our PlantRSR dataset, designed for complex botanical textures
with diverse plant species.

To address the above challenges, we construct a novel large-scale RefSR dataset specifically de-
signed for plant imagery, named PlantRSR. All images were carefully captured by us from real-
world plant scenes, ensuring high authenticity and diversity. The dataset comprises 6,134 high-
quality HR—Ref image pairs with extensive variations in color, rotation, deformation, and back-
ground blur, covering resolutions from 2K to 8K. In RefSR tasks, models are commonly trained
using cropped image patches, since full-resolution images are often too large for direct processing.
However, generating aligned patch pairs is particularly challenging. Automated patch generation in
previous datasets often leads to misaligned or semantically inconsistent pairs, which is unsuitable
for complex plant imagery. To ensure high-quality training data, we manually annotate and con-
struct 16,585 semantically aligned HR—Ref patch pairs, exceeding the 11,817 pairs in the widely
used CUFEDS dataset. Besides, the PlantRSR dataset includes a testing set of 100 image pairs,
offering the first RefSR benchmark for plant imagery and a solid foundation for future research.

We introduce an innovative RefSR approach tailored to address the distinct challenges in plant en-
vironments. First, we propose a Selective Key-Region Matching (SKRM) that can target the focal
characteristics of plant images, performing matching only on key regions between LR and Ref im-
ages to significantly enhance matching efficiency. Second, we present a Texture-Guided Diffusion
Module (TGDM), which enhances LR features by incorporating matched Ref textures as conditional
guidance within a diffusion-based refinement framework. This novel module effectively leverages
the fine-grained and irregular textures from the Ref image to improve the quality of the SR image.
Together, these components form a unified framework that ensures both accurate texture transfer and
efficient feature enhancement. Extensive experiments demonstrate the superiority of our method. In
summary, our main contributions are four-fold:

* We contribute a new large-scale plant dataset for RefSR, named PlantRSR, which contains
16,585 high-quality training pairs with rich variations in color, rotation, deformation, and
background blur, reflecting the complexity of real-world plant scenes.

* We propose a novel RefSR method specifically designed to tackle the challenges posed by
plant imagery. Extensive experiments on multiple datasets demonstrate that our method
outperforms SOTA methods both quantitatively and qualitatively.

* We propose a Selective Key-Region Matching (SKRM) module that leverages the focal
characteristics of plant imagery to perform region-specific matching between LR and Ref
images, thereby significantly enhancing matching effectiveness.

* We propose a Texture-Guided Diffusion Module (TGDM) that introduces a diffusion mech-
anism conditioned on matched Ref textures to refine LR regions, enabling more accurate
reconstruction of the SR image.
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2 RELATED WORK

Reference-based Image Super-Resolution. Unlike conventional SISR methods that rely exclu-
sively on the LR input, RefSR incorporates an additional high-quality Ref image to supply textures
and structural details. Pioneer RefSR methods mainly emphasized alignment between the LR and
Ref images. For instance, Wang et al. Wang et al.| (2016b)) proposed iterative non-uniform warping
to refine the Ref for better texture extraction. CrossNet Zheng et al.| (2018a)) employs multi-scale
optical flow to achieve spatial alignment, while SSEN Zheng et al.| (2018b) adopts deformable con-
volutions (Dai et al.,[2017; Zhu et al.,[2019) to align feature representations adaptively.

In addition to alignment-based strategies, a significant body of work has explored patch-based tex-
ture transfer. SRNTT [Zhang et al.| (2019), for example, utilizes perceptual features extracted from
VGG [Simonyan & Zisserman! (2015) to identify semantically similar textures between LR and Ref
images. E2ENT2 [Xie et al.| (2020) proposes a task-specific feature extraction framework, moving
beyond general classification features. TTSR|Yang et al.|(2020) designs a cross-scale transformer to
effectively aggregate textures across multiple levels. Other approaches, such as AMRSR [Pesavento
et al.| (2021) and CIMR-SR |Yan et al.| (2020), expand to multi-Ref settings for richer texture guid-
ance. MASA [Lu et al|(2021) addresses efficiency through a hierarchical coarse-to-fine matching
scheme. To tackle domain discrepancies in resolution and content, C>-Matching Jiang et al.| (2021)
introduces contrastive learning |He et al.| (2020) and knowledge distillation |Hinton| (2015) for ro-
bust correspondence learning. At the same time, DATSR |Cao et al| (2022) leverages transformer
architectures for better handling of scale and transformation variations. RRSR [Zhang et al.| (2022)
proposes a reciprocal mechanism where reconstruction feedback enhances the overall performance.
Ref-IRT |Zhang et al.| (2024) introduces a progressive restoration pipeline for handling complex
degradations. MCMSR [Zheng et al.|(2024) focuses on discovering multiple matching candidates in
the Ref image for each LR region to improve completeness. SSMTF Zhou et al.| (2025) attempts to
leverage state-space models to extract multi-scale information from Ref images. Recently, diffusion
models have emerged as a powerful paradigm for leveraging Ref information. DiffMSR [Li et al.
(2024a) employs diffusion to generate prior knowledge from Ref for magnetic resonance image re-
construction. Similarly, in remote sensing, Ref-Diff |Dong et al.| (2024) proposes a change-aware
diffusion model to extract change priors from Ref images. CoSeR Sun et al.|(2024), instead of using
a physical Ref, utilizes a diffusion model to generate a semantically relevant Ref image to aid recon-
struction. This idea of generating references connects to retrieval-augmented methods; for example,
RAG [Lee et al.|(2025)) proposes a Retrieval-Augmented Generation framework that retrieves a Ref
image given an LR query. However, most existing methods still face limitations in complex scenar-
ios like plant imagery, which features irregular structures and diverse textures that are significantly
different from the current dataset.

Datasets for Reference-based Image Super-Resolution. SISR datasets such as DIV2K [Timofte
et al.|(2017) and Flickr2K |Lim et al.| (2017) have been widely adopted to learn mappings from LR
to HR images. However, they are not well-suited for RefSR tasks, as they lack external Ref images
that are crucial for guiding texture enhancement|Zheng et al.|(2018a); Zhang et al.|(2019)). To bridge
this gap, CUFEDS Zhang et al.| (2019) is proposed as an early dataset tailored for RefSR, offering
13,761 training pairs of size 160x 160, each consisting of a HR image and a corresponding Ref im-
age. CUFEDS provides 126 test groups for evaluation, where each group includes an HR image and
four Ref images with varying degrees of similarity. Following this, Lin et al. [Zhang et al.| (2023)
introduced the LMR dataset, a large-scale multi-reference benchmark designed to further enrich
RefSR research. It comprises 112,142 training groups of 300 x300 images, each paired with five Ref
images across different similarity levels. The testing set includes 142 groups, where each target im-
age is matched with 2 to 6 Ref images. To address the limited diversity of CUFEDS, DRefSR |Zhou
et al.[(2025) extends this dataset by constructing a more varied training set comprising 13,761 image
pairs. In addition, other efforts, such as Sun80|Sun & Hays|(2012) and WR-SR Jiang et al.| (2021)
offer testing scenarios more aligned with real-world applications. Sun80 provides 80 natural images
with internet-sourced reference sets, while WR-SR contains 100 image pairs featuring references re-
trieved through web search, encompassing diverse visual categories such as animals and landmarks.
Despite recent progress, existing RefSR datasets like CUFEDS and LMR offer limited diversity and
are ill-suited for plant phenotyping. Although DRefSR expands the variety of scenes and includes
some plant imagery, the quantity and diversity of plant species remain insufficient (Detailed analy-
sis in Appendix [C). Plant images pose unique challenges such as large shape deformations, subtle
textures, and frequent defocus, which are not well represented in current datasets.
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Figure 2: Category overview and training set construction of our PlantRSR dataset.

3 PLANTRSR DATASET CONSTRUCTION

The widely used CUFED5 dataset is constructed from CUFED [Wang et al| (2016a) and primarily
targets human daily life scenes. Similarly, the LMR dataset, built upon MegaDepth
(2018), focuses mainly on landmark scenarios. These datasets are not well-suited for plant scenes.
Furthermore, existing plant-specific datasets remain scarce, making it challenging to obtain valid
HR-Ref image pairs. To meet the needs of current RefSR tasks, we meticulously captured 6,134 im-
age pairs with rich textures using DSLR cameras. The images cover resolutions between 2K and 8K,
over 80% of which are above 4K. To ensure the diversity and realism of the dataset, we deliberately
captured images that reflect five major types of variations commonly encountered in real-world plant
photography: color variations (11.4%), scale differences (18.6%), rotations (27.0%), deformations
(30.5%), and background changes (12.5%). These variations are introduced by adjusting camera
angles, distances, and viewpoints during data collection. Fig.[2](a) provides visual examples of each
category, illustrating the challenges posed by different reference conditions in the plant domain.

In SISR, it is common to crop patches from HR images for training randomly. However, in RefSR,
corresponding regions with similar content must be cropped from both the HR and Ref images. For
example, CUFEDS first randomly crops 160x 160 patches from HR images and then selects corre-
sponding patches from Ref images based on predefined correspondence. Similarly, LMR randomly
selects a 300x300 patch from the HR image, projects its center to a sparse 3D point cloud, and
retrieves Ref patches centered at nearby keypoints. However, these automated cropping strategies
are not suitable for plant images. Due to the frequent presence of defocused backgrounds and com-
plex structures in plant scenes, random or keypoint-based cropping often results in uninformative or
mismatched patches. Moreover, the significant variations in our paired plant images, such as color,
scale, and deformation differences, make accurate automatic correspondence challenging. There-
fore, we adopt a manual annotation strategy to carefully select semantically matched regions from
image pairs, as illustrated in Fig. (b). Then, we obtain 16,585 patch pairs, which are rescaled into
two versions (160x 160 and 300x300) to construct the training set (More samples in Appendix [K).

4 OUR METHOD

The overview of our method is shown in Fig. [3| (a). Given the LR image I*? and the Ref image
I/ we aim at generating a high-quality image I°% that possesses texture-rich details conditioned
on I/ For correspondence matching, we follow C’2—Matching and adopt con-
trastive learning (2020) and knowledge distillation (2015) to train the Ref feature
extractor g s and the LR feature extractor ¢, . These extractors are used to obtain ¢ ge (I Ref )
and 97 (IFFT) from the Ref and upsampled LR images, respectively. Afterward, our proposed
SKRM selectively matches key regions between g, (1) and 1 r(ILFT) by focusing on in-
formative areas, thereby improving matching efficiency and obtaining the correspondence index
map P. To utilize both high-level and low-level information provided by 17/, following previous

works [Jiang et al.| (2021); Xia et al.| (2022); [Cao et al.| (2022)); [Zhang et al| (2022), we extract Ref
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(a) Architecture of our method
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Figure 3: (a) Architecture of our method. (b) [llustration of SKRM. (c) Illustration of TGDM.

texture features Fff at different scale levels via encoder ® g, ¢ Simonyan & Zisserman|(2015)). At
each scale, we perform the deformable convolution networks |Dai et al.| (2017)); Zhu et al.| (2019)
on FRef to warp it to match the F'L® for later fusion. Finally, our proposed TGDM leverages the

diffusion process conditioned on Fn}fsfche 4 to progressively enhance FLE  thereby enabling more
effective multi-scale feature fusion and producing the final SR image I°. We employ the L1 loss

function as the optimization objective during model training.

4.1 SELECTIVE KEY-REGION MATCHING (SKRM)

Since plant images often contain detailed foregrounds and shallow DoF-induced blurred back-
grounds that are easy to reconstruct, explicit matching in such regions is unnecessary. Instead,
as illustrated in Fig. 3] (b), we focus on selecting and matching key textured regions. To identify
these regions, we introduce a key detail selection indicator. Given a feature map F' € RH*WxC
and a sampling ratio s = 2, the key detail selection metric M € R¥*"W (values 0 or 1) is obtained
through the operation S(-), defined as the absolute difference between the original feature map and
its reconstruction via bilinear downsampling and upsampling as:

Mp=S(F)=1>_ | F— Fia. > 1), (1)
C

where 7 is the mean plus standard deviation of the absolute differences, I(-) returns 1 when the input
exceeds threshold 7, and O otherwise. Considering that the Ref image may also contain blurred
background regions, we apply key region selection to the Ref image to enhance matching efficiency
with the LR image. Based on Eq.[I] the key detail selection indicators are derived as follows:

Mpes, Mg = S(¥rer(I77)), S(1rr(IFET)). 2
Subsequently, the key texture features ngs’c and Ff%y are then derived from these indicators as:
Flech = Mpeg * fres (1), ©
Fy = Mg+ br(I*), )
Afterward, we get descriptors d¢f = [ky, ..., k,,] and d*F = [qq, ..., ¢,] from F 1’;21} and F<Y,

respectively. These descriptors are obtained by folding extracted features into patches. Then we find
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the patch from the patches k; that is most similar to each LR patch g; as:
i k;
Py =Topl(7— - 777); (&)
il [1%;
where T'opl(-) is a function and return the most relevant positions P;.

Then, we use a deformable convolution DC'onw(-) and the position index map to match the similar
textures around every position P; of /X% as:

Frf?:rfched,l = DCO"U(FzRefa F;)
=Y wE (P + Py + P + Ap)Am, ©)

where F, lRef (I = 1,2,4) denotes Ref texture features at different scale via encoder Pg.y,
Pye{(-1,1),(-1,0),...,(1,1)}, w denotes the convolution kernel weight, Ap and Am denote the
learnable offset and modulation scalar, respectively.

4.2 TEXTURE-GUIDED DIFFUSION MODULE (TGDM)

As shown in Fig. [3[(c), TGDM enhances the LR feature F/*? by leveraging the matched Ref tex-

ture Fr}j;gzhed ; as conditional guidance within a diffusion-based refinement framework, enabling a

progressive refinement of the LR features with Ref guidance.

We denote the initial LR feature as F}*% := Z7, which serves as the starting point for the reverse
diffusion process. To recover Z, from Z, we adopt a conditional denoising processHo et al.|(2020);
Li et al.| (2024b). At each timestep ¢ € {T,T — 1,..., 1}, the Denoising Network (DN) predicts

the noise ég(Zy, t, Ffst’;h ed.;) in Z; conditioned on the matched Ref texture, and each sampling step

can be expressed as:

A(Zi-1|Zo, Z) = N (Zi—1; fu(Zo, Zy) B 1), 7)
. 1 A )
Zo= = (2= VI= a0 ot Bl ®)
~ 5 Qg - ap(l — oy
il 2o, 270) =0 B 7y VOULZ ) g ©)
1-— (673 1-— Ot
~ 1— oy
B = 1_7;%1515, (10)

where, o and /3, are the forward process coefficients, and a; = Hi:l a,. This denoising step is
iteratively applied from ¢ = T to t = 1, producing the refined latent Z, guided by the Ref texture.
To further enhance textures feature, we pass Z through a Residual State Space Block (RSSB) |Guo
et al.[|(2024) as: B

Zy = RSSB(Z)). (11)
The refined latent Zj is then fused with the original LR feature via residual addition and subse-
quently upsampled using a sub-pixel convolution layer Shi et al.|(2016) as:

F5R = upsample(F R + Z), 1=1,2. (12)

Finally, the enhanced feature Fi/'% is used to generate the super-resolved representation by an addi-
tional residual connection as: ~
FSR = pLR o 7. (13)

TGDM progressively injects Ref-guided textures into the LR representation through the conditional
diffusion mechanism, improving feature quality for high-fidelity SR reconstruction.

5 EXPERIMENTS

5.1 DATASETS AND IMPLEMENTATION DETAILS

Due to the unavailability of the LMR dataset, we employ CUFEDS, DRefSR, and our PlantRSR
training datasets for comparative evaluation. All models are trained on 160x 160 patches under
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Table 1: Quantitative comparisons of RefSR methods, each independently trained on the
CUFEDS [Zhang et al.| (2019), DRefSR [Zhou et al| (2025)), and our PlantRSR dataset, with eval-
uation performed on PlantRSR testing sets. Bold text indicates the best results achieved on the
respective training datasets.

Method | Param. | Training set | PSNRT M-PSRNtT  SSIMtT LPIPS| DISTS])

CUFEDS 38.00 30.46 0.9491  0.1344 0.0863

MASA 4.0M DRefSR 38.06 30.54 0.9495  0.1338 0.0859
PlantRSR 38.24 30.80 09510  0.1323 0.0852

5 . CUFEDS 38.23 30.81 0.9508  0.1327 0.0857
C”-Matching 8.9M DRefSR 38.27 30.87 0.9509  0.1323 0.0855
PlantRSR 38.43 31.20 0.9523  0.1300 0.0851

CUFEDS 38.24 30.83 0.9509  0.1324 0.0851

AMSA 9. M DRefSR 38.29 30.89 09511  0.1321 0.0849
PlantRSR 38.43 31.23 0.9526  0.1303 0.0842

CUFEDS 38.25 30.81 09512 0.1316 0.0842

DATSR 13.0M DRefSR 38.32 30.91 09515  0.1312 0.0839
PlantRSR 38.48 31.26 0.9527  0.1304 0.0835

CUFEDS 38.26 30.83 0.9510  0.1307 0.0838

RRSR 21.5M DRefSR 38.31 30.93 09513  0.1303 0.0835
PlantRSR 38.44 31.22 0.9524  0.1299 0.0829

CUFEDS 38.21 30.76 0.9502  0.1334 0.0862

MRefSR 23'IM DRefSR 38.30 30.91 09511  0.1328 0.0859
PlantRSR 38.42 31.15 09516  0.1317 0.0853

. CUFEDS 37.84 30.12 0.9482  0.1399 0.0911
HiTSR 13.7M DRefSR 37.90 30.21 0.9487  0.1390 0.0907
PlantRSR 38.07 30.49 0.9499  0.1371 0.0900

CUFEDS 38.26 30.82 09510  0.1322 0.0851

MCMSR 8.9M DRefSR 38.30 30.90 09516  0.1317 0.0849
PlantRSR 38.43 31.23 0.9526  0.1302 0.0844

CUFEDS 38.28 30.86 09514  0.1305 0.0834

SSMTF 13.9M DRefSR 38.31 30.92 0.9517  0.1303 0.0833
PlantRSR 38.49 31.25 0.9528  0.1297 0.0831

CUFEDS 38.40 31.14 0.9522 0.1294 0.0828

Ours 11.IM DRefSR 38.49 31.27 0.9529  0.1292 0.0828
PlantRSR 38.62 31.53 0.9538  0.1288 0.0826

identical settings to CUFEDS for consistency. The LR images are produced by 4 x bicubic down-
scaling of HR images. All SR results are evaluated using four metrics: PSNR, SSIM [Wang et al.
(2004), LPIPS |Zhang et al.| (2018), and DISTS Ding et al.| (2020). The PSNR and SSIM values
are calculated on the Y channel in YCbCr color space. Besides, we introduce M-PSNR, a variant
that measures PSNR only in textured regions using a mask similar to Eq.[I} In our method, the
number of 7" is set to 4. We train our model with 400 epochs using ADAM optimizer (51=0.9 and
$2=0.999). The initial learning rate is set to 10~* and decreased by 0.5 after each 100, 000 iteration.
We implement experiments using the NVIDIA RTX A6000 GPU.

5.2 QUANTITATIVE EVALUATION

We compare our method with several SOTA RefSR approaches, including MASA [Lu et al.| (2021)),
Cz-MatChing Jiang et al.[(2021), AMSA [Xia et al.[(2022)), DATSR |Cao et al.| (2022), RRSR |Zhang
et al.|(2022), MRefSR [Zhang et al.| (2023)), HiTSR |Aslahishahri et al.| (2024), MCMSR |Zheng et al.
(2024) and SSMTF [Zhou et al.| (2025). All comparison methods are trained independently on both
the CUFEDS dataset and our PlantRSR dataset. The detailed experimental results are listed in Tab. [T}
Our method achieves the best performance across all four metrics on all training datasets. Further-
more, experimental observations reveal that models trained on PlantRSR consistently outperform
those trained on CUFEDS and DRefSR. Notably, Ours achieves superior performance with only
11.1M parameters, significantly fewer than competitors like RRSR (21.5M) and MRefSR (23.7M).
Moreover, all methods exhibit consistent performance improvements when trained on PlantRSR
compared to both CUFEDS and DRefSR. Besides, the significantly greater improvement in M-
PSNR compared to standard PSNR demonstrates our dataset’s enhanced effectiveness for complex
plant textures. Experimental results validate method superiority and PlantRSR dataset significance.
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Trained with DRefSR Trained with our PlantRSR

37.21/0.932/0.158 37.27/0.934/0.152 37.13/0.929/0.156 37.65/0.953/0.184 37.56/0.950/0.196 37.54/0.950/0.199

(d) LR Image RRSR  MRefSR MCMSR

37.81/0.957/0.179 37.98/0.963/0.141 PSNR/SSIM/LPIPS

RRSR  MRefSR MCMSR

37.37/0.941/0.147 37.54/0.949/0.135 PSNR/SSIM/LPIPS
A 7

(a) LR Image

Ref mage SSMTF Ours HR Ref Image SSMTF Ours

38.73/0.957/0.125 38.71/0.955/0.129 38.69/0.952/0.130 36.54/0.938/0.235 36.62/0.940/0.222  36.56/0.939/0.230

(e) LRImage RRSR MRefSR MCMSR

"RRSR  MRefSR MCMSR

38.81/0.959/0.120 38.95/0.964/0.112 PSNR/SSIM/LPIPS 36.62/0.944/0.217 36.78/0.953/0.203 PSNR/SSIM/LPIPS

XN e 3 3
Ref Image SSMTF Ours HR Ref Image SSMTF  Ours HR

38.11/0.948/0.133 38.16/0.952/0.127 38.10/0.952/0.125 35.78/0.924/0.251 35.70/0.922/0.259 35.73/0.923/0.249
- - ~ ~— -

(c)LR Image ~ RRSR  MRefSR MCMSR  (f) LR Image RRSR MRefSR MCMSR

38.24/0.958/0.117 38.46/0.965/0.105 PSNR/SSIM/LPIPS 35.85/0.931/0.239  35.97/0.935/0.227 PSNR/SSIM/LPIPS

Rof Image  SSMTF ~ Ours Reflmage ~ SSMTF  Ours  HR

Figure 4: Visual comparison of SOTA RefSR methods, each independently trained on both the
DRefSR dataset and our proposed PlantRSR dataset, with evaluation performed on the PlantRSR.

5.3 QUALITATIVE EVALUATION

We visually compare our method and other methods in Fig. ] In Fig. [ (a-c), we present the
visual comparison of plant leaf reconstruction. The restoration of leaf venation patterns proves
particularly challenging, where our method demonstrates superior texture recovery compared to
other approaches. Fig.[](d) and (e) present two challenging scenarios involving both color and scale
variations. Despite these difficulties, our method achieves superior reconstruction quality compared
to other compared approaches. In the complex botanical texture case shown in Fig. ] (f), our method
achieves superior fidelity, while competing methods suffer from noticeable blurring effects. The
visual results demonstrate the superiority of our method across various challenging in plant image.

5.4 ABLATION STUDY

About our SKRM. We conduct an ablation study by comparing our SKRM with existing efficient
matching methods, including Match & Extraction Module (MEM) (2021)) and Coarse-to-
Fine Embedded PatchMatch (CFE-PatchMatch) (2022). We calculate GFLOPs for an
LR image (400x199) and Ref image (1200x796). As listed in Tab. [2] our SKRM achieves the
lowest computational cost (77.86 GFLOPs) while maintaining the best performance. Compared to
the exhaustive Enumerated Matching method, SKRM significantly reduces the computation by over
150. These results (More results in Appendix [G) demonstrate the efficiency of our SKRM.

About our TGDM. We conduct an ablation study by comparing our proposed TGDM with exist-
ing texture fusion methods, including Dynamic Aggregation (DA) (2021) and Residual
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Feature Aggregation (RFA) (2022). As listed in Tab. 3] TGDM achieves the highest
performance, outperforming both DA and RFA. To further assess the contribution of the diffusion
mechanism in TGDM, we also compare it with a variant that removes the diffusion module. The
result shows a performance drop from 38.62 to 38.52 in PSNR, highlighting the importance of the
diffusion design. These results validate the effectiveness of our TGDM.

Table 2: Ablation study of our SKRM. Table 3: Ablation study of our TGDM.

Matching Method ~ GFLOPs PSNR/SSIM Fusion Method PSNR/SSIM/M-PSNR
MEM 620.72  38.36/0.9517 DA 38.43/0.9513/31.18
CFE-PatchMatch 12473  38.58/0.9534 RFA 38.48/0.9521/31.25

Enumerated Matching 11990.39 38.62/0.9542 TGDM Srvgg 1(\1/}ffusion) 38.52/0.9531/31.33

SKRM 77.86  38.62/0.9538 38.62/0.9538/31.53
38.6 W
AN
38.4 Eali
m 38.2
z
% 38.0 —— Trained on PlantRSR
g —— Trained on DRefSR
37.8 —— Trained on CUFED5
----- Best PSNR: 38.62
376 Best PSNR: 38.49
----- Best PSNR: 38.40
37.4 0 100 200 300
Epoch

NS
PlantRSR HR

performance when trained on the CUFEDS5, Figure 6: Visual comparison between models

Ref PlantRSR  HR

Figure 5: Ablation study comparing model

DRefSR, and our PlantRSR datasets. trained on CUFEDS5 and our PlantRSR dataset.

About our PlantRSR dataset. To validate the effectiveness of our PlantRSR dataset, we train
our method on CUFEDS, DRefSR, and PlantRSR datasets, respectively, and evaluate the models on
PlantRSR testing dataset. As shown in Fig.[5] our model trained on the PlantRSR dataset consistently
outperformed the models trained on CUFEDS and DRefSR across the entire training process, with
the highest PSNR of 38.62 dB compared to 38.40 dB and 38.50 dB. This quantitative improvement
demonstrates that our PlantRSR dataset significantly outperforms existing CUFED5 and DRefSR
datasets when handling complex botanical textures. Besides, as shown in Fig. [f] (a), the model
trained on the PlantRSR dataset better leverages Ref image to recover fine textures, such as plant
trichomes. Fig.[6](b) exhibits that our dataset achieves superior recovery of irregular floral textures.
These results substantiate the effectiveness of our PlantRSR dataset.

Table 4: Quantitative comparisons of SOTA methods
on CUFEDS5 and WR-SR testing datasets, evaluated 386
using PSNR, SSIM, and LPIPS. g el
Method CUFEDS WR-SR g %0 / . JaneconPanihoR
a —e— Trained on DRefSR
RRSR  28.83/0.8563/0.2241 28.41/0.8039/0.2846 | < / . Our best PSNR: 38.62
MRefSR 28.63/0.8523/0.2281 28.26/0.8012/0.2912 /2 e Our best PSNR: 38.49
HiTSR  27.08/0.8012/0.2960 28.26/0.8017/0.2958 R i .
MCMSR  28.54/0.8490/0.2294 28.34/0.8019/0.2857 > Sampling Steps T 8
SSMTF  28.86/0.8595/0.2202 28.42/0.8056/0.2842
Ours  28.95/0.8602/0.2184 28.51/0.8062/0.2813

Figure 7: Ablation study of T in TGDM.

About comparisons of other testing datasets. To further demonstrate the effectiveness of our
method, we conduct comparative experiments on the CUFEDS and WR-SR testing datasets com-
monly compared in RefSR task (See Appendix [D| for other datasets). All methods are trained on
CUFEDS datasets. As listed in Tab. ] our method consistently outperforms all competitors across
both datasets, achieving superior results (See Appendix [E] for visual comparison).
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About sampling steps. We investigate the impact of sampling steps 7" in our method. As shown in
Fig. [/} increasing the number of steps improves the performance, with PSNR gradually saturating
after T' = 4. We also evaluate different texture types by grouping the test images according to their
complexity, such as fine veins (25 images) versus thick stems (37 images). As shown in Tab. [5}
across all groups, we observed the same trend as in Fig. [/} performance steadily improves when
increasing 7" and saturates at 7' = 4. Importantly, no texture category benefits from larger sampling
steps beyond T' = 4, confirming that the diffusion refinement behaves consistently across different
plant textures. Based on the trade-off between performance and efficiency, we set T' = 4.

Table 5: About the effects of different sampling steps on different plant textures.

Texture Type T=1 T=2 T=3 T=4 T=6 T=8
Fine Veins 27.62 27.88 27.95 28.04 28.06 28.07
Thick Stems 36.82 37.07 37.26 37.32 37.33 37.34

About plant categories. We provide a clearer description of plant categories, growth-stage diversity,
and real-scene complexity. The dataset covers four major categories of commonly encountered
vegetation: crops, wild plants, ornamental plants, and aquatic plants. To improve generalization,
data acquisition was conducted over more than one year, covering spring, summer, and autumn, thus
naturally capturing early leaf expansion, mid-growth, and mature stages. The overall distribution is
listed in the Tab.

Table 6: About category of our PlantRSR. Table 7: About environment of our PlantRSR.
Category Percentage ~ Growth-Stage Environmental Factor ~ Percentage
Crops 10.2%  early, mid, mature [1lumination variations 22.7%

Wild plants 36.3%  early, mid, mature Weather effects 9.8%
Ornamental Plants  45.3%  early, mid, mature Background clutter 34.6%
Aquatic Plants 8.2% mid, mature Leaf damage 7.3%

About collection environment. The dataset was deliberately constructed to encompass a wide spec-
trum of natural environmental changes. Images were captured across different seasons to include
diverse factors such as illumination variations, weather effects, background clutter, and instances of
leaf damage. A quantitative summary of these conditions and their approximate proportions within
the dataset is provided in Tab.

6 CONCLUSION

In this paper, we address the limitations of existing RefSR datasets and methods in handling natu-
ral scenes with complex textures, particularly plant imagery. We introduce PlantRSR, a large-scale
RefSR dataset containing 16,585 high-quality HR—Ref pairs that capture the diverse and fine-grained
characteristics of botanical scenes. To fully exploit this dataset, we propose a novel RefSR frame-
work featuring two key components: a SKRM selectively matches botanical textures to enhance
efficiency, and a TGDM for progressive refinement of LR features using Ref-guided diffusion. Ex-
tensive experiments demonstrate that our method outperforms existing SOTA approaches in both
quantitative metrics and visual quality, highlighting the effectiveness of our design and the value of
the PlantRSR dataset for advancing RefSR research in natural and fine-grained scenarios.

7 ETHICS STATEMENT

Our proposed dataset focuses on plant scene imagery, and our method is designed for reference-
based image super-resolution. Neither the dataset nor the proposed method involves human subjects,
personal data, or sensitive information. The dataset was constructed from images captured by our
team and does not infringe upon the interests of any individuals or communities. All experimental
results are derived from either publicly available datasets or our constructed dataset. We do not
foresee any direct social harms arising from this research.

10
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8 REPRODUCIBILITY STATEMENT

Our codes are released anonymously at: https://anonymous.4open.science/r/
PlantRSR-5026. The generation process of our PlantRSR dataset is presented in Section
The training details of our proposed method are described in Section [5.1] of the main text. More
details of denoising network are given in Appendix [B] while Appendix [K] provides more samples
from the PlantRSR training and testing datasets. The usage of large language models is discussed in

Appendix [A]
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A THE USE OF LARGE LANGUAGE MODELS

We used Large Language Models to assist or polish the writing, without involving our experiments,
figures, or other core contributions.

B ARCHITECTURE OF THE DENOISING NETWORK (DN)

feature Z, by leveraging both Ref texture features and
diffusion timestep. Given the diffusion timestep ¢, a
Embedder maps it into an embedding tepn, € RY. This
embedding is then fused with the matched Ref features

AS ShO n in Flg @ DN iS designed to restore the latent
A% r |
1 mi)m: hed

Fnified via a simple addition, and passed through a 9‘_@
SiLU activation followed by a linear transformation to SiLU
yield three modulation vectors a, b, c € R%: T

temb = Embedder(t), (14) A . P

The input latent Z; is passed by the adaptive layer

a,b, ¢ = Linear(SILU(FXE 4 temy)).  (15)
normalization (AdaLN) [Perez et al. (2018); |Li et al. @

a
L/

(2024b). The result is adaptively modulated using the 7, — Z.,
scale vector a and shift vector b: Dol Nel el (D)
x; = a ® AdaLN(Z;) + b. (16)  Figure 8: Architecture of Denoising Net.

This modulated feature x; is further refined by a ResBlock [He et al.| (2016)), whose output is scaled
by c and added back to the original input Z; to obtain the Z;_1:

Zi—1 = ¢ ® ResBlock(xt) + Z;. a7
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To enhance the representational capacity and further inject Ref information into the denoising pro-
cess, the above procedure is repeated three times within the DN. This recursive structure enables
more effective integration of Ref textures and temporal priors for progressive feature refinement.

C COMPARISON WITH THE DREFSR DATASET

Although DRefSR contains some plant scenes, its limited scale and diversity are insufficient to
address the challenges in plant imagery. As shown in Tab. [§] DRefSR comprises only 1,400 im-
ages, whereas our PlantRSR dataset offers 6,134 high-resolution images, with 80% exceeding 4K
resolution and exhibiting superior visual quality. Furthermore, PlantRSR provides more compre-
hensive coverage across five key categories, while DRefSR contains merely a few dozen images in
critical dimensions such as color variation, scale diversity, and background complexity—far below
the requirements for robust model training. The experimental results in Tab. [I] and Fig [5] further
demonstrate the superior effectiveness of our PlantRSR dataset.

Table 8: Analysis of plant image diversity and number in DRefSR and our PlantRSR.

Category | Color Scale Rotation Deformation ~ Background | All

DRefSR | 52 (3.7%) 83 (5.9%) 332(237%) 884 (632%) 49 (3.5%) | 1,400
PlantRSR | 697 (11.4%) 1,142 (18.6%) 1,657 (27.0%) 1,872 (30.5%) 766 (12.5%) | 6,134

D COMPARISON WITH SOTA METHODS ON OTHER TESTING DATASETS

To further demonstrate the effectiveness of our method, we conduct comparative experiments on the
Sun80 [Sun & Hays|(2012)) and DRefSR [Zhou et al.| (2025)) testing datasets commonly compared in
RefSR task. For fair comparison, all methods are trained on the CUFEDS dataset. As presented
in Tab. [9] our method surpasses all competing approaches across all evaluation metrics on both
datasets, demonstrating its consistent superiority and effectiveness.

Table 9: Quantitative comparisons of SOTA methods on Sun80 Sun & Hays| (2012) and
DRefSR [Zhou et al.| (2025) testing datasets, evaluated using PSNR, SSIM, and LPIPS.

Method Sun80 DRefSR
RRSR 30.13/0.816/0.303 31.69/0.867/0.280
MRefSR 30.28/0.819/0.301 31.72/0.868/0.279
HiTSR 30.24/0.821/0.293 31.26/0.858/0.290
MCMSR 30.21/0.818/0.300 31.24/0.856/0.294
SSMTF 30.38/0.824/0.286 31.75/0.869/0.277
Ours 30.41/0.824/0.284 31.77/0.871/0.272

E VISUAL COMPARISON ON OTHER TESTING DATASETS

To further demonstrate the effectiveness of our method, we conduct comparative experiments on the
CUFEDS Zhang et al.|(2019) and WR-SR [Jiang et al.|(2021) testing datasets commonly compared
in RefSR task. All methods are trained on CUFEDS5 datasets. As shown in Fig. [T1] our method
demonstrates superior visual reconstruction performance compared to other approaches across both
datasets.

Table 10: Performance in terms of different similarity levels on CUFEDS dataset. All methods
trained on CUFEDS dataset.

Similarity Levels DATSR RRSR HiTSR MCMSR SSMTF Ours
L1 28.50/0.850 28.63/0.851 26.82/0.797 28.54/0.849 28.76/0.854  28.86/0.855
L2 27.47/0.820 27.67/0.821 26.68/0.785 27.54/0.808 27.71/0.824  27.81/0.826
L3 27.22/0.811 27.41/0.813  26.56/0.783 27.27/0.810 27.46/0.816 27.58/0.819
L4 26.96/0.803 27.15/0.804 26.43/0.781 27.03/0.801 27.19/0.807 27.29/0.809
LR 25.75/0.754  26.53/0.784  26.53/0.782 26.41/0.782 26.68/0.791  26.70/0.791
Average 27.18/0.808 27.47/0.815 26.60/0.786 27.36/0.810 27.56/0.818  27.65/0.820

15



Under review as a conference paper at ICLR 2026

F ABOUT SIMILARITY OF REF IMAGE

To evaluate the impact of reference images with varying similarity levels on model performance,
which provides four Ref images (L1-L4) with decreasing similarity to the LR image, where L1 is
the most similar and L4 the least. We evaluate our method using all similarity levels, including
the LR image itself as a Ref when similar ones are unavailable. As listed in Tab. our method
consistently outperforms SOTA approaches across all levels, even when using only the LR image as
a Ref, demonstrating its robustness and generalization ability.

Table 11: Computational cost and memory usage of different methods.

Method Param. Runtime Memory
RRSR 21.5M 1.496s 13.3G
MRefSR 23.7M 0.774s 14.1G
HiTSR 13.7M 0.843s 8.5G
MCMSR 8.9M 0.681s 8.6G
SSMTF 13.9M 1.435s 15.2G
Ours 11.1M 1.116s 114G

G COMPUTATIONAL COST AND MEMORY USAGE

To assess the practicality of our method, we compare the runtime and memory consumption with
several recent RefSR methods in Tab. [TI] All values are measured using an LR image of size
300200 and a Ref image of size 1200x800. As listed in Tab.[IT} while our method does not achieve
the lowest runtime or memory usage, it maintains a reasonable balance between efficiency and
performance. Although we adopt a diffusion process, the network structure is lightweight, consisting
of only three ResBlocks, and the sampling steps during inference are limited to four. Therefore, the
computational and time costs are not as significant. In addition, our SKRM module effectively
reduces the time required for Ref texture matching, resulting in competitive overall runtime and
memory usage.

Table 12: Comparison with diffusion-based methods on PlantRSR dataset.

Method PSNR SSIM LPIPS DISTS

SinSR |Wang et al.|(2024b) 31.60 0.8580 0.1886 0.1449
DoSSKCui et al.| (2024) 30.82 0.8600 0.2192 0.2091
StableSR [Wang et al.|(2024a) 31.21 0.8774 0.2011 0.1930
OSEDiff|Wu et al.[(2024]) 3222 0.8975 0.1602 0.1312
Ours 38.62 0.9538 0.1288 0.0826

H COMPARISON WITH DIFFUSION-BASED METHODS

We conduct comparative experiments with diffusion-based methods, as listed in Tab. It should be
noted that this comparison may present certain inequities and is primarily intended for experimental
reference. These diffusion-based approaches are built upon generative diffusion models, while our
method is trained using pixel-wise losses (e.g., L1 loss). Furthermore, the diffusion architectures are
substantially larger and more complex, whereas our method adopts a lightweight design comprising
only three ResBlocks. Additionally, these comparative methods do not utilize reference images,
which places them at a inherent disadvantage in the reference-based super-resolution setting.

Table 13: The user study. Compared to other methods, over 90% users prefer our results.

Ours vs. RRSR Ours vs. MRefSR Ours vs. MCMSR Ours vs SSMTF
93% 95.3% 93% 90.7%
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I USER STUDY

To further validate the qualitative superiority, as listed in the table below, we conduct a user study
involving 43 participants to compare the visual quality of our method against several methods on our
PlantRSR dataset, including RRSR, MRefSR, HiTSR, MCMSR, and SSMTF. In each comparison,
participants are shown image pairs, with one generated by Ours, and are asked to select the image
with better visual quality. According to the table below, over 90% of participants favor the results of
our method over the other approaches.

J  LIMITATION

While this work advances RefSR for plant imagery, two key limitations should be noted. First,
hardware constraints force suboptimal downsampling of our high-resolution dataset (80% > 4K,
range 2K-8K), preventing full utilization of the available image detail. Second, performance de-
grades when processing dissimilar Ref images, as the current matching mechanism lacks adaptabil-
ity to low-similarity scenarios. These limitations point to important research directions: developing
memory-efficient architectures for ultra-high-resolution processing and designing more selective
Ref utilization strategies. Addressing these challenges would significantly enhance the practical
applicability of plant image SR.

K PARTIAL SAMPLES FROM THE PLANTRSR DATASET

As shown in Fig. 9] and Fig. our PlantRSR dataset contains meticulously annotated samples
spanning multiple plant categories with rich textures. The manual annotation process specifically
captures challenging plant scenarios, ensuring dataset quality for advanced botanical studies.
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Figure 9: Partial Samples of our PlantRSR training dataset.
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Testini on CUFEDS dataset

(a) LR Image DATSR RRSR MRefSR

7

“(b)LR Image. DATSR RRSR MRefSR  (d

<y ;
Ref Imag ~ MCMSR  Ours HR  Ref Image

Figure 11: Visual comparison with SOTA methods on CUFEDS and WR-SR datasets.
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