
Published as a conference paper at ICLR 2025

ADAFISHER: ADAPTIVE SECOND ORDER OPTIMIZA-
TION VIA FISHER INFORMATION

Damien Martins Gomes∗
Concordia University and IPSA Toulouse
damien.martinsgomes@mail.concordia.ca

Yanlei Zhang
Université de Montréal and Mila
yanlei.zhang@mila.quebec

Eugene Belilovsky
Concordia University and Mila
eugene.belilovsky@concordia.ca

Guy Wolf
Université de Montréal and Mila
wolfguy@mila.quebec

Mahdi S. Hosseini†
Concordia University and Mila
mahdi.hosseini@concordia.ca

ABSTRACT

First-order optimization methods are currently the mainstream in training deep
neural networks (DNNs). Optimizers like Adam incorporate limited curvature
information by employing the diagonal matrix preconditioning of the stochastic
gradient during the training. Despite their widespread, second-order optimization
algorithms exhibit superior convergence properties compared to their first-order
counterparts e.g. Adam and SGD. However, their practicality in training DNNs is
still limited due to increased per-iteration computations compared to the first-order
methods. We present AdaFisher–an adaptive second-order optimizer that lever-
ages a diagonal block-Kronecker approximation of the Fisher information matrix
for adaptive gradient preconditioning. AdaFisher aims to bridge the gap between
enhanced convergence/generalization capabilities and computational efficiency in
second-order optimization framework for training DNNs. Despite the slow pace
of second-order optimizers, we showcase that AdaFisher can be reliably adopted
for image classification, language modeling and stands out for its stability and ro-
bustness in hyper-parameter tuning. We demonstrate that AdaFisher outperforms
the SOTA optimizers in terms of both accuracy and convergence speed. Code is
available from https://github.com/AtlasAnalyticsLab/AdaFisher.

1 INTRODUCTION

Deep Neural Network (DNN) optimization often struggles with the challenge of generalizing
across varied architectures and complex data distributions. Current methods such as Adam op-
timizer (Kingma & Ba, 2015) and its variants (AdamP (Heo et al., 2021), AdaInject (Dubey
et al., 2022), AdaBelief (Zhuang et al., 2020) and YOGI Zaheer et al. (2018)) require exten-
sive Hyper-Parameter (HP) tuning and often fail to generalize efficiently. DNN training typically
minimizes a highly non-convex loss function L(θ), updating parameters θ using the expression
θ(t+1) = θ(t) − α(G(t))−1∇L(θ(t)) at time step t, where G(t) represents the curvature information.
Here, G is the identity matrix for first-order optimizations such as SGD (Kiefer & Wolfowitz, 1952),
and Hessian or Fisher Information Matrix (FIM) for the second-order case (Amari & Nagaoka,
2000). The Hessian matrix interfaces with the deterministic Newton-Raphson method (Holmgren,
1996), whereas the FIM harmonizes with the statistical measure of the Natural Gradient Descent
(NGD) approach (Amari & Nagaoka, 2000). This curvature information crucially optimizes the
gradient’s preconditioning by accurately rescaling and orienting it. This adjustment significantly

∗To my father and grandmother, whose strength and love continue to inspire me, this work is dedicated.
†Corresponding Author

1

https://github.com/AtlasAnalyticsLab/AdaFisher

Published as a conference paper at ICLR 2025

accelerates convergence by ensuring more direct progress towards minima, thus enhancing training
efficiency and reducing the number of required iterations (Kashyap, 2022).

As mentioned, the second-order methods employ curvature matrices for G to enhance the optimiza-
tion process. Although these matrices accelerate convergence by effectively navigating through
saddle points and swiftly moving towards minima (Foret et al., 2021), they require higher compu-
tational resources for the inverse computation. In fact, when the number of learnable parameters
increases, the curse of dimensionality associated with curvature matrix G makes the entire training
process completely intractable by a commodity hardware platform.

Noteworthy approaches, such as Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012), RMSProp
(Hinton et al., 2012), and Adam family utilize a simple diagonal approximation of the empirical
FIM, which often results in convergence to suboptimal local minima and poor generalization (Wilson
et al., 2017; Luo et al., 2019). Advanced methods like AdaHessian (Yao et al., 2021) and Shampoo
(Gupta et al., 2018) improve this by integrating structured matrices such as the diagonal Hessian
or tensor-based preconditioners to enhance optimization. However, these second-order approaches,
including K-FAC (Martens & Grosse, 2020; Eschenhagen et al., 2024), still face challenges of high
computational demands, lacking generalization and needing extensive HP tuning when applied to
large-scale models (Ma et al., 2020).

Figure 1: Visualizing optimization trajec-
tories for various optimizers overlaid a loss
landscape.

To address these challenges, we present AdaFisher, an
adaptive second-order optimizer, as an innovative solu-
tion to address the generalization challenges raised in
training DNNs. Substituting the second moment of Adam
by a novel diagonal block-Kronecker approximation of
the FIM, AdaFisher strikes a balance between simplicity
and generalization by introducing an extra HP compared
to Adam but fewer than K-FAC, AdaHessian or Shampoo.
With memory and time requirements on par with first-
order methods, AdaFisher remains a practical choice for
achieving effective generalization in DNN optimization.
As illustrated in Figure 1, AdaFisher not only converges
more rapidly but also reaches a superior local minimum
by effectively navigating through saddle points compared
to its counterparts. Further details regarding the visual-
ization can be found in Appendix C.

In summary, our contributions build upon these findings as follows: [C1] We empirically showcase
the energy of the Kronecker Factors (KF) is mainly concentrated along the diagonal and provide
fresh insights of FIM in optimization; [C2] We introduce a diagonal block-Kronecker approxima-
tion of the FIM applicable to various layers, including normalization layers, enhancing model adapt-
ability; [C3] We demonstrate AdaFisher’s robustness and stability across diverse settings, proving
its effectiveness; [C4] We showcase AdaFisher’s empirical performance against SOTA optimizers in
image classification and language modeling, highlighting its superior performance; [C5] We develop
a new technique that visualizes trajectories across different optimizers for better understanding of
model behavior in the loss landscape. Additionally, we introduce an explainable FIM measure from
AdaFisher, enabling comparative analysis of optimizer behavior.

2 BACKGROUND

We consider a supervised learning framework with a dataset D containing N i.i.d samples, D :=
{xn, yn}Nn=1 where xn ∈ Rd and yn ∈ RC . Let fθ : Rd → RC be a L-layer neural network
parametrized by θ where θi = concat(Wi, bi) ∈ RPi , and Pi = P out

i × (P in
i + 1). Let L :

RC × RC → R be the loss function defined by the negative log-likelihood, i.e. L(y, fθ(x)) :=
− log pθ(y|x) where pθ(y|x) is the likelihood of the neural network fθ. The network computes its
output hL = fθ(x) according to

ai = θih̄i−1, hi = ϕi(ai), ∀ i ∈ {1, . . . , L} | h0 = xn,

where h̄i−1 = [h⊤
i−1, 1]

⊤ ∈ RP in
i−1+1, and ϕi is an element-wise nonlinearity applied at layer i.

For a given input target pair (x, y), the gradient of the loss L(y, fθ(x)) concerning the weights are

2

Published as a conference paper at ICLR 2025

computed by the backpropagation algorithm (Lecun, 2001). For convenience, we adopt the special
symbol si = ∇ai

L for the pre-activation derivative. Starting from ∇hL
L = ∂hL

L(y, hL), we
perform

si := ∇ai
L = ∇hi

L ⊙ ϕ′
i(ai), ∇θiL = sih̄

⊤
i−1, ∇h̄i−1

L = θ⊤i si | ∀i ∈ {L, . . . , 1},
where ⊙ denotes the element-wise product. Finally, the gradient ∇θL is retrieved by: ∇θL =
[vec(∇θ1L)⊤, vec(∇θ2L)⊤, . . . , vec(∇θLL)⊤]⊤; vec(·) denotes the Kronecker vectorization oper-
ator which stacks the columns of a matrix into a vector. Optimization of a DNN can be recast as
a problem of finding the parameter set θ that maximizes the likelihood, or equivalently, minimizes
the negative log-likelihood of the observed data. This Maximum Likelihood Estimation can be ex-
pressed as an unconstrained composite optimization problem: minθ J(θ) =

∑N
n=1 L(yn, fθ(xn)),

where J(θ) denotes the objective function, corresponding to the negative log-likelihood of the data.
For notation convenience, we define gi = ∇θiJ(θ). The FIM, utilized in lieu of the Hessian
for Newton-Raphson’s method, approximates the curvature of the log-likelihood function (Amari,
1998),

F =

N∑
n=1

Ey∼p(y|fθ(xn))

[
∇θ log pθ(y|xn)∇θ log pθ(y|xn)

⊤] = E
[
∇θJ(∇θJ)

⊤] = E[gg⊤], (1)

where F measures the expected information that an observable y conveys about the parameter θ.
For brevity, we write E instead of Ey∼p(y|fθ(xn)). The K-FAC approach further simplifies FIM cal-
culation using a block-diagonal approximation in DNNs, known as Empirical FIM (EFIM), denoted
by F̂ . In Eq. (1), F is construed as a block matrix with dimensions L × L, where each (i, j)th
block Fi,j is articulated by Fi,j = E[vec(gi)vec(gj)⊤]. From the Kronecker-vectorization equality
vec(uv⊤) = v⊗u, we express vec(gi) as h̄i−1⊗si (Petersen & Pedersen, 2008), where gi is defined
as sih̄⊤

i−1. By segmenting the FIM into discrete layer-specific blocks, a systematic factorization of
each block yields as

F̂i,j = E[vec(gi)vec(gj)⊤] = E[h̄i−1h̄
⊤
j−1 ⊗ sis

⊤
j] ≈ E[h̄i−1h̄

⊤
j−1]⊗ E[sis⊤j],

Figure 2: Illustration of EFIM computation using
K-FAC for a given layer i.

where i, j span the layer indices from 1 to L.
Given the dimensionality of h̄i−1 ∈ RP in

i +1 and
si ∈ RP out

i , the Fisher matrix dimension will be
F̂i,j ∈ RPi×Pi . Initially, K-FAC estimates the ex-
pectation of the Kronecker product under the pre-
sumption that activations and pre-activation deriva-
tives are mutually independent. This can be rep-
resented as the Kronecker product of the individ-
ual expectations F̂i,j = Hi−1,j−1 ⊗ Si,j , where
Hi−1,j−1 = E[h̄i−1h̄

⊤
j−1] and Si,j = E[sis⊤j],

denoting the KFs. The assumption for the block-
diagonal structure posits that weight derivatives
across distinct layers are uncorrelated, expressed by
F̂ = diag(F̂1,1, . . . , F̂L,L) = diag(F̂1, . . . , F̂L).

Figure 2 illustrates the EFIM computation via K-FAC for a given layer i.

3 METHODOLOGY

Our methodology consists of four primary components: (i) Analyzing the KFs’ structure in Sec-
tion 3.1 and showcase their diagonal dominance; (ii) Introducing a novel approximation of the FIM
that retains only the diagonals of the KFs, detailed in Section 3.2; (iii) Incorporating the diagonal
FIM approximation within the adaptive optimization framework as an alternative to the conven-
tional second moment used in Adam, described in Section 3.3; (iv) Providing a theoretical proof of
AdaFisher’s convergence under both convex and non-convex conditions in Section 3.4.

3.1 DIAGONAL CONCENTRATION OF KFS

Inspired by Gershgorin circle theorem (Horn & Johnson, 2012), we empirically conclude the KFs
are diagonally concentrated by studying their eigenvalue distribution and perturbation under Gaus-
sian noise. For demonstration, we focus on the eigenvalue spectrum of weight matrices from the

3

Published as a conference paper at ICLR 2025

37th layer of ResNet-18 (He et al., 2016) after training for 50 epochs on CIFAR-10 (Krizhevsky
et al., 2009). As illustrated in Figure 3, the eigenvalues (denoted as red crosses) predominantly clus-
ter within the Gershgorin discs, which are centered along the matrix’s diagonal elements (denoted as
black circles), signifying substantial diagonal dominance. This phenomenon is quantitatively sup-
ported by the Gershgorin circle theorem, which posits that every eigenvalue λ of a complex square
matrix A lies within at least one of the Gershgorin discs D(aii, Ri), where Ri =

∑
j ̸=i |aij | rep-

resents the radius computed as the sum of the absolute values of the off-diagonal entries of the ith
row. Next, we add Gaussian noise N (0, σ2), σ = 10−3 on off-diagonal elements. The perturbed
matrix M̂ is then expressed as M̂ = A + E , where E = [eij] and eij ∼ N (0, σ2) for i ̸= j.

Figure 3: Gershgorin disks and eigenvalue perturbations from
the 37th Convolutional Layer of ResNet-18 at steps 5200 (middle
of training) and 9800 (end of training). Left: Gershgorin circles;
Right: Eigenvalue spectrum w/w-o noise.

The noise perturbation on KF eigen-
values is critical to comprehend the
dynamics and stability of the ma-
trix. This demonstrates the introduc-
tion of noise to the off-diagonal ele-
ments yields minimal eigenvalue per-
turbations, particularly those surpass-
ing the Kaiser criterion (i.e. most
dominant eigenvalues), which re-
main virtually unchanged (Braeken
& Van Assen, 2017). Both the above
understandings from Gershgorin disc
analysis and eigenvalue perturbation
corroborate the robustness of the ma-
trix’s diagonal dominance. Exten-
sive discussions of these analyses, in-
cluding the KFs Fourier analysis, are available in Appendix A.1.

3.2 EFFICIENT COMPUTATION OF THE FIM

In the realm of optimization, NGD offers a geometrically nuanced adaptation of the classical steepest
descent approach (in Euclidean space), transitioning the focus from parameter space to the model’s
distribution space underpinned by the adoption of a Riemannian metric, Amari & Nagaoka (2000).
The formulation of the preconditioned gradient ḡ(t) given the NGD method is articulated as

ḡ(t) = (F (t))−1g(t), (2)

where F (t) denotes the FIM at time step t distinguished from Fi, the FIM at layer i. One of the
distinguishing features of NGD within this framework is its re-parametrization invariance, a direct
consequence of leveraging the model’s distribution properties rather than its parameters. Neverthe-
less, the direct FIM computation is highly demanding, and we solve this by adopting the diagonal
approximation of the KFs as supported by our analyses from Section 3.1. In addition, a critical com-
ponent of modern DNNs is known to be the normalization of the layers by introducing scale and
shift parameters (e.g. batch-normalization (Ioffe, 2015), layer-normalization (Lei Ba et al., 2016)).
This is to adjust the network’s dynamics (e.g., reducing covariance shift) in a non-trivial way Huang
et al. (2023) where the lack of FIM approximation on such normalization layers can lead to subop-
timal preconditioning. Therefore, we introduce a method for calculating the KFs for normalization
layers detailed in Proposition 3.1.
Proposition 3.1 (EFIM for normalization layer). Let (νi, βi) ∈ RCi be the scale and shift parame-
ters of a normalization layer i. The empirical KFs for the FIM approximation are

Hi−1

∣∣∣
νi

=
1

|Ti|
∑
x∈Ti

hi−1,xh
⊤
i−1,x, Hi−1

∣∣∣
βi

= 11⊤, Si =
1

|Ti|
∑
x∈Ti

si,xs
⊤
i,x,

where hi−1, si ∈ RCi×|Ti| represent the pre-normalized activations and gradients, respectively.
Here, Ti is the set of dimensions over which normalization statistics are computed, and Ci is the
channels/features size.

The proof of this proposition and the extended computation of other type of layers are given in
Appendix A.2 and Section A.3, respectively. Note that in the context of online and stochastic op-
timization, the KFs for a given layer i can be estimated using an Exponentially Moving Average

4

Published as a conference paper at ICLR 2025

(EMA) scheme across batches defined by

H(t)
i−1 = γH(t)

i−1 + (1− γ)H(t−1)
i−1 , S(t)

i = γS(t)
i + (1− γ)S(t−1)

i , (3)

where 0 < γ ≤ 1 is the exponential decay factor at step time t, H(t)
i−1 and S(t)

i in the right-hand side
are new KFs calculated during each forward and backward pass computation. This EMA scheme is
commonly used in methods involving diagonal or block-diagonal approximations to the curvature
matrix (e.g. LeCun et al. (2012); Park et al. (2000); Schaul et al. (2013)). Such schemes have the
desirable property that they allow the curvature estimation to depend on much more data than what
can be reasonably processed in a single mini-batch.

Our study from Section 3.1 suggests that the FIM’s critical information predominantly resides along
its diagonal. Building upon this, we propose a novel approximation for the FIM, described in Propo-
sition 3.2, that conceptualizes the KFs as diagonal matrices denoted as F̃Di

for layer i.

Proposition 3.2 (Efficient EFIM). Assume that Hi−1 and Si can be closely approximated by diag-
onal matrices, denoted by HDi−1

and SDi
respectively at layer i, such that HDi−1

= Diag(Hi−1),
SDi

= Diag(Si) where Diag denote the diagonal of a matrix. Accordingly, the Empirical FIM is
defined by

F̃Di ≜ H′
Di−1

⊗ S ′
Di

+ λI, (4)

where H′
Di−1

and S ′
Di

denote the Min-Max normalization of HDi−1
and SDi

(Patro & Sahu, 2015)
and λ is a regularization parameter.

The proof of this proposition is given in Appendix A.2. This approximation strikes a balance be-
tween computational time and space complexity and the accuracy of performance, as discussed in
Section 4. We set the regularization parameter λ = 0.001, which acts as a damping factor following
the Tikhonov regularization principle Martens & Grosse (2015), enhancing computational stability
and conditioning of the FIM. The closed-form solution for the preconditioned gradient ḡ(t) is derived
from the diagonal approximation of the FIM, given by ḡ(t) = (F̃

(t)
D)−1g(t), for time step t. This

represents the AdaFisher augmented gradient and incorporates local loss curvature information. It
focuses on the diagonal elements to reduce computational overhead while maintaining a reasonable
FIM approximation. This simplification enhances the efficiency of the optimization process, which
is crucial for training DNNs where computational resources are limited.

Table 1: Summary of the first, second moments, regret bound and Applicability used in Adam Kingma &
Ba (2015), AdaHessian Yao et al. (2021), K-FAC Martens & Grosse (2020), Shampoo Gupta et al. (2018),
and AdaFisher for updating model parameters θ(t+1) = θ(t) − αm(t)/

√
v(t). Here β1 and β2 are first and

second moment HPs. L(t) and R(t) refer to the preconditioning method used by Shampoo Gupta et al. (2018),
g(t) = vec(G(t)), and T denotes the total number of steps. Note that Transf. denotes Transformers.

Optimizer m(t) v(t) Regret Bound Applicability
CNNs Transf.

Adam (1−β1)
∑t

i=1 βt−i
1 gi

1−βt
1

(
(1−β2)

∑t
i=1 βt−i

2 gigi
1−βt

2

)1/2
O(log T

√
T) ✓ ✓

AdaHessian (1−β1)
∑t

i=1 βt−i
1 gi

1−βt
1

(
(1−β2)

∑t
i=1 βt−i

2 D
(s)
i D

(s)
i

1−βt
2

)1/2

O(log T
√
T) ✓ ✓

K-FAC (F̂ (t))−1g(t) 1 O(
√
T) ✓ ×

Shampoo (L(t))
−1
4 G(t)(R(t))

−1
4 1 O(

√
T) ✓ ×

AdaFisher (1−β1)
∑t

i=1 βt−i
1 gi

1−βt
1

F̃
(t)
D O(log T

√
T) ✓ ✓

3.3 INTEGRATING FIM INTO ADAPTIVE OPTIMIZATION FRAMEWORK

Following the spirit of the adaptive optimization framework from Adam, which combines mo-
mentum and RMSProp principles (Sutskever et al., 2013), the parameters are updated via
θ(t+1) = θ(t) − αm(t)

v(t) . Here, α represents the learning rate, while m(t) and v(t) denote the
first and second moment estimates, respectively, for time step t. Although Adam is widely
used, its approximation of the second moment using simple diagonal elements of second-
order statistics through squared gradients can mirror stability challenges (Kunstner et al., 2019).

5

Published as a conference paper at ICLR 2025

Figure 4: Comparison of FIM diago-
nal histograms during ResNet18 train-
ing on CIFAR10: The figure displays
the FIM diagonal elements for the first
convolutional layer with Adam and
AdaFisher over 1,000 training itera-
tions.

We overcome these challenges by utilizing a more refined di-
agonal block-Kronecker approximation of the FIM introduced
in Section 3.2, a more precise approximation of the Hessian
from Taylor series expansion viewpoint. This structured al-
ternative to Adam’s diagonal approximation enables precise
curvature estimation, mitigating stability issues and improving
convergence in non-convex settings. AdaFisher distinguishes
itself from Adam by incorporating a higher fidelity approxima-
tion of the FIM, enhancing both optimization efficiency and
model robustness in complex scenarios. As demonstrated in
Figure 4, AdaFisher’s FIM values exhibit narrow variations
and lower mean values during training, suggesting a conver-
gence towards flatter minima and an implicit regulariza-
tion effect. In contrast, Adam shows broader variations, in-
dicating less efficient generalization (Wang et al., 2024), for
more details regarding the convergence behavior refer to Ap-
pendix B.1. Moreover, AdaFisher omits the square root and
the traditional EMA applied over the second moment since the
FIM naturally incorporates an EMA of its KFs (detailed in Eq.
(3)). The exclusion of the square root aligns with the theoreti-
cal definition of second-order methods, as using a square root
deviates from the second-order Taylor expansion approxima-
tion that these methods aim to follow. A comparative sum-
mary of different moment estimates, m(t) and v(t), along with
their regret bounds and applicability across various optimiz-
ers, is presented in Table 1. Building on the principles of
AdamW (Loshchilov & Hutter, 2019b), which modifies Adam
by integrating weight decay directly into the weight update
step to counteract suboptimal decay behaviors and boost op-
timization performance, we introduce AdaFisherW. This vari-
ant adapts the AdamW framework to further enhance the op-
timizer by leveraging curvature information from AdaFisher.
Finally, AdaFisher is compatible with multi-GPU environ-
ments, with a distributed version detailed in Appendix A.4.
The implementation for both AdaFisher variants is delineated
in the pseudo-code presented in Algorithm 1.

3.4 CONVERGENCE ANALYSIS

In this section, we provide a theoretical analysis of AdaFisher’s convergence in both convex opti-
mization and non-convex stochastic optimization. We first present a standard convergence behavior
of Eq. (2) for a simple strongly convex and strictly smooth function f(J).

Proposition 3.3 (Convergence in convex optimization). For FIM defined in Eq. (4), the updating
scheme θ(t+1) = θ(t) −α(F̃ (t))−1∇J(θ(t)) converges. Further, if ∇J is Lipschitz, the convergence
rate is bounded.

For non-convex cases, we adopt the similar derivations of Chen et al. (2019) since AdaFisher belongs
to the family of generalized Adam-type methods.

Proposition 3.4 (Convergence in non-convex stochastic optimization). Under the assumptions:
(i) J is lower bounded and differentiable; ||∇J(θ) − ∇J(θ′)||2 ≤ L||θ − θ′||2, ||F̃ (t)

D ||∞ <

L, ∀t, θ, θ′, (ii) Both the true and stochastic gradient are bounded, i.e. ||∇J(θ(t))||2 ≤ λ and
||g(t)||2 ≤ λ, ∀t for some λ > 0, (iii) Unbiased and independent noise in g(t), i.e. g(t) =
∇J(θ(t)) + ζ(t), E[ζ(t)] = 0, and ζ(i) ⊥ ζ(j), ∀i ̸= j. Assume η(t) = η√

t
, β(t) ≤ β ≤ 1 is

non-increasing, F̃
(t−1)
D [j]

η(t−1) ≤ F̃
(t)
D [j]

η(t) , ∀t ∈ [T], j ∈ [d], we then have

min
t∈[T]

E[||∇J(θ(t))||22] ≤
L√
T
(C1η

2λ2(1 + log T) + C2dη + C3dη
2 + C4)

6

Published as a conference paper at ICLR 2025

where C1, C2, C3 are constants independent of d and T , C4 is a constant independent of T , the
expectation is taken with respect to all the randomness corresponding to {g(t)}.

The proofs of propositions 3.3 and 3.4 are given in Appendix A.2. Proposition 3.4 implies the
convergence rate for AdaFisher in the non-convex case is at O(log T/

√
T), which is similar to

Adam-type optimizers. While DNNs often include non-smooth components like ReLU and max
pooling, which create non-differentiable points in the loss landscape, optimizers like AdaFisher
handle these cases effectively, as shown by our results in Section 4.

Algorithm 1 AdaFisher optimization algorithm. Good default settings for the tested machine learning prob-
lems are α = 0.001 (learning rate), λ = 0.001 (Tikhonov damping parameter),γ = 0.8 (Exponentially
decaying factor). [Default parameters are: β = 0.9 (Exponentially decaying factor of Adam), κ (weight decay)
(Kingma & Ba (2015), Loshchilov & Hutter (2019b))].

Require: Step size α; Exponential decay rate for KFs γ ∈ [0, 1); Tikhonov damping parameter λ; Exponential
decay rate for first moments β in [0, 1); Initial parameters θ
Initialize 1st moment variable m = 0; FIM F̃Di = I; time step t = 0

1: while stopping criterion not met do
2: Sample a minibatch of M examples from the training set {(xn, yn)}Mn=1

3: ComputeHDi−1 , SDi for i ∈ {1, . . . , L} using Section A.3 (notice that: HD0 = x)
4: Compute EMAs ofHDi−1 and SDi using Eq. (3)

5: Compute F̃Di for i ∈ {1, . . . , L} using Eq. (4)

6: g(t) ← 1
M

∑
n∇θ(t)L(f(xn; θ

(t)), yn) (Compute gradient)

7: m(t+1) ← βm(t)+(1−β)h(t)

1−βt (Update and correct biased first moment)

8: Case AdaFisher: ∆θ(t) = −α(F̃ (t)
D)−1m(t)

Case AdaFisherW: ∆θ(t) = −α
(
(F̃

(t)
D)−1m(t) + κθ(t)

)
9: θ(t+1) ← θ(t) +∆θ(t) (Apply update)

10: t← t+ 1
11: end while

4 RESULTS

To evaluate AdaFisher, we conduct experiments on six benchmark datasets across Image Classifi-
cation for Computer Vision (CV) and Language Modeling for Natural Language Processing (NLP)
that are commonly used to evaluate optimization algorithms: CIFAR-10, CIFAR100 (Krizhevsky
et al., 2009), Tiny ImageNet (Le & Yang, 2015), and ImageNet-1k (Deng et al., 2009) for image
classification; Wikitext-2 (Merity et al., 2017) and Penn Treebank (PTB) (Marcus et al., 1993) for
language modeling. The six baseline methods we compare with are SGD, Adam/AdamW, K-FAC,
AdaHessian, and Shampoo. For CIFAR experiments, we report the average over five runs. We
also perform a transfer learning task using the ImageNet-1k weights from Paszke et al. (2019). De-
tailed descriptions of the experimental setup (including HP tuning, datasets, and data augmentation),
results, and analyses are provided in Appendix D.

Table 2: Performance metrics (mean, std) of different networks and optimizers on CIFAR10 and CIFAR100
using batch size 256 with a 200-epoch AdaFisher training cutoff.

CIFAR10 CIFAR100
Network SGD Adam AdaHessian K-FAC Shampoo AdaFisher SGD Adam AdaHessian K-FAC Shampoo AdaFisher

ResNet18 95.640.194.850.1 95.440.1 95.170.294.080.296.250.2 76.560.275.740.1 71.790.2 76.030.376.780.277.280.2

ResNet50 95.710.194.450.2 95.540.1 95.660.194.590.196.340.2 78.010.174.650.5 75.810.3 77.400.478.070.479.770.4

ResNet101 95.980.294.570.1 95.290.6 96.010.194.630.196.390.1 78.890.275.560.3 73.380.2 77.010.478.830.280.650.4

DenseNet12196.090.194.860.1 96.110.1 96.120.195.660.196.720.1 80.130.475.870.4 74.800.9 79.790.280.240.381.360.3

MobileNetV394.430.293.320.1 92.863.1 94.340.193.810.295.280.1 73.890.370.620.3 56.584.5 73.750.370.850.377.560.1

Tiny Swin 82.340.287.370.6 84.150.2 64.790.563.910.488.740.4 54.890.460.210.4 56.860.5 34.450.430.391.266.050.5

FocalNet 82.030.286.230.1 64.180.2 38.940.837.960.787.900.1 47.7603 52.710.5 32.330.3 9.980.6 9.180.1 53.690.3

CCT-2/3×2 78.760.383.890.4 − 33.082.335.160.484.940.3 54.050.459.780.5 − 7.170.2 8.600.1 62.910.5
∗Note that Adam and AdaFisher were used for all CNN architectures, while AdamW and AdaFisherW were applied for all ViT experiments.

7

Published as a conference paper at ICLR 2025

4.1 IMAGE CLASSIFICATION

We commence our analysis by assessing the convergence and generalization capabilities of various
models on image classification tasks. Specifically, we deploy ResNet architectures (ResNetX where
X ∈ {18, 50, 101}), DenseNet121 (Huang et al., 2017), MobileNetV3 (Howard et al., 2019), Tiny
Swin (Liu et al., 2021), FocalNet (Yang et al., 2022) and CCT-2/3×2 (Hassani et al., 2021) on
CIFAR10 and CIFAR100, while utilizing standard ResNet50 for Tiny ImageNet and ImageNet-1k.
The performance outcomes for CIFAR datasets are detailed in Table 2. Our empirical evaluation of
AdaFisher optimizer across these models and datasets illustrates its efficiency in optimizing image
classification, surpassing all SOTA optimizers. We employ the Wall-Clock-Time (WCT) method
with a cutoff of 200 epochs for AdaFisher’s training, except for ImageNet-1k, where we use a 90-
epoch WCT for Adam, which surprisingly matched AdaFisher’s training duration. Results confirm
AdaFisher’s superior classification accuracy on both CNNs and ViTs. Note that the results for Tiny
ImageNet are described in Appendix D.2.4.

Table 3: Validation of ImageNet-1k / ResNet50
by different optimizers reported on Top-1 and
Top-5 accuracy.

Optimizers Batch size Top-1 Top-5

Adam 256 67.78 88.37
K-FAC 256 70.96 89.44

Shampoo 256 72.82 91.42
AdaFisher 256 76.95 93.39

AdaFisher 512 77.01 93.45
AdaFisher 1024 77.09 93.56

SGD Goyal et al. (2017) 256 76.40 -
AdamW Chen et al. (2024) 1024 76.34 -
LAMB You et al. (2020) 16K 76.66 93.22
SGD You et al. (2020) 16K 75.20 -

LARS Huo et al. (2021) 16K 75.1 -

Figure 5: Training loss and validation error of
ResNet-50 on ImageNet-1k. AdaFisher consis-
tently achieves lower test error as compared to its
counterparts.

ImageNet-1k Training. Training on ImageNet-1k
typically requires multiple GPUs and large batch
sizes. Our study showcases that AdaFisher achieves
superior validation accuracy on a single GPU than its
counterparts in scenarios marked by the light blue
region. This performance outstrips traditional ap-
proaches like SGD, LAMB (You et al., 2020), and
LARS (You et al., 2017), which typically utilize
batch sizes of 16K. While AdaFisher attains SOTA
results on a single GPU, it further excels when scaled
up in a distributed setting with larger batch sizes.
The results, benchmarked using 256 batch size and
a WCT of 90 Adam training epochs, are detailed
in Table 3 and illustrated in Figure 5. Distributed
AdaFisher curves are illustrated in Figure 15. The
light blue highlights in the table represent our exper-
iments with a batch size of 256 on a single GPU.
The light green indicates results from a distributed
version of AdaFisher employing larger batch sizes,
whereas the orange reflects results from SOTA meth-
ods using a higher batch size of 16K, SGD with a
batch size of 256 and AdamW with a batch size of
1024. It is important to note, however, that the train-
ing setups and augmentation techniques for the re-
sults highlighted in orange, taken from the literature,
may differ from those in our study. These results
are included to provide a broader context and intu-
ition regarding AdaFisher’s performance compared
to other experiments. Overall, by balancing curvature-aware updates with parameter efficiency,
AdaFisher maintains strong generalization even under constrained computational budgets, a critical
advantage over methods like K-FAC that struggle with over-parameterized models.

Table 4: Performance comparison of different networks and optimizers on CIFAR10 and CIFAR100 using
ImageNet-1k pretrained weights. Evaluation is based on wall clock time of 50 training epochs with AdaFisher.

CIFAR10 CIFAR100
Network SGD Adam AdaHessian K-FAC Shampoo AdaFisher SGD Adam AdaHessian K-FAC Shampoo AdaFisher

ResNet50 96.500.296.450.2 96.350.3 96.450.196.030.497.130.2 82.120.182.010.4 80.640.9 80.550.481.700.2 82.230.2

ResNet101 97.070.296.700.1 96.650.2 96.840.196.630.197.220.1 84.010.182.430.2 81.360.8 82.260.382.650.2 84.470.2

DenseNet12194.800.194.770.1 93.080.1 94.410.294.760.195.030.1 75.980.275.650.3 71.060.9 76.100.376.080.2 76.920.3

MobileNetV391.760.390.920.3 86.452.5 91.720.291.390.392.780.2 71.860.466.110.8 59.692.3 69.850.468.870.372.380.4

4.2 TRANSFER LEARNING

Following a more sustainable practice of training DNNs, we employ pretrained models from
ImageNet-1k in PyTorch on datasets like CIFAR10 and CIFAR100 to showcase AdaFisher’s gener-

8

Published as a conference paper at ICLR 2025

alization capability for transfer learning. We applied these pretrained weights across various CNN
architectures to train on these datasets. The results, presented in Table 4, highlight the significant ad-
vantages of using AdaFisher, consistently achieving top accuracy across both datasets. More details
can be found in Appendix D.2.3.

4.3 LANGUAGE MODEL

Table 5: Language Modeling
performance (PPL) on Wikitext-
2 and PTB test dataset (lower is
better).

Optimizer Test PPL

WikiText-2 PTB

AdamW 175.06 44.70
AdaHessian 407.69 59.43
Shampoo 1727.75 −

AdaFisherW 152.72 41.15

We employ the WikiText-2 dataset, which encompasses approxi-
mately 100 million tokens derived from over 2 million words ex-
tracted from a curated set of “Good” and “Featured” articles on
Wikipedia. Additionally, we utilize the PTB dataset, renowned for
its extensive collection of English words with part-of-speech tags,
which has been widely used in NLP tasks for training and bench-
marking language models. Our experiments utilize a scaled-down
version of GPT-1 (Radford et al., 2019), featuring four self-attention
layers with masking capabilities with more than 28 million learn-
able parameters. More details about tuning HPs and models can
be found in Appendix D.3. The perplexity (PPL) on the test set,
corresponding to the best-performing model during validation, is
documented in Table 5. Similar to approaches in image classification, we apply the WCT method
with 50 epochs training time of AdaFisher as the cutoff period. Notice that Shampoo did not achieve
convergence despite using optimal HPs, and the K-FAC was unable to train with ASDL library (Os-
awa et al., 2023).

Figure 6: Performance comparison of AdaFisher and other optimizers using the ResNet50 network on the
CIFAR100 dataset. (A) Test accuracy by batch size. (B) Accuracy vs. learning rates. (C) Accuracy related to
epoch time across batch sizes. (D) Epoch time for different optimizers with a batch size of 256.

4.4 STABILITY ANALYSIS

In this section, we assess AdaFisher’s stability under varying learning rates and batch sizes us-
ing ResNet50 on CIFAR100 and compare its performance to other optimizers. Improved stability
indicates a reduced need for HP tuning while maintaining high performance. To ensure a fair com-
parison, all methods were evaluated using a consistent experimental setup, with parameters tailored
to each optimizer’s strengths. However, we exclude AdaHessian results for a batch size of 1024 due
to its significant computation cost.

Batch Size Analysis. We examine the impact of batch size on AdaFisher’s performance, as shown
in Panels (A) and (C) of Figure 6. AdaFisher maintains high test accuracy across various batch
sizes, excelling particularly at smaller sizes despite some sensitivity to larger ones. Panel (C) high-
lights AdaFisher’s efficiency, achieving high accuracy with shorter epoch times compared to Adam,
detailed further in Panel (D), where AdaFisher shows competitive epoch durations against other op-
timizers. These results, discussed in Appendix D.2.7, underscore AdaFisher’s effective performance
across batch size variations without adjusting other HPs.

Learning Rate Stability. This analysis evaluates the impact of learning rate variations on
AdaFisher’s performance, as depicted in Panel (B) of Figure 6. AdaFisher demonstrates superior
stability, particularly at lower learning rates, maintaining consistent performance across a broad

9

Published as a conference paper at ICLR 2025

spectrum. This stability alleviates the need for meticulous learning rate adjustments, thereby stream-
lining model training in various computational environments. Additionally, AdaFisher’s stability
across various learning rates can be attributed to its effective approximation of the curvature matrix.

Ablation Studies. We further conduct extensive ablation studies on additional components of
AdaFisher, including the convergence efficiency, our novel approximation of the FIM, the signif-
icance of EMA for Kronecker factors, the impact of the square root, the stability across learning rate
schedulers and the updated computation of the FIM for normalization layers. These analyses are
thoroughly detailed in Appendix B.

5 RELATED WORK

Tractable Approximation of the FIM. Efficient approximations of the FIM for neural network
optimization have evolved significantly, beginning with block-diagonal strategies exemplified by
TONGA (Roux et al., 2007) and extending to the Kronecker-factored approaches like K-FAC. Fur-
ther innovations have emerged, such as SK-FAC (Tang et al., 2021), EVA (Zhang et al., 2023), which
accelerates the computation of the FIM, and Eschenhagen et al. (2024), who propose a generalized
framework for FIM computation that enhances preconditioning methods like Shampoo. More re-
cently, Liu et al. (2024), Huang et al. (2024) and Duvvuri et al. (2024) have introduced tractable
solutions for computing the FIM. AdaFisher distinguishes itself by integrating enhanced FIM com-
putations with novel diagonal Kronecker factors, enriching the Adam optimization framework. This
integration, outlined in Proposition 3.2 and detailed in Appendix A.3, advances the fusion of second-
order optimization principles with first-order methods. This builds upon innovations like AdaHes-
sian, which incorporates Hessian diagonals into the Adam framework.

Adaptive First-Order Methods. Building upon the diagonal approximation heritage of the FIM,
AdaFisher extends traditional diagonally-scaled first-order methods such as AdaGrad (Duchi et al.,
2011), AdamP, AdaInject, AdaBelief, and Adam. These methods have inspired advancements like
AMSGrad (Reddi et al., 2018), AdaBound (Luo et al., 2019), RAdam (Liu et al., 2020), and en-
hanced AdaBelief, FOOF (Benzing, 2022), improving both theoretical rigor and practical effective-
ness. A recent study by Jiang et al. (2024a) illustrates that first-order adaptive methods can bias
training trajectories and effectively navigate through saddle points. In response, Mishchenko &
Stich (2023) propose an empirical solution involving the addition of noise to mitigate these biases.
Leplat et al. (2022) introduces a novel method accelerating convergence via Gauss-Seidel type dis-
cretization. AdaFisher differentiates itself by eliminating the conventional square root in the second
moment calculation, with benefits underscored by Lin et al. (2024) and Malladi et al. (2022) in CNN
architectures, and Zhang et al. (2024) demonstrates the critical role of Adam family optimizers in
Transformer models. Its unique preconditioning, based on the Fisher Information, is elaborated in
Algorithm 1.

6 CONCLUSION, LIMITATIONS AND FUTURE RESEARCH

In this work, we introduced AdaFisher–an adaptive optimizer that utilizes the Fisher Information
Matrix (FIM) with a new diagonal block-Kronecker approximation to enhance gradient rescaling and
improve descent directions. Integrated within the adaptive optimization framework, AdaFisher not
only accelerates training but also minimizes the need for hyper-parameter tuning, thereby achieving
higher accuracy and stability in tasks like image classification and language modeling. Empirical and
theoretical analyses confirm its superiority over existing optimizers, and its ease of implementation,
along with modest space and time requirements, allows it to adapt across various tasks. Notably,
AdaFisher outperforms SOTA optimizers on ImageNet-1k when trained using both single and multi-
GPU configurations. AdaFisher is optimized for statistical learning tasks where the deep neural
network outputs parameterize distributions within the exponential family, and the loss function is
the negative log-likelihood (or its derivatives). Outside these conditions, where the FIM no longer
coincides with the Generalized Gauss-Newton matrix, the method may not capture the true curvature
information of the loss landscape.

Looking ahead, extensive testing across a wider range of models and domains, including generative
modeling and graph neural networks, will further validate AdaFisher’s effectiveness. Additionally,
implementing CUDA kernels for efficient computation of Kronecker factors could significantly en-
hance AdaFisher’s scalability and performance.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENT

This research is funded by Fonds de recherche du Québec (FRQNT) Masters (B1X) Scholarship
[D.M.G]; Natural Sciences & Engineering Research Council (NSERC)-Discovery Grant RGPIN-
2022-05378 [M.S.H.]; FRQNT-NSERC grant 2023-NOVA-329125 [E.B.& G.W.].

IMPACT STATEMENT

AdaFisher represents a significant advancement in training efficiency, achieving superior accuracy
on the ImageNet-1K dataset using only a single GPU. This optimization is particularly beneficial for
academia and students who may not have access to extensive computational resources. By enabling
effective training with fewer GPUs, AdaFisher offers an accessible yet powerful solution, reduc-
ing hardware costs and making advanced machine learning more attainable for those with limited
resources. This capability underscores AdaFisher’s potential as a valuable tool in democratizing
machine learning technology.

REFERENCES

iris, 2018. URL https://dx.doi.org/10.21227/rz7n-kj20.

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–
276, Feb 1998. ISSN 0899-7667. doi: 10.1162/089976698300017746.

Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry. 2000. URL https:
//api.semanticscholar.org/CorpusID:116976027.

Frederik Benzing. Gradient descent on neurons and its link to approximate second-order optimiza-
tion. In International Conference on Machine Learning, pp. 1817–1853. PMLR, 2022.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Johan Braeken and Marcel ALM Van Assen. An empirical kaiser criterion. Psychological methods,
22(3):450, 2017.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural Infor-
mation Processing Systems, 34:22405–22418, 2021.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36, 2024.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=H1x-x309tm.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of
the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012. doi: 10.1109/MSP.2012.
2211477.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Shiv Ram Dubey, SH Shabbeer Basha, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Adain-
ject: Injection based adaptive gradient descent optimizers for convolutional neural networks.
IEEE Transactions on Artificial Intelligence, 2022.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. URL
http://jmlr.org/papers/v12/duchi11a.html.

11

https://dx.doi.org/10.21227/rz7n-kj20
https://api.semanticscholar.org/CorpusID:116976027
https://api.semanticscholar.org/CorpusID:116976027
https://openreview.net/forum?id=H1x-x309tm
http://jmlr.org/papers/v12/duchi11a.html

Published as a conference paper at ICLR 2025

Sai Surya Duvvuri, Fnu Devvrit, Rohan Anil, Cho-Jui Hsieh, and Inderjit S Dhillon. Combining axes
preconditioners through kronecker approximation for deep learning. In The Twelfth International
Conference on Learning Representations, 2024.

Muhammad ElNokrashy, Badr AlKhamissi, and Mona Diab. Depth-wise attention (dwatt): A layer
fusion method for data-efficient classification. arXiv preprint arXiv:2209.15168, 2022.

Runa Eschenhagen, Alexander Immer, Richard Turner, Frank Schneider, and Philipp Hennig.
Kronecker-factored approximate curvature for modern neural network architectures. Advances
in Neural Information Processing Systems, 36, 2024.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=6Tm1mposlrM.

Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572,
1901. doi: 10.1080/14786440109462720.

Thomas George. NNGeometry: Easy and Fast Fisher Information Matrices and Neural Tangent Ker-
nels in PyTorch, February 2021. URL https://doi.org/10.5281/zenodo.4532597.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning. PMLR, 2016.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu Abuduweili, Jiachen Li, and Humphrey Shi.
Escaping the big data paradigm with compact transformers. 2021. URL https://arxiv.
org/abs/2104.05704.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan Kim,
Youngjung Uh, and Jung-Woo Ha. Adamp: Slowing down the slowdown for momentum optimiz-
ers on scale-invariant weights. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=Iz3zU3M316D.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. 2012.

Richard A. Holmgren. Newton’s Method, pp. 127–151. Springer New York, New York, NY, 1996.
ISBN 978-1-4419-8732-7. doi: 10.1007/978-1-4419-8732-7 12. URL https://doi.org/
10.1007/978-1-4419-8732-7_12.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 2 edition,
2012.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

12

https://openreview.net/forum?id=6Tm1mposlrM
https://doi.org/10.5281/zenodo.4532597
https://arxiv.org/abs/2104.05704
https://arxiv.org/abs/2104.05704
https://openreview.net/forum?id=Iz3zU3M316D
https://doi.org/10.1007/978-1-4419-8732-7_12
https://doi.org/10.1007/978-1-4419-8732-7_12

Published as a conference paper at ICLR 2025

Keke Huang, Ruize Gao, Bogdan Cautis, and Xiaokui Xiao. Scalable continuous-time diffusion
framework for network inference and influence estimation. In The Web Conference 2024, 2024.
URL https://openreview.net/forum?id=H8hS2hVans.

Lei Huang et al. Normalization techniques in training dnns: Methodology, analysis and application.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023. doi: 10.1109/TPAMI.
2023.3250241.

Zhouyuan Huo, Bin Gu, and Heng Huang. Large batch optimization for deep learning using new
complete layer-wise adaptive rate scaling. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 7883–7890, 2021.

Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covari-
ate shift. arXiv preprint arXiv:1502.03167, 2015.

Kaiqi Jiang, Dhruv Malik, and Yuanzhi Li. How does adaptive optimization impact local neural
network geometry? Advances in Neural Information Processing Systems, 36, 2024a.

Zixuan Jiang, Jiaqi Gu, Hanqing Zhu, and David Pan. Pre-rmsnorm and pre-crmsnorm transformers:
equivalent and efficient pre-ln transformers. Advances in Neural Information Processing Systems,
36, 2024b.

Rohan V Kashyap. A survey of deep learning optimizers-first and second order methods. arXiv
preprint arXiv:2211.15596, 2022.

Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression function.
The Annals of Mathematical Statistics, pp. 462–466, 1952.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. URL http://arxiv.org/abs/1412.
6980.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approxima-
tion for natural gradient descent. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/46a558d97954d0692411c861cf78ef79-Paper.pdf.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yann Lecun. A theoretical framework for back-propagation. 08 2001.

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus Robert Müller. Efficient backprop, pp.
9–48. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). Springer Verlag, 2012. ISBN 9783642352881. doi:
10.1007/978-3-642-35289-8 3. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. ArXiv e-prints, pp.
arXiv–1607, 2016.

Valentin Leplat, Daniil Merkulov, Aleksandr Katrutsa, Daniel Bershatsky, Olga Tsymboi, and Ivan
Oseledets. Nag-gs: Semi-implicit, accelerated and robust stochastic optimizer. arXiv preprint
arXiv:2209.14937, 2022.

Wu Lin, Felix Dangel, Runa Eschenhagen, Juhan Bae, Richard E. Turner, and Alireza Makhzani.
Can we remove the square-root in adaptive gradient methods? a second-order perspec-
tive. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=vuMD71R20q.

Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable
stochastic second-order optimizer for language model pre-training. In The Twelfth International
Conference on Learning Representations, 2024.

13

https://openreview.net/forum?id=H8hS2hVans
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper_files/paper/2019/file/46a558d97954d0692411c861cf78ef79-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/46a558d97954d0692411c861cf78ef79-Paper.pdf
https://openreview.net/forum?id=vuMD71R20q
https://openreview.net/forum?id=vuMD71R20q

Published as a conference paper at ICLR 2025

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In International Conference on
Learning Representations, 2020. URL arXivpreprintarXiv:1908.03265.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019a. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019b.

Liangchen Luo, Yuanhao Xiong, and Yan Liu. Adaptive gradient methods with dynamic bound of
learning rate. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=Bkg3g2R9FX.

Linjian Ma, Gabe Montague, Jiayu Ye, Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael Ma-
honey. Inefficiency of k-fac for large batch size training. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 5053–5060, 2020.

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling
rules for adaptive gradient algorithms. Advances in Neural Information Processing Systems, 35:
7697–7711, 2022.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993. URL
https://aclanthology.org/J93-2004.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approxi-
mate curvature. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pp. 2408–2417, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.
press/v37/martens15.html.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature, 2020.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Konstantin Mishchenko and Sebastian U Stich. Noise injection irons out local minima and saddle
points. In OPT 2023: Optimization for Machine Learning, 2023.

Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing.
Prentice-hall Englewood Cliffs, second edition, 1999.

Kazuki Osawa, Satoki Ishikawa, Rio Yokota, Shigang Li, and Torsten Hoefler. Asdl: A unified
interface for gradient preconditioning in pytorch, 2023.

H Park, S.-I Amari, and K Fukumizu. Adaptive natural gradient learning algorithms for var-
ious stochastic models. Neural Networks, 13(7):755–764, 2000. ISSN 0893-6080. doi:
https://doi.org/10.1016/S0893-6080(00)00051-4. URL https://www.sciencedirect.
com/science/article/pii/S0893608000000514.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

14

arXiv preprint arXiv:1908.03265
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg3g2R9FX
https://openreview.net/forum?id=Bkg3g2R9FX
https://aclanthology.org/J93-2004
https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://www.sciencedirect.com/science/article/pii/S0893608000000514
https://www.sciencedirect.com/science/article/pii/S0893608000000514

Published as a conference paper at ICLR 2025

SGOPAL Patro and Kishore Kumar Sahu. Normalization: A preprocessing stage. arXiv preprint
arXiv:1503.06462, 2015.

K. B. Petersen and M. S. Pedersen. The matrix cookbook, October 2008. URL http://www2.
imm.dtu.dk/pubdb/p.php?3274. Version 20081110.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=ryQu7f-RZ.

Nicolas Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural gradient
algorithm. Advances in neural information processing systems, 20, 2007.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Ernest Ryu and Stephen Boyd. A primer on monotone operator methods survey. Applied and
computational mathematics, 15:3–43, 01 2016.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International confer-
ence on machine learning, pp. 343–351. PMLR, 2013.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In Sanjoy Dasgupta and David McAllester (eds.), Pro-
ceedings of the 30th International Conference on Machine Learning, volume 28 of Proceedings
of Machine Learning Research, pp. 1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.
URL https://proceedings.mlr.press/v28/sutskever13.html.

Ryo Takahashi, Takashi Matsubara, and Kuniaki Uehara. Data augmentation using random image
cropping and patching for deep cnns. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 30(9):2917–2931, September 2020. ISSN 1558-2205. doi: 10.1109/tcsvt.2019.2935128.
URL http://dx.doi.org/10.1109/TCSVT.2019.2935128.

Zedong Tang, Fenlong Jiang, Maoguo Gong, Hao Li, Yue Wu, Fan Yu, Zidong Wang, and Min
Wang. Skfac: Training neural networks with faster kronecker-factored approximate curvature.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13479–13487, 2021.

Mingze Wang, Jinbo Wang, Haotian He, Zilin Wang, Guanhua Huang, Feiyu Xiong,
Zhiyu li, Weinan E, and Lei Wu. Improving generalization and convergence by en-
hancing implicit regularization. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Process-
ing Systems, volume 37, pp. 118701–118744. Curran Associates, Inc., 2024. URL
https://proceedings.neurips.cc/paper_files/paper/2024/file/
d712c8625fd97424c9744019b28dca21-Paper-Conference.pdf.

Ross Wightman, Hugo Touvron, and Herve Jegou. Resnet strikes back: An improved training
procedure in timm. In NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future, 2021.
URL https://openreview.net/forum?id=NG6MJnVl6M5.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information process-
ing systems, 30, 2017.

Jianwei Yang, Chunyuan Li, Xiyang Dai, and Jianfeng Gao. Focal modulation networks. Advances
in Neural Information Processing Systems, 35:4203–4217, 2022.

15

http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www2.imm.dtu.dk/pubdb/p.php?3274
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
https://proceedings.mlr.press/v28/sutskever13.html
http://dx.doi.org/10.1109/TCSVT.2019.2935128
https://proceedings.neurips.cc/paper_files/paper/2024/file/d712c8625fd97424c9744019b28dca21-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d712c8625fd97424c9744019b28dca21-Paper-Conference.pdf
https://openreview.net/forum?id=NG6MJnVl6M5

Published as a conference paper at ICLR 2025

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the
AAAI conference on artificial intelligence, volume 35, pp. 10665–10673, 2021.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=Syx4wnEtvH.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive meth-
ods for nonconvex optimization. Advances in neural information processing systems, 31, 2018.

Matthew D. Zeiler. Adadelta: An adaptive learning rate method, 2012.

Lin Zhang, Shaohuai Shi, and Bo Li. Eva: Practical second-order optimization with kronecker-
vectorized approximation. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=_Mic8V96Voy.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need adam: A hessian perspective. In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https://openreview.net/forum?id=
X6rqEpbnj3.

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. Advances in neural information processing systems, 31, 2018.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in ob-
served gradients. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 18795–18806. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf.

16

https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=_Mic8V96Voy
https://openreview.net/forum?id=X6rqEpbnj3
https://openreview.net/forum?id=X6rqEpbnj3
https://proceedings.neurips.cc/paper_files/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf

Published as a conference paper at ICLR 2025

APPENDIX

CONTENTS

A Theory 18

A.1 KFs: A Structural Examination (Continue) . 18

A.2 Proofs . 21

A.3 Computation of KFs . 25

A.4 Distributed AdaFisher . 25

B Ablation Studies 26

B.1 Evaluating Stability Across Learning Rate Schedulers, and Assessing Convergence
Efficiency . 26

B.2 Component Analysis: Evaluating the Significance of AdaFisher’s Elements 28

C Visualization 29

D Experiments 30

D.1 Hardware . 30

D.2 Image Classification . 30

D.2.1 HP Tuning . 30

D.2.2 Dataset Details . 32

D.2.3 Transfer Learning . 32

D.2.4 Results . 33

D.2.5 Comparison with Other Relevant Methods 39

D.2.6 Comparison with Consistent Epoch Counts 39

D.2.7 Comparison of Training Speed and Memory Utilization 40

D.3 Language Modeling . 41

D.3.1 Dataset Details . 41

D.3.2 Network Details . 42

D.3.3 HPs . 42

D.3.4 Results . 42

17

Published as a conference paper at ICLR 2025

A THEORY

A.1 KFS: A STRUCTURAL EXAMINATION (CONTINUE)

In the realm of matrix theory, the Gershgorin circle theorem offers a principle for localizing the
eigenvalues of a complex square matrix, asserting that each eigenvalue is situated within at least
one Gershgorin disk. These disks are defined by the matrix’s diagonal elements and the sum of the
absolute values of the respective off-diagonal row entries. Formally, the theorem is stated as follows:
Theorem A.1 (Gershgorin Circle Theorem). Let A be a complex square matrix with eigenvalues
λ. For each λ, there exists an index i such that

|λ−Aii| ≤
n∑

j=1
j ̸=i

|Aij |,

where the summation excludes the diagonal entry Aii.

For a detailed proof of Theorem A.1, the reader is referred to the seminal work by Horn and
Johnson Horn & Johnson (2012). Extending the application of the Gershgorin circle theorem to
the study of KFs within deep neural networks, we analyze these factors from both convolutional
(37th) and linear (41st) layers of a ResNet-18 network through different training phases on CI-
FAR10 dataset. As elucidated in Section 3.1, leveraging Theorem A.1 demonstrates that the eigen-
values of the KFs from the convolutional layer are predominantly concentrated along the diago-
nal. This observation is analogously applicable to the linear layer. Figure 3 showcases the Ger-
shgorin disks for the 41st (linear) layer, with the eigenvalues (red crosses) significantly clustered
within these disks (centered at the black circles), underscoring a pronounced diagonal dominance.
Moreover, upon introducing Gaussian noise to the off-diagonal elements following this scheme:
M̂ = A+ E , where E = [eij] and eij ∼ N (0, σ2) for i ̸= j, the perturbation analysis elucidates
that such stochastic variations engender only marginal displacements in the eigenvalues. Notably,
those eigenvalues fulfilling the Kaiser criterion are minimally affected, substantiating the resilience
of the diagonal dominance against noise-induced perturbations. Our next analysis focus centers on

Figure 7: Gershgorin disks and eigenvalue perturbation analysis for matrices H and S at training steps 5200
(middle of training) and 9800 (end of training) in a ResNet-18 Network’s Linear Layer (41st Layer). The left
panel depicts Gershgorin’s circles in the complex plane, while the right panel illustrates the magnitude spectrum
of eigenvalues with and without the influence of Gaussian noise.

elucidating the behaviors of matrices through consecutive steps in the frequency domain, thereby
highlighting the intricate patterns and transformations emergent from the training process. By de-
ploying a Fast Fourier Transform (FFT) on H and S, along with their noise-infused variants Ĥ and
Ŝ, we aim to dissect the spectral nuances of these factors. The deliberate addition of noise to the

18

Published as a conference paper at ICLR 2025

off-diagonal serves as a probe to validate our hypothesis that the pivotal information of the KFs
is predominantly concentrated along their diagonals. The minimal impact of such noise perturba-
tions observed empirically underscores this diagonal dominance. Our analysis aims to juxtapose
the frequency domain representations of both the uncontaminated and the noise-affected matrices at
assorted iterative phases, thereby illuminating the inherent stability and tenacity of the Kronecker
structures amidst stochastic disturbances.
Let A be a two-dimensional m× n matrix. The FFT of A, denoted as F(A), is computed as

F(A)kl =

m−1∑
p=0

n−1∑
q=0

Apq · e−2πi(pk
m + ql

n), (5)

where F(A)kl is the value of the FFT at the kth row and lth column of the transformed matrix, Apq

is the value of the original matrix at the pth row and qth column, and i is the imaginary unit (Op-
penheim et al., 1999). Figure 8 demonstrates the Fourier spectral analysis of the KFs H and S

Figure 8: Comparative Visualization of FFT Outputs for KFs in a ResNet-18 Network’s Convolutional and
Linear Layers. (A) FFT results for KFsH and Ĥ from the 37th convolutional layer under noise-free conditions
(top) and with Gaussian noise (bottom) at iterations 5200 (middle of training) and 9800 (end of training). (B)
Analogous FFT results for the KFs S and Ŝ from the 41st linear layer, also contrasted between noise-free (top)
and noisy conditions (bottom) at the same iterations.

over two distinct iterative stages of training—5200 and 9800 for a convolutional and a linear layers

19

Published as a conference paper at ICLR 2025

(37th and 41st of a ResNet-18 network respectively). Each KF is analyzed via FFT in both a pris-
tine, noise-free condition and a Gaussian noise-affected state, with the associated Signal-to-Noise
Ratios (SNRs) detailed in Eq. (6). In the noise-free FFT spectra, a pronounced diagonal energy
concentration is manifest in the H and S factors of the convolutional layer, indicative of significant
informational preservation along the diagonal. In contrast, the linear layer exhibits a less pronounced
but still discernible diagonal energy distribution, suggesting a more diffuse yet still noteworthy di-
agonal information structure. With the addition of noise, the matrices Ĥ and Ŝ still display a notable
diagonal pattern, indicating minimal SNR deterioration. This observation supports the proposition
that the KFs primarily encode their information along the diagonal, and the introduction of noise into
the off-diagonal elements has a limited impact. The SNR between a matrix M and M̂ is computed
using the formula:

SNR = 10 · log10

(∑N
i=1 |Mii|2∑N
j>i |M̂ij |2

)
, (6)

where Mii denotes the diagonal elements of M, and M̂ij represents the upper triangular elements
of M̂ excluding the diagonal (Oppenheim et al., 1999). The observed reduction in SNR from step
5200 to step 9800 for the KF S in the convolutional layer, under noisy conditions, could suggest an
incremental integration of noise effects across iterations. Conversely, for the remaining factors, an
increase in SNR throughout the training process is detected, which may indicate an enhancement in
signal clarity. Nevertheless, the integrity of the diagonal concentration of energy remains predomi-
nantly intact, demonstrating the underlying robustness of the network’s feature extraction capability
against noise perturbations. Ultimately, the spectral analyses validate the hypothesis that the KFs’
informational content is predominantly diagonal and resistant to the effects of off-diagonal Gaussian
noise. This durability is sustained through successive iterations, maintaining the primary spectral
characteristics of the KFs. Figure 9 offers a visual exposition of the Kronecker Product Factors H

Figure 9: Visualization of KFs H and S for convolutional (A) and linear (B) layers at different iteration
steps within a ResNet-18 network. For the convolutional layer (37th layer), the first two plots in (A) represent
factor H at steps 5200 (middle of training) and 9800 (end of training), elucidating the matrix’s structure at
these stages. The subsequent two plots display factor S, highlighting changes in granularity and contrast with
iteration progression. Similarly, in (B) for the linear layer (41st position), we observe the structural evolution
of factor H and S over the same iterations, with variations in pattern density and clarity. These visualizations
collectively underscore the dynamic nature of the KFs’ architecture as training advances.

and S at progressive iteration junctures—specifically steps 5200 and 9800 for a convolutional and a
linear layers (37th and 41st of a ResNet-18 network respectively). The initial duo of plots in each
(A) and (B), delineate the KF H at the aforementioned steps, elucidating the matrix’s structure at
two distinct evolutionary stages. The next duo plots in (A) and (B) represent the KF S at differ-
ent steps of training. This visual examination, in conjunction with the preceding spectral analyses,
articulates an integrated story of the developmental trajectory of the KFs. The enduring diagonal
salience observed in both H and S underscores the notion that the informational energy of the KFs

20

Published as a conference paper at ICLR 2025

is predominantly concentrated along the diagonal. This persistent feature accentuates the structural
stability and the focused nature of information encoding within the network’s layers.

A.2 PROOFS

Proposition A.1 (FIM for normalization layer). Let (νi, βi) ∈ RCi be the scale and shift parameters
of a normalization layer i. The empirical KFs for the FIM approximation are

Hi−1

∣∣∣
νi

=
1

|Ti|
∑
x∈Ti

hi−1,xh
⊤
i−1,x, Hi−1

∣∣∣
βi

= 11⊤, Si =
1

|Ti|
∑
x∈Ti

si,xs
⊤
i,x

where hi−1, si ∈ RCi×|Ti| represent the pre-normalized activations and gradients, respectively.
Here, Ti is the set of dimensions over which normalization statistics are computed, and Ci is the
channels/features size.

Proof. Let (νi, βi) ∈ RCi be the scale and shift parameters of a normalization layer i, with trans-
formation

hi = ai = νi ⊙ hi−1 + βi

where hi−1 ∈ RCi×|Ti| contains normalized activations and ⊙ denotes element-wise multiplication.
Let ∇νiJ(θ) =

∑
x hi−1,x ⊙ si,x and ∇βiJ(θ) =

∑
x si,x where si = ∇hiJ(θ).

For νi parameters:

E[∇νi
L∇νi

L⊤] = E

(∑
x

hi−1,x ⊙ si,x

)(∑
x′

hi−1,x′ ⊙ si,x′

)⊤


≈ E

[∑
x

(hi−1,xh
⊤
i−1,x)⊗ (si,xs

⊤
i,x)

]
(K-FAC independence assumption)

=

(
1

|Ti|
∑
x

hi−1,xh
⊤
i−1,x

)
⊗

(
1

|Ti|
∑
x

si,xs
⊤
i,x

)
= Hi−1

∣∣∣
νi

⊗ Si

For βi parameters:

E[∇βi
L∇βi

L⊤] = E

(∑
x

si,x

)(∑
x′

si,x′

)⊤


= 11⊤ ⊗

(
1

|Ti|
∑
x

si,xs
⊤
i,x

)
(Bias term factorization)

= Hi−1

∣∣∣
βi

⊗ Si

Cross-terms between νi and βi are excluded under the diagonal block assumption.

Proposition A.2 (Efficient FIM). Let Hi−1 and Si represent the KFs for a given layer index i
within a neural network, where these factors exhibit semi-diagonal characteristics indicating energy
concentration predominantly along the diagonal, as elaborated in Section 3.1. Define gi as the
gradient obtained through backpropagation at layer i. Assume that Hi−1 and Si can be closely
approximated by diagonal matrices, denoted by HDi−1

and SDi
respectively at layer i, such that

HDi−1
= Diag(Hi−1), SDi

= Diag(Si) where Diag(M) denote the diagonal approximation of a
matrix M, which retains only the main diagonal. Therefore, we define the Empirical FIM as

F̃Di
≜ H′

Di−1
⊗ S ′

Di
+ λI, (7)

21

Published as a conference paper at ICLR 2025

where M′ denotes the Min-Max normalization technique Patro & Sahu (2015) for M = HDi−1

or SDi
. The regularization parameter λ set to 0.001 serves as damping factors, in alignment with

the principles of Tikhonov regularization, to enhance computational stability and improve the con-
ditioning of the matrix. The foundational aspects of the K-FAC optimization approach are detailed
in Martens & Grosse (2015). Then, the closed-form solution for the preconditioned gradient ḡ(t),
derived from the diagonal approximation of the FIM, is given by: ḡ(t) = (F̃

(t)
D)−1g(t).

Proof. The justification of our approach comprises two principal components: the rationale for
adopting a diagonal approximation of the KFs and the methodology for normalization and regular-
ization of these factors.

Part 1: Diagonalization of KFs

The assumption of independent neuronal activity within layers is foundational to our approach. This
assumption posits that the covariance matrices H and S, encapsulating the second-order statistics
of activations and sensitivities, respectively, are diagonal. This diagonal nature arises because in-
dependence among random variables implies a covariance of zero for any pair of distinct variables,
thereby nullifying all off-diagonal elements of these covariance matrices.

Consider matrices A and B, each being diagonal with elements aii and bjj , respectively. The Kro-
necker product A⊗B, by definition, generates elements aiibjj at the corresponding (i, j) positions.
For diagonal A and B, this product maintains non-zero values exclusively at diagonal positions
where i = j, resulting in:

A⊗B = diag(a11b11, . . . , annbmm),

yielding a purely diagonal matrix. Moreover, we have empirically demonstrated that the energy of
the KFs is concentrated along the diagonal, as detailed in Sections 3.1 and A.1. These arguments
support our initial premise.

Part 2: Normalization and Regularization

Let M ∈ {HDi
,SDi

} be a diagonal matrix with entries mk > 0. The min-max normalized matrix
M′ satisfies

M′ = D−1(M−mminI)D
−1, D = diag(

√
mmax −mmin)

where mmin = mink mk, mmax = maxk mk. This affine transformation ensures that 0 ≼ M′ ≼ I
where ≼ denotes Loewner ordering. Combined with Tikhonov regularization, the modified FIM,
F̃Di

= H′
Di−1

⊗ S ′
Di

+ λI admits eigenvalue bounds

λ ≤ λk(F̃Di
) ≤ 1 + λ ∀k

which guarantees numerical stability for inversion. This approach ensures that all elements are
scaled uniformly, preserving their relative magnitudes and distances. Compared to other normaliza-
tion methods, such as z-score normalization (Patro & Sahu, 2015), Min-Max normalization offers
several advantages such as the normalization Stability, where for M′ = (M − mminI)/(mmax −
mmin) we have σ(M′) ⊆ [0, 1] where σ(·) denotes matrix spectrum. Moreover, the Kronecker
product satisfies σ(H′

Di−1
⊗ S ′

Di
) ⊆ [0, 1], thus λmin(F̃Di

) ≥ λ > 0, guaranteeing invertibility.

And the relative error satisfies
∥F̃−1

Di
−F−1

Di
∥

∥F−1
Di

∥ ≤ O(ϵ + λ) where ϵ measures diagonal approximation

error. Therefore, the preconditioned gradient can be written has ḡ(t) = (H′
Di−1

⊗S ′
Di

+λI)−1g(t) =

(F̃
(t)
Di

)−1g(t).

Proposition A.3 (Convergence in convex optimization). For the FIM defined in Eq. (7), the up-
dating scheme θ(t+1) = θ(t) − α(F̃

(t)
D)−1∇J(θ(t)) converges. Moreover, if ∇J is Lipschitz, i.e.,

||∇J(θ) − ∇J(θ′)||2 ≤ L||θ − θ′|| for any θ and θ′, then for the k-step iteration with a fixed step
size α ≤ 1/L, then

J(θ(k))− J(θ∗) ≤ ||θ(0) − θ∗||22
2αk

,

where J(θ∗) is the optimal value.

22

Published as a conference paper at ICLR 2025

Proof. We follow the same proof as in Yao et al. (2021). Assume that J(θ) is a strongly convex
and strictly smooth function in Rd, such that there exist positive constants α and β so that αI ≤
∇2J(θ) ≤ βI for all w. We can show that the update formulation △θ(t) = (F̃ (t))−1g(t) converges
by showing that with the proper learning rate:

△θ(t) := J(θ(t+1))− J(θ(t)) ≤ − α

2β2
||g(t)||2

Note that when k = 0 or 1, the convergence rate is the same as gradient descent or Newton method,
respectively. Our proof is similar to Boyd & Vandenberghe (2004) for the Newton method. We
denote λ(θ(t)) = (g(t))⊤(F̃ (t))−1g(t))1/2. Since J(θ) is strongly convex, we have

J(θ(t) − η△θ(t)) ≤ J(θ(t))− η(g(t))⊤△θ(t) +
η2β||△θ(t)||2

2

≤ J(θ(t))− ηλ(θ(t))2 +
β

2α
η2λ(θ(t))2.

The second inequality comes from the fact that

λ(θ(t))2 = △(θ(t))⊤F̃ (t)△θ(t) ≥ α||△θ(t)||2.
Therefore, the step size η̂ = α/β will make f decrease as follows,

J(θ(t) − η̂△θ(t))− J(θ(t)) ≤ −1

2
η̂λ(θ(t))2.

Since αI ⪯ F̃ (t) ⪯ βI , we have

λ(θ(t))2 = (g(t))⊤(F̃ (t))−1g(t) ≥ 1

β
||g(t)||2.

Therefore,

J(θ(t) − η̂△θ(t))− J(θ(t)) ≤ − 1

2β
η̂||g(t)||2 = − α

2β2
||g(t)||2 (8)

Since F (t)
D is positive definite, hence Eq. (8) holds true. For the bound on convergence rate, we refer

to Ryu & Boyd (2016) for the details of the complete proof.

Proposition A.4 (Convergence in non-convex stochastic optimization). Under the assumptions:
(i) f is lower bounded and differentiable; ||∇J(θ) − ∇J(θ′)||2 ≤ L||θ − θ′||2, ||F̃ (t)

D ||∞ <
L, ∀t, θ, θ′.
(ii) Both the true and stochastic gradient are bounded, i.e. ||∇J(θ(t))||2 ≤ λ and ||gt||2 ≤ λ, ∀t for
some λ > 0.
(iii) Unbiased and independent noise in g(t), i.e. g(t) = ∇J(θ(t))+ζ(t), E[ζ(t)] = 0, and ζ(t) ⊥ ζ(t),
∀i ̸= j.

Assume η(t) = η√
t
, β(t) ≤ β ≤ 1 is non-increasing, F̃

(t−1)
D [j]

η(t−1) ≤ F̃
(t)
D [j]

η(t) , ∀t ∈ [T], j ∈ [d], we then
have

min
t∈[T]

E[||∇J(θ(t))||22] ≤
L√
T
(C1η

2λ2(1 + log T) + C2dη + C3dη
2 + C4) (9)

where C1, C2, C3 are constants independent of d and T , C4 is a constant independent of T , the
expectation is taken w.r.t all the randomness corresponding to {g(t)}.

Proof. Follow Chen et al. (2019), as AdaFisher is an Adam-type method with the condition
||η(t)m(t)/F̃

(t)
D ||2 ≤ G for some G (which can be obtained by η(t) < η, ||g(t)||2 ≤ λ and

||F̃ (t)
D ||2 ≥ 1), we have

E

[
T∑

t=1

η(t)⟨∇J(θ(t)),∇J(θ(t))/F̃
(t)
D ⟩

]
≤E

[
C1

T∑
t=1

∥∥∥∥∥η(t)g(t)F̃
(t)
D

∥∥∥∥∥
2

2

+ C2

T∑
t=1

∥∥∥∥∥ η(t)F̃
(t)
D

− η(t−1)

F̃
(t−1)
D

∥∥∥∥∥
1

+ C3

T∑
t=1

∥∥∥∥∥ η(t)F̃
(t)
D

− η(t)

F̃
(t)
D

∥∥∥∥∥
2

2

]
+ C4. (10)

23

Published as a conference paper at ICLR 2025

We first bound non-constant terms in RHS of Eq. (10). For the term with C1, since ||F̃ (t)
D ||2 ≥ 1,

we have

E

[
T∑

t=1

∥∥∥∥∥η(t)g(t)F̃
(t)
D

∥∥∥∥∥
2

2

]
≤ E

[
T∑

t=1

||η(t)g(t)||22

]

= E

[
T∑

t=1

∥∥∥∥ η√
t
g(t)
∥∥∥∥2
2

]

≤ η2λ2
T∑

t=1

1

t
≤ η2λ2(1 + log T).

For the term with C2, we have

E

[
T∑

t=1

∥∥∥∥∥ η(t)F̃
(t)
D

− η(t−1)

F̃
(t−1)
D

∥∥∥∥∥
1

]
= E

[
d∑

j=1

T∑
t=2

(
η(t−1)

F̃
(t−1)
D [j]

− η(t)

F̃
(t)
D [j]

)]

= E

[
d∑

j=1

η(1)

F̃
(1)
D [j]

− η(T)

F̃
(T)
D [j]

]

≤ E

[
d∑

j=1

η(1)

F̃
(1)
D [j]

]
≤ dη

where the first equality is due to F̃
(t−1)
D [j]

η(t−1) ≤ F̃
(t)
D [j]

η(t) , ∀t ∈ [T], j ∈ [d].

For the term with C3, we have

E

[
T∑

t=1

∥∥∥∥∥ η(t)F̃
(t)
D

− η(t−1)

F̃
(t−1)
D

∥∥∥∥∥
2

2

]
= E

[
T∑

t=1

d∑
j=1

(
η(t)

F̃
(t)
D [j]

− η(t−1)

F̃
(t)
D [j]

)2]

= E

[
T∑

t=1

d∑
j=1

∣∣∣∣∣ η(t)

F̃
(t)
D [j]

− η(t−1)

F̃D(t−1) [j]

∣∣∣∣∣ ·
∣∣∣∣∣ η(t)

F̃
(t)
D [j]

− η(t−1)

F̃
(t−1)
D [j]

∣∣∣∣∣
]

≤ E

[
T∑

t=1

d∑
j=1

∣∣∣∣∣ η(t)

F̃
(t)
D [j]

− η(t−1)

F̃
(t−1)
D [j]

∣∣∣∣∣ ·
∣∣∣∣∣ η
√
tF̃

(t)
D [j]

− η
√
t− 1F̃

(t−1)
D [j]

∣∣∣∣∣
]

≤ E

[
η

T∑
t=1

d∑
j=1

∣∣∣∣∣ ηt

F̃
(t)
D [j]

− η(t−1)

F̃
(t−1)
D [j]

∣∣∣∣∣
]

= ηE

[
T∑

t=1

∥∥∥∥∥ η(t)F̃
(t)
D

− η(t−1)

F̃
(t−1)
D

∥∥∥∥∥
1

]
≤ dη2

Hence

E

[
C1

T∑
t=1

∥∥∥∥∥η(t)g(t)F̃
(t)
D

∥∥∥∥∥
2

2

+ C2

T∑
t=1

∥∥∥∥∥ η(t)F̃
(t)
D

− η(t−1)

F̃
(t−1)
D

∥∥∥∥∥
1

+ C3

T∑
t=1

∥∥∥∥∥ η(t)F̃
(t)
D

− η(t−1)

F̃D(t−1)

∥∥∥∥∥
2

2

]
+ C4

≤ C1η
2λ2(1 + log T) + C2dη + C3dη

2 + C4 (11)

Now we lower bound the LHS of Eq. (9). With the assumption ||F̃ (t)
D ||∞ ≤ L, we have

(η(t)/F̃
(t)
D)j ≥

η

L
√
t
.

Thus

E

[
T∑

t=1

η(t)⟨∇J(θ(t)),∇J(θ(t))/F̃
(t)
D ⟩

]
≥ E

[
T∑

t=1

η

L
√
t
||∇J(θ(t))||22

]
≥

√
T

L
min
t∈[T]

E[||∇J(θ(t))||22]

(12)
Combining Eq. (11) and (12) gives the desired result.

24

Published as a conference paper at ICLR 2025

A.3 COMPUTATION OF KFS

The KFs H and S, which are integral to the AdaFisher optimizer, are computed following method-
ologies similar to those described in Grosse & Martens (2016); Martens & Grosse (2015). This
section revisits the key equations used for this computation. For a given layer i in a neural network,
the empirical KFs are computed as follows:

• For fully connected layers, the KFs are:

HDi−1 = diag(h̄i−1h̄
⊤
i−1), SDi = diag(sis⊤i);

• For convolutional layers, the computation accounts for the spatial positions within the
layer, denoted as T :

HDi−1 = diag
(

Jh̄i−1KJhi−1K⊤

|T |

)
, SDi = diag

(
sis

⊤
i

|T |

)
;

The algorithm employs the expansion operation denoted by J·K (Grosse & Martens, 2016).
This operation essentially takes the patches surrounding spatial locations, stretches them
into vectors, and compiles these vectors into a matrix.

• For Normalization layers (BatchNorm & LayerNorm) refer to Proposition. 3.1

• For all other type of layers the KFs are:

HDi−1
= IP out

i−1+1, SDi
= IP out

i
;

Table 6: AdaFisher training time per epoch (s) across various numbers of GPUs on ResNet-50 ImageNet-1k.

GPU amount Batch Size AdaFisher training time per epoch (s)

1 256 2882
2 512 1438
3 768 963
4 1024 720

A.4 DISTRIBUTED ADAFISHER

The efficacy of AdaFisher hinges on its innovative approximation of the FIM, denoted as F̃ , which
leverages KFs for computation. In a distributed setting, it is crucial to aggregate these KFs across
multiple GPUs before updating the model parameters. Consider a training environment consisting
of K GPUs. For any given layer i, the KFs are computed and aggregated across all GPUs as

H(SUM)
Di−1

=
1

K

K∑
k=1

H(k)
Di−1

, S(SUM)
Di

=
1

K

K∑
n=1

S(k)
Di

(13)

The theoretical justification for this aggregation lies in the linearity of expectation and the unbi-
asedness of the local KF estimates. Specifically, if each H(k)

Di−1
and S(k)

Di
are unbiased estimators of

their respective true factors HDi−1 and SDi for k = 1, . . . ,K, then the averaged factors H(SUM)
Di−1

and

S (SUM)
Di

remain unbiased estimators of HDi−1 and SDi . Consequently, using Eq. (13), the aggregated
EFIM for layer i can be calculated as

F̃ SUM
Di

= H′(SUM)
Di−1

⊗ S ′(SUM)
Di

+ λI

where λ is a regularization parameter added to ensure numerical stability. This methodology ensures
that each GPU contributes to a comprehensive update of the model, enhancing both convergence and
performance in large-scale distributed training environments. We assessed the distributed version of
AdaFisher on ImageNet-1k, utilizing batch sizes of 512 and 1024 (refer to Table 3 and Figure 15
for details). Our findings indicate that AdaFisher scales nearly linearly with the number of GPUs,
as evidenced in Table 6. There remains scope for additional low-level optimizations within the
implementation to further enhance performance.

25

Published as a conference paper at ICLR 2025

B ABLATION STUDIES

Building on the ablative studies detailed in Section 4.4, this section extends our stability analysis to
explore the impact of various learning rate schedulers and convergence efficiency, as discussed in
Section B.1. Additionally, we conduct an in-depth examination of the key components of AdaFisher.
This includes analyzing the effects of the EMA, the use of square root transformations, our novel
approximation of the FIM, and the critical role of computing the FIM for normalization layers, all
of which are detailed in Section B.2. We have consolidated the key findings of each ablation study
in Table 7.

Table 7: Summary of Ablation Studies for AdaFisher Optimizer.
Ablation
Study

Component Studied Key Findings

Learning
rate sched-
ulers

Impact of Cosine
Annealing, StepLR,
and no scheduler on
AdaFisher

AdaFisher maintains stable and efficient performance
across various schedulers, demonstrating its robustness
and adaptability in diverse training environments. Fur-
ther details are given in Section B.1.

Convergence
Efficiency

Performance and
alignment of FIM
with Hessian

AdaFisher shows marked performance improvements to-
wards the end of training, with FIM alignment to the Hes-
sian enhancing rapid convergence and stable generaliza-
tion across training and testing phases. Further details are
provided in Section B.1.

Square
Root Uti-
lization

Effect of omitting
square root in update
rules

Eliminating the square root enhances AdaFisher’s perfor-
mance and stability, outperforming both its own version
with the square root and Adam without the square root,
while also improving computational efficiency. Further
details are listed in Section B.2.

EMA of
KFs

Utilization of EMA
for curvature estima-
tion

Using EMA on KFs enhances AdaFisher’s curvature es-
timation, leveraging data from multiple mini-batches for
continuous updates, demonstrating significant benefits
in methods with diagonal or block-diagonal curvature
approximations. Further analysis are included in Sec-
tion B.2.

Importance
of Fisher
Compu-
tation for
Normaliza-
tion Layers

Impact of EFIM in
normalization layers

Incorporating Fisher computation in normalization lay-
ers significantly improves AdaFisher’s generalization and
stability by enhancing parameter sensitivity and gradient
variability insights, crucial for optimizing training dy-
namics and model convergence. Further details are given
in Section B.2.

New
Approxi-
mation of
the FIM

Diagonal approxima-
tion of the FIM

Our novel method focuses on the diagonal elements of
the FIM, enhancing computation efficiency without los-
ing critical information. Validation shows our approxi-
mation closely aligns with the true Fisher, confirming its
efficacy. Further details are contained in Section B.2.

B.1 EVALUATING STABILITY ACROSS LEARNING RATE SCHEDULERS, AND ASSESSING
CONVERGENCE EFFICIENCY

Learning rate schedulers. This analysis evaluates the impact of different learning rate schedulers–
Cosine Annealing, StepLR, and no scheduler—on the performance of AdaFisher, as depicted in
Figure 10. AdaFisher exhibits remarkable robustness across these scheduling strategies. Notably, its
performance remains stable and efficient, whether it is paired with the gradual adjustments of Cosine
Annealing, the abrupt changes of StepLR, or even in the absence of any scheduler. This underscores
AdaFisher’s adaptability and effectiveness in diverse training environments.

Convergence Efficiency. As training progresses, AdaFisher optimizer demonstrates a significant
enhancement in performance compared to its counterparts, especially evident towards the end of
the training period (see Appendix D.2.4). This rapid convergence is attributed to AdaFisher’s ap-
proach by incorporating the FIM. Early and mid-training, the FIM serves as an approximation to

26

Published as a conference paper at ICLR 2025

the Hessian matrix, equivalent to the Generalized Gauss Newton Matrix (Eschenhagen et al., 2024).
However, as the model approaches a local minimum, the FIM increasingly aligns precisely with the
Hessian (Martens, 2020). This precise alignment accelerates convergence, markedly improving the
optimizer’s efficiency in the final phases of training. Additionally, AdaFisher’s tendency to con-
verge to flat local minima leads to more stable generalization when transitioning from training to
testing distributions (Cha et al., 2021), contrasting sharply with other optimizers. To support these
points, we analyze the training distribution of our diagonal block-Kronecker FIM during the train-
ing of ResNet18 on CIFAR10. Specifically, we examine the FIM distribution for the first (Panel A),
middle (Panel B) convolutional layers and the last linear layer (Panel C), as shown in Figure 11. It
is evident that for each layer, the FIM distribution with AdaFisher narrows to smaller values with
fewer variations compared to that with Adam. This pattern demonstrates AdaFisher’s convergence
toward flatter local minima, as the Fisher Information, an approximation of the Hessian, contains
crucial curvature information.

Figure 10: Performance comparison of AdaFisher using the ResNet50 on the CIFAR10 with a batch size of
256 with different learning rate schedulers.

Figure 11: Comparison of FIM Diagonal Histograms during ResNet18 Training on CIFAR10 with Adam and
AdaFisher over 1,000 training iterations. Panel (A) displays the FIM diagonal elements for the first convo-
lutional layer; Panel (B) illustrates the FIM diagonal elements for the middle convolutional layer; Panel (C)
shows the FIM diagonal elements for the last Linear layer.

27

Published as a conference paper at ICLR 2025

Figure 12: AdaFisher Component Analysis. (A) Comparison of MAE between the true FIM FD and our
approximation F̃D across convolutional and dense layers. (B) Performance comparison of AdaFisher with and
without the EMA of KFs. (C) Assessment of AdaFisher’s performance with and without the computation of
EFIM for Batch Normalization (BN) layers.

B.2 COMPONENT ANALYSIS: EVALUATING THE SIGNIFICANCE OF ADAFISHER’S
ELEMENTS

AdaFisher incorporates several key components, including a novel approximation of the FIM, the
EMA of the KFs, the omission of the square root in the update rule, and a new EFIM formula
for normalization layers. In this part, we elucidate each component and its significance within the
AdaFisher optimizer.

Square Root Utilization. Recent studies, such as (Lin et al., 2024), have reevaluated the necessity of
the square root operation in the Adam family’s update rules. These studies suggest that eliminating
the square root does not affect convergence and may even narrow the generalization gap compared
to SGD in CNN models. Our analysis, shown in panel (A) of Figure 12, investigates this aspect
by comparing the performance of AdaFisher and Adam, both with and without the square root
operation. The findings reveal that removing the square root not only boosts the performance and
stability of both optimizers but also significantly enhances computational efficiency. Specifically,
AdaFisher without the square root not only outperforms the version with the square root but also
surpasses Adam without the square root. However, Adam without the square root typically requires
an additional scaling factor proportional to the batch size, denoted as f ∝ batch size, to function
correctly. Without this factor, Adam, without the square root, fails to learn effectively, making direct
comparisons with AdaFisher invalid.

EMA of KFs. As elucidated in Section 3.2, employing an EMA over the KFs facilitates a more
sophisticated curvature estimation. This technique leverages data across multiple mini-batches, en-
abling continuous updates to the Fisher information rather than relying solely on the data from a
single batch. Panel (B) of Figure 12 underscores, using ResNet-50 on CIFAR10 over 200 epochs,
the benefits of using EMA on KFs, a strategy particularly advantageous in methods that utilize di-
agonal or block-diagonal approximations of the curvature matrix.

Importance of Fisher Computation for Normalization Layers. The integration of the EFIM in
normalization layers, as detailed in Proposition 3.1, significantly enhances the generalization pro-
cess. Panel (C) of Figure 12 illustrates the impact of incorporating Fisher computation in these
layers during the training of AdaFisher with ResNet-50 on CIFAR10 over 200 epochs. In contrast,
the identity matrix is employed when Fisher’s computation is omitted. The superior performance of
AdaFisher when incorporating Fisher computation can be attributed to the critical role normalization
layers play in adjusting the input distribution for each mini-batch. This adjustment substantially en-
hances the neural network’s learning stability (Jiang et al., 2024b). By quantifying the information
each output y carries about the parameters θ under the model distribution p(y|x; θ), the computa-

28

Published as a conference paper at ICLR 2025

tion of the FIM in these layers provides valuable insights into parameter sensitivity and gradient
variability. This insight is crucial for optimizing training dynamics and enhancing model conver-
gence—areas that are often inadequately addressed by existing optimizers.

New Approximation of the FIM. In Proposition 3.2, we introduce a new methodology for approx-
imating the FIM that diverges from the K-FAC optimizer. Unlike K-FAC, which utilizes the full
Kronecker product, our approach focuses solely on the diagonal elements of the FIM, where, as
demonstrated in Section 3.1, the energy of the KFs is predominantly concentrated. This method
enables a more efficient computation of the FIM without sacrificing critical information. To validate
our approach, we compare the true FIM diagonal with our approximation in convolutional and dense
layers using a toy model composed of 2 convolutional layers and two linear layers on a subset of
the MNIST dataset (Deng, 2012) over 50 epochs. Specifically, we calculate the true Fisher using
the NNgeometry Python package (George, 2021), which facilitates the computation of the FIM,
Gauss-Newton Matrix, or Neural Tangent Kernels applied to neural networks. We estimate p(y|x)
through Monte-Carlo sampling. During each epoch, we collected both the empirical and true Fisher
information and calculated the Mean Absolute Error (MAE) between these two measures. Panel
(D) of Figure 12 showcases the close approximation of AdaFisher’s empirical diagonal to the true
Fisher, thus validating the efficacy of our approximation method.

C VISUALIZATION

The convergence rate of an optimizer is crucial, serving as an indicator of its robustness against sad-
dle points and its ability to generalize effectively. In this section, we introduce a novel methodology
for visualizing the convergence behavior of optimizers through a statistical model, as depicted in
Figure 1. Initially, our process employs Principal Component Analysis (PCA) for dimensionality
reduction, reducing the dataset dimensions from D ∈ Rm×n to D̂ ∈ Rm×2, following the protocol
established in F.R.S. (1901). We then apply this reduced dataset to a toy model composed of an L-
layer multi-layer perceptron (MLP). Notably, we focus on the first weight matrix W e

1 of this MLP,
which resides in R2, where e denotes the epoch number. For consistency and to ensure comparabil-
ity, all layers’ weights are initialized identically across different optimizers. Following the training

Figure 13: Pipeline for visualization of optimization paths for various algorithms on a loss surface, comparing
their convergence efficiency.

phase with various optimizers where we denote a set of optimizer results O, we analyze both the
collection of first-layer weights, W , and the evolution of the loss function, L defined as:

W =


(W 1

1)
⊤

(W 2
1)

⊤

...
(WE

1)⊤

 , L = [L1
1,L2

1, . . . ,LE
1]

⊤

where (W e
1)

⊤ represents the weight vector at the eth epoch, and Le
1 represents the loss at the eth

epoch, extracted from the optimization results O. We construct a grid (X,Y) spanning the range of
weight parameters, discretized into 200 linearly spaced points along each axis:

X,Y = meshgrid (min(W:,1),max(W:,1),min(W:,2),max(W:,2), 200)

29

Published as a conference paper at ICLR 2025

Finally, we interpolate the loss values L over the grid using cubic interpolation to obtain a smooth
loss surface Z:

Z = griddata(W,L, (X,Y),method = cubic)

These elements are integral to the visualization process, which elucidates the optimizer’s trajectory
through the parameter space across training epochs. It is important to note that while we focus on
the first layer’s weight matrix for clarity, the methodology can be adapted to visualize the weights
of any layer within the network. Figure 13 summarizes the pipeline.

In the experiment depicted in Figure 1, we selected the IRIS dataset (rz7, 2018), owing to its
widespread recognition and compatibility with PCA application. Our model employs a 2-layer MLP
architecture. We specifically attend to the weight matrix of the first layer, denoted by W1 ∈ R2. This
particular focus is informed by the empirical observation that the parameters of the first layer tend
to exhibit a faster convergence rate compared to those of subsequent layers in the network. Such a
phenomenon can be attributed to the more direct influence of the input features on the first layer’s
weights, which often results in a more pronounced and expedited learning dynamic. Given the
classification nature of the task, we employed the Cross-Entropy loss function (Zhang & Sabuncu,
2018). The network was trained over 20 epochs using a suite of optimizers: Adam, AdaHessian, K-
FAC, Shampoo, and AdaFisher. We standardized the learning rate across all optimizers at 1× 10−3

to ensure comparability of results. Examination of Figure 1 reveals that AdaFisher’s convergence
is markedly superior to that of its counterparts, achieving rapid convergence to the local minimum
of the loss landscape concerning the first weight parameter within a few iterations. Conversely, the
alternative optimizers demonstrate convergence to less optimal local minima. Note that while the re-
sults may vary due to the stochastic nature of parameter initialization, AdaFisher typically converges
to a better local minimum compared to its counterparts.

D EXPERIMENTS

D.1 HARDWARE

In total, we had a server with 6 NVIDIA RTX 6000 Ada Generation GPUS with 48 gigabytes of
VRAM and 128 gigabytes of RAM available for all experiments. All experiments described in this
report were conducted on a system equipped with a single NVIDIA RTX 6000 Ada Generation GPU
and 64 gigabytes of RAM, except for training AdaFisher on ImageNet-1k with batch sizes of 512
and 1024, where four GPUs were utilized.

D.2 IMAGE CLASSIFICATION

We provide further results and detailed descriptions of our image classification experiments in this
section. We conducted five trials with random initializations for the CIFAR experiments and one
trial each for Tiny ImageNet and ImageNet-1k. We present the mean and standard deviation of the
results for these trials.
Note on training time. Given that various optimizers demonstrate significantly different epoch
durations, we have standardized our comparisons by restricting training to the total WCT consumed
by 200 epochs using AdaFisher for both CIFAR and Tiny ImageNet experiments. Conversely, for
ImageNet-1k, we report the results based on 90 WCT training epochs using Adam, as, surprisingly,
AdaFisher and Adam exhibited the same duration in this experiment. The final selected number of
epochs for each optimizer is detailed in Table 8. Note that we were unable to train AdaHessian on
ImageNet-1k due to the significant computational resources required by this optimizer.

Table 8: Comparison of the final epoch counts for various optimizers across different datasets.
CIFAR10/100 & Tiny ImageNet ImageNet-1k

Optimizers SGD Adam/AdamW AdaHessian K-FAC Shampoo AdaFisher/AdaFisherW Adam K-FAC Shampoo AdaFisher

Epochs 226 210 89 107 36 200 90 60 26 90

D.2.1 HP TUNING

Effective HP tuning is crucial for optimizing the performance of deep learning models. In this
study, we systematically explored various HPs for both CNNs and ViTs across multiple image clas-

30

Published as a conference paper at ICLR 2025

sification tasks. The following subsections detail the tuning strategies employed for each model
architecture and dataset.

CNNs. For all image classification tasks involving CNNs, we utilized ResNet18 as the backbone
architecture and evaluated its performance on the CIFAR-10 dataset with a fixed batch size of 256
trained on 50 epochs. The HP tuning process encompassed the following components:

• Optimizer Selection and Learning Rate Tuning: Each optimizer was fine-tuned using
ResNet18 on CIFAR-10. We performed a grid search to identify the optimal learning rate
from the set {0.0001, 0.0003, 0.0005, 0.0009, . . . , 0.1, 0.3, 0.5, 0.9}.

• Learning Rate Scheduling: A cosine annealing learning rate decay strategy was em-
ployed, aligning with the number of training epochs specified for each optimizer in Table 8.
This approach follows the methodology proposed by Loshchilov & Hutter (2019a) and was
determined to be optimal for our experimental setup.

• Weight Decay: We applied a uniform weight decay of 5 × 10−4 across all optimizers
for CIFAR-10 and Tiny ImageNet. An exception was made for MobileNetV3, where the
weight decay was set to 1× 10−5. For experiments on ImageNet-1k, the weight decay was
established at 1× 10−4.

• Damping Parameter Tuning:
– AdaFisher, K-FAC, and Shampoo:

* K-FAC and AdaFisher: The damping parameter was searched within
{0.0001, 0.0003, 0.0005, 0.0009, 0.001, 0.003, 0.005, 0.009, 0.01, 0.03, 0.05, 0.09}.
This range was chosen based on prior research (Martens & Grosse, 2015) and our
own experiments, which indicated optimal damping values around 1× 10−3.

* Shampoo: The damping parameter was tuned within {1 × 10−6, 3 × 10−6, 5 ×
10−6, 9× 10−6, 1× 10−5, 3× 10−5, 5× 10−5, 9× 10−5, 1× 10−4, 3× 10−4, 5×
10−4, 9× 10−4}, as optimal values typically reside around 1× 10−5.

– AdaHessian: The Hessian power was tuned within the range {0.1, 0.2, . . . , 0.9, 1.0}.
– SGD: The momentum of SGD was tuned within the range {0.1, 0.2, . . . , 0.9, 1.0}.
– AdaFisher Decay Factors: The decay factor γ for AdaFisher was tuned within
{0.1, 0.2, . . . , 0.9, 0.99}. The optimal value is: γ = 0.8.

• Implementation Details: For the Shampoo and K-FAC optimizers, we utilized the ASDL
library as implemented in PyTorch provided by Osawa et al. (2023).

ViTs. For ViT-based image classification tasks, we employed the Tiny Swin Transformer on the
CIFAR-10 dataset with a batch size of 256. The HP tuning strategy for ViTs included the following
elements:

• Weight Decay: Weight decay values were set as indicated in the respective original publi-
cations for each model:

– Tiny Swin: 1× 10−2

– FocalNet: 5× 10−2

– CCT-2/3×2: 6× 10−2

• Learning Rate Tuning: For SGD, AdaFisher, AdaHessian, K-FAC, and
Shampoo optimizers, we conducted a grid search over the learning rates
{0.3, 0.15, 0.1, 0.05, 0.03, 0.015, 0.01, 0.005, 0.003, 0.0015, 0.001}, as these optimiz-
ers typically operate with higher learning rates compared to Adam-based optimizers. For
AdamW, the learning rates were adopted from the original publications:

– Tiny Swin and FocalNet: 1× 10−4

– CCT-2/3×2: 5.5× 10−5

• Damping Parameter Tunning: We performed the same grid search over the damping
parameter for K-FAC, Shampoo and AdaFisher, the Hessian power for AdaHessian, the
momentum for SGD, and the decay factors for AdaFisher as explained in the CNNs part.

This meticulous HP tuning process ensures that each optimizer is optimally configured for the re-
spective model architectures and datasets, thereby facilitating a fair and comprehensive comparison

31

Published as a conference paper at ICLR 2025

of their performance across different image classification tasks. The final learning rates for all opti-
mizers and models are detailed in Table 9.

Table 9: Final selected learning rates for each optimizer, tuned using ResNet18 (for CNN) and Tiny Swin (for
ViT) on CIFAR10 using a batch size of 256. We selected based on final validation top-1 accuracy.

Architecture SGD Adam AdamW AdaHessian K-FAC Shampoo AdaFisher AdaFisherW

CNNs 0.1 0.001 - 0.15 0.3 0.3 0.001 -
ViTs 0.01 - 0.0001/0.000055 0.01 0.003 0.003 - 0.001

D.2.2 DATASET DETAILS

CIFAR. The training/test sets for Cifar10/100 dataset contain 50k/10k images, respectively. We
consider a batch size of 256. For CIFAR-related experiments, we perform 32 × 32 random-resize
cropping, random horizontal flipping and cutout (DeVries & Taylor, 2017) as data augmentations.
Refer to Takahashi et al. (2020) for more details.
Tiny ImageNet. The training/test sets for Tiny ImageNet Le & Yang (2015) contains 100k/10k
images. We perform 64 × 64 random-resize cropping and random horizontal flipping. The batch
size is set to be 256.
ImageNet-1k. The training/test sets for ImageNet-1k Russakovsky et al. (2015) contains
1,281,167/150k images. We consider a batch size of 256, as we performed experiments on a single
GPU instance without any GPU parallelism. We follow He et al. (2016) and perform random resized
cropping to 224× 244 and random horizontal flipping on the train set and 256× 256 resizing with
224× 224 center cropping on the test set.

Table 10: Final selected learning rates for each optimizer with ImageNet-1k pretrained weights, tuned using
ResNet50 on CIFAR10 using a batch size of 256. We tuned by completing a full WCT epoch training cycle
and selected based on final validation top-1 accuracy.

SGD Adam AdaHessian K-FAC Shampoo AdaFisher

0.01 0.0001 0.15 0.3 0.03 0.001

Table 11: Final selected epoch counts for various optimizers across transfer learning task.
SGD Adam/AdamW AdaHessian K-FAC Shampoo AdaFisher/AdaFisherW

58 55 22 27 18 50

D.2.3 TRANSFER LEARNING

For transfer learning, weights are initialized to the values provided by the publicly available check-
points by PyTorch, except the first convolutional for the ResNet architecture and last dense layers
for all networks, which change size to accommodate the new kernel size and number of classes,
respectively, that are randomly initialized. We train all models with weight decay 1e−4 as sug-
gested in Wightman et al. (2021), except for MobileNetV3, where weight decay is set to be 1e−5.
Moreover, we did a grid search for each optimizer for selecting the best learning rate of the range
{0.3, 0.15, 0.1, 0.03, 0.015, 0.01, . . . , 1e − 5} where we tabulate the selected learning rate for each
optimizer in Table 10. We use a batch size of 256 and cosine learning rate decay. We use the same
augmentation policy (without Cutout) as in the previous experiments. The results were obtained
using the WCT technique over 50 training epochs of AdaFisher, with the final epoch count detailed
in Table 11. All other parameters remained unchanged.

Table 12: Performance of various networks and optimizers on Tiny ImageNet using batch size 256. Reported
using wall clock time of 200 AdaFisher training epochs as the cutoff.

Network Adam AdaHessian K-FAC Shampoo AdaFisher

ResNet50 53.06 50.21 50.05 53.53 57.41
Big Swin 48.11 − 8.89 4.11 48.86

32

Published as a conference paper at ICLR 2025

D.2.4 RESULTS

Table 12 displays the results for the Tiny ImageNet dataset using ResNet50 and Big Swin networks,
with visualizations provided in Figure 14. AdaFisher and AdaFisherW consistently outperform
current SOTA optimizers. Notably, Figure 14 illustrates that although AdaFisher converges slower
than K-FAC during ResNet50 training, it achieves superior generalization. This is evidenced by
lower testing errors, suggesting that AdaFisher tends to converge to a flatter local minimum, enabling
smoother transitions between training and testing datasets with minimal generalization loss. For
further explanation, see Cha et al. (2021). Note that due to AdaHessian’s high memory consumption,
we were unable to train it on Big Swin. Table 13 presents the performance of various networks on
CIFAR10/100 datasets using different optimizers, both with and without the cutout augmentation
technique. AdaFisher and AdaFisherW consistently outperform their counterparts in both scenarios,
demonstrating stable training and robustness to the augmentation techniques. The training losses
and test errors for the CIFAR experiments, both with and without cutout, are visually represented
in Figures 16, 17, 18, and 19. Moreover, Figure 20 shows the training and validation error of
transfer learning task. Finally, Figure 15 illustrates the training and validation error of the distributed
version of AdaFisher on ImageNet-1k across various batch sizes. AdaFisher not only outperforms its
counterparts with smaller batch sizes (256), but it also continues to achieve superior generalization
as batch sizes increase. Furthermore, these results reinforce the stability analysis concerning batch
sizes presented in Section 4.4, extending it to a more challenging dataset.

Table 13: Performance metrics (mean, std) of different networks and optimizers on CIFAR10 and CIFAR100
using batch size 256 (a) without Cutout and (b) with Cutout. Reported using WCT of 200 AdaFisher training
epochs as the cutoff.

(a) Without Cutout

CIFAR10 CIFAR100
Network SGD Adam AdaHessian K-FAC Shampoo AdaFisher SGD Adam AdaHessian K-FAC Shampoo AdaFisher

ResNet18 94.890.193.640.1 94.050.1 94.040.294.520.195.020.1 76.420.172.710.2 73.640.2 74.790.276.530.177.100.2

ResNet50 95.070.2 93.8902 94.260.1 94.250.194.920.195.420.2 77.500.273.120.7 75.290.3 75.490.277.810.278.910.9

ResNet101 94.770.193.140.1 94.730.9 94.230.194.220.195.510.1 78.760.273.230.4 72.190.2 75.460.378.820.179.740.3

DenseNet12195.110.193.740.2 94.540.1 94.970.194.990.195.290.1 78.610.275.380.3 72.540.9 77.090.378.700.379.030.2

MobileNetV392.130.291.950.1 91.43.1 91.920.191.910.292.890.1 73.810.265.640.2 60.783.6 69.870.368.010.273.150.2

Tiny Swin 80.080.287.470.2 78.340.2 66.840.368.440.289.080.1 57.430.362.200.2 54.120.3 36.120.333.750.366.470.2

FocalNet 80.870.285.650.1 71.030.3 42.920.241.490.286.920.1 45.660.352.880.3 38.050.3 11.230.311.060.3 52.90.1

CCT-2/3×2 73.120.283.950.1 − 34.631.1 35.10.8 84.630.3 52.121.260.141.1 − 8.060.6 9.760.3 60.630.6
∗Note that Adam and AdaFisher were used for all CNN architectures, while AdamW and AdaFisherW were applied for all ViT experiments.

(b) With Cutout

CIFAR10 CIFAR100
Network SGD Adam AdaHessian K-FAC Shampoo AdaFisher SGD Adam AdaHessian K-FAC Shampoo AdaFisher

ResNet18 95.640.194.850.1 95.440.1 95.170.294.080.296.250.2 76.560.275.740.1 71.790.2 76.030.376.780.277.280.2

ResNet50 95.710.194.450.2 95.540.1 95.660.194.590.196.340.2 78.010.174.650.5 75.810.3 77.400.478.070.479.770.4

ResNet101 95.980.294.570.1 95.290.6 96.010.194.630.196.390.1 78.890.275.560.3 73.380.2 77.010.478.830.280.650.4

DenseNet12196.090.194.860.1 96.110.1 96.120.195.660.196.720.1 80.130.475.870.4 74.800.9 79.790.280.240.381.360.3

MobileNetV394.430.293.320.1 92.863.1 94.340.193.810.295.280.1 73.890.370.620.3 56.584.5 73.750.370.850.377.560.1

Tiny Swin 82.340.287.370.6 84.150.2 64.790.563.910.488.740.4 54.890.460.210.4 56.860.5 34.450.430.391.266.050.5

FocalNet 82.030.286.230.1 64.180.2 38.940.837.960.787.900.1 47.7603 52.710.5 32.330.3 9.980.6 9.180.1 53.690.3

CCT-2/3×2 78.760.383.890.4 − 33.082.335.160.484.940.3 54.050.459.780.5 − 7.170.2 8.600.1 62.910.5
∗Note that Adam and AdaFisher were used for all CNN architectures, while AdamW and AdaFisherW were applied for all ViT experiments.

Figure 14: WCT training loss and testing error curves of several optimizers on Tiny ImageNet dataset, ResNet-
50 and Big Swin with batch size of 256. AdaFisher consistently achieves lower test error as compared to Adam,
AdaHessian, K-FAC and Shampoo. The final accuracy results are reported in Table 12.

33

Published as a conference paper at ICLR 2025

Figure 15: Performance of distributed AdaFisher using ResNet50 on ImageNet-1k with different batch sizes
for 90 epochs. The final accuracy results are reported in Table 3.

Figure 16: WCT training loss, test error, for CNNs and ViTs on CIFAR10 experiments, without Cutout. A
batch size of 256 was used, and all networks were tuned using ResNet18 applied on CIFAR10. The final
accuracy results are reported in Table 13 (a).

34

Published as a conference paper at ICLR 2025

Figure 17: WCT training loss, test error, for CNNs and ViTs on CIFAR100 experiments, without Cutout.
A batch size of 256 was used, and all networks were tuned using ResNet18 applied on CIFAR10. The final
accuracy results are reported in Table 13 (a).

35

Published as a conference paper at ICLR 2025

Figure 18: WCT training loss, test error, for CNNs and ViTs on CIFAR10 experiments, with Cutout. A batch
size of 256 was used, and all networks were tuned using ResNet18 applied on CIFAR10. The final accuracy
results are reported in Table 13 (b).

36

Published as a conference paper at ICLR 2025

Figure 19: WCT training loss, test error, for CNNs and ViTs on CIFAR100 experiments, with Cutout. A batch
size of 256 was used, and all networks were tuned using ResNet18 applied on CIFAR10. The final accuracy
results are reported in Table 13 (b).

37

Published as a conference paper at ICLR 2025

Figure 20: WCT training loss and test error for CNNs on CIFAR-10/100 experiments with pretrained weights
on ImageNet-1k. A batch size of 256 was used, and all networks were tuned using ResNet50 applied on
CIFAR10. The final accuracy results are reported in Table 4.

38

Published as a conference paper at ICLR 2025

D.2.5 COMPARISON WITH OTHER RELEVANT METHODS

In this section, we compare AdaFisher with six baseline optimizers for image classification: SGD,
Adam/AdamW, AdaHessian, KFAC, and Shampoo. These baselines were selected because they
either represent the current state of the art or utilize second-order gradients, making them suitable
comparisons for evaluating second-order optimizers. However, other optimizers, such as AdaFactor
Shazeer & Stern (2018) and EVA Zhang et al. (2023), are also relevant in this context. AdaFactor is
an enhanced Adam memory-efficient optimizer that approximates second-order moments using row
and column factorizations, reducing memory consumption for large-scale models. EVA is a second-
order optimizer designed to leverage the FIM with efficient matrix inversion techniques. Therefore,
we experimentally compare AdaFisher against the optimizer baselines, including Eva and AdaFac-
tor. Regarding the HPs for EVA, we used the optimal values reported in its original paper and trained
the model for 119 epochs using the WCT technique. For AdaFactor, we fine-tuned the learning rate
as described in Appendix D.2.1, identifying 0.001 as the optimal value, and trained the model for
216 epochs. Figure 21 illustrates the performance comparison on two distinct models: ResNet-18
with CIFAR-100 and MobileNetV3 with CIFAR10. The same data augmentation techniques were
applied across all experiments, as detailed in Appendix D.2.2. The best test accuracies achieved
are summarized in Table 14. AdaFisher demonstrates superior performance compared to the new
optimizer baselines, outperforming both EVA and AdaFactor.
Table 14: Performance comparison of AdaFisher and other optimizers using ResNet-18 (CIFAR100) and
MobileNet-V3 (CIFAR10). Reported using WCT of 200 AdaFisher training epochs as the cutoff.

Network—Optimizer SGD Adam AdaFactor AdaHessian K-FAC Eva Shampoo AdaFisher

MobileNet-V3 94.43 93.32 93.21 92.86 94.34 94.41 93.81 95.28
ResNet-18 76.56 75.74 69.45 71.79 76.03 76.69 76.78 77.28

Figure 21: WCT training loss, test error, for ResNet-18 on CIFAR100 and MobileNet-V3 on CIFAR10. A
batch size of 256 was used. The final accuracy and training time results are summarized in Table 14.

Table 15: Performance comparison of AdaFisher and other optimizers using (a) ResNet-18 and (b) MobileNet-
V3 on CIFAR100 for 200 epochs.

(a) ResNet-18

Optimizer SGD Adam AdaFactor AdaHessian K-FAC Eva Shampoo AdaFisher

Test Acc 76.52 75.71 69.78 76.86 76.96 77.08 77.35 77.28
Training Time (min) 20.03 23.33 21.67 96.67 46.46 43.18 216.67 26.58

(b) MobileNet-V3

Optimizer SGD Adam AdaFactor AdaHessian K-FAC Eva Shampoo AdaFisher

Test Acc 73.42 70.53 71.08 62.36 75.16 75.48 70.65 77.56
Training Time (min) 50.03 56.63 54.22 206.28 116.86 96.78 487.21 60.12

(c) ResNet-50

Optimizer SGD Adam AdaFactor AdaHessian K-FAC Eva Shampoo AdaFisher

Test Acc 76.12 73.03 70.78 76.18 77.66 78.01 78.89 78.91
Training Time (min) 70.13 76.67 73.32 502.28 149.36 138.58 583.11 83.02

D.2.6 COMPARISON WITH CONSISTENT EPOCH COUNTS

We evaluated AdaFisher and its counterparts, including two prominent optimizers, Eva and Adafac-
tor, over 200 epochs on ResNet-18, ResNet-50 and MobileNet-V3 using the CIFAR100 dataset.

39

Published as a conference paper at ICLR 2025

Figure 22 illustrates the training loss and test error trends over epochs, along with the best test error
achieved as a function of training time per epoch for all optimizers across both models. Table 15
summarizes the highest test accuracy and total training time for each method on both network ar-
chitectures. Notably, while Shampoo achieved marginally better test accuracy than AdaFisher on
ResNet-18, it required approximately eight times longer training time. Conversely, AdaFisher out-
performed all baseline optimizers, including Shampoo, in the MobileNet-V3 and ResNet-50 exper-
iments, achieving superior test accuracy while maintaining high efficiency comparable to first-order
optimizers.

Figure 22: Performance comparison of AdaFisher and other well-finetuned optimizers at their best perfor-
mances using ResNet-18 and MobileNet-V3 on CIFAR-100 for 200 epochs. A batch size of 256 was used. The
final accuracy and training time results are summarized in Table 15.

D.2.7 COMPARISON OF TRAINING SPEED AND MEMORY UTILIZATION

As discussed in Section 4.4, AdaFisher emerges as a balanced trade-off between time complexity
and performance. Similarly, its memory footprint is comparable to that of Adam, showcasing ef-
ficient VRAM utilization. We extend our stability analysis to the CIFAR10 dataset to provide a
dataset-independent evaluation of performance metrics, as depicted in panel (A) of Figure 23. Ad-
ditionally, we analyze the memory usage for different batch sizes using the ResNet-50 model on
the CIFAR-10/100, presented in panel (B) of Figure 23. The analysis reveals that AdaFisher while
maintaining high accuracy levels, uses memory comparably to Adam, especially evident in larger
batch sizes. This suggests that AdaFisher can achieve competitive performance without excessive
VRAM consumption, making it an optimal choice for scenarios with memory constraints.

Figure 23: (A) Performance comparison of AdaFisher and other optimizers across various batch sizes, epoch
times and learning rates (with a batch size of 256), evaluated using the ResNet50 on the CIFAR-10. (B) Per-
formance comparison of AdaFisher and other optimizers regarding the memory used, assessed using ResNet50
and CIFAR10/100 across different batch sizes. This figure highlights how AdaFisher competes closely with
Adam in terms of memory efficiency and performance.

40

Published as a conference paper at ICLR 2025

Figure 24: Epoch times for various networks on CIFAR10 (A) and CIFAR100 (B) using Adam, AdaFisher,
K-FAC, AdaHessian and Shampoo.

Epoch Times. Continuing our analysis of the time complexity for each optimizer, we present in
Figure 24 the epoch times for various network architectures and datasets. Specifically, we compare
the epoch times of Adam, AdaFisher, K-FAC, AdaHessian, and Shampoo optimizers on CIFAR10
and CIFAR100 datasets. As depicted in Figure 24 panel (A), AdaFisher demonstrates a comparable
training time to Adam across multiple network architectures on the CIFAR10 dataset. This indi-
cates that AdaFisher achieves efficient optimization without incurring significant additional com-
putational costs. Similarly, in Figure 24 panel (B), we observe that the epoch times for AdaFisher
remain close to those of Adam on the CIFAR100 dataset. While K-FAC and AdaHessian exhibit
increased training times, Shampoo shows the highest epoch times across all tested networks. This
further highlights the efficiency of AdaFisher as an optimizer, combining the advantages of advanced
optimization techniques with practical training times.

D.3 LANGUAGE MODELING

D.3.1 DATASET DETAILS

The Wikitext-2 dataset, derived from high-quality Wikipedia articles, contains over two million
words and is structured into training, validation, and test sets. It is widely used for benchmarking
language models in natural language processing, especially assessing perplexity to evaluate pre-

41

Published as a conference paper at ICLR 2025

dictive performance. This dataset offers a balance between computational efficiency and linguistic
complexity, making it ideal for practical language model training and evaluation.

D.3.2 NETWORK DETAILS

Network. We utilize a streamlined GPT-1 architecture, which incorporates four self-attention lay-
ers, a reduction from the original twelve. This configuration retains core modeling capabilities while
reducing complexity, encompassing a total of 28,351,488 learnable parameters.
Embeddings & Parameter Sharing. To expedite training, we employ pretrained embeddings from
OpenAI’s GPT, leveraging the benefits of parameter sharing for enhanced efficiency and faster con-
vergence.

D.3.3 HPS

The model underwent training for 50 WCT epochs using AdaFisher on the WikiText-2 and PTB
datasets, with the final epoch counts for each optimizer detailed in Table 16. For AdamW, we follow

Table 16: Final selected epoch counts for various optimizers across language modeling task
AdamW AdaHessian Shampoo AdaFisherW

55 18 12 50

the learning rate setting in ElNokrashy et al. (2022). For the other optimizers, we select the learning
rate by doing a grid search of {0.3, 0.15, 0.1, 0.05, 0.03, 0.015, 0.01, . . . , 1e−5}. We tabulate the
learning rate that we use in Table 17. The batch size was configured to 32, and the weight decay was
established at 0.1. Despite optimizing the configuration of HPs, Shampoo failed to converge, and
K-FAC could not be trained at all.

Table 17: Final selected learning rates for each optimizer, tuned using GPT1 on WikiText-2 and
PTB using a batch size of 32. We selected based on final validation PPL.

AdamW AdaHessian Shampoo AdaFisherW

5e−5 0.015 0.003 1e−4

D.3.4 RESULTS

Figure 25 displays the training loss and testing error curves, clearly showing that AdaFisher sur-
passes both Adam and AdaHessian in performance on the WikiText-2 and PTB datasets.

Figure 25: Training Loss and Test Perplexity of Small GPT-1 Model on WikiText-2 and PTB Datasets. Ex-
periments were conducted using a batch size of 32 and optimal settings for all optimizers.

42

	Introduction
	Background
	Methodology
	Diagonal Concentration of KFs
	Efficient Computation of the FIM
	Integrating FIM into Adaptive Optimization Framework
	Convergence Analysis

	Results
	Image Classification
	Transfer Learning
	Language Model
	Stability Analysis

	Related work
	Conclusion, Limitations and Future Research
	Theory
	KFs: A Structural Examination (Continue)
	Proofs
	Computation of KFs
	Distributed AdaFisher

	Ablation Studies
	Evaluating Stability Across Learning Rate Schedulers, and Assessing Convergence Efficiency
	Component Analysis: Evaluating the Significance of AdaFisher's Elements

	Visualization
	Experiments
	Hardware
	Image Classification
	HP Tuning
	Dataset Details
	Transfer Learning
	Results
	Comparison with Other Relevant Methods
	Comparison with Consistent Epoch Counts
	Comparison of Training Speed and Memory Utilization

	Language Modeling
	Dataset Details
	Network Details
	HPs
	Results

