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ABSTRACT

Large language models exhibit a remarkable capacity for in-context learning,
where they learn to solve tasks given a few examples. Recent work has shown that
transformers can be trained to perform simple regression tasks in-context. This
work explores the possibility of training an in-context learner for classification tasks
involving spurious features. We find that the conventional approach of training
in-context learners is susceptible to spurious features. Moreover, when the meta-
training dataset includes instances of only one task, the conventional approach
leads to task memorization and fails to produce a model that leverages context for
predictions. Based on these observations, we propose a novel technique to train
such a learner for a given classification task. Remarkably, this in-context learner
matches and sometimes outperforms strong methods like ERM and GroupDRO.
However, unlike these algorithms, it does not generalize well to other tasks. We
show that it is possible to obtain an in-context learner that generalizes to unseen
tasks by training on a diverse dataset of synthetic in-context learning instances.

1 INTRODUCTION

Large language models, such as GPT-3, have the ability of in-context learning (ICL), wherein they
learn to solve a task given a few examples in the context (Brown et al., 2020). The most significant
aspect of in-context learning is that the learning happens during the forward pass on the context
and query, without updating network parameters. In order to study in-context learning in isolation,
a number of studies considered training transformers (Vaswani et al., 2017) from scratch to solve
simple learning tasks in-context. In particular, Garg et al. (2022) show empirically that transformers
can be trained to perform in-context learning of simple regression functions, such as dense or sparse
linear functions, two-layer ReLU neural networks, and small decision trees.

Training on ICL instances can be seen as an instance of meta-learning (Schmidhuber, 1987; Naik and
Mammone, 1992; Thrun and Pratt, 1998), where the goal is to learn a learning algorithm. What exact
algorithm is learned when training transformers on ICL instances is still an open problem. Akyürek
et al. (2022) and Von Oswald et al. (2023) show that transformers can implement a single gradient
descent step of ordinary least squares and update the closed-form solution of ridge regression when a
new example is added. Additionally, they provide evidence that transformers trained on ICL instances
of linear regression learn algorithms that closely match predictions of the known algorithms, such as
gradient descent on ordinary least squares objective and ridge regression. However, there is evidence
that the learned algorithm may vary with model scale, depth, and pretraining task diversity (Akyürek
et al., 2022; Raventós et al., 2024). In particular, Raventós et al. (2024) demonstrate that in the
setting of in-context learning of linear regression tasks with insufficient pretraining task diversity, the
learned algorithm behaves like a Bayesian estimator with the pretraining task distribution as the prior,
and hence fails to generalize well to unseen tasks. Yadlowsky et al. (2023) show that when trained
on ICL instances where the regression function belongs to a union of distinct function classes, the
learned algorithm fails to generalize beyond the pretraining function classes. Ahuja and Lopez-Paz
(2023) show that in-context learning ability diminishes under strong distribution shifts.

In this work, we explore the limits of in-context learning further by testing it on challenging settings.
We deviate from the existing literature and consider visual classification tasks instead of regression
tasks with simple function classes. In particular, we consider classification tasks where some features
are spuriously correlated with the label. Such features are predictive of the label but are not causally
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(a) Naive approach (b) Proposed approach

Figure 1: In-context learning transformer architectures of the naive and proposed approaches. The
proposed approach allows arbitrary query tokens after each learning example. Token positions and
attention mask are modified so that these intermediate queries have no effect on other tokens.

related to it, due to which their correlation might not hold at test time. A prominent example is
the cow vs camel classification task, where the background often correlates with the label, as cows
are typically photographed in pastures, while camels are typically photographed in deserts (Beery
et al., 2018). It is well-known that neural networks trained with gradient-based methods to minimize
empirical risk can exploit spurious features, causing performance degradation under distribution
shifts affecting these correlations (Torralba and Efros, 2011; Ribeiro et al., 2016; Gururangan et al.,
2018; Zech et al., 2018; McCoy et al., 2019; Geirhos et al., 2019; 2020; Xiao et al., 2021).

We start our analysis in the standard setting of having a single classification task with spurious
features. We consider the conventional approach of obtaining an in-context learner, wherein a
transformer is trained on sequences of form (x1, y1, . . . , xk, yk, xk+1) to predict the label yk+1 of the
query example xk+1. We find that this conventional approach leads to models that do classification
ignoring the context, essentially memorizing the task. Furthermore, these models lack robustness
to changes of the correlation between the label and spurious features. In particular, we observe a
significant performance drop when the query follows a distribution in which the label and spurious
feature correlation is zero. We propose an effective approach of addressing the task memorization
issue. Namely, we find that task memorization can be mitigated greatly by randomly permuting input
embedding dimensions for each training sequence. To address the issue of spurious features, we
propose a novel way of forming ICL instances and a suitable transformer architecture, which work
together to simulate distribution shift with respect to spurious features in the context. Overall, our
proposed techniques lead to strong in-context learners that outperform established methods such as
1-NN, empirical risk minimization (ERM), and GroupDRO (Sagawa* et al., 2020), suggesting that
the in-context learner implements a more specialized algorithm.

Despite being trained on instance of a single task, the learned algorithm generalizes to other tasks
without spurious features. However, it fails to generalize to unseen tasks with spurious features.
For this reason, we next explore training an in-context learner that generalizes to unseen tasks with
spurious features. We create a dataset of in-context learning instances for various binary classifications
tasks with varying spurious features. We demonstrate the efficacy of the proposed techniques on
this dataset too and find that it can be improved further by passing spurious feature annotations
as input and injecting occasional queries requesting the label of a proceeding context example to
promote learning induction heads. The resulting model generalizes perfectly to unseen tasks, as
long as the data generating process is similar. However, generalization to unseen tasks with possibly
different data generating process depends on the severity of the challenge posed by spurious features,
indicating that the learned algorithm is more brittle to severe distribution shifts than conventional
algorithms. The source code for reproducing our experiments is available at anonymized.

We summarize our main contributions as follows.

(i) We show that the conventional approach of training an in-context learner is susceptible to
presence of spurious features and also leads to task memorization in case of a single task.

(ii) We propose a suite of novel techniques of forming in-context training data to mitigate task
memorization and increase robustness to spurious features, leading to in-context learners
that outperform established learning algorithms.

(iii) We demonstrate that it is possible to obtain more general-purpose robust in-context learners
by training on a diverse set of synthetic classification tasks involving spurious features.
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Figure 2: Majority-group and worst-group test accuracies on Waterbirds as a function of context
size for the naive and proposed approaches with or without permuting input dimensions. Shaded
regions show standard deviation across 5 training runs.

2 IN-CONTEXT LEARNING BASED ON A SINGLE TASK

We start by considering the common setting of having a single classification task with spurious
features. For simplicity, we focus on label-balanced binary classification tasks in presence of a single
binary spurious feature, although what follows next applies to label-imbalanced multiclass settings as
well. Let Dtrain be a set of training examples for the task, where each example is a triplet (x, s, y)
of input x ∈ Rd, spurious feature value s ∈ {0, 1}, and label y ∈ {0, 1}. Similarly, let Dtest be a
set of test examples. Importantly, we do not make any assumptions on the data generating process,
except that x has some information about s and s is predictive of y on the training set, but their
correlation does not hold on the test set. For an example (x, s, y), we define its group g = 2y + s. In
a binary classification task with a single binary spurious feature, there are four groups. Without loss
of generality, we assume that for a majority of training examples we have that y = s. Hence we refer
to groups 0 and 3 as majority groups, while referring to groups 1 and 2 as minority groups.

Training a transformer to perform linear regression in-context requires millions of ICL training
instances, even for small dimensional cases. For example, Garg et al. (2022) use 32 million training
instances for 20-dimensional inputs. We next consider ways of generating so many ICL instances
from a single task.

2.1 A NAIVE APPROACH OF CONSTRUCTING ICL INSTANCES

The standard approach of constructing an ICL instance is to sample a subset of n + 1 exam-
ples {(xi, si, yi)}n+1

i=1 from Dtrain and form a sequence S = (x1, ỹ1, x2, ỹ2, . . . , xn, ỹn, xn+1),
where ỹi ∈ Rd is a fixed random representation of either yi or gi (this distinction will be
elaborated later). Then one trains a transformer fθ : ∪kRk×d → [0, 1] to predict yi given
Si ≜ (x1, ỹ1, . . . , xi−1, ỹi−1, xi) (see Figure 1a), optimizing the following loss function:

1

n+ 1

n+1∑
i=1

CE(yi, fθ(Si)), (1)

where CE(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ) is the binary cross-entropy loss. We explore two
options of setting ỹi. In the first option, we set ỹi to represent yi with a constant vector or its negative
in Rd. In this case we aim to obtain an in-context learner that is robust to spurious features without
receiving spurious feature annotations as input. ERM is one such learner that minimizes average
loss on training examples and does not require spurious feature annotations. In the second option,
we set ỹi to represent gi as a sum of two constant vectors in Rd, one representing the class and the
other representing the spurious feature. In this case we aim to obtain an in-context learner that does
robust classification with respect to a specified spurious feature. GroupDRO is one such learner that
minimizes worst-group loss, therefore requiring spurious feature annotations at training time.

Unfortunately, the simple approach of (1) has several issues. First, as the classification task is the
same in all ICL instances, the model can ignore context examples and predict yi based solely on
xi, essentially memorizing the task. Second, as all n + 1 examples of a sequence S are sampled
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Figure 3: Majority-group and worst-group test accuracies on Waterbirds-severe as a function
of context size for the naive and proposed approaches with or without permuting input dimensions.

from the training set and the spurious correlation holds for all of them, there is nothing preventing
usage of spurious features in making predictions. To confirm these two issues, we consider the
Waterbirds dataset (Sagawa* et al., 2020), which is landbird vs waterbird image classification
task where image background (sea or land) is correlated with the label in the training set (4,795
examples), but not in validation and test sets . A robust classifier should predict waterbird
or landbird without relying on image background. To separate out the representation learning
challenge, we represent images with a pretrained and frozen DINOv2 ViT-B/14 distilled (Oquab et al.,
2023). This way each image is embedded in R768. While using powerful pretrained representations
increases overall performance under distribution shifts (Radford et al., 2021; Mehta et al., 2022), we
note that it does not eliminate the problem of spurious correlations. Representations obtained via
large-scale self-supervised pretraining are likely rich enough to capture information about both the
label and spurious feature. Furthermore, many works have indicated that the main contribution to the
out-of-domain generalization error comes from the classification head (rather than the representation
learning module) and called for designing better methods of training the classification head (Galstyan
et al., 2022; Menon et al., 2021; Kirichenko et al., 2023; Izmailov et al., 2022; Shi et al., 2023).

We train a causal decoder-only GPT-J transformer (Wang and Komatsuzaki, 2021) with 80M pa-
rameters on 2M in-context learning sequence with n = 512 and ỹi representing labels, constructed
from the training set of Waterbirds. We use balanced sampling of classes and set the minority
group proportion to 10% within each class. We use the ADAM optimizer (Kingma and Ba, 2014)
(β1 = 0.9 and β2 = 0.999) with 32 batch size and no weight decay. The learning rate is selected from{
3 · 10−5, 6 · 10−5, 10−4

}
based on average test performance over 5 runs. Concretely, we evaluate

on 8192 sequences where the context part is n training examples, while the query is a sampled from
the test set with equal group distribution. Exact metric definitions and missing details are provided in
Appendix A. Note that with 512 context length and 10% minority group ratio within each class, the
expected value of the number of context examples from each of the 2 minority groups is about 25.
For reference, the smallest minority-group has only 56 examples in the Waterbirds training set.

Figure 2 plots majority-group and worst-group test accuracies as a function of context size n. We see
that naive approach results in models that ignore context – worst-group accuracy with 512 context
examples is essentially the same as with 2 examples (see the naive curve). This confirms the task
memorization issue. Figure 2 also shows that majority-group test accuracy of the naive approach is
considerably higher compared to worst-group accuracy confirming the non-robustness issue.

2.2 THE PROPOSED APPROACH OF CONSTRUCTING ICL INSTANCES

To address the task memorization issue, we propose to rotate image embeddings in each ICL instance
independently, making it harder to memorize individual examples. We found that generating random
rotation matrices on fly is computationally expensive and slows down training. We tried generating
and storing 10K rotation matrices, but this resulted in less than 50M different training examples that
were still possible to memorize to some extent. A more effective and efficient alternative is to apply
random permutations to image embedding dimensions (for brevity, this technique is denoted with
+P in figures and tables; please see Figure 11 for an illustration of this technique). We found this
approach to be very effective in terms of inducing in-context learning (see naive + P in Figure 2). We
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also see that the difference between majority-group and worst-group accuracies decreases, although
an approximately 5 p.p. gap remains.

When training an ICL transformer, ideally, we would like to simulate the situation of making a test
prediction based on a context of training examples. Importantly, we would like to simulate the case
where test distribution has balanced groups (i.e., the spurious correlation does not hold). Given access
to spurious feature annotations for the training set, we can simulate this scenario using only training
examples. In particular, we can form ICL instances of form (x1, ỹ1, . . . , xn, ỹn, xn+1), where the
context examples (x1, . . . , xn) are sampled in a way that the spurious feature is correlated with
the label, while the query xn+1 is sampled to have a uniform group distribution. However, if we
again optimize the loss of (1), for context lengths less than n, the network will be allowed to make
predictions using the spurious feature, which is undesirable. Please refer to Figure 17 of Appendix B
for evidence of this. Potential ways of addressing this issue is upweighting the final prediction loss in
Eq. (1) or upweighting predictions on minority examples. In our preliminary experiments we found
the former approach ineffective. We did not experiment with the latter approach.

Instead, we propose a novel way of forming in-context learning instances and a modified transformer
architecture that is suitable for such sequences. In particular, we form sequences of form S =
(x1, ỹ1, q1, x2, ỹ2, q2, . . . , xn, ỹn, qn), where (xi, ỹi) are context examples, while qi are queries,
sampled with replacement from Dtrain \ {x1, . . . , xn}. Importantly, qi are sampled with a uniform
group distribution. Redefining Si = (x1, ỹ1, q1, . . . , xi, ỹi, qi), we would like the prediction on Si to
be the label of qi. When making a prediction on qi, we want qj (j < i) to have no effect. For this
end we make two modifications. First, we modify the causal attention matrix to disallow attending to
query tokens, unless a query token is attending to itself. Formally, if we enumerate tokens from 1 to
3n and define Mi,j to denote the attention mask for token i attending to token j, then we set

Mi,j =


0, i < j,

0, i > j and j ≡ 0 mod 3,

1, otherwise.
(2)

Second, we use modified token positions for computing positional encodings, in order to discount
intermediate query tokens. Namely, for the sequence (x1, ỹ1, q1, x2, ỹ2, . . . , xn, ỹn, qn), position
indices are set to (0, 1, 2, 2, 3, 4, 4, . . . , 2n− 2, 2n− 1, 2n). Formally, enumerating tokens from 1 to
3n, the position index of the i-th token is set to 2

⌊
i−1
3

⌋
+ (i− 1)mod 3. Please refer to Figure 1 for

an illustration. Hereafter, we refer to this approach as simply “proposed approach”.

Figure 2 compares the proposed and naive approaches with and without input dimension permutations.
Without random permutations, the proposed approach outperforms the naive approach marginally.
However, the same is not true with random permutations. We found that image embeddings of
DINOv2 have a bias towards representing objects more than backgrounds, alleviating the challenge
posed by the spuriously correlated background in Waterbirds. In fact, the linear probing accuracy
of the spurious feature is just ≈ 82%. For this reason, we create a modified version of Waterbirds
by adding a constant vector s̃ or −s̃ to image embeddings based on the spurious feature s. We
scale s̃ to have its norm equal to the average norm of image embeddings and verify that the linear
probing accuracy of the spurious feature becomes 100%. On this modified Waterbirds dataset,
which we name Waterbirds-severe, we see a large separation between the naive and proposed
approaches (see Figure 3). We also see that without permutations, both naive and proposed approaches
perform identically, indicating no robustness to the spurious correlation. This is expected, because in
the absence of in-context learning, we can think of the naive and proposed approaches as standard
and reweighted empirical risk minimization with a complex classification head, respectively. It has
been observed that sample reweighting is not effective in overparameterized settings as all training
examples will be perfectly fitted (Byrd and Lipton, 2019; Menon et al., 2021).

2.3 COMPARISON WITH CONVENTIONAL LEARNING ALGORITHMS

Now that we have established the efficacy of the proposed technique, we compare it to a few
established algorithms, such as 1-NN, ERM, and GroupDRO, that last of two have been historically
hard to outperform (Gulrajani and Lopez-Paz, 2021; Koh et al., 2021). Comparing to more existing
methods designed for robustness to spurious correlations is outside of the goal of this work, namely
studying limits of in-context learning. In our comparisons, we follow the evaluation recipe used for
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(a) Waterbirds
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Figure 4: Worst-group test accuracies on Waterbirds and Waterbirds-severe for the pro-
posed approach and conventional methods such as 1-NN, ERM, and GroupDRO. Majority-group
accuracies are reported in Figure 18 of Appendix B.

the in-context learners. Namely, we evaluate each baseline on 8192 sequences by training on the
context part of the sequence and making a prediction on the single query. More information about
hyperparameters and model selection is presented in Appendix A.

Figures 4a and 4b compare the proposed and baseline approaches on Waterbirds and
Waterbirds-severe respectively. On Waterbirds, the proposed method outperforms ERM
and GroupDRO on almost all context lengths, but is better than 1-NN only for short context
lengths. The good performance of 1-NN is due to the bias in DINOv2 representations. On
Waterbirds-severe, the proposed method outperforms the baselines at all context lengths.
From these results, we conclude that this in-context learner implements none of these algorithms.

It is worth noting that baseline worst-group accuracies at n = 512 are actually higher than what we
get when training on the entire dataset. For example, on Waterbirds, 1-NN gets only 90.03 %
worst-group accuracy, while ERM gets 84.23 ± 0.17 % and GroupDRO gets 92.43 ± 0.24 %. This is
due to balanced sampling of classes and setting the minority ratio to 10% withing each class, which
is higher than the minority ratio of ≈ 5% in the original Waterbirds dataset. One can think of our
resampling as a weaker form of down-sampling which has been found to be helpful in presence of
spurious correlations (Nagarajan et al., 2021; Menon et al., 2021; Idrissi et al., 2022).

Additionally, we verify our findings on another popular dataset CelebA (Liu et al., 2015) designed for
blond vs non-blond person classification, with sex being a spurious variable. Unlike, Waterbirds,
the spurious feature is asymmetric in CelebA, as blond and non-blond women are equally rep-
resented, while blond men are significantly infrequent compared to non-blond men. In particular,
we verify the two shortcomings of the conventional approach and demonstrate the efficacy of the
proposed techniques compared to the baselines (please see Table 4 and Figure 16 of Appendix B).

2.4 GENERALITY OF THE LEARNED ALGORITHM

Since we train in-context learners on ICL instances of a single task, a natural question arises whether
the learned algorithm can generalize to unseen tasks. Without permuting input dimensions, the
model does not learn to do in-context learning. Thus, we can not hope for any generality without
permuting input dimensions. We take the model obtained with the “Proposed + P” technique and
probe generality of its in-context learning by evaluating on various datasets. We start by swapping the
labels of two classes in Waterbirds at evaluation and observe ≈ 2 p.p. overall accuracy drop and
≈ 5 p.p. worst-group accuracy drop. Despite the worsened performance, this indicates that the model
treats class labels symbolically, which is remarkable given that the semantics of labels were constant
during training. However, when we evaluate on Waterbirds-severe, it gets 100% accuracy on
the majority groups and 0% accuracy on minority groups. Additionally, when we switch the task to
predicting the background in the original Waterbirds dataset (now the class becomes a spurious
feature), the overall test accuracy drops to 54.4%, while the worst-group accuracy drops to 9.3%.

It is worth noting that the learned algorithm is not completely useless for other tasks and works well in
absence of spurious features, even on unseen tasks. For example, evaluating on binary classification
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tasks derived from the CUB-200 (Welinder et al., 2010) dataset, from where the bird images of
Waterbirdswere taken, we get 99.7% accuracy at context size 100 (the accuracy is so high because
most pairs of classes are easy to distinguish). We also test on binary classification tasks derived from
classes belonging to Amphibia and Mammalia supercategories of the iNaturalist (Van Horn
et al., 2018) dataset. At context length 512, the overall accuracy is 98.5%.

These OOD evaluation results indicate that the learned algorithm does something specific to the
spurious feature of Waterbirds. We hypothesize that it learns to ignore this particular spurious
feature. To test this, we evaluate on group-balanced Waterbirds sequences, with the task set to
predicting background, and get 58.5% overall accuracy and 41.3% worst-group accuracy. Additionally,
we do a forward pass on 1024 ICL Waterbirds sequences and collect final query representations
at various layers of the transformer. We then do a linear probing (512 examples for probe training and
512 for validation) to measure predictability of the background variable. We find that the “Proposed +
P” approach reduces background information effectively as we sweep from input to the final layer,
while the “Naive” fails to reduce background probing accuracy (see Figure 21).

One potential way of improving generality and possibly also performance, is passing example groups
as input, i.e., setting ỹi to represent gi. We did not observe performance improvements and increase
of generality of the learned algorithm when passing groups as input (see the complete results in
Tables 1 and 2 of Appendix B). Thus, we conclude that when all ICL instances are derived from the
task, the learned algorithm is inherently tied to the spurious feature of that task.

3 IN-CONTEXT LEARNING BASED ON A DIVERSE SET OF TASKS

In Section 2, we showed that it is possible to obtain a good in-context learner for a given task, but it
fails to generalize to tasks with different spurious features. A better in-context learner should detect
spurious features from context and make predictions without employing them. In this section, we
explore the possibility of obtaining such a learner by training on a diverse set of ICL tasks. Since there
exist few suitable datasets, we synthesize binary classification tasks with a single binary spurious
feature, aiming to capture “structure” present in existing datasets. In short, given a standard binary
classification task, say cat vs dog classification, for a sampled minority of cats we overwrite some
of their features with those of random dogs. Similarly, we do an analogous operation for a sampled
minority of dogs. This way some cats share dog features and vice versa. To create a diverse pool of
in-context learning instances, we vary the two classes and the subset of grafted features. Please refer
to Figure 15 of Appendix A for an illustration of this grafting operation.

More concretely, we consider the iNaturalist dataset (Van Horn et al., 2018), which contains
images from 5,089 natural fine-grained categories and filter out categories that have less than 500
images. For testing purposes, from remaining 239 categories we set apart categories that belong to
the supercategories Amphibia and Mammalia, along with 10% of random categories. We denote
the set of these 48 categories as Cood, and the set of remaining 191 categories as Cid, which we use
to create in-context learning instances for training. For each category in Cid, we hold out half of
the examples as in-distribution validation set. To generate a single in-context learning instance, we
sample two distinct classes from Cid randomly and sample n/2 images from the training split of
each class uniformly at random without replacement. Please refer to Figure 14 of Appendix A for
an illustration of our preprocessing of iNaturalist. We then do the grafting operation, setting
minority group ratio within each class to 10%. We select the grafted features randomly, by first
picking subset size k uniformly at random from 0 to 199, and then sampling a random subset of
embedding dimensions of size k. With this we get n examples that form the context part of the
instance. Abandoning the naive approach and focusing on the proposed one, for each class we sample
n/2 queries from the remaining examples uniformly at random with replacement and do the grafting
operation with 50% minority group ratio.

Following the experiments in Section 2, we train the same transformer with the proposed approach on
4M ICL instances with n = 400 context examples. We use the same optimizer and sweep the learning
rate in the same range, selecting the best value based on the average minority-group accuracy (defined
exactly in Appendix B) on instances where both categories belong to Cood and thus were not observed
during training. The results presented in Figure 5 indicate a major difference compared to the results
in the single-task regime – namely, the proposed approach learns to do in-context learning to some
extent without permuting embedding dimensions. As expected, we see much better performance with

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

2 4 8 16 32 64 128 256 400
Number of context examples

92

94

96

98

M
aj

or
ity

-g
ro

up
 a

cc
ur

ac
y

Proposed
Proposed + I
Proposed + P
Proposed + P + I

2 4 8 16 32 64 128 256 400
Number of context examples

92

93

94

95

96

97

98

99

M
in

or
ity

-g
ro

up
 a

cc
ur

ac
y

Proposed
Proposed + I
Proposed + P
Proposed + P + I

Figure 5: Majority-group and minority-group accuracies on the OOD test set of iNaturalist for
the proposed approaches with or without permuting input dimensions and promoting induction heads.
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Figure 6: Minority-group accuracy on the OOD
test set of iNaturalist for the best proposed
approach with or without passing group informa-
tion as input.
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Figure 7: Minority-group accuracy on the OOD
test set of iNaturalist for the best variant
of proposed approach and conventional methods
such as 1-NN, ERM, and GroupDRO.

permuted embedding dimensions. Notably, comparing majority-group and minority-group accuracies
of the proposed approach with permutations, we see almost no sign of reliance on spurious features.

Promoting emergence of induction heads. In-context learning ability has been linked to induction
heads, which are specific type of circuits found within large language models that implement the
operation of looking back over the sequence for finding previous instances of the current token and
copying what comes after that (Olsson et al., 2022). Inspired by this, we propose a data preparation
technique that promotes learning of induction heads. With probability p, we replace each intermediate
query independently with a random example from the proceeding part of the context (please see
Figure 13 for an illustration of this technique). Note that this type of “hinting” is not possible in
the naive approach and is enabled by the introduction of intermediate queries. In all experiments
with this technique enabled, we just set p = 0.25. We observed that training of typical runs escapes
the initial loss plateau faster with this technique (in about 3k iterations compared instead of about
10k iterations). Moreover, we see modest performance gains in iNaturalist experiments (see
Figure 5, where +I stands for this technique).

Passing example groups as input. In contrast to the findings in the single-task setting of Section 2,
we observed that setting ỹi to represent group improves the proposed approach, even on top of
permitting input dimensions and promoting induction heads. One case of this is presented in Figure 6,
while more cases can be found in the complete results presented in Appendix B. For brevity, we mark
passing groups as inputs with +G in figures and tables. Please see Figure 12 for an illustration.

Comparison with conventional learning algorithms. Similar to the experiments in Section 2,
we compare the best variant of the proposed approach (G + P + I) to 1-NN, ERM, and GroupDRO.
Results presented in Figure 7 show that the learned algorithm is on-par with or outperforms the
baselines starting at context length 32. The results at context lengths below 20 are not as informative,
because the way we implemented the grafting operation implies that no examples are grafted when
there are less than 10 examples in a class.
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Figure 8: Worst-group test accuracy on
Waterbirds for the best variant of proposed
approach trained on iNaturalist and for
methods such as 1-NN, ERM, and GroupDRO.
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Figure 9: Worst-group test accuracy on
Waterbirds-severe for the best variant of
proposed approach trained on iNaturalist
and for methods such as 1-NN, ERM, and Group-
DRO.
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Figure 10: Majority-group and worst-group test accuracies of a proposed model (G + P + I) trained
on iNaturalist, but evaluated on a modified variants of Waterbirds where we add a vector
representing the spurious feature (background). The x-axis is the relative norm of the added vector
compared to the average Waterbirds image embedding norm. Relative norm of 0 corresponds to
Waterbirds, while relative norm of 1 corresponds to Waterbirds-severe.

Generality of the learned algorithm. To test the generality of the learned algorithm, we report
evaluation results on Waterbirds (Figure 8) and Waterbirds-severe (Figure 9). We see that
the learned algorithm outperforms baselines on Waterbirds and is as good as we got by training on
Waterbirds itself. However, the learned algorithm fails completely on Waterbirds-severe,
while the baselines give meaningful results starting at context length 32. We hypothesize that the
challenge posed by the spurious features in Waterbirds-severe is significantly more severe
compared to that in iNaturalist. By varying the norm of the added background vector, we
interpolate between Waterbirds and Waterbirds-severe, and we see good generalization
until the norm of the added vector is ≈40% of the average embedding norm (see Figure 10).

4 RELATED WORK

In this section, we discuss more related work in addition to the ones discussed earlier.

In-weights vs in-context learning. We observe two modes of learner behavior in our experiments.
In the first mode, the learner acts like a standard supervised classifier, ignoring context examples.
This mode appears when training on ICL instance of a single task without permuting input embedding
dimensions. In the second mode, the learner does proper in-context learning. Our experiments
indicate that both permuting embedding dimensions and increasing the number of training tasks are
reliable ways of steering the model towards the in-context learning mode. The former is akin to the
method of randomly projecting inputs proposed by Kirsch et al. (2022) for obtaining general-purpose
in-context classifiers. Prior work has made a distinction between these two models of learning, naming
them in-weights and in-context learning. In particular, Chan et al. (2022) demonstrate that certain
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distributional properties of data, such as long-tail of class frequencies and bursty distribution of context
example classes, can promote in-context learning when meta-training on few-shot classification
instances. Singh et al. (2024) show that in-context learning behavior is not persistent and decays away
with overtraining, indicating a trade-off between in-weights and in-context learning mechanisms.
Moreover, they find that this in-context learning skill decay can be prevented by applying weight decay
of embeddings and MLP layers, slowing down in-weight learning. Anand et al. (2024) make similar
observations about these two modes of learning and propose active forgetting of token embeddings as
an effective way of steering towards the in-context learning mode.

Many shot ICL. One ancillary finding of this work is that transformers can be trained to do
in-context learning of visual classification tasks when good image embeddings are provided. This is
remarkable because the input dimensionality we considered is much higher than what was considered
in the pioneering works of Garg et al. (2022) and Akyürek et al. (2022) (784 vs 20). Furthermore, we
observe predictable performance gains from longer context sizes. The number of “shots” we consider
(up to 512 examples) is well beyond what is typically considered in ICL works (up to a few dozen of
examples). Our findings are complementary to those of Agarwal et al. (2024), Jiang et al. (2024),
and Li et al. (2024) who find that multimodal large language models, such as Gemini-1.5 Pro and
GPT-4o, can benefit from large number of in-context demonstrations (up to 1000 demonstrations).

In-context learning for out-of-distribution generalization. Closest to our work are the works that
propose to make use of in-context learning for out-of-distribution generalization. Han et al. (2023)
test multimodal large language models (MLLMs) on a variety of visual classification tasks. They
propose to leverage in-context learning abilities of MLLMs to improve performance on specialized
domains and on tasks with significant corruptions. However, they only consider the case where
both context examples and query are from the target domain. Zhang et al. (2024) make similar
observations, but additionally study robustness of in-context learning to distribution shifts, such as
domain shifts, label shifts, and spurious correlations. They find that in-context learning is highly
susceptible to label shifts and presence of spurious correlations. Finally, Gupta et al. (2024) propose
to address the problem of domain generalization (Muandet et al., 2013) by training an in-context
learner that can take examples from a domain/environment and adapt to that domain in-context.

5 DISCUSSION AND CONCLUSION

We showed that it is possible to train an effective in-context learner tailored to a particular classi-
fication task with spurious features. We did this by introduce two key techniques: (a) permuting
input embedding dimensions and (b) forming ICL sequences with intermediate queries simulating
distribution shift. We provided evidence that the learned algorithm is highly competitive on the task it
was trained on. However, we found that while it generalizes to other tasks without spurious features,
it does not work for tasks with other spurious features. Understanding this failure mechanistically
and exploring techniques for enabling better generalization are key future research directions.

We next explored training on synthetic ICL instances of diverse tasks and showed that it is possible
to obtain an in-context learner that generalizes to unseen tasks, even with different data generating
processes. We established the usefulness of two more techniques: (c) passing example groups as
input and (d) promoting learning of induction heads by occasionally querying past context examples.
We believe there is a room for improving in-context learning via improved strategies of choosing
intermediate queries and possibly optimizing worst-group loss. Understanding why the learned
algorithm fails under extreme distribution shifts and why variants with permutations fail more (see
Figure 10) is an interesting question to explore. Another interesting direction to explore is to find
out what exact algorithm is learned in the process of training on diverse tasks. Based on the results
presented in this work, we conclude that the learned algorithm is neither 1-NN, ERM, or GroupDRO.

Our work has several limitations. First of all, training a transformer-based in-context learner with
high-dimensional image embeddings is computationally costly (see Appendix A for information on
compute resources), although it is faster than the baselines at inference. For this reason, we did not
explore more datasets and pretrained image embeddings. We believe main conclusions of our work
will be unchanged and provide an experiment on CelebA with a larger network in Appendix B.
Second, we experimented with only one model size, width, and depth. Larger models might behave
differently (Wei et al., 2023). Third, in our iNaturalist experiments, we considered only one
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“type” of spurious features. It is likely that this choice has significant effect on the learned algorithm
and its generality. Future research should explore more ways of synthesizing spurious features and
consider varying severity of the challenge posed by spurious features. The latter can be done by
considering multiple spurious features, introducing label imbalance, varying magnitude of spurious
correlations, and varying the margin spurious features provide.

Finally, we acknowledge that the proposed approach of training robust in-context learners requires
spurious feature annotations, which is typically costly to obtain. As we have shown, this limitation
can be addressed by creating synthetic data, in which case spurious annotations are readily available.
At inference, the learned algorithm does not require spurious annotations if it is trained with ỹi set to
represent yi (i.e., ERM-like algorithm), but requires when it is trained with passing example groups
as input (i.e., ỹ set to represent gi; GroupDRO-like algorithm). It is important to note that as we
consider classification problems where the learner is given training data only from environment,
spurious annotations are, in general, necessary to disambiguate core and spurious features.
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A FURTHER EXPERIMENTAL DETAILS

Baselines. For empirical risk minimization as a baseline, we tune 2 hyperparameters: learning rate
(0.01 or 0.001) and number of epochs (100 or 200). For GroupDRO we additionally tune its parameter
that controls adaptiveness of group weights (0.01, 0.1, or 1) and we also try an optional strong L2
regularization (1.0 weight decay), as it has been observed to be useful for small datasets (Sagawa*
et al., 2020).

Transformer-based methods. In all transformer-based approaches, we train a causal decoder-only
GPT-J transformer with 80M parameters that has 6 transformer layers with 8 multi-head attention,
768 model dimensionality, and 3072 hidden dimensionality. When training on iNaturalist, we
add a layer normalization (Ba et al., 2016) on transformer input, as we expect input norms to change
when we evaluate on Waterbirds-based datasets. The transformer input sequence in the proposed
approach consists of 3 types of tokens: context image embeddings, query image embeddings, and
label/group annotations. While the network can rely on positions and content to distinguish image
embeddings from annotations, we found it to be helpful to encode token types explicitly. We do this
by setting the first 3 dimensions of a token to be a one-hot vector representing token type (context
image embedding, query image embedding, or annotation). When permuting dimensions, we do the
permutation before encoding token types to keep the location of token-type information consistent.
In our preliminary experiments and development, we used n = 128 context length. Apart from
improved performance, we did not observe significant qualitative differences when we switched to
larger context lengths for final experiments.

Evaluation and model selection. For all transformer-based approaches and baselines, we do a grid
search to find the best combination of hyperparameters. In particular, we train each configuration with
5 different random seeds and selected one with the highest average test performance. Importantly, for
baseline methods model selection is done for each context length independently, while for transformer-
based methods model selection is done once with respect to the test performance at maximum context
length observed during training. All evaluations are done on 8192 sequences, where the first n
examples are sampled from the corresponding train set while the query is sampled from the test set
with a balanced group distribution. Finally, even when training transformers on permuted image
embeddings, we do not apply permutations during evaluation. In all figures throughout this work,
shaded regions show standard deviation across the 5 training runs.

Note that the most principled model selection approach would be selecting models based on a metric
calculated on a dataset similar to the training set (e.g., a held-out part of training set), rather than the
test set. For example, in the case of experiments on Waterbirds or Waterbirds-severe, the
principled approach would be to select based on performance on sequences where the context part is
sampled from the training set, while the final query is sampled from a held-out validation set with
balanced group distribution. We tried this way of model selection and did not observe significant
changes. In the case of experiments on iNaturalist, the principled approach would be to select
based on performance on sequences where the context part is sampled from the training set, while the
final query is sampled from the hold-out part the training set. We observed that this in-distribution
metric is always around 99.5%-100%, and can be non-informative for model selection. This is a
typical scenario in OOD generalization (see for example (Gulrajani and Lopez-Paz, 2021) or (Wenzel
et al., 2022)).

Definitions of metrics. Given a set of predictions on Waterbirds or Waterbirds-severe,
worst-group accuracy is defined as the lowest accuracy of predictions among the 4 groups. Note that
worst-group accuracy is not applicable to iNaturalist, as different ICL sequences correspond
to different classification tasks and hence form different groups. For this reason, we introduce
minority-group and majority-group accuracies. Given a triplet (C, q, ŷ), where C is a context, q is
query, and ŷ is a prediction on q, we call ŷ a minority (majority) prediction, if q is among the least
(most) represented group(s) of the context C. Given a list of triplets (C, q, ŷ), we define minority
(majority) group accuracy as the accuracy among minority (majority) predictions.

Compute resources. We used NVIDIA A100 GPUs with 40GB memory to train transformer-
based methods. The network we considered is small enough to fit on one GPU with batch size 32
when n = 400 (iNaturalist experiments) and batch size 24 when n = 512 (Waterbirds
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and Waterbirds-severe experiments). We did mixed 16-bit training to save compute and did
not notice any quality degradation. A single training takes around 12 hours for iNaturalist
experiments and around 18 hours for Waterbirds experiments. We used a mix of CPUs and
weaker GPUs to train baselines, as they are not computationally as demanding.

ICL instance #1: embedding dimension permutation = (2, 3, 1, 4, 6, 5)

ICL instance #2: embedding dimension permutation = (1, 6, 5, 3, 4, 2)

Figure 11: An illustration of the proposed technique of permuting image embedding dimensions
(denoted with +P throughout the paper). Note that in each ICL instance we sample a new permutation,
but the same permutation is used to permute dimensions of all image embeddings within one ICL
instance. Whenever, we use the proposed approach of forming ICL sequences (see Figure 1b), the
dimensions of intermediate queries are also permuted.

Figure 12: An illustration of the proposed approach with passing example groups as input (denoted
with +G throughout the paper).

Figure 13: An illustration of the proposed approach with promoting emergence of induction heads
(denoted with +I throughout the paper). Intermediate queries that are randomly selected to be one of
the previous context examples are shown in green.

B ADDITIONAL RESULTS

In addition to the figures presented in the main text, here we provide the exact experimental resources
for multiple transformer-based and baseline approaches, some of which were not included in the main
text due to space constraints. Recall that +P means permuting input dimensions, +I means promoting
learning of induction heads, and +G means passing example groups as input to in-context learning
transformers.

Table 1 presents worst-group accuracies on the test set of Waterbirds for 3 sets of ap-
proaches: (a) in-context learners trained on Waterbirds itself, (b) in-context learners trained
on iNaturalist, and (c) baselines. Similarly, Table 2 presents worst-group accuracies on the
test set of Waterbirds-severe for 3 sets of approaches: (a) in-context learners trained on
Waterbirds-severe itself, (b) in-context learners trained on iNaturalist, and (c) baselines.
As RoPE-based transformers are not good at length extrapolation (Press et al., 2021), we do not
attempt evaluating models trained on iNaturalist with context size 400 on 512-long sequences
of Waterbirds or Waterbirds-severe. Finally, Table 3 presents minority-group accuracy
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Figure 14: An illustration of our preprocessing of the iNaturalist dataset.

(a) Before grafting (b) After grafting

Figure 15: An illustration of the grafting operation for creating spurious features. The figure (a)
depicts two classes of examples, each having 5 examples given by 12-dimensional embeddings. In
this example, the grafting operation selects 3 embedding dimensions to become spurious features.
For this end, these 3 features of examples 2 and 5 of class A are swapped with those of examples 2
and 4 of class B, respectively. Figure (b) depicts the embeddings after the grafting operation.

on out-of-distribution classes of iNaturalist for two sets of approaches: (a) in-context learners
trained on iNaturalist itself and (b) baselines.

Experiments on CelebA. To further verify our main findings presented in Section 2, we conduct
experiments on another popular visual classification tasks CelebA (Liu et al., 2015). In CelebA,
the task is to classify blond vs non-blond persons, with sex being a spuriously correlated variable.
Notably, the spurious correlation is asymmetric, in the sense that blond and non-blond women are
almost equally represented, while blond men are much less represented compared to non-blond men.
We follow the design of Waterbirds experiments in our CelebA experiments, with the only
difference that we set the group distribution of context examples to (0.25, 0.25, 0.05, 0.45), where
group 0 are non-blond men, group 1 are non-blond women, group 2 are blond men, and group 4
are blond women. Table 4 presents worst-group accuracies on the test set of CelebA for 2 sets of
approaches: (a) in-context learners trained on CelebA itself and (b) baselines algorithms. As in
our Waterbirds experiments, we see that it is essential to permute input embeddings and to form
ICL sequences in the proposed fashion. Unlike Waterbirds, comparing “Proposed + P” with
“Proposed + P + G” we see that providing spurious annotations in-context provides significant gains.
Figure 16 demonstrates that both of these approaches outperform 1-NN, ERM, and GroupDRO.
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Figure 16: Worst-group test accuracies on CelebA for the proposed approach and conventional
methods such as 1-NN, ERM, and GroupDRO. Shaded regions show standard deviation across 5
training runs.
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Figure 17: Majority-group and worst-group test accuracies on Waterbirds-severe as a function
of context size for the naive approach with a single modification of making the last example (query)
group-balanced. Shaded regions show standard deviation across 5 training runs. As expected, at
intermediate context lengths this method performs similar to the naive approach, but is much better at
the training context length.

Experiments with a larger network. To verify that our findings generalize to larger models, we
repeat CelebA experiments but with a transformer architecture of 12 layers with 12 multi-head
attention (instead of 6 layers with 8 multi-head attention). Due to memory increase, we decrease
the batch size from 24 to 8. Besides these two changes, we keep all other experimental details
the same. The complete results presented in Table 5 are qualitatively the same compared to the
smaller network case (Table 4), with the difference that the results of transformer-based entries are
lower. Furthermore, the standard deviation of the +P approaches is significantly higher, indicating
difficulties in optimization. We hypothesize that this is due to reusing learning rate and training length
that were that were tuned for the smaller network with 3 times larger batch size.

On data leakage in single task regime. In the single task setting of Section 2, there is a potential
for data leakage, not in the sense that individual examples might be leaked (we always evaluate on
unseen examples), but in the sense that the learner effectively observes more data from the single
task than its context length at evaluation. Indeed, when we do not permute input embeddings, we
observe task memorization (i.e., data leakage) and the model does very well at evaluation with even
close to empty context. To verify that there is no data leakage when we enable permuting input
embeddings (+P), we take one of the “Proposed + P” runs trained on Waterbirds and evaluate
it on ICL sequences where input embeddings of each sequence are rotated with a random rotation
matrix. As the set of permutation matrices is a measure-zero subset of general rotation matrices, we
expect that in case of data leakage we would observe degraded performance, as the model would be
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(a) Waterbirds
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(b) Waterbirds-severe

Figure 18: Majority-group test accuracies on Waterbirds and Waterbirds-severe for the
proposed approach and conventional methods such as 1-NN, ERM, and GroupDRO. Shaded regions
show standard deviation across 5 training runs.
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Figure 19: Majority-group and worst-group test accuracies on Waterbirds as a function of context
size for a “Proposed + P” run evaluated on ICL sequences with randomly rotated input embeddings.
Largely unchanged evaluation results fail to confirm that there is any data leakage when input
embeddings are permuted during training.

expecting randomly permuted embeddings of some memorized embedding space. In results presented
in Figure 19, we see that under this new evaluation the results are the same (up to statistical noise),
failing to confirm that there is any data leakage when input embeddings are permuted during training.
Finally, note that data leakage is not a concern in the multiple task setting of Section 3, because we
evaluate on either unseen categories of iNaturalist or on unseen tasks such as Waterbirds and
Waterbirds-severe.

Experiments with group-balanced contexts. As noted in Section 5, the proposed approach of
training an in-context learner requires spurious annotations. Given access to spurious annotations, one
can simply train an in-context learner on sequences with balanced groups. While in-context learners
obtained this way will not be useful for new tasks for which we do not have spurious annotations (and
thus cannot form group-balanced contexts), it is still useful to compare how well this approach does
in the single task setting of Section 2. For this end, we train in-context learners on balanced-group
sequences consisting of 128 Waterbirds examples. This way each group is represented with 32
context examples. Note that in our main Waterbirds experiments with 512 context examples but
group-imbalanced contexts, the minority groups are represented with even less, 25 examples. As
the group-balanced sampling context breaks the correlation between the label and spurious feature,
we only consider the naive approach of forming ICL sequences (Figure 2). The results presented in
Figure 20 show that, as expected, group-balanced sampling improves worst-group accuracy. The
naive approach, which again ignores the context and does tasks memorization, reaches 86.08 ±
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Figure 20: Majority-group and worst-group test accuracies on Waterbirds as a function of context
size for the naive approach trained and evaluated on group-balanced contexts. The training is done on
ICL sequences with 128 context examples. Shaded regions show standard deviation across 5 training
runs.
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Figure 21: Linear probing accuracy of the background variable at various layers of in-context learner
transformers trained on Waterbirds.

1.87 worst-group accuracy with 128 group-balanced context examples, compared to 84.82 ± 1.26
worst-group accuracy on 512 group-imbalanced context examples (see Table 1). This positive effect
of downsampling has been also observed in standard (not in-context) training settings (Nagarajan
et al., 2021; Menon et al., 2021; Idrissi et al., 2022). Furthermore, we again see that the proposed
technique of permuting embedding dimensions induces strong in-context learning and reaches 90.44
± 1.10 worst-group accuracy with 128 group-balanced context examples.
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Table 1: Complete results on Waterbirds. Reported numbers are average worst-group test
accuracies, along with the their standard deviation. The top half of in-context learners were trained
on Waterbirds itself, while the ones in the bottom half were training on iNaturalist.

Method / Context size 4 8 16 32 64 128 256 512

Naive 87.02
(0.79)

84.52
(1.00)

85.14
(0.42)

84.82
(0.89)

83.41
(0.75)

84.45
(1.04)

85.08
(1.15)

84.82
(1.26)

Naive + P 70.92
(1.18)

75.32
(1.11)

80.66
(0.68)

83.24
(0.35)

86.87
(0.62)

89.87
(0.85)

91.94
(0.75)

92.60
(0.59)

Proposed 87.91
(1.29)

85.63
(2.20)

86.51
(2.17)

85.42
(1.73)

85.12
(2.34)

85.86
(2.22)

86.72
(1.89)

86.89
(1.82)

Proposed + I 88.18
(1.07)

85.89
(1.31)

86.68
(1.02)

86.01
(1.39)

84.82
(1.02)

85.92
(1.23)

86.07
(1.27)

86.46
(1.57)

Proposed + P 68.44
(2.40)

73.46
(2.53)

80.00
(2.06)

83.71
(2.15)

87.30
(1.79)

90.02
(1.16)

92.11
(1.65)

91.95
(1.20)

Proposed + P + I 68.05
(1.51)

72.47
(1.80)

78.97
(1.12)

82.58
(0.68)

86.39
(0.69)

90.00
(0.60)

91.78
(0.56)

92.17
(0.86)

Proposed + G 88.74
(1.01)

87.00
(1.60)

87.62
(1.58)

86.86
(1.31)

86.18
(1.33)

86.91
(0.98)

87.26
(1.11)

86.95
(1.21)

Proposed + G + I 88.89
(0.53)

87.49
(0.69)

87.70
(0.74)

86.90
(0.95)

86.03
(0.71)

86.64
(0.72)

87.29
(0.77)

87.35
(1.00)

Proposed + G + P 68.47
(2.32)

73.74
(2.00)

79.21
(1.68)

82.85
(1.33)

86.55
(1.17)

89.98
(0.72)

92.00
(0.82)

93.05
(0.40)

Proposed + G + P + I 68.24
(1.88)

73.78
(1.67)

80.23
(0.94)

83.02
(1.22)

86.94
(1.31)

89.89
(0.91)

92.46
(1.00)

92.69
(1.15)

1-NN 65.29
(1.23)

72.53
(1.11)

79.15
(1.16)

82.81
(0.63)

87.49
(1.18)

90.00
(1.05)

91.96
(0.51)

93.40
(0.27)

ERM 63.04
(1.22)

70.76
(1.01)

77.32
(1.16)

83.04
(1.09)

85.95
(1.38)

87.20
(0.77)

88.10
(0.98)

88.48
(0.45)

GroupDRO 64.61
(1.79)

71.52
(0.73)

77.81
(1.19)

83.45
(1.57)

87.34
(1.42)

88.30
(0.91)

89.79
(0.81)

91.12
(0.62)

Naive 69.77
(1.37)

77.98
(1.51)

79.23
(0.83)

81.20
(1.35)

82.57
(1.52)

83.85
(1.56)

84.21
(1.19) -

Naive + P 66.47
(1.17)

73.12
(1.44)

77.85
(1.74)

81.76
(1.49)

86.36
(0.86)

88.02
(1.25)

89.68
(0.77) -

Proposed 69.75
(5.51)

77.51
(3.01)

79.20
(2.11)

81.39
(1.49)

82.04
(1.29)

83.51
(0.97)

84.63
(0.80) -

Proposed + I 70.73
(1.42)

77.10
(1.76)

78.90
(1.49)

80.86
(1.74)

82.22
(1.72)

84.22
(1.45)

84.69
(1.47) -

Proposed + P 66.09
(1.49)

73.71
(1.17)

78.33
(0.69)

82.75
(0.83)

86.32
(0.52)

88.85
(0.72)

89.98
(1.35) -

Proposed + P + I 65.51
(2.16)

70.91
(2.32)

75.94
(3.04)

81.51
(1.90)

86.41
(1.50)

89.39
(0.98)

91.08
(0.75) -

Proposed + G 70.98
(2.52)

78.41
(1.25)

79.67
(1.26)

81.59
(1.42)

82.42
(1.28)

83.91
(1.64)

84.31
(1.31) -

Proposed + G + I 71.94
(2.70)

78.56
(1.65)

80.62
(1.66)

82.31
(1.76)

83.52
(1.57)

84.52
(1.32)

85.35
(1.20) -

Proposed + G + P 67.55
(0.78)

73.79
(0.33)

78.32
(0.93)

82.56
(1.31)

86.01
(1.09)

89.40
(1.22)

90.99
(1.15) -

Proposed + G + P + I 69.18
(2.76)

74.13
(2.06)

79.18
(1.81)

83.17
(0.85)

87.25
(0.37)

90.67
(0.80)

92.23
(0.69) -
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Table 2: Complete results on Waterbirds-severe. Reported numbers are average worst-
group test accuracies, along with the their standard deviation. The top half of in-context learners
were trained on Waterbirds-severe itself, while the ones in the bottom half were training on
iNaturalist.

Method / Context size 4 8 16 32 64 128 256 512

Naive 83.04
(1.92)

80.78
(1.58)

80.78
(1.85)

79.43
(2.77)

80.50
(2.43)

80.29
(2.30)

81.67
(2.25)

82.02
(2.72)

Naive + P 10.89
(2.71)

28.61
(4.98)

46.23
(4.17)

58.40
(2.46)

67.13
(2.34)

74.28
(2.25)

77.18
(3.11)

77.49
(4.08)

Proposed 82.64
(1.56)

81.01
(2.23)

81.90
(1.80)

81.36
(1.69)

81.94
(1.91)

81.70
(1.62)

82.35
(1.72)

82.09
(2.15)

Proposed + I 83.23
(1.30)

80.76
(1.93)

81.65
(2.38)

81.46
(2.11)

81.63
(2.40)

81.34
(2.01)

81.46
(2.32)

82.24
(3.49)

Proposed + P 61.94
(8.91)

68.23
(5.53)

75.94
(3.13)

81.93
(1.53)

85.76
(2.03)

88.36
(1.30)

90.01
(1.98)

90.20
(2.65)

Proposed + P + I 64.01
(4.05)

72.22
(4.43)

78.45
(2.79)

82.00
(2.20)

85.86
(1.64)

88.13
(1.39)

90.09
(1.73)

90.59
(1.54)

Proposed + G 82.02
(3.37)

81.15
(3.56)

83.11
(1.84)

81.22
(2.08)

81.30
(1.72)

81.90
(1.62)

82.48
(1.62)

82.44
(1.34)

Proposed + G + I 82.61
(3.42)

80.48
(2.69)

81.20
(3.55)

80.13
(3.18)

81.09
(2.86)

80.84
(2.47)

81.61
(2.36)

81.84
(2.51)

Proposed + G + P 59.11
(2.89)

64.44
(5.67)

71.30
(3.74)

79.46
(0.83)

85.21
(1.54)

88.60
(1.36)

90.65
(1.01)

91.38
(1.14)

Proposed + G + P + I 64.26
(5.81)

70.05
(4.01)

77.76
(1.77)

82.38
(1.66)

86.56
(0.88)

89.09
(1.02)

90.75
(0.96)

90.82
(0.73)

1-NN 5.44
(0.60)

4.50
(0.43)

3.49
(0.21)

27.92
(0.54)

45.04
(0.88)

52.58
(1.39)

61.74
(0.48)

71.20
(0.58)

ERM 6.81
(0.44)

4.35
(0.26)

1.87
(0.24)

35.30
(1.55)

29.52
(1.49)

45.84
(1.00)

65.35
(0.53)

75.69
(0.88)

GroupDRO 7.42
(0.57)

5.26
(0.35)

2.75
(0.29)

17.62
(0.65)

45.47
(1.18)

65.13
(1.06)

78.57
(0.77)

86.89
(0.57)

Naive 48.18
(3.52)

49.39
(3.28)

48.71
(6.49)

52.58
(4.56)

54.10
(6.04)

56.41
(5.03)

56.86
(4.75) -

Naive + P 0.88
(0.45)

0.06
(0.05)

0.00
(0.00)

0.13
(0.29)

0.19
(0.43)

0.13
(0.29)

0.02
(0.04) -

Proposed 49.04
(2.76)

53.39
(4.74)

54.82
(8.82)

59.44
(10.75)

61.04
(12.23)

62.26
(12.31)

63.77
(12.38) -

Proposed + I 48.45
(6.15)

52.44
(11.15)

54.74
(10.69)

58.67
(11.38)

60.37
(9.19)

62.42
(8.69)

63.27
(9.15) -

Proposed + P 1.88
(0.56)

0.27
(0.21)

0.06
(0.10)

0.08
(0.13)

0.30
(0.60)

0.15
(0.28)

0.03
(0.06) -

Proposed + P + I 2.27
(0.74)

0.66
(0.49)

0.15
(0.14)

1.18
(1.09)

2.50
(2.49)

1.14
(0.88)

0.50
(0.20) -

Proposed + G 50.00
(5.03)

52.31
(5.05)

53.69
(4.54)

57.87
(3.33)

59.11
(3.16)

60.33
(3.36)

62.30
(3.01) -

Proposed + G + I 51.78
(5.76)

53.87
(6.15)

55.07
(6.20)

60.15
(7.40)

60.73
(8.02)

62.40
(8.01)

61.86
(7.77) -

Proposed + G + P 1.52
(0.69)

0.16
(0.13)

0.00
(0.00)

0.10
(0.20)

0.04
(0.05)

0.03
(0.05)

0.36
(0.73) -

Proposed + G + P + I 1.59
(0.17)

0.23
(0.16)

0.08
(0.10)

0.50
(0.69)

1.91
(3.05)

2.19
(3.67)

2.34
(4.00) -
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1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Table 3: Complete results on iNaturalist. Reported numbers are average minority-group
accuracies on the OOD test set of iNaturalist, along with the their standard deviation.

Method / Context size 4 8 16 32 64 128 256 400

Proposed 91.80
(0.39)

93.20
(0.29)

93.71
(0.35)

94.58
(0.22)

95.01
(0.42)

95.27
(0.42)

95.30
(0.40)

94.89
(0.27)

Proposed + I 92.88
(0.31)

93.82
(0.37)

94.61
(0.56)

95.36
(0.45)

95.76
(0.40)

95.90
(0.44)

95.94
(0.18)

95.06
(0.54)

Proposed + P 92.04
(0.22)

92.90
(0.30)

94.80
(0.32)

96.64
(0.30)

97.65
(0.20)

98.39
(0.27)

98.49
(0.14)

98.55
(0.23)

Proposed + P + I 92.15
(0.28)

92.97
(0.30)

94.67
(0.28)

96.86
(0.21)

97.80
(0.29)

98.46
(0.20)

98.54
(0.11)

98.61
(0.25)

Proposed + G 92.48
(0.45)

93.27
(0.72)

93.88
(0.43)

94.91
(0.63)

94.99
(0.38)

95.29
(0.45)

95.13
(0.33)

94.64
(0.43)

Proposed + G + I 92.59
(0.33)

93.80
(0.23)

94.18
(0.38)

95.50
(0.33)

95.82
(0.41)

95.83
(0.34)

95.82
(0.55)

95.28
(0.60)

Proposed + G + P 91.90
(0.17)

92.84
(0.19)

94.69
(0.15)

97.28
(0.31)

98.29
(0.13)

98.70
(0.19)

98.85
(0.19)

99.00
(0.11)

Proposed + G + P + I 92.28
(0.10)

93.25
(0.09)

94.93
(0.22)

97.73
(0.07)

98.44
(0.20)

98.99
(0.09)

99.04
(0.14)

99.06
(0.07)

1-NN 92.08
(0.64)

94.56
(0.39)

95.84
(0.16)

97.17
(0.23)

97.84
(0.12)

98.49
(0.20)

98.55
(0.23)

98.80
(0.21)

ERM 89.67
(0.43)

92.98
(0.30)

94.65
(0.17)

96.17
(0.24)

96.88
(0.23)

97.70
(0.21)

98.15
(0.17)

98.43
(0.11)

GroupDRO 91.20
(0.55)

93.79
(0.39)

95.33
(0.18)

97.39
(0.20)

97.85
(0.20)

98.46
(0.13)

98.91
(0.20)

99.01
(0.18)

Table 4: Complete results on CelebA. Reported numbers are average worst-group test accuracies,
along with the their standard deviation. All in-context learning were train on CelebA itself.

Method / Context size 4 8 16 32 64 128 256 512

Naive 24.88
(2.03)

24.56
(2.26)

25.80
(1.98)

25.14
(2.11)

23.85
(1.91)

25.62
(1.63)

25.84
(2.10)

26.20
(1.42)

Naive + P 20.72
(2.21)

17.27
(2.38)

12.43
(2.04)

14.85
(2.33)

13.56
(1.60)

16.17
(2.83)

20.16
(4.14)

26.03
(5.13)

Proposed 25.83
(1.77)

25.42
(1.66)

26.85
(1.52)

25.80
(1.60)

25.18
(1.06)

26.65
(2.11)

26.89
(1.41)

27.53
(1.31)

Proposed + P 26.90
(4.56)

26.54
(1.46)

27.00
(2.72)

37.30
(1.55)

47.29
(2.67)

54.66
(2.67)

60.48
(2.55)

68.45
(1.99)

Proposed + G 23.87
(1.50)

24.67
(1.51)

25.60
(1.30)

24.95
(1.12)

24.42
(1.17)

25.77
(1.24)

25.70
(0.81)

26.55
(1.39)

Proposed + G + P 26.71
(3.57)

32.06
(4.62)

39.21
(6.06)

46.13
(5.38)

53.41
(3.73)

59.37
(3.07)

64.39
(1.84)

69.58
(1.72)

1-NN 35.87
(1.48)

37.63
(0.86)

36.08
(1.13)

37.86
(0.45)

38.28
(0.80)

36.40
(0.32)

36.90
(0.99)

37.81
(0.36)

ERM 30.70
(1.05)

28.93
(0.64)

26.37
(0.66)

30.75
(0.40)

34.29
(0.93)

38.64
(1.29)

45.18
(1.39)

49.92
(1.28)

GroupDRO 35.32
(0.88)

34.64
(0.99)

30.24
(1.01)

37.49
(0.60)

47.11
(0.59)

54.56
(0.66)

56.11
(0.60)

61.47
(0.93)
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1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Table 5: Complete results on CelebA, but with larger network of 120m parameters, consisting of 12
layers (instead of 6 layers) with 12 multi-head attention (instead of 8 heads). Reported numbers are
average worst-group test accuracies, along with the their standard deviation. All in-context learning
were train on CelebA itself.

Method / Context size 4 8 16 32 64 128 256 512

Naive 24.43
(0.57)

21.79
(0.86)

23.68
(0.58)

23.02
(0.49)

23.99
(0.84)

23.18
(1.04)

22.62
(0.83)

20.22
(1.00)

Naive + P 21.34
(1.40)

14.64
(0.66)

12.56
(0.74)

13.35
(1.54)

13.76
(2.58)

15.73
(2.41)

17.69
(3.27)

21.67
(4.55)

Proposed 22.90
(2.30)

20.86
(2.40)

23.11
(2.66)

21.93
(2.50)

23.35
(2.80)

21.82
(3.11)

21.75
(2.32)

19.54
(2.06)

Proposed + P 35.13
(5.19)

31.54
(1.73)

30.89
(4.40)

35.19
(5.28)

41.63
(6.74)

47.81
(9.40)

51.60
(11.00)

55.53
(11.70)

Proposed + G 23.08
(2.47)

20.89
(2.66)

22.74
(2.54)

21.73
(3.23)

22.70
(3.25)

21.24
(3.45)

21.50
(2.61)

18.90
(2.01)

Proposed + G + P 31.44
(4.27)

32.09
(5.24)

36.54
(1.90)

43.67
(2.72)

49.62
(2.93)

54.77
(4.24)

58.75
(5.94)

61.74
(6.10)

1-NN 35.87
(1.48)

37.63
(0.86)

36.08
(1.13)

37.86
(0.45)

38.28
(0.80)

36.40
(0.32)

36.90
(0.99)

37.81
(0.36)

ERM 30.70
(1.05)

28.93
(0.64)

26.37
(0.66)

30.75
(0.40)

34.29
(0.93)

38.64
(1.29)

45.18
(1.39)

49.92
(1.28)

GroupDRO 35.32
(0.88)

34.64
(0.99)

30.24
(1.01)

37.49
(0.60)

47.11
(0.59)

54.56
(0.66)

56.11
(0.60)

61.47
(0.93)
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