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Abstract

The graduated optimization approach is a heuristic method for finding globally optimal so-
lutions for nonconvex functions and has been theoretically analyzed in several studies. This
paper defines a new family of nonconvex functions for graduated optimization, discusses
their sufficient conditions, and provides a convergence analysis of the graduated optimiza-
tion algorithm for them. It shows that stochastic gradient descent (SGD) with mini-batch
stochastic gradients has the effect of smoothing the function, the degree of which is deter-
mined by the learning rate and batch size. This finding provides theoretical insights on why
large batch sizes fall into sharp local minima, why decaying learning rates and increasing
batch sizes are superior to fixed learning rates and batch sizes, and what the optimal learning
rate scheduling is. To the best of our knowledge, this is the first paper to provide a theoret-
ical explanation for these aspects. Moreover, a new graduated optimization framework that
uses a decaying learning rate and increasing batch size is analyzed and experimental results
of image classification that support our theoretical findings are reported.

1 Introduction

1.1 Background

The amazing success of deep neural networks (DNN) in recent years has been based on optimization by
stochastic gradient descent (SGD) (Robbins & Monro, 1951) and its variants, such as Adam (Kingma & Ba,
2015). These methods have been widely studied for their convergence (Moulines & Bach, 2011; Needell et al.,
2014) (Fehrman et al., 2020; Bottou et al., 2018; Scaman & Malherbe, 2020; Loizou et al., 2021; Zaheer et al.,
2018; Zou et al., 2019; Chen et al., 2019; Zhou et al., 2020; Chen et al., 2021; Iiduka, 2022) and stability
(Hardt et al., 2016; Lin et al., 2016; Mou et al., 2018; He et al., 2019) in nonconvex optimization.

SGD updates the parameters as xt+1 := xt − η∇fSt(xt), where η is the learning rate and ∇fSt is the
stochastic gradient estimated from the full gradient ∇f using a mini-batch St. Therefore, there is only
an ωt := ∇fSt(xt) − ∇f(xt) difference between the search direction of SGD and the true steepest descent
direction. Some studies claim that it is crucial in nonconvex optimization. For example, it has been proven
that noise helps the algorithm to escape local minima (Ge et al., 2015; Jin et al., 2017; Daneshmand et al.,
2018; Harshvardhan & Stich, 2021), achieve better generalization (Hardt et al., 2016; Mou et al., 2018), and
to find a local minimum with a small loss value in polynomial time under some assumptions (Zhang et al.,
2017).

Kleinberg et al. (2018) also suggests that noise smooths the objective function. Here, at time t, let yt be the
parameter updated by the gradient descent (GD) and xt+1 be the parameter updated by SGD, i.e.,

yt := xt − η∇f(xt),
xt+1 := xt − η∇fSt

(xt)
= xt − η(∇f(xt) + ωt).
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Then, we obtain the following update rule for the sequence {yt},

Eωt [yt+1] = Eωt [yt] − η∇Eωt [f(yt − ηωt)] , (1)

where f is Lipschitz continuous and differentiable. Therefore, if we define a new function f̂(yt) := Eωt [f(yt −
ηωt)], f̂ can be smoothed by convolving f with noise (see Definition 2.1, also Wu (1996)), and its parameters
yt can approximately be viewed as being updated by using the gradient descent to minimize f̂ . In other
words, simply using SGD with a mini-batch smooths the function to some extent and may enable escapes
from local minima. (The derivation of equation (1) is in Section A.)

Graduated Optimization. Graduated optimization is one of the global optimization methods, which
searches for the global optimal solution of difficult multimodal optimization problems. The method generates
a sequence of simplified optimization problems that gradually approach the original problem through different
levels of local smoothing operations. It solves the easiest simplified problem first, as it should have nice
properties such as convexity or strong convexity; after that, it uses that solution as the initial point for
solving the second-simplest problem, then the second solution as the initial point for solving the third-
simplest problem and so on, as it attempts to escape from local optimal solutions of the original problem
and reach a global optimal solution.

This idea was first established as graduated non-convexity (GNC) by Blake & Zisserman (1987) and has
since been studied in the field of computer vision for many years. Similar early approaches can be found
in Witkin et al. (1987) and Yuille (1989), and the same concept has appeared in the fields of numerical
analysis (Allgower & Georg, 1990) and optimization (Rose et al., 1990; Wu, 1996). Over the past 25 years,
graduated optimization has been successfully applied to many tasks in computer vision, such as early vision
(Black & Rangarajan, 1996), image denoising (Nikolova et al., 2010), optical flow (Sun et al., 2010; Brox &
Malik, 2011), dense correspondence of images (Kim et al., 2013), and robust estimation (Yang et al., 2020;
Antonante et al., 2022; Peng et al., 2023). In addition, it has been applied to certain tasks in machine
learning, such as semi-supervised learning (Chapelle et al., 2006; Sindhwani et al., 2006; Chapelle et al.,
2008), unsupervised learning (Smith & Eisner, 2004), and ranking Chapelle & Wu (2010). Moreover, score-
based generative models (Song & Ermon, 2019; Song et al., 2021b) and diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2021a; Rombach et al., 2022), which are currently state-of-the-art
generative models, implicitly use the techniques of graduated optimization. A comprehensive survey on the
graduated optimization approach can be found in (Mobahi & Fisher III, 2015b).

While graduated optimization is popular, there is not much theoretical analysis on it. Mobahi & Fisher III
(2015a) performed the first theoretical analysis, but they did not provide a practical algorithm. Hazan et al.
(2016) defined a family of nonconvex functions satisfying certain conditions, called σ-nice, and proposed
a first-order algorithm based on graduated optimization. In addition, they studied the convergence and
convergence rate of their algorithm to a global optimal solution for σ-nice functions. Iwakiri et al. (2022)
proposed a single-loop method that simultaneously updates the variable that defines the noise level and the
parameters of the problem and analyzed its convergence. Li et al. (2023) analyzed graduated optimization
based on a special smoothing operation. Note that Duchi et al. (2012) pioneered the theoretical analysis
of optimizers using Gaussian smoothing operations for nonsmooth convex optimization problems. Their
method of optimizing with decreasing noise level is truly a graduated optimization approach.

1.2 Motivation

Equation (1) indicates that SGD smooths the function (Kleinberg et al., 2018), but it is not clear to what
extent the function is smoothed or what factors are involved in the smoothing. Therefore, we decided to
clarify these aspects and identify what parameters contribute to the smoothing.

Although Hazan et al. (2016) proposed a σ-nice function, it is unclear how special a nonconvex function
the σ-nice function is. In some cases, there may be no function that satisfies the σ-nice property. Here, we
decided to try to define and analyze a new family of functions with clear sufficient conditions as replacements
for the σ-nice function.
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Figure 1: Conceptual diagram of new σ-nice function and its smoothed versions (see also the Notation 1).

In graduated optimization, the noise level is gradually reduced, eventually arriving at the original function,
but there are an infinite number of ways to reduce the noise. For better optimization, the choice of noise
scheduling is a very important issue. Therefore, we also aimed to clarify the optimal noise scheduling
theoretically.

Once it is known what parameters of SGD contribute to smoothing and the optimal noise scheduling, an
implicit graduated optimization can be achieved by varying the parameters so that the noise level is optimally
reduced gradually. Our goal was thus to construct an implicit graduated optimization framework using the
smoothing properties of SGD to achieve global optimization of deep neural networks.

1.3 Contributions

1.3.1 SGD’s Smoothing Property

We show that the degree of smoothing by SGD depends on the ratio η√
b

between the batch size and the
learning rate. Accordingly, the smaller the batch size b and the larger the learning rate η are, the more
smoothed the function becomes (see Figure 1). Also, we can say that halving the learning rate is the same
as quadrupling the batch size. (Goyal et al., 2017; Smith et al., 2018; Xie et al., 2021) also studied SGD
dynamics and demonstrated how the ratio η

b affect training dynamics. Note that our theory includes and
does not conflict with their results.

1.3.2 Why the Use of Large Batch Sizes Leads to Solutions Falling into Sharp Local Minima

In other words, from a smoothing perspective, if we use a large batch size and/or a small learning rate,
it is easy for the algorithm to fall into a sharp local minimum and experience a drop in generalization
performance, since it will optimize a function that is close to the original multimodal function. As is well
known, training with a large batch size leads to convergence to sharp local minima and poor generalization
performance, as evidenced by the fact that several prior studies (Hoffer et al., 2017; Goyal et al., 2017; You
et al., 2020) provided techniques that do not impair generalization performance even with large batch sizes.
Keskar et al. (2017) showed this experimentally, and our results provide theoretical support for it.
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1.3.3 Why Using Decaying Learning Rates and Increasing Batch Sizes is Superior to Using Fixed
Ones

Moreover, we can say that decreasing the learning rate and/or increasing the batch size during training is
indeed an implicit graduated optimization. Hence, using a decaying learning rate and increasing the batch
size makes sense in terms of avoiding local minima. Our results provide theoretical support for the many
positive findings on using decaying learning rates (Wu et al., 2014; Ioffe & Szegedy, 2015; Loshchilov &
Hutter, 2017; Hundt et al., 2019; You et al., 2019; Hundt et al., 2019; Lewkowycz, 2021) and increasing
batch sizes (Byrd et al., 2012; Friedlander & Schmidt, 2012; Balles et al., 2017; De et al., 2017; Bottou et al.,
2018; Smith et al., 2018).

1.3.4 New σ-nice Function

We propose a new σ-nice function that generalizes the σ-nice function. All smoothed functions of the new
σ-nice function are σ-strongly convex in a neighborhood B(x⋆; dm|δm|) of the optimal solution x⋆ that is
proportional to the noise level |δm| (see Figure 1). In contrast to Hazan et al. (2016), we show sufficient
conditions for a certain nonconvex function f to be a new σ-nice function as follows:

2Lg max
{∥∥x⋆

δm
− x⋆

∥∥ ,
∥∥∥x⋆

δm+1
− x⋆

∥∥∥}
σ (1 − γm)

≤ |δm| =
∣∣δ−

m

∣∣ .
where |δ−

m| > 0, dm+1 > 1, γm ∈
(

1
dm+1

, 1
)

, and m ∈ [M ] ⊂ N. δm is the noise level of f̂δm
, which is a

smoothed version of f , and x⋆ is the global optimal solution of the original function f . Furthermore, we
show that the graduated optimization algorithm for the Lf -Lipschitz new σ-nice function converges to an
ϵ-neighborhood of the globally optimal solution in O

(
1/ϵ

1
p +2
)

(p ∈ (0, 1]) rounds.

1.3.5 Optimal Noise Scheduling

Let |δm| be the current noise level, and let the next noise level be determined by |δm+1| := γm|δm|, where
γm is the decay rate of noise. We show theoretically that γm should decay slowly from a value close to 1
for convergence to the globally optimal solution. To the best of our knowledge, ours is the first paper to
provide theoretical results on optimal scheduling, both in terms of how to reduce the noise in graduated
optimization and how to decay the learning rate and increase the batch size in general optimization. Noise
scheduling also has an important role in score-based models (Song & Ermon, 2020), diffusion models (Chen,
2023), panoptic segmentation (Chen et al., 2023), etc., so our theoretical findings will contribute to these
methodologies as well.

Furthermore, since the decay rate of noise in graduated optimization is equivalent to the decay rate of the
learning rate and rate of increase in batch size, we can say that it is desirable to vary them gradually from
a value close to 1. As for the schedule for decaying the learning rate, many previous studies have tried
cosine annealing (without restart) (Loshchilov & Hutter, 2017), cosine power annealing (Hundt et al., 2019),
or polynomial decay (Liu et al., 2015; Chen et al., 2018; Zhao et al., 2017; Chen et al., 2017), but it has
remained unclear why they are superior to fixed rates. We provide theoretical support showing why they
are experimentally superior. In particular, we show that a polynomial decay with a power less than or equal
to 1 is the optimal learning rate schedule and demonstrate this in Section 4.

1.3.6 Implicit Graduated Optimization

We propose a new implicit graduated optimization algorithm. The algorithm decreases the learning rate
of SGD and increases the batch size during training. We show that the algorithm for the Lf -Lipschitz
new σ-nice function converges to an ϵ-neighborhood of the globally optimal solution in O

(
1/ϵ

1
p

)
(p ∈ (0, 1])

rounds. In Section 4, we show experimentally that methods that reduce noise outperform methods that use
a constant learning rate and constant batch size. We also find that methods which increase the batch size
outperform those which decrease the learning rate when the decay rate of the noise is set at 1/

√
2.
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2 Preliminaries

2.1 Definitions and Notation

The notation used in this paper is summarized in Table 1.

Table 1: Notation List
Notation Description

N The set of all nonnegative integers
[N ] [N ] := {1, 2, . . . , N} (N ∈ N\{0})
Rd A d-dimensional Euclidean space with inner product ⟨·, ·⟩, which induces the norm ∥ · ∥

Eξ[X] The expectation with respect to ξ of a random variable X
St Mini-batch of b samples zi at time t

N(x⋆; ϵ) ϵ-neighborhood of a vector x⋆, i.e., N(x⋆; ϵ) :=
{

x ∈ Rd : ∥x − x⋆∥ < ϵ
}

B(x⋆; r) The Euclidian closed ball of radius r centered at x⋆, i.e., B(x⋆; r) :=
{

x ∈ Rd : ∥x − x⋆∥ ≤ r
}

u ∼ B(x⋆; r) A random variable distributed uniformly over B(x⋆; r)
M The number of smoothed functions, i.e., M ∈ N
m Counts from the smoothest function, i.e., m ∈ [M ]
δ The degree of smoothing of the smoothed function, i.e., δ ∈ R

δm The degree of smoothing of the m-th smoothed function, i.e., δm ∈ R
f̂δ The function obtained by smoothing f with a noise level δ

f̂δm The m-th smoothed function obtained by smoothing f with a noise level δm

xm+1 xm+1 is defined by f̂δm (xm+1) ≤ f̂δm (x̂t), where (x̂t)TF +1
t=1 is generated by GD

fi(x) A loss function for x ∈ Rd and zi

f(x) The total loss function for x ∈ Rd, i.e., f(x) := |S|−1∑
i∈S fi(x)

ξ A random variable supported on Ξ that does not depend on x ∈ Rd

ξt ξ0, ξ1, . . . are independent samples and ξt is independent of (xk)t
k=0 ⊂ Rd

ξt,i A random variable generated from the i-th sampling at time t

Gξt (x) The stochastic gradient of f(·) at x ∈ Rd

∇fSt (xt) The mini-batch stochastic gradient of f(xt) for St, i.e., ∇fSt (xt) := b−1∑
i∈[b] Gξt,i (xt)

Definition 2.1 (Smoothed function). Given an Lf -Lipschitz function f , define f̂δ to be the function obtained
by smoothing f as

f̂δ(x) := Eu∼B(0;1) [f(x − δu)] , (2)

where δ ∈ R represents the degree of smoothing and u is a random variable distributed uniformly over B(0; 1).
Also,

x⋆ := argmin
x∈Rd

f(x) and x⋆
δ := argmin

x∈Rd

f̂δ(x).

Remark: For a general smoothing as in Definition 2.1, the distribution followed by the random variable
u need not necessarily be uniform; it can be a normal distribution. In fact, several previous studies (Wu,
1996; Iwakiri et al., 2022) assumed that u follows a normal distribution. Here, we assume that it follows a
uniform distribution because this is necessary for the analysis of the new σ-nice function. This is also true
for the analysis of the σ-nice function (Hazan et al., 2016).

There are a total of M smoothed functions in this paper. The largest noise level is δ1 and the smallest noise
level is δM+1 = 0. Thus, f̂δM+1 = f .
Definition 2.2 (σ-nice function (Hazan et al., 2016)). A function f : Rd → R is said to be σ-nice if the
following two conditions hold:

(i) For every δ > 0 and every x⋆
δ , there exists x⋆

δ/2 such that:∥∥∥x⋆
δ − x⋆

δ/2

∥∥∥ ≤ δ

2
.
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(ii) For every δ > 0, let rδ = 3δ; then, the function f̂δ(x) over N(x⋆
δ ; rδ) is σ-strongly convex.

The σ-nice property implies that optimizing the smoothed function f̂δ is a good start for optimizing the next
smoothed function f̂δ/2, which has been shown to be sufficient for graduated optimization (Hazan et al.,
2016).

2.2 Assumptions and Lemmas

We make the following assumptions:
Assumption 2.1. (A1) f : Rd → R is continuously differentiable and Lg-smooth, i.e., for all x, y ∈ Rd,

∥∇f(x) − ∇f(y)∥ ≤ Lg∥x − y∥.

(A2) f : Rd → R is Lf -Lipschitz function, i.e., for all x, y ∈ Rd,

|f(x) − f(y)| ≤ Lf ∥x − y∥.

(A3) Let (xt)t∈N ⊂ Rd be the sequence generated by SGD.

(i) For each iteration t,

Eξt [Gξt(xt)] = ∇f(xt).

(ii) There exists a nonnegative constant C2 such that

Eξt

[
∥Gξt

(xt) − ∇f(xt)∥2] ≤ C2.

(A4) For each iteration t, SGD samples a mini-batch St ⊂ S and estimates the full gradient ∇f as

∇fSt(xt) := 1
b

∑
i∈[b]

Gξt,i
(xt) = 1

b

∑
{i : zi∈St}

∇fi(xt).

Lemma 2.1. Suppose that (A3)(ii) and (A4) hold for all t ∈ N; then,

Eξt

[
∥∇fSt

(xt) − ∇f(xt)∥2] ≤ C2

b
.

The proof of Lemma 2.1 can be found in Appendix B.1.

The following Lemmas concern the properties of smoothed functions f̂δ. See Appendix B for their proofs.
Lemma 2.2. Suppose that (A1) holds; then, f̂δ defined by (2) is also Lg-smooth; i.e., for all x, y ∈ Rd,∥∥∥∇f̂δ(x) − ∇f̂δ(y)

∥∥∥ ≤ Lg∥x − y∥.

Lemma 2.3. Suppose that (A2) holds; then f̂δ is also an Lf -Lipschitz function; i.e., for all x, y ∈ Rd,∣∣∣f̂δ(x) − f̂δ(y)
∣∣∣ ≤ Lf ∥x − y∥.

Lemmas 2.2 and 2.3 imply that the Lipschitz constants Lf of the original function f and Lg of ∇f are taken
over by the smoothed function f̂δ and its gradient ∇f̂δ for all δ ∈ R.

Lemma 2.4. Let f̂δ be the smoothed version of f ; then, for all x ∈ Rd,∣∣∣f̂δ(x) − f(x)
∣∣∣ ≤ |δ|Lf .
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Lemma 2.4 implies that the larger the degree of smoothing is, the further away the smoothed function is
from the original function. Since the degree of smoothing is determined by the learning rate and batch size
(see Section 3.3), we can say that the optimal value obtained by using a large learning rate and/or small
batch size may be larger than the optimal value obtained by using a small learning rate and/or large batch
size. When decreasing the learning rate or increasing the batch size, the sharp decrease in function values
at that time depends on the change in the objective function (see also Figure 1), and this phenomenon is
especially noticeable in schedules that use the same noise level for multiple epochs, such as the step decay
learning rate (see Figures 7-9).

3 Main Results

3.1 New σ-nice function

Since the definition of the σ-nice function is inappropriate for large noise levels (see Section 3.2), we generalize
the σ-nice function and define a new σ-nice function that can be defined even when the noise level is large.
Definition 3.1. Let δ1 ∈ R. A function f : Rd → R is said to be “new σ-nice” if the following two conditions
hold :

(i) For all m ∈ [M ] and all γm ∈ (0, 1), there exist δm ∈ R with |δm+1| := γm|δm| and x⋆
δm

such that∥∥∥x⋆
δm

− x⋆
δm+1

∥∥∥ ≤ |δm| − |δm+1|.

(ii) For all m ∈ [M ] and all γm ∈ (0, 1), there exist δm ∈ R with |δm+1| := γm|δm| and dm > 1 such that the
function f̂δm(x) is σ-strongly convex on N(x⋆; dmδm).

The value δm ∈ R in Definition 3.1 is the degree of smoothing or noise level (see Definition 2.1) and γm ∈ (0, 1)
is the decay rate of the noise, i.e., γm := |δm+1|/|δm|. In the definition of the σ-nice function (Definition
2.2), γm is always 0.5. We have extended this condition to γm ∈ (0, 1). We can show that, for the graduated
optimization algorithm to be successful, γm requires a certain lower bound, which provides important insights
into the optimal noise scheduling (see Section 3.2).

The next propositions provide a sufficient condition for the function f to be a new σ-nice function. The
proofs of Propositions 3.1 and 3.2 are in Section D.5 and D.6, respectively.
Proposition 3.1. Let am >

√
2 for all m ∈ [M ]. Suppose that the function f : Rd → R is σ-strongly convex

on B(x⋆; r) for sufficiently small r > 0 and the noise level |δm| satisfies |δm| = |δ−
m|; then, the smoothed

function f̂δm
is σ-strongly convex on N(x⋆; amr), where

|δ−
m| := sup

x∈N(x⋆;amr)\{x⋆}
Eum∼B(0;1)

[∣∣∣∥x⋆ − x∥∥um∥ cos θ −
√

∥x⋆ − x∥2∥um∥2 cos2 θ − r2(a2
m − 1)

∣∣∣] ,

and θ is the angle between um and x⋆ − x.

Also, if we define dm as dm := amr/|δ−
m|, then the smoothed function f̂δm

is also σ-strongly convex on
N(x⋆; dm|δm|).

Note that um ∈ Rd is a random variable used to define the smoothed function f̂δm , which we assume follows a
uniform distribution (see Definition 2.1). In addition, am ∈ R is only required for the analysis and (am)m∈[M ]
is monotone decreasing. Proposition 3.1 implies that the radius of the strongly convex region of the function
f̂δm

extends to amr if the sequence of noise (δm)m∈[M ] added to the function f satisfies |δm| = |δ−
m| for

all m ∈ [M ]. Thus, if amr ≥ dm|δm| holds, then the smoothed function f̂δm is also strongly convex in the
neighborhood N(x⋆; dm|δm|). Therefore, we define dm ∈ R as dm := amr/|δ−

m|.

Now, let us discuss dm. From the definition of dm, the lower and upper bounds of dm can be expressed as

1< dm ≤ am√
a2

m − 1 − 1
. (3)

7
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Thus, the upper bound of dm gradually increases as am decreases. The σ-nice function (Hazan et al., 2016)
always assumes dm = 3, but we see that this does not hold when am is large (see Figure 2 in Section 3.2).
Proposition 3.2. Let dm > 1 for all m ∈ [M ]. Suppose that the function f : Rd → R is σ-strongly convex
and Lg-smooth on B(x⋆; r) for sufficiently small r > 0; a sufficient condition for f to be a new σ-nice
function is that the noise level |δm| satisfies the following condition :

For all m ∈ [M ], suppose that x⋆
δm−1

∈ N(x⋆; dm|δm|),

2Lg max
{∥∥x⋆

δm
− x⋆

∥∥ ,
∥∥∥x⋆

δm+1
− x⋆

∥∥∥}
σ (1 − γm)

≤ |δm| =
∣∣δ−

m

∣∣. (4)

Proposition 3.2 shows that any function is a new σ-nice function if |δm| satisfies equations (4). Note that δ−
m

does not always exist. The probability p(am) that δ−
m exists depends on the direction of the random variable

vector um and can be expressed as

0 < p(am) :=
arccos

(
r
√

a2
m − 1

∥x⋆ − x∥∥um∥

)
π

<

arccos

(√
a2

m − 1
am

)
π

< 1,

where r > 0, am >
√

2, x ∈ N(x⋆; amr)\{x⋆}. Since the upper bound of p(am) approaches 0 when am is
large, the probability p(am) approaches 0 as am gets larger, but it never reaches 0. Therefore, the success of
Algorithm 1 depends on the random variable um, especially when am is large, i.e., when δm is large.

The framework of graduated optimization for the new σ-nice function is shown in Algorithm 1. Algorithm
2 is used to optimize each smoothed function.

Algorithm 1 Graduated Optimization
Require: ϵ > 0, r ∈ (0, 1), p ∈ (0, 1], d̄ > 0, x1, B2 > 0

δ1 := 2Lg

σr

α0 := min
{

σr

8L2
f (1+d̄) ,

√
σr

2
√

2Lg

}
, Mp := 1

α0ϵ

for m = 1 to M + 1 do
if m ̸= M + 1 then

ϵm := σδ2
m, TF := 2B2/σϵm

γm := (M−m)p

{M−(m−1)}p

end if
xm+1 := GD(TF , xm, f̂δm

)
δm+1 := γmδm

end for
return xM+2

Algorithm 2 GD with decaying learning rate
Require: TF , x̂1, F

for t = 1 to TF do
ηt := 2/σt
x̂t+1 := x̂t − ηt∇F (x̂t)

end for
return x̂TF +1 = GD(TF , x̂1, F )

The smoothed function f̂δm is σ-strongly convex in the neighborhood N(x⋆; dm|δm|). Thus, we should now
consider the convergence of GD for a σ-strongly convex function F = f̂δm . Theorem 3.1 is a convergence
analysis for when a decaying learning rate is used (The proof of Theorem 3.1 is in Section D.1).

8
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Theorem 3.1 (Convergence analysis of Algorithm 2). Suppose that F : Rd → R is a σ-strongly convex and
Lg-smooth function and ηt := 2

σt . Then, the sequence (x̂t)t∈N generated by Algorithm 2 satisfies

min
t∈[T ]

(F (x̂t) − F (x⋆)) ≤ 2B2

σT
= O

(
1
T

)
, (5)

where x⋆ is the global minimizer of F , and B2 > 0 is a nonnegative constant.

Theorem 3.1 is the convergence analysis of Algorithm 2 for any σ-strongly convex function F . It shows
that the algorithm can reach an ϵm-neighborhood of the optimal solution x⋆

δm
of f̂δm

in approximately
TF := 2B2/σϵm iterations.

Remark: Algorithms 1 and 2 represent explicit graduated optimization algorithms. Function smoothing
is accomplished explicitly by convolving random variables as in Definition 2.1, and the smoothed strongly
convex function is optimized by the gradient descent (Algorithm 2). However, in general, the integral
operation of the function f is not possible, so optimization by Algorithms 1 and 2 is not feasible. If
smoothing of the function f by Definition 2.1 is possible and f̂δ is accessible, then Algorithm 2 may be
SGD-type optimizer. For example, Algorithm 2 can be the projected SGD generated by the sequence
(x̂t) with x̂t+1 = Pm(x̂t − ηt∇FSt

(x̂t)), where Pm is the projection onto B(x⋆; dmδm). Since x̂0 = x⋆
δm−1

∈
B(x⋆; dmδm) is guaranteed by Proposition 3.3(ii), the sequence (x̂t) generated by the projected SGD is always
in B(x⋆; dmδm). Using the proof of Theorem 3.1 and the nonexpansivity of Pm (i.e., ∥Pm(x) − Pm(y)∥ ≤
∥x − y∥), we can show that the projected SGD satisfies

min
t∈[T ]

E [F (x̂t) − F (x⋆)] ≤ 2D2

σT
,

where D1 := supt∈N E
[
∥∇F (x̂t)∥2] and D2 := C2 + D1.

The next theorem guarantees the convergence of Algorithm 1 for the new σ-nice function (The proof of
Theorem 3.2 is in Section D.2).
Theorem 3.2 (Convergence analysis of Algorithm 1). Let ϵ ∈ (0, 1) and f be an Lf -Lipschitz new σ-nice
function. Suppose that we apply Algorithm 1; then, after O

(
1/ϵ

1
p +2
)

rounds, the algorithm reaches an
ϵ-neighborhood of the global optimal solution x⋆.

Remark: In Algorithm 1 and Theorem 3.2, we assume that we can access the full gradient of the smoothed
function ∇f̂δm

. Thus, our explicit graduated optimization by Algorithms 1 and 2 is only valid for functions
f for which the computation of f̂δm

by Definition 2.1 and the access to its full gradient ∇f̂δm
are possible.

Hence, Algorithm 1 and 2 are not applicable to DNN.

Note that Theorem 3.2 provides a total complexity that integrates Algorithm 1 and Algorithm 2 because
Algorithm 1 uses Algorithm 2 at each m ∈ [M ]. Theorem 3.2 implies that convergence is faster when the
power of the polynomial decay p is large, and when p = 1, it takes at least O

(
1/ϵ3) rounds for new σ-nice

functions. Hazan et al. (2016) showed that their graduated optimization algorithm converges to a globally
optimal solution in O

(
1/ϵ2) iterations for a σ-nice function. However, explicit graduated optimization, such

as with our Algorithm 1 and Algorithm 1 in Hazan et al. (2016), is not applicable to DNN due to the
impossibility of computing a smoothed function f̂δm

.

3.2 Optimal Noise Scheduling

The next proposition is crucial to the success of Algorithm 1 (The proof is in Section D.7).
Proposition 3.3. Let dm > 1 for all m ∈ [M ] and suppose that f : Rd → R is a new σ-nice function.

(i) Then, the following always holds for all m ∈ [M ],∥∥x⋆
δm

− x⋆
∥∥ < dm|δm|,

9
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(ii) If, γm satisfies γm ∈
(

1
dm+1

, 1
)

for all m ∈ [M ], then the following holds for all m ∈ {2, 3, · · · , M},∥∥∥x⋆
δm−1

− x⋆
∥∥∥ < dm|δm|.

Proposition 3.3 (i) implies that if the objective function f is the new σ-nice function, the optimal solution
x⋆

δm
of the smoothed function f̂δm

is always contained in the σ-strongly convex region N(x⋆; dm|δm|) of
the function f̂δm

. Therefore, if the initial point of the optimization of the function f̂δm
is contained in the

σ-strongly convex region N(x⋆; dm|δm|), the sequence generated by Algorithm 2 never leaves the σ-strongly
convex region. Also, assuming that Algorithm 2 comes sufficiently close to the optimal solution x⋆

δm−1
after

more than TF iterations in the optimization of the f̂δm−1 , x⋆
δm−1

is the initial point of the optimization of the
next function f̂δm

. Proposition 3.3 (ii) therefore implies that the initial point of optimization of the function
f̂δm

is contained in the σ-strongly convex region of the function f̂δm
. Hence, Proposition 3.3 guarantees

that if the initial point x̄1 of Algorithm 1 is contained in the σ-strongly convex region N(x⋆; d1|δ1|) of the
smoothest function f̂δ1 , then the algorithm will always reach the globally optimal solution x⋆ of the original
function f . Note that the decay rate γm used in Algorithm 1 satisfies γm ∈ (1/dm+1, 1). See the following
discussion.

2 5 10 15 20
am

0.1

1

3

10

am

a2
m 1 1

a2
m 1 1

am

dm

1
dm

Figure 2: The ranges of possible values for dm and
1/dm are colored blue and green, respectively. Note
that the vertical axis is logarithmic.
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Figure 3: Existing decay learning rate versus number
of epochs. The schedule definitions are included in
equations (6) through (7).

According to Proposition 3.1, for a function to be a new σ-nice function, dm must satisfy equation (3). Thus,
there is a range of possible values for 1/dm:

1< dm ≤ am√
a2

m − 1 − 1
and

√
a2

m − 1 − 1
am

≤ 1
dm

<1.

The range is plotted in Figure 2. Recall that am is a value that appears only in the theoretical analysis and
it becomes smaller as m increases and δm decreases, since it satisfies dm|δm| = amr.

dm is involved in the radius of the strongly convex region N(x⋆; dm|δm|) of the smoothed function f̂δm
.

According to Figure 2, when am is large, i.e., when m is small and |δm| is large, dm can only take almost 1.
From the definition of a σ-nice function (Hazan et al., 2016) (see Definition 2.2), a smoothed function f̂δm

is strongly convex in a neighborhood N(x⋆
δm

; 3δm). Then, since x⋆
δm

is always contained in N(x⋆; dm|δm|)
(see Proposition 3.3), we see that dm = 3 does not always hold. That is, a σ-nice function cannot be defined
when the noise level is large.

From Proposition 3.3 and its proof, for Algorithm 1 to be successful, 1/dm+1 is required as a lower bound
for γm, i.e., γm ∈

(
1

dm+1
, 1
)

. Recall that γm is the decay rate of the noise level |δm|, i.e., |δm+1| := γm|δm|.
According to Figure 2, when am is large, i.e., when m is small and |δm| is large, 1/dm and γm can only

10
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take almost 1. Therefore, γm should vary very gradually from a value close to 1. From the definition of a
σ-nice function (see Definition 2.2), γm is always 0.5. When the noise level is large, a small decay rate such
as 0.5 cannot be used, so the definition of the σ-nice function is still not appropriate when the noise level
is large. Even when the noise level is large, our new σ-nice function can satisfy the conditions (Proposition
3.3) necessary for the success of Algorithm 1 because the radius dm of the strongly convex region and the
decay rate γm vary with the noise level δm.
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1

dm

Figure 4: Decay rate of the existing decaying learning rate schedule. The area colored green represents the
value that the decay rate γm must satisfy for the graduated optimization approach to succeed. Here, the
green curve in this figure is a symmetric shift and parallel shift of the green curve in Figure 2 to zero at
epoch 200.

Now let us see if there is a decaying learning rate schedule that satisfies the decay rate γm condition. The
existing decaying learning rate schedule is shown in Figure 3 (Methods that include an increase in the learning
rate, even partially, such as warm-up, are omitted). The following defines the update rules for all decaying
learning rates (ηt)t∈{0,1,··· ,T −1}, where T means the number of epochs.

cosine annealing (Loshchilov & Hutter, 2017): ηt := ηmin + 1
2

(ηmax − ηmin)
(

1 + cos
(

t

T
π

))
(6)

cosine power annealing (Hundt et al., 2019): ηt := ηmin + (ηmax − ηmin) w
1
2 (1+cos( t

T π))+1 − w

w2 − w
(w > 0)

step decay (Lu, 2022): ηt := ηmaxd⌊ t
n ⌋ (0 < d < 1, n < T )

exponential decay (Wu et al., 2014): ηt := ηmax exp (−kt) (k > 0)

polynomial decay (Chen et al., 2018): ηt := (ηmax − ηmin)
(

1 − t

T

)p

+ ηmin (p > 0) (7)

The curves in Figure 3 are plotted for T = 200, ηmin = 0, ηmax = 0.1, d = 0.5, n = 40, k = 0.94, w = 10 and
p = 0.5. The decay rates of these schedules are plotted in Figure 4. Figure 5 and Figure 6 are for polynomial
decays with different parameters p. Note that ηmin is 0, but since t ∈ [0, 1, · · · , T − 1], ηt will never be 0
under any update rule. In Figure 4 and 6, only the first one is set to 1 artificially. Also, the value shown
at epoch t represents the rate of decay from the learning rate used in epoch t to the learning rate used in
epoch t + 1. Therefore, the graphs stop at 199 epochs.

11
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Figure 5: Polynomial decay learning rate versus
epoch. The update rule for polynomial decay is de-
fined by (7).
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Figure 6: Decay rate of polynomial decay learning
rate schedule. The area colored green represents the
value that the decay rate γm must satisfy for the grad-
uated optimization approach to succeed.

According to Figure 4 and Figure 6, only a polynomial decay with small power p satisfies the conditions that
γm must satisfy.

Finally, we would like to mention something about warm-up techniques (Radford et al., 2018; Liu et al.,
2018; Gotmare et al., 2019). Although warm-up techniques that increase the learning rate in the early stages
of learning are very popular, they are a distraction from the discussion of the decay rates shown in Figures
4 and 6; hence, we have focused on monotonically decreasing learning rates in this paper. Since the learning
rate determines the smoothing level of the function, increasing the learning rate in the early learning phase,
with a fixed batch size, means temporarily smoothing the function significantly and exploring that function
with a large learning rate. Therefore, we can say that the warm-up technique is a reasonable scheduling
that, as conventionally understood, defines the best starting point. However, we should also note that, since
Algorithm 3 assumes that the learning rate is monotonically decreasing, Theorem 3.4 may not hold if the
warm-up technique is used.

3.3 SGD’s smoothing property

This section discusses the smoothing effect of using stochastic gradients. From Lemma 2.1, we have

Eξt [∥ωt∥] ≤ C√
b
,

due to ωt := ∇fSt(xt) − ∇f(xt). The ωt for which this equation is satisfied can be expressed as ωt =
C√

b
ut,where ut ∼ N

(
0; 1√

d
Id

)
, N
(

0; 1√
d
Id

)
is a normal distribution with mean 0 and variance-covariance

matrix 1√
d
Id, and Id denotes the identity matrix in Rd. Note that, according to (Zhang et al., 2020), for

some deep learning models and datasets, the stochastic noise follows a normal distribution. Based on this,
we assume that the stochastic noise follows a normal distribution. Then, using Definition 2.1, we further
transform equation (1) as follows:

Eωt [yt+1] = Eωt [yt] − η∇Eωt [f(yt − ηωt)]

= Eωt
[yt] − η∇E

ut∼N
(

0; 1√
d

Id

) [f (yt − ηC√
b

ut

)]
≈ Eωt

[yt] − η∇Eut∼B(0;1)

[
f

(
yt − ηC√

b
ut

)]
= Eωt [yt] − η∇f̂ ηC√

b

(yt), (8)

where we have used the fact that the standard normal distribution in high dimensions d is close to a uniform
distribution on a sphere of radius

√
d (Vershynin, 2018, Section 3.3.3). This shows that Eωt [f(yt − ηωt)]

12
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is a smoothed version of f with a noise level ηC/
√

b and its parameter yt can be approximately updated
by using the gradient descent to minimize f̂ ηC√

b

. Therefore, we can say that the degree of smoothing by the
stochastic gradients in SGD is determined by the learning rate η and batch size b. The findings gained from
this insight are immeasurable.

3.3.1 Why the Use of Large Batch Sizes Leads to Solutions Falling into Sharp Local Minima

It is known that training with large batch sizes leads to a persistent degradation of model generalization
performance. In particular, Keskar et al. (2017) showed experimentally that learning with large batch sizes
leads to sharp local minima and worsens generalization performance. According to equation (8), using a
large learning rate and/or a small batch size will make the function smoother. Thus, in using a small batch
size, the sharp local minima will disappear through extensive smoothing, and SGD can reach a flat local
minimum. Conversely, when using a large batch size, the smoothing is weak and the function is close to the
original multimodal function, so it is easy for the solution to fall into a sharp local minimum. Thus, we have
theoretical support for what Keskar et al. (2017) showed experimentally. In addition, equation (8) implies
that halving the learning rate is the same as quadrupling the batch size. Note that Smith et al. (2018) argues
that reducing the learning rate by half is equivalent to doubling the batch size.

Remark: Note that our argument is based on the somewhat non-theoretical finding that flat local solutions
have better generalizability than sharp local solutions (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017;
Izmailov et al., 2018; Li et al., 2018). Since the function optimized by the optimizer is constructed from a
limited training sample, there should be some deviation from the function constructed with unknown data,
including the test data. Therefore, the intuitive explanation is that the flatness around the local solution
prevents the deviation from degrading the generalizability.

3.3.2 Why Decaying Learning Rates and Increasing Batch Sizes are Superior to Fixed Learning Rates
and Batch Sizes

From equation (8), the use of a decaying learning rate or increasing batch size during training is equivalent to
decreasing the noise level of the smoothed function, so using a decaying learning rate or increasing the batch
size is an implicit graduated optimization. Thus, we can say that using a decaying learning rate (Loshchilov
& Hutter, 2017; Hundt et al., 2019; You et al., 2019; Lewkowycz, 2021) or increasing batch size (Byrd et al.,
2012; Friedlander & Schmidt, 2012; Balles et al., 2017; De et al., 2017; Bottou et al., 2018; Smith et al.,
2018) makes sense in terms of avoiding local minima and provides theoretical support for their experimental
superiority.

3.3.3 Optimal Decay Rate of Learning Rate

As indicated in Section 3.2, gradually decreasing the noise from a value close to 1 is an optimal noise
scheduling for graduated optimization. Therefore, we can say that the optimal update rule for a decaying
learning rate and increasing batch size is varying slowly from a value close to 1, as in cosine annealing
(without restart) (Loshchilov & Hutter, 2017), cosine power annealing (Hundt et al., 2019), and polynomial
decay (Liu et al., 2015; Chen et al., 2018; Zhao et al., 2017; Chen et al., 2017). Thus, we have a theoretical
explanation for why these schedules are superior. In particular, a polynomial decay with small powers from
0 to 1 satisfies the conditions that the decay rate must satisfy (see also Figures 4 and 6 in Section 3.2).
Therefore, we argue that polynomial decays with powers less than equal to 1 are the optimal decaying
learning rate schedule.

3.4 Implicit graduated optimization algorithm

Algorithm 3 embodies the framework of implicit graduated optimization for the new σ-nice function. Algo-
rithm 4 is used to optimize each smoothed function. The γm used in Algorithms 1 and 3 is a polynomial
decay rate with powers from 0 to 1 which satisfies the condition that γm must satisfy for the Algorithm
to succeed 3 (see Proposition 3.3). The smoothed function f̂δm is σ-strongly convex in the neighborhood
N(x⋆; dm|δm|). Also, the learning rate used by Algorithm 4 to optimize f̂δm is always constant. Therefore,

13
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let us now consider the convergence of GD with a constant learning rate for a σ-strongly convex function
F = f̂δm . The proof of Theorem 3.3 is in Section D.3.
Theorem 3.3 (Convergence analysis of Algorithm 4). Suppose that F : Rd → R is a σ-strongly convex and
Lg-smooth function and η < min

{
1
σ , 2

Lg

}
. Then, the sequence (x̂t)t∈N generated by Algorithm 4 satisfies

min
t∈[T ]

(F (x̂t) − F (x⋆)) ≤ H3

T
= O

(
1
T

)
, (9)

where x⋆ is the global minimizer of F , and H3 is a nonnegative constant.

Theorem 3.3 is the convergence analysis of Algorithm 4 for any σ-strongly convex and Lg-smooth function F .
It shows that Algorithm 4 can reach an ϵm-neighborhood of the optimal solution x⋆

δm
of f̂δm

in approximately
TF := H3/ϵm iterations. Proposition 3.3 also holds for Algorithm 3. Therefore, if the initial point x̄1 is
contained in the σ-strongly convex region N(x⋆; d1|δ1|) of the smoothest function f̂δ1 , then the algorithm
will always reach the globally optimal solution x⋆ of the original function f .

Remark: Algorithms 3 and 4 represent implicit graduated optimization algorithms. Function smoothing is
accomplished implicitly by the stochastic noise in SGD. From Section 3.3, SGD is running for the objective
function f , but behind the scenes, GD can be regarded as running for the function f̂ ηC√

b

, which is smoothed
version of f , where η and b are hyperparameters of SGD. That is why, our Algorithm 4 can be GD. The
convergence analysis for this case is Theorem 3.3. On the other hand, another way of looking at it is possible.
The experiments in Section 4 simply run SGD, which uses a decaying learning rate or increasing batch size,
and GD is not used explicitly. In this case, since b data are handled in each step, it may be viewed as
f̂ ηC√

b

≈ 1
b

∑b
i=1 fξi

. Then Algorithm 4 can be SGD since f̂ ηC√
b

varies depending on the data chosen. If the
projection is computable to ensure that the SGD sequence does not leave the strongly convex region of
the function f̂ ηC√

b

, then convergence can be guaranteed as with Remark for Theorem 3.1. The relationship

between the loss function fi for the i-th data and the smoothed function f̂ ηC√
b

is still unknown. Then, there
may be some differences between theory and practice.

Algorithm 3 Implicit Graduated Optimization with SGD
Require: ϵ > 0, p ∈ (0, 1], d̄ > 0, x1, η1, b1

δ1 := η1C√
b1

α0 := min
{ √

b1
4Lf η1C(1+d̄) ,

√
b1√

2ση1C

}
, Mp := 1

α0ϵ

for m = 1 to M + 1 do
if m ̸= M + 1 then

ϵm := σ2δ2
m, TF := H3/ϵm

γm := (M−m)p

{M−(m−1)}p

κm/
√

λm = γm (κm ∈ (0, 1], λm ≥ 1)
end if
xm+1 := GD(TF , xm, f̂δm

, ηm)
ηm+1 := κmηm, bm+1 := λmbm

δm+1 := ηm+1C√
bm+1

end for
return xM+2

The next theorem guarantees the convergence of Algorithm 3 with the new σ-nice function (The proof of
Theorem 3.4 is in Section D.4).
Theorem 3.4 (Convergence analysis of Algorithm 3). Let ϵ ∈ (0, 1) and f be an Lf -Lipschitz new σ-
nice function. Suppose that we run Algorithm 3; then after O

(
1/ϵ

1
p

)
rounds, the algorithm reaches an

ϵ-neighborhood of the global optimal solution x⋆.
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Algorithm 4 GD with a constant learning rate
Require: TF , x̂1, F, η

for t = 1 to TF do
x̂t+1 := x̂t − η∇F (xt)

end for
return x̂TF +1 = GD(TF , x̂1, F, η)

Note that Theorem 3.4 provides a total complexity including those of Algorithm 3 and Algorithm 4, because
Algorithm 3 uses Algorithm 4 at each m ∈ [M ]. Theorem 3.4 implies that convergence is faster when the
power of the polynomial decay p is high, and when p = 1, it takes at least O (1/ϵ) rounds for new σ-nice
functions.

4 Numerical Results

The experimental environment was as follows: NVIDIA GeForce RTX 4090×2GPU and Intel Core i9
13900KF CPU. The software environment was Python 3.10.12, PyTorch 2.1.0 and CUDA 12.2. The code is
available at https://anonymous.4open.science/r/new-sigma-nice.

4.1 Implicit Graduated Optimization of DNN

We compared four types of SGD for image classification:

1. constant learning rate and constant batch size,

2. decaying learning rate and constant batch size,

3. constant learning rate and increasing batch size,

4. decaying learning rate and increasing batch size.

We evaluated the performance of the four SGDs in training ResNet18 (He et al., 2016) on the CIFAR100
dataset (Krizhevsky, 2009) (Figure 7), WideResNet-28-10 (Zagoruyko & Komodakis, 2016) on the CIFAR100
dataset (Figure 8), and ResNet34 (He et al., 2016) on the ImageNet dataset (Deng et al., 2009) (Figure 9).
All experiments were run for 200 epochs. In methods 2, 3, and 4, the noise decreased every 40 epochs, with a
common decay rate of 1/

√
2. That is, every 40 epochs, the learning rate of method 2 was multiplied by 1/

√
2,

the batch size of method 3 was doubled, and the learning rate and batch size of method 4 were respectively
multiplied by

√
3/2 and 1.5. The initial learning rate was 0.1 for all methods, which was determined by

performing a grid search among [0.01, 0.1, 1.0, 10]. The noise reduction interval was every 40 epochs, which
was determined by performing a grid search among [10, 20, 25, 40, 50, 100]. A history of the learning rate or
batch size for each method is provided in the caption of each figure.

For methods 2, 3, and 4, the decay rates are all 1/
√

2, and the decay intervals are all 40 epochs, so throughout
the training, the three methods should theoretically be optimizing the exact same five smoothed functions in
sequence. Nevertheless, the local solutions reached by each of the three methods are not exactly the same.
All results indicate that method 3 is superior to method 2 and that method 4 is superior to method 3 in both
test accuracy and training loss function values. This difference can be attributed to the different learning
rates used to optimize each smoothing function. Among methods 2, 3, and 4, method 3, which does not
decay the learning rate, maintains the highest learning rate 0.1, followed by method 4 and method 2. In all
graphs, the loss function values are always small in this order; i.e., the larger the learning rate is, the lower
loss function values become. Therefore, we can say that the noise level |δ|, expressed as ηC√

b
, needs to be

reduced, while the learning rate η needs to remain as large as possible. Alternatively, if the learning rate
is small, then a large number of iterations are required. Thus, for the same rate of change and the same
number of epochs, an increasing batch size is superior to a decreasing learning rate because it can maintain
a large learning rate and can be made to iterate a lot when the batch size is small.
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Figure 7: Accuracy score for testing and loss function value for training versus the number of epochs (left)
and the number of parameter updates (right) in training ResNet18 on the CIFAR100 dataset. The solid
line represents the mean value, and the shaded area represents the maximum and minimum over three runs.
In method 1, the learning rate and the batch size were fixed at 0.1 and 128, respectively. In method 2, the
learning rate decreased every 40 epochs as

[
0.1, 1

10
√

2 , 0.05, 1
20

√
2 , 0.025

]
and the batch size was fixed at 128.

In method 3, the learning rate was fixed at 0.1, and the batch size was increased as [16, 32, 64, 128, 256]. In
method 4, the learning rate was decreased as

[
0.1,

√
3

20 , 0.075, 3
√

3
80 , 0.05625

]
and the batch size was increased

as [32, 48, 72, 108, 162].
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Figure 8: Accuracy score for testing and loss function value for training versus the number of epochs (left)
and the number of parameter updates (right) in training WideResNet-28-10 on the CIFAR100 dataset. The
solid line represents the mean value, and the shaded area represents the maximum and minimum over three
runs. In method 1, the learning rate and batch size were fixed at 0.1 and 128, respectively. In method 2,
the learning rate was decreased every 40 epochs as

[
0.1, 1

10
√

2 , 0.05, 1
20

√
2 , 0.025

]
and the batch size was fixed

at 128. In method 3, the learning rate was fixed at 0.1, and the batch size increased as [8, 16, 32, 64, 128].
In method 4, the learning rate decreased as

[
0.1,

√
3

20 , 0.075, 3
√

3
80 , 0.05625

]
and the batch size increased as

[8, 12, 18, 27, 40].
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Figure 9: Accuracy score for testing and loss function value for training versus the number of epochs (left)
and the number of parameter updates (right) in training ResNet34 on the ImageNet dataset. The solid line
represents the mean value, and the shaded area represents the maximum and minimum over three runs. In
method 1, the learning rate and batch size were fixed at 0.1 and 256, respectively. In method 2, the learning
rate was decreased every 40 epochs as

[
0.1, 1

10
√

2 , 0.05, 1
20

√
2 , 0.025

]
and the batch size was fixed at 256. In

method 3, the learning rate was fixed at 0.1, and the batch size was increased as [32, 64, 128, 256, 512]. In
method 4, the learning rate was decreased as

[
0.1,

√
3

20 , 0.075, 3
√

3
80 , 0.05625

]
and the batch size was increased

as [32, 48, 72, 108, 162].

Theoretically, the noise level |δm| should gradually decrease and become zero at the end, so in our algorithm
3, the learning rate ηm should be zero at the end or the batch size bm should match the number of data sets
at the end. However, if the learning rate is 0, training cannot proceed, and if the batch size is close to a
full batch, it is not feasible from a computational point of view. For this reason, the experiments described
in this paper are not fully graduated optimizations; i.e., full global optimization is not achieved. In fact,
the last batch size used by method 2 is around 128 to 512, which is far from a full batch. Therefore, the
solution reached in this experiment is the optimal solution for a function that has been smoothed to some
extent, and to achieve a global optimization of the DNN, it is necessary to increase only the batch size to
eventually reach a full batch, or increase the number of iterations accordingly while increasing the batch size
and decaying the learning rate.

Finally, we should note that graduated optimization with Algorithm 1 is not applicable to DNN. Our
approach, Algorithm 3, allows implicit graduated optimization by exploiting the smoothness of SGD; the
experimental results provided in this section imply its success.

4.2 Experiments on Optimal Noise Scheduling

Section 3.3.3 shows that the optimal decaying learning rate is in theory a polynomial decay with small powers
from 0 to 1. To demonstrate this, we evaluated the performance of SGDs with several decaying learning
rate schedules in training ResNet18 and WideResNet-28-10 on CIFAR100 dataset. Figures 10 and 11 plot
the accuracy in testing and the loss function value in training versus number of epochs. All experiments
were run for 200 epochs and the batch size was fixed at 128. The learning rate was decreased per epoch; see
Section 3.2 for the respective update rules.

Both results show that a polynomial decay with a power less than or equal to 1, which is the schedule that
satisfies the condition that γm must satisfy, is superior in both test accuracy and training loss function value.
Furthermore, the loss function values and test accuracy worsen the further away from the green region that
the decay rate curve must satisfy (see Figure 4 and Figure 6), and the order is in excellent agreement with
the order in which lower loss function values are achieved. According to Theorem 3.4, Algorithm 3 reaches
an ϵ-neighborhood of the globally optimal solution after O

(
1/ϵ

1
p

)
iterations. Thus, theoretically, the closer

p is to 1, the fewer iterations are required. This explains why p = 0.1 is not initially superior in both test
accuracy and loss function value for training in Figures 10 and 11.
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Figure 10: Accuracy score for testing and loss function value for training versus epochs in training of ResNet18
on the CIFAR100 dataset. The solid line represents the mean value, and the shaded area represents the
maximum and minimum over three runs. See Figure 15 in Appendix F for full results.
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Figure 11: Accuracy score for testing and loss function value for training versus epochs in training of
WideResNet-28-10 on the CIFAR100 dataset. The solid line represents the mean value, and the shaded area
represents the maximum and minimum over three runs. See Figure 16 in Appendix F for full results.
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5 Conclusion

We defined a family of nonconvex functions: new σ-nice functions that prove that the graduated optimization
approach converges to a globally optimal solution. We also provided sufficient conditions for any nonconvex
function to be a new σ-nice function and performed a convergence analysis of the graduated optimization
algorithm for the new σ-nice functions. We proved that SGD with a mini-batch stochastic gradient has
the effect of smoothing the function, and the degree of smoothing is greater with larger learning rates and
smaller batch sizes. This shows theoretically that smoothing with large batch sizes is makes it easy to
fall into sharp local minima, that using a decaying learning rate and/or increasing batch size is implicitly
graduated optimization, which makes sense in the sense that it avoids local solutions, and that the optimal
learning rate scheduling rule is a gradual scheduling with a decreasing rate, such as a polynomial decay with
small powers. Based on these findings, we proposed a new graduated optimization algorithm that uses a
decaying learning rate and increasing batch size and analyzed it. Finally, we conducted experiments whose
results showed the superiority of our recommended framework for image classification tasks on CIFAR100
and ImageNet and that polynomial decay with small powers is an optimal decaying learning rate schedule.
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A Derivation of equation (1)

Let yt be the parameter updated by gradient descent (GD) and xt+1 be the parameter updated by SGD at
time t, i.e.,

yt := xt − η∇f(xt),
xt+1 := xt − η∇fSt

(xt)
= xt − η(∇f(xt) + ωt).

Then, we have

xt+1 := xt − η∇fSt
(xt)

= (yt + η∇f(xt)) − η∇fSt
(xt)

= yt − ηωt, (10)

from ωt := ∇fSt
(xt) − ∇f(xt). Hence,

yt+1 = xt+1 − η∇f(xt+1)
= yt − ηωt − η∇f(yt − ηωt).

By taking the expectation with respect to ωt on both sides, we have, from Eωt
[ωt] = 0,

Eωt [yt+1] = Eωt [yt] − η∇Eωt [f(yt − ηωt)] ,

where we have used Eωt
[∇f(yt − ηωt)] = ∇Eωt

[f(yt − ηωt)], which holds for the Lipschitz-continuous and
differentiable of f (Shapiro et al., 2009, Theorem 7.49). In addition, from (10) and Eωt [ωt] = 0, we obtain

Eωt
[xt+1] = yt.

Therefore, on average, the parameter xt+1 of the function f arrived at by SGD coincides with the parameter
yt of the smoothed function f̂(yt) := Eωt

[f(yt − ηωt)] arrived at by GD.

B Proofs of the Lemmas in Section 2.2

B.1 Proof of Lemma 2.1

Proof. (A3)(ii) and (A4) guarantee that

Eξt

[
∥∇fSt

(xt) − ∇f(xt)∥2] = Eξt

∥∥∥∥∥1
b

b∑
i=1

Gξt,i
(xt) − ∇f(xt)

∥∥∥∥∥
2

= Eξt

∥∥∥∥∥1
b

b∑
i=1

Gξt,i
(xt) − 1

b

b∑
i=1

∇f(xt)

∥∥∥∥∥
2

= Eξt

∥∥∥∥∥1
b

b∑
i=1

(
Gξt,i

(xt) − ∇f(xt)
)∥∥∥∥∥

2
= 1

b2Eξt

∥∥∥∥∥
b∑

i=1

(
Gξt,i

(xt) − ∇f(xt)
)∥∥∥∥∥

2
= 1

b2Eξt

[
b∑

i=1

∥∥Gξt,i
(xt) − ∇f(xt)

∥∥2
]

≤ C2

b
.

This completes the proof.
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B.2 Proof of Lemma 2.2

Proof. From Definition 2.1 and (A1), we have, for all x, y ∈ Rd,∥∥∥∇f̂δ(x) − ∇f̂δ(y)
∥∥∥ = ∥∇Eu [f(x − δu)] − ∇Eu [f(y − δu)]∥

= ∥Eu [∇f(x − δu)] − Eu [∇f(y − δu)]∥
= ∥Eu [∇f(x − δu) − ∇f(y − δu)]∥
≤ Eu [∥∇f(x − δu) − ∇f(y − δu)∥]
≤ Eu [Lg ∥(x − δu) − (y − δu)∥]
= Eu [Lg ∥x − y∥]
= Lg∥x − y∥.

This completes the proof.

B.3 Proof of Lemma 2.3

Proof. From Definition 2.1 and (A2), we have, for all x, y ∈ Rd,∣∣∣f̂δ(x) − f̂δ(y)
∣∣∣ = |Eu [f(x − δu)] − Eu [f(y − δu)]|

= |Eu [f(x − δu) − f(y − δu)]|
≤ Eu [|f(x − δu) − f(y − δu)|]
≤ Eu [Lf ∥(x − δu) − (y − δu)∥]
= Eu [Lf ∥x − y∥]
= Lf ∥x − y∥.

This completes the proof.

B.4 Proof of Lemma 2.4

Proof. From Definition 2.1 and (A2), we have, for all x, y ∈ Rd,∣∣∣f̂δ(x) − f(x)
∣∣∣ = |Eu [f(x − δu)] − f(x)|

= |Eu [f(x − δu) − f(x)]|
≤ Eu [|f(x − δu) − f(x)|]
≤ Eu [Lf ∥(x − δu) − x∥]
= Eu [Lf |δ|∥u∥]
= |δ|Lf ,

where we have used ∥u∥ ≤ 1. This completes the proof.

C Lemmas used in the proofs of the theorems

Lemma C.1. Suppose that F : Rd → R is σ-strongly convex and x̂t+1 := x̂t − ηtgt. Then, for all t ∈ N,

F (x̂t) − F (x⋆) ≤ 1 − σηt

2ηt
Xt − 1

2ηt
Xt+1 + ηt

2
∥gt∥2,

where gt := ∇F (x̂t), Xt := ∥x̂t − x⋆∥2, and x⋆ is the global minimizer of F .
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Proof. Let t ∈ N. The definition of x̂t+1 guarantees that

∥x̂t+1 − x⋆∥2 = ∥(x̂t − ηtgt) − x⋆∥2

= ∥x̂t − x⋆∥2 − 2ηt⟨x̂t − x⋆, gt⟩ + η2
t ∥gt∥2.

From the σ-strong convexity of F ,

∥x̂t+1 − x⋆∥2 ≤ ∥x̂t − x⋆∥2 + 2ηt

(
F (x⋆) − F (x̂t) − σ

2
∥x̂t − x⋆∥2

)
+ η2

t ∥gt∥2.

Hence,

F (x̂t) − F (x⋆) ≤ 1 − σηt

2ηt
∥x̂t − x⋆∥2 − 1

2ηt
∥x̂t+1 − x⋆∥2 + ηt

2
∥gt∥2.

This completes the proof.

Lemma C.2. Suppose that F : Rd → R is Lg-smooth and x̂t+1 := x̂t − ηtgt. Then, for all t ∈ N,

ηt

(
1 − Lgηt

2

)
∥∇F (x̂t)∥2 ≤ F (x̂t) − F (x̂t+1).

where gt := ∇F (x̂t) and x⋆ is the global minimizer of F .

Proof. From the Lg-smoothness of the F and the definition of x̂t+1, we have, for all t ∈ N,

F (x̂t+1) ≤ F (x̂t) + ⟨∇F (x̂t), x̂t+1 − x̂t⟩ + Lg

2
∥x̂t+1 − x̂t∥2

= F (x̂t) − ηt⟨∇F (x̂t), gt⟩ + Lgη2
t

2
∥gt∥2

≤ F (x̂t) − ηt

(
1 − Lgηt

2

)
∥∇F (x̂t)∥2.

Therefore, we have

ηt

(
1 − Lgηt

2

)
∥∇F (x̂t)∥2 ≤ F (x̂t) − F (x̂t+1).

This completes the proof.

Lemma C.3. Suppose that F : Rd → R is Lg-smooth, x̂t+1 := x̂t − ηtgt, and ηt := η < 2
Lg

. Then, for all
t ∈ N,

1
T

T∑
t=1

∥gt∥2 ≤ 2 (F (x̂1) − F (x⋆))
η (2 − Lgη) T

,

where gt := ∇F (x̂t) and x⋆ is the global minimizer of F .

Proof. According to Lemma C.2, we have

η

(
1 − Lgη

2

)
∥∇F (xt)∥2 ≤ F (x̂t) − F (x̂t+1).

Summing over t, we find that

η

(
1 − Lgη

2

)
1
T

T∑
t=1

∥∇F (x̂t)∥2 ≤ F (x̂1) − F (x̂T +1)
T

.
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Hence, from η < 2
Lg

,

1
T

T∑
t=1

∥gt∥2 = 2 (F (x̂1) − F (x⋆))
η (2 − Lgη) T

.

This completes the proof.

Lemma C.4. Suppose that F : Rd → R is Lg-smooth, x̂t+1 := x̂t − ηtgt, and ηt := 2
σt . Then, for all t ∈ N,

∥gt∥2 ≤ B2,

where gt := ∇F (x̂t) and B2 ≥ 0 is a nonnegative constant.

Proof. According to Lemma C.2, we have

ηt

(
1 − Lgηt

2

)
∥∇F (x̂t)∥2 ≤ F (x̂t) − F (x̂t+1).

Summing over t from t = t0 to t = T , we have

T∑
t=t0

ηt

(
1 − Lgηt

2

)
∥∇F (x̂t)∥2 ≤ F (x̂t0) − F (x̂T ),

where t0 satisfies

∀t ≥ t0 : ηt0 <
2

Lg
.

Hence, we obtain (
1 − Lgηt0

2

) T∑
t=t0

ηt∥∇F (x̂t)∥2 ≤ F (x̂t0) − F (x⋆)︸ ︷︷ ︸
=:B

< ∞.

Then,

T∑
t=t0

ηt∥∇F (x̂t)∥2 ≤ 2B

2 − Lgηt0

< ∞.

Therefore,

T∑
t=1

ηt∥∇F (x̂t)∥2 ≤ 2B

2 − Lgηt0

+
t0−1∑
t=1

ηt∥∇F (x̂t)∥2

︸ ︷︷ ︸
=:B̂

< ∞. (11)

From ηT ≤ ηt := 2
σt ,

2
σT

T∑
t=1

∥∇F (x̂t)∥2 = ηT

T∑
t=1

∥∇F (x̂t)∥2 ≤
T∑

t=1
ηt∥∇F (x̂t)∥2 ≤ B̂. (12)

Then, if
(
∥∇F (x̂t)∥2) is unbounded, we have

∀ϵ > 0, ∃t1 ∈ N, ∀t ∈ N : t ≥ t1 ⇒ ∥∇F (x̂t)∥2 ≥ ϵ.
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Therefore, from (12),

B̂ ≥ 2
σT

T∑
t=1

∥∇F (x̂t)∥2

= 2
σT

(
T∑

t=t1

∥∇F (x̂t)∥2 +
t1−1∑
t=1

∥∇F (x̂t)∥2

)

≥ 2
σT

(T − t1 + 1)ϵ

= 2
σ

(
1 − t1 − 1

T

)
ϵ,

where we have used
∑t1−1

t=1 ∥∇F (x̂t)∥2 ≥ 0. Hence, letting ϵ := σB̂, we have

∃t1, ∀T ≥ t1 : 2
(

1 − t1 − 1
T

)
B̂ ≤ B̂.

Taking the limit of T → ∞, we have 2B̂ ≤ B̂. This is a contradiction. Hence,
(
∥∇F (x̂t)∥2) is bounded. Let

its upper boundary be B2. This completes the proof.

D Proof of the Theorems and Propositions

D.1 Proof of Theorem 3.1

Proof. Lemma C.1, Lemma C.4, and ηt := 2
σt guarantee that

F (x̂t) − F (x⋆) ≤ 1 − σηt

2ηt
Xt − 1

2ηt
Xt+1 + ηt

2
∥gt∥2

≤ 1
2ηt

{(1 − σηt)Xt − Xt+1} + ηtB2

2

= σ(t − 2)
4

Xt − σt

4
Xt+1 + B2

σt
.

Therefore, we have

(t − 1) (F (x̂t) − F (x⋆)) ≤ σ(t − 2)(t − 1)
4

Xt − σ(t − 1)t
4

Xt+1 + B2(t − 1)
σt

.

Summing over t, we find that

T∑
t=1

(t − 1) (F (x̂t) − F (x⋆)) ≤ σ · (−1) · 0
4

X1 − σ(T − 1)T
4

XT +1 + B2

σ

T∑
t=1

t − 1
t

≤ B2(T − 1)
σ

.

Then, we have

2
(T − 1)T

T∑
t=1

(t − 1) (F (x̂t) − F (x⋆)) ≤ 2B2

σT
.

From the convexity of F ,

F

(
2

T (T − 1)

T∑
t=1

(t − 1)x̂t

)
≤ 2

T (T − 1)

T∑
t=1

(t − 1)F (x̂t).
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Hence,

F

(
2

T (T − 1)

T∑
t=1

(t − 1)x̂t

)
− F (x⋆) ≤ 2B2

σT
= O

(
1
T

)
.

In addition, since the minimum value is smaller than the mean, we have

min
t∈[T ]

(F (x̂t) − F (x⋆)) ≤ 2B2

σT
= O

(
1
T

)
.

This completes the proof.

D.2 Proof of Theorem 3.2

The following proof uses the proof technique of Hazan et al. (2016).

Proof. From Mp := 1
α0ϵ , δ1 := 2Lg

σr , and γm+1 := (M−m)p

{M−(m−1)}p , we have

δM = δ1 (γ1γ2 · · · γM−1)

= δ1 · (M − 1)p

Mp
· (M − 2)p

(M − 1)p
· (M − 3)p

(M − 2)p
· · · 1

2p

= δ1 · 1
Mp

= δ1α0ϵ

= 2Lgα0ϵ

σr
.

According to Theorem 3.1,

f̂δM
(xM+1) − f̂δM

(x⋆
δM

) ≤ ϵM

= σδ2
M

=
(

2Lgα0ϵ√
σr

)2

From Lemma 2.3 and 2.4,

f(xM+2) − f(x⋆) =
{

f(xM+2) − f̂δM
(xM+2)

}
+
{

f̂δM
(x⋆) − f(x⋆)

}
+
{

f̂δM
(xM+2) − f̂δM

(x⋆)
}

≤
{

f(xM+2) − f̂δM
(xM+2)

}
+
{

f̂δM
(x⋆) − f(x⋆)

}
+
{

f̂δM
(xM+2) − f̂δM

(x⋆
δM

)
}

≤ δM Lf + δM Lf +
{

f̂δM
(xM+2) − f̂δM

(x⋆
δM

)
}

= 2δM Lf +
{

f̂δM
(xM+2) − f̂δM

(xM+1)
}

+
{

f̂δM
(xM+1) − f̂δM

(x⋆
δM

)
}

≤ 2δM Lf + Lf ∥xM+2 − xM+1∥ +
{

f̂δM
(xM+1) − f̂δM

(x⋆
δM

)
}

.

Then, we have

f(xM+2) − f(x⋆) ≤ 2δM Lf + 2Lf dM δM + ϵM

≤ 2δM Lf + 2Lf d̄δM + ϵM

= 2Lf δM

(
1 + d̄

)
+ ϵM ,
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where we have used ∥xM+2 − xM+1∥ ≤ 2dM δM since xM+2, xM+1 ∈ N(x⋆; dM δM ), and dM ≤ d̄ < +∞.
Therefore,

f(xM+2) − f(x⋆) ≤ 2Lf

(
1 + d̄

) 2Lf α0ϵ

σr
+
(

2Lgα0ϵ√
σr

)2

=
4L2

f

(
1 + d̄

)
α0ϵ

σr
+
(

2Lgα0ϵ√
σr

)2

≤ ϵ,

where we have used α0 := min
{

σr

8L2
f (1+d̄) ,

√
σr

2
√

2Lg

}
.

Let Ttotal be the total number of queries made by Algorithm 1; then,

Ttotal =
M+1∑
m=1

2B2

σϵm
=

M+1∑
m=1

2B2

σ2δ2
m

= 2B2

σ2δ2
1

(
1 + 1

γ2
1

+ 1
γ2

1γ2
2

+ · · · + 2
γ2

1γ2
2 · · · γ2

M−1

)
= 2B2

σ2δ2
1

{(
γ2

1γ2
2 · · · γ2

M−1
)

+
(
γ2

2γ2
3 · · · γ2

M−1
)

+ · · · + γ2
M−1 + 2

γ2
1γ2

2 · · · γ2
M−1

}

From γ1γ2 · · · γM−1 = 1
Mp ,

Ttotal = 2B2

σ2δ2
1

·
1

M2p + 1
(M−1)2p + 1

(M−2)2p + · · · 1
22p + 2

1
M2p

≤ 2B2

σ2δ2
1

· M2p(M + 1)

= 2B2

σ2δ2
1

· M2p+1 + 2B2

σ2δ2
1

· M2p

= 2B2

σ2δ2
1

(
1

α0ϵ

) 1
p +2

+ 2B2

σ2δ2
1

(
1

α0ϵ

)2

= O
(

1
ϵ

1
p +2

)
,

This completes the proof.

D.3 Proof of Theorem 3.3

Proof. Lemma C.1 guarantees that

F (x̂t) − F (x⋆) ≤ 1 − σηt

2ηt
Xt − 1

2ηt
Xt+1 + ηt

2
∥gt∥2

= 1 − ση

2η
(Xt − Xt+1) − σ

2
Xt+1 + η

2
∥gt∥2.
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From η < min
{

1
σ , 2

Lg

}
and Lemma C.3, by summing over t we find that

1
T

T∑
t=1

(F (x̂t) − F (x⋆)) ≤ 1 − ση

2ηT
(X1 − XT +1) − σ

2T

T∑
t=1

Xt+1 + η

2T

T∑
t=1

∥gt∥2

≤ 1 − ση

2ηT
X1 + η

2T

T∑
t=1

∥gt∥2

≤ (1 − ση) X1

2η︸ ︷︷ ︸
=:H1

1
T

+ F (x̂1) − F (x⋆)
(2 − Lgη)︸ ︷︷ ︸

=:H2

1
T

= (H1 + H2)︸ ︷︷ ︸
=:H3

1
T

= H3

T
,

where H3 > 0 is a nonnegative constant. From the convexity of F ,

F

(
1
T

T∑
t=1

x̂t

)
≤ 1

T

T∑
t=1

F (x̂t).

Hence,

F

(
1
T

T∑
t=1

x̂t

)
− F (x⋆) ≤ H3

T
= O

(
1
T

)
.

In addition, since the minimum value is smaller than the mean, we have

min
t∈[T ]

(F (x̂t) − F (x⋆)) ≤ H3

T
= O

(
1
T

)
.

This completes the proof.

D.4 Proof of Theorem 3.4

The following proof uses the proof technique of Hazan et al. (2016).

Proof. According to δm+1 := ηm+1C√
bm+1

and κm√
λm

= γm, we have

δm+1 := ηm+1C√
bm+1

= κmηmC√
λm

√
bm

= κm√
λm

δm

= γmδm.
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Therefore, from Mp := 1
α0ϵ , δ1 := η1C√

b1
, and γm := (M−m)p

{M−(m−1)}p , then

δM = δ1 (γ1γ2 · · · γM−1)

= δ1 · (M − 1)p

Mp
· (M − 2)p

(M − 1)p
· (M − 3)p

(M − 2)p
· · · 1

2p

= δ1 · 1
Mp

= δ1α0ϵ

= η1Cα0ϵ√
b1

.

According to Theorem 3.3,

f̂δM
(xM+1) − f̂δM

(x⋆
δM

) ≤ ϵM

= σδ2
M

=
(√

ση1Cα0ϵ√
b1

)2

As in the proof of Theorem 3.2, we have

f(xM+2) − f(x⋆) ≤ 2Lf δM

(
1 + d̄

)
+ ϵM .

Therefore,

f(xM+2) − f(x⋆) ≤ 2Lf

(
1 + d̄

) η1Cα0ϵ√
b1

+
(√

ση1Cα0ϵ√
b1

)2

=
2Lf

(
1 + d̄

)
η1Cα0ϵ

√
b1

+
(√

ση1Cα0ϵ√
b1

)2

≤ ϵ,

where we have used α0 := min
{ √

b1
4Lf η1C(1+d̄) ,

√
b1√

2ση1C

}
.

Let Ttotal be the total number of queries made by Algorithm 3; then,

Ttotal =
M+1∑
m=1

H3

ϵm
=

M+1∑
m=1

H3

σ2δ2
m

= H3

σ2δ2
1

+ H3

σ2δ2
2

+ · · · + 2H3

σ2δ2
M

≤ H3(M + 1)
σ2δ2

M

≤ H3(M + 1)
σ2δ2

M

= H3(M + 1)
σ2δ2

1
1

M2p

= H3M2p(M + 1)
σ2δ2

1

= H3M2p+1

σ2δ2
1

+ H3M2p

σ2δ2
1

.
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From Mp := 1
α0ϵ ,

Ttotal =
H3

(
1

α0ϵ

) 1
p +2

σ2δ2
1

+
H3

(
1

α0ϵ

)2

σ2δ2
1

≤
2H3

(
1

α0ϵ

) 1
p +2

σ2δ2
1

=
2H3

(
1

α0ϵ

) 1
p

σ2δ2
1(α0ϵ)2

= 2H3

σ2δ2
1(α0ϵ)

1
p +2

≤ 2H3

σ2δ2
1(α0ϵ)

1
p

= O
(

1
ϵ

1
p

)
.

This completes the proof.

D.5 Proof of Proposition 3.1

Proof. For all x ∈ N(x⋆; amr)\{x⋆} (am ≥ 0), and all um ∼ B(0; 1), the quadratic equation

δ2
m − 2 ⟨x⋆ − x, um⟩ δm + (a2

m − 1)r2 = 0 (13)

for δm ∈ R has solutions with probability p(am) when am > 1 and always has solutions when 0 ≤ am ≤ 1.

Let us derive p(am). When am > 1, the condition for the discriminant equation of (13) to be positive is as
follows:

−1 ≤ cos θ ≤ −
r
√

a2
m − 1

∥x⋆ − x∥∥um∥
, or

r
√

a2
m − 1

∥x⋆ − x∥∥um∥
≤ cos θ ≤ 1, (14)

where θ is the angle between um ∼ B(0; 1) and x⋆ − x. Note that cos θ can be positive or negative because
δm ∈ R. Since the random variable um is sampled uniformly from the B(0; 1), the probability that um

satisfies (14) is less than

p(am) :=
arccos

(
r
√

a2
m − 1

∥x⋆ − x∥∥um∥

)
π

,

for δm > 0 and δm < 0, respectively.

Now let us consider the solution of the quadratic inequality,

∥um∥2δ2
m − 2 ⟨x⋆ − x, um⟩ δm + (a2

m − 1)r2 ≤ 0 (15)

for δm ∈ R.

(i) When am > 1, (15) has one or two solutions with probability p(am) or less. When r
√

a2
m−1

∥x⋆−x∥∥um∥ ≤ cos θ ≤ 1,
let the larger solution be D+

m > 0 and the smaller one be D−
m > 0; we can express these solutions as follows:

D+
m(x, um) := ∥x⋆ − x∥∥um∥ cos θ +

√
∥x⋆ − x∥2∥um∥2 cos2 θ − r2(a2

m − 1),

D−
m(x, um) := ∥x⋆ − x∥∥um∥ cos θ −

√
∥x⋆ − x∥2∥um∥2 cos2 θ − r2(a2

m − 1).
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Moreover, we define δ+
m and δ−

m as follows:

δ+
m := sup

x∈N(x⋆;amr)\{x⋆}
Eum∼B(0;1)

[
D+

m(x, um)
]

,

δ−
m := sup

x∈N(x⋆;amr)\{x⋆}
Eum∼B(0;1)

[
D−

m(x, um)
]

.

Thus, the solution Dm(x, um) to (15) is

0 < D−
m(x, um) < Dm(x, um) < D+

m(x, um)

when r
√

a2
m−1

∥x⋆−x∥∥um∥ ≤ cos θ ≤ 1, and

−D+
m(x, um) < Dm(x, um) < −D−

m(x, um) < 0

when −1 ≤ cos θ ≤ − r
√

a2
m−1

∥x⋆−x∥∥um∥ . Hence, let δm := sup
x∈N(x⋆;amr)\{x⋆}

Eum∼B(0;1) [Dm(x, um)], then we have

|δ−
m| ≤ |δm| ≤ |δ+

m|.

(ii) When am ≤ 1, (15) always has one or two solutions. The two solutions are defined as in (i). Then, the
solution to (15) is

D−
m(x, um) < Dm(x, um) < D+

m(x, um)

when r
√

a2
m−1

∥x⋆−x∥∥um∥ ≤ cos θ ≤ 1, and

−D+
m(x, um) < Dm(x, um) < −D−

m(x, um) (−D+
m(x, um) < 0, −D−

m(x, um) > 0)

when −1 ≤ cos θ ≤ − r
√

a2
m−1

∥x⋆−x∥∥um∥ . Hence, we have

|δm| ≤ |δ−
m|.

From (i) and (ii), (15) may have a solution for all am > 0 when |δm| = |δ−
m|. Therefore, suppose |δm| = |δ−

m|;
then,

r2 ≥ a2
mr2 − 2δm⟨x⋆ − x, um⟩ + |δm|2

≥ a2
mr2 − 2δm⟨x⋆ − x, um⟩ + |δm|2∥um∥2

> ∥x − x⋆∥2 − 2δm⟨x⋆ − x, um⟩ + |δm|2∥um∥2

= ∥x + δmum − x⋆∥2.

This means that x + δmum ∈ N(x⋆; r) (δm ∈ R), where um ∼ B(0; 1). Hence, for all x, y ∈ N(x⋆; amr) ⊂
Rd (am >

√
2),〈

∇f̂δm
(x) − ∇f̂δm

(y), x − y
〉

= ⟨∇Eu[f(x + δmu)] − ∇Eu[f(y + δmu)], x − y⟩

= ⟨Eu[∇f(x + δmu)] − Eu[∇f(y + δmu)], x − y⟩
= ⟨Eu[∇f(x + δmu) − ∇f(y + δmu)], x − y⟩
= Eu[⟨∇f(x + δmu) − ∇f(y + δmu), x − y⟩]
≥ Eu[σ∥(x + δmu) − (y + δmu)∥2]
= Eu[σ∥x − y∥2]
= σ∥x − y∥2.

This means that, if |δm| = |δ−
m| holds, then f̂δm is σ-strongly convex on N(x⋆; amr) (am >

√
2) when f is

σ-strongly convex on B(x⋆; r). Also, if we define dm := amr

|δ−
m| , then dm|δm| ≤ amr holds; i.e., f̂δm is σ-strongly

convex on N(x⋆; dm|δm|). This completes the proof.
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Remark: In the end, |δm| must be equal to |δ−
m|. We can show that |δ−

m| is non-zero. Suppose that (14)
holds, then

|δ−
m| := sup

x∈N(x⋆;amr)\{x⋆}
Eum∼B(0;1)

[∣∣∣∥x⋆ − x∥∥um∥ cos θ −
√

∥x⋆ − x∥2∥um∥2 cos2 θ − r2(a2
m − 1)

∣∣∣]
> sup

x∈N(x⋆;amr)\{x⋆}
Eum∼B(0;1)

[∣∣∣r√a2
m − 1 −

√
a2

mr2 − r2(a2
m − 1)

∣∣∣]
= |r

√
a2

m − 1 − r|

= r
(√

a2
m − 1 − 1

)
> 0,

where we have used ∥x⋆ − x∥ < amr, ∥um∥ ≤ 1,
r
√

a2
m−1

∥x⋆−x∥∥um∥ ≤ | cos θ| ≤ 1, and am >
√

2.

D.6 Proof of Proposition 3.2

Proof. From Proposition 3.1, for all |δm| = |δ−
m|, f̂δm is σ-strongly convex, i.e.,

σ∥x⋆ − x⋆
δm−1

∥2 ≤
〈

x⋆ − x⋆
δm−1

, ∇f̂δm
(x⋆) − ∇f̂δm

(x⋆
δm−1

)
〉

≤
∥∥∥x⋆ − x⋆

δm−1

∥∥∥∥∥∥∇f̂δm
(x⋆) − ∇f̂δm

(x⋆
δm−1

)
∥∥∥ ,

where we have used the Cauchy-Schwarz inequality and
∥∥∥∇f̂δm

(x⋆
δm

)
∥∥∥ = 0. Accordingly, we have

∥∥∥x⋆ − x⋆
δm−1

∥∥∥(σ
∥∥∥x⋆ − x⋆

δm−1

∥∥∥−
∥∥∥∇f̂δm

(x⋆) − ∇f̂δm
(x⋆

δm−1
)
∥∥∥) ≤ 0.

Because
∥∥∥x⋆ − x⋆

δm−1

∥∥∥ ≥ 0 and Lemma 2.2,

∥∥∥x⋆ − x⋆
δm−1

∥∥∥ ≤

∥∥∥∇f̂δm
(x⋆) − ∇f̂δm

(x⋆
δm−1

)
∥∥∥

σ

≤
Lg

∥∥∥x⋆
δm−1

− x⋆
∥∥∥

σ
.

Hence,

∥∥∥x⋆
δm

− x⋆
δm+1

∥∥∥ ≤
∥∥x⋆

δm
− x⋆

∥∥+
∥∥∥x⋆

δm+1
− x⋆

∥∥∥
≤ Lg

σ

(∥∥x⋆
δm

− x⋆
∥∥+

∥∥∥x⋆
δm+1

− x⋆
∥∥∥)

≤ 2Lg

σ
max

{∥∥x⋆
δm

− x⋆
∥∥ ,
∥∥∥x⋆

δm+1
− x⋆

∥∥∥}
≤ |δm|(1 − γm)
= |δm| − |δm+1|

This completes the proof.
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D.7 Proof of Proposition 3.3

Proof. By using the triangle inequality, we have, for all m ∈ [M ],

∥x⋆
δm

− x⋆∥ = ∥x⋆
δm

− x⋆
δm+1

+ x⋆
δm+1

− x⋆∥
≤ ∥x⋆

δm
− x⋆

δm+1
∥ + ∥x⋆

δm+1
− x⋆∥

≤ ∥x⋆
δm

− x⋆
δm+1

∥ + ∥x⋆
δm+1

− x⋆
δm+2

∥ + · · · + ∥x⋆
δM

− x⋆
δM+1

∥ + ∥x⋆
δM+1

− x⋆∥
≤ (|δm| − |δm+1|) + (|δm+1| − |δm+2|) + · · · + (|δM | − |δM+1|) + 0
= |δm|, (16)

where we have used x⋆
δM+1

= x⋆, δM+1 = 0. Therefore, from dm > 1, we have

∥x⋆
δm

− x⋆∥ < dm|δm|.

This completes the proof of Proposition 3.3(i). In addition, if γm ∈ ( 1
dm+1

, 1) holds, from (16),

∥x⋆
δm−1

− x⋆∥ ≤ |δm|
γm−1

< dm|δm|.

This completes the proof of Proposition 3.3(ii).

E Additional Experimental Results

For the sake of fairness, we provide here a version of Figures 7-9 with the number of gradient queries on the
horizontal axis. Since b stochastic gradients are computed per epoch, the number of gradient queries is Tb,
where T means the number of steps and b means the batch size.

F Full Experimental Results for Section 4.2
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Figure 12: Accuracy score for testing and loss function value for training versus the number of gradient
queries in training ResNet18 on the CIFAR100 dataset. The solid line represents the mean value, and the
shaded area represents the maximum and minimum over three runs. In method 1, the learning rate and
the batch size were fixed at 0.1 and 128, respectively. In method 2, the learning rate decreased every 40
epochs as in

[
0.1, 1

10
√

2 , 0.05, 1
20

√
2 , 0.025

]
and the batch size was fixed at 128. In method 3, the learning

rate was fixed at 0.1, and the batch size was increased as [16, 32, 64, 128, 256]. In method 4, the learning
rate was decreased as

[
0.1,

√
3

20 , 0.075, 3
√

3
80 , 0.05625

]
and the batch size was increased as [32, 48, 72, 108, 162].

This graph shows almost the same results as Figure 7.
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Figure 13: Accuracy score for testing and loss function value for training versus the number of gradient
queries in training WideResNet-28-10 on the CIFAR100 dataset. The solid line represents the mean value,
and the shaded area represents the maximum and minimum over three runs. In method 1, the learning rate
and batch size were fixed at 0.1 and 128, respectively. In method 2, the learning rate was decreased every 40
epochs as

[
0.1, 1

10
√

2 , 0.05, 1
20

√
2 , 0.025

]
and the batch size was fixed at 128. In method 3, the learning rate

was fixed at 0.1, and the batch size increased as [8, 16, 32, 64, 128]. In method 4, the learning rate decreased as[
0.1,

√
3

20 , 0.075, 3
√

3
80 , 0.05625

]
and the batch size increased as [8, 12, 18, 27, 40]. This graph shows almost

the same results as Figure 8.
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Figure 14: Accuracy score for testing and loss function value for training versus the number of gradient
queries in training ResNet34 on the ImageNet dataset. The solid line represents the mean value, and the
shaded area represents the maximum and minimum over three runs. In method 1, the learning rate and
batch size were fixed at 0.1 and 256, respectively. In method 2, the learning rate was decreased every 40
epochs as

[
0.1, 1

10
√

2 , 0.05, 1
20

√
2 , 0.025

]
and the batch size was fixed at 256. In method 3, the learning rate

was fixed at 0.1, and the batch size was increased as [32, 64, 128, 256, 512]. In method 4, the learning rate
was decreased as

[
0.1,

√
3

20 , 0.075, 3
√

3
80 , 0.05625

]
and the batch size was increased as [32, 48, 72, 108, 162]. This

graph shows almost the same results as Figure 9.
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Figure 15: Accuracy score for testing and loss function value for training versus epochs in training of ResNet18
on the CIFAR100 dataset. The solid line represents the mean value, and the shaded area represents the
maximum and minimum over three runs. This is the full version of Figure 10.
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Figure 16: Accuracy score for testing and loss function value for training versus epochs in training of
WideResNet-28-10 on the CIFAR100 dataset. The solid line represents the mean value, and the shaded area
represents the maximum and minimum over three runs. This is the full version of Figure 11.
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